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Abstract 

A perturbation technique is developed that can be applied to study the collective in

stability problem when the unperturbed system is not described by a simple harmonic 

oscillator. The Longitudinal Head-Tail instability effect is well studied as applications of 

this technique. Applications of the longitudinal head-tail instability effects to the CERN 

SPS and the SSC are included. 
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1.0 INTRODUCTION 
The ideal motion of a single particle in a circular accelerator is that of a simple har

monic oscillator. In reality, the accelerator contains various perturbation effects that cause 

deviations from this simple-harmonic environment. To study the problem of beam insta

bility, therefore, it is customary to consider the various perturbation effects to be imposed 

on the idealized simple-harmonic environment. In particular, the conventional theory of 

collective instabilities is developed by imposing the perturbation of collective wake forces 

on the simple harmonic system. 

However, when the new collective longitudinal instability was observed in the CERN 

Super Proton Synchrotron (SPS),l the analyses suggested the "longitudinal chromaticity" 

playing a role. Drawing analogy to the transverse case where the betatron chromaticity 

causes the head-tail instability, this new instability was named Longitudinal Head-Tail 

(LHT) instability. The theoretical existence of the LHT instability was pointed out by 

Hereward;2 it results from the non-simple-harmonic nature of the system when the longi

tudinal chromaticity effect is considered. When the longitudinal chromaticity vanishes -

and therefore the system is simple-harmonic - there would not be a LHT instability. To 

study the LHT instability, the conventional theory does not suffice because it treats only 

the simple-harmonic case. 

In this paper we develop a new formalism that extends the conventional approach to the 

non-simple-harmonic Hamiltonian system. The LHT instability is studied as an application 

to demonstrate the technique. By using the water-bag particle distribution model, it is 

possible to solve the problem exactly and obtain the growth rates for the various collective 

modes (the dipole, quadrupole, sextupole modes, etc.). Although not discussed below, the 

potential-well distortion, as well as its effects on collective instabilities, can also be studied 

with this technique. 

In Section 2, we follow Reference 1 to illustrate the basic physical mechanism of the 

LHT instability effect. In Section 3, a perturbation formalism for the non-simple-harmonic 

Hamiltonian system is developed. For one distribution, the water-bag model, the problem 

is analytically solved. In Section 4, the results of Section 3 are applied to the CERN SPS, 

and the SSC collider and boosters. 

2.0 MECHANISM OF THE LONGITUDINAL 
HEAD-TAIL INSTABILITY 

The LHT instability, like its well-known transverse counterpart, the transverse head-tail 

instability (or simply the head-tail instability), is a single bunch effect. The mechanisms 

of these instabilities are quite similar. In the transverse head-tail instability, the betatron 



frequency of a particle depends on its momentum deviation 8 = b,.E / E. As a consequence, 

the accumulated betatron phase of the particle depends on its longitudinal location z in 

the bunch as it executes a synchrotron oscillation. If the particle motion is then perturbed 

by the collective wake forces, this betatron phase difference between the bunch head and 

bunch tail can lead to the transverse head-tail instability.3,4 A similar situation happens 

for the LHT instability. This instability is caused by a dependence of the accumulated 

synchrotron phase on the longitudinal position of the particle, coupled with a perturbation 

due to the collective wake forces. 

However, the situation is more subtle in the longitudinal case for the following reason. 

In the transverse case, the betatron motion of a particle is modulated by 8 and z, which, 

in the description of the transverse effects, can be regarded as external parameters. In the 

longitudinal case, the synchrotron motion is also modulated by 8 and z, but in this case, 

8 and z are the dynamic variables which describe the particle motion. The analysis of this 

problem is therefore more involved. 

We will postpone the analysis till Section 3. In this section, we will illustrate the basic 

mechanism of the LHT instability, at least for the collective dipole mode. To do so, consider 

a circular accelerator whose slippage factor." contains a higher order term in 8, i.e., 

(1) 

where "'0 is the leading contribution of the momentum slippage factor, and f is a parameter 

that specifies the strength of the higher order contribution. The unperturbed equations of 

motion of a single particle are given by 

dz 3 
ds = -"'08(1 + 2"f8),· 

d8 w2 
_ - _s_z 
ds - ."oc2 ' 

(2) 

where s is the longitudinal coordinate along the accelerator circumference, and Ws is the 

unperturbed synchrotron oscillation frequency for.small amplitudes. 

The Hamiltonian of the system is given by 

.,,2 w2 
Ho = ....Q.82(1 + f8) + ~2z2. 

2 2c 
(3) 

Equation (2) follows from the Hamiltonian (3) if we take the canonical variables to be 

q = z and p = -"'08. (4) 

The coefficient f describes the deviation from the simple harmonicity of the system. We 

consider small f so that If81 ~ 1. The motion of a single particle in the z-8 space follows a 
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constant Hamiltonian contour. One such contour is shown in Figure 1. The contour would 

be elliptical if E = o. When E =I 0, the contour is deformed. The contour in Figure 1 shows 

the deformation when E > o. 

o 
+ 

z 

TlP-03784 

Figure 1. The Phase Space Trajectory due to the Non-simple-harmonic Hamiltonian, Eq. (3). The case 
shown is for { > 0 .. 

Also shown in Figure 1 is the motion of a beam bunch. The center of the bunch is con

sidered to move along the constant Hamiltonian contour shown. The other particles in the 

bunch move along neighboring contours which are not shown. The bunch is considered to 

be executing a longitudinal dipole oscillation, the amplitude of which has been exaggerated 

in Figure 1. The main effect of a non-vanishing E is that it has introduced an asymmetry 

between the upper and the lower halves of the phase plane. 

As the beam bunch executes its dipole oscillation in this deformed phase space, the 

shape of the phase space area occupied by the bunch varies, although its area is conserved. 

The bunch shape at two instances (marked by + and -) are shown as shaded areas in 

Figure 1. In particular, the bunch lengths z+ and z_ at the two instances are related by 

the Liouville theorem according to 

z_ 1*-' -cL(l+!ecL) 1-(:c50 l+ec5_ 
z+ = 1*+1 = c5+(1 + !ec5+) ~ 1 + ec50 ~ 1 + ec5+' 

(5) 

where c50 = v2Ho/I7]01, and c5± ~ ±c5o-1ec55 are the values of c5 at the + and -locations. We 

conclude from Eq.(4) that, to first order in lec5ol, the bunch length is modulated according 

to 

(6) 

3 



as the bunch executes the dipole oscillation in the phase space. 

Next we introduce the effect of the collective wake fields. The bunch will lose energy due 

to interacting with the surroundings through the wake fields. Since the energy loss of the 

beam bunch depends on the bunch length, the bunch energy loss is also modulated by the 

same factor of Eq. (6). Adding the energy loss term to Eq.(2), we obtain the equations of 

motion 

dz 3 
ds = -1Jo8( 1 + 2E8), 

d8 w; 1 
ds = 1JOC2z + NEC[~E 1£(1+£6) -~E Iz] (7) 

w; z d~E 
~ --.)Z + E NEC dA 8, 

1JoC~ Z 

where N is number of particles per bunch, E is the particle energy, C is machine circum

ference, and ~E is the bunch energy loss per turn. Compared with Eq.(2), Eq.(7) contains 

an extra term which is proportional to ~E 1£(1+£5) -~E 1£, which is the portion of ~E 

which is modulated by the instantaneous beam energy 8, and we have kept only its leading 

contribution to first order in 8. 

To first order in 8, the two equations in (7) can be combined to give 

d
2
8 _ E Z d~E d8 + w; 8 = O. 

ds2 NEC dz ds c2 
(8) 

Equation (8) represents a system with growth (or damping if negative) rate: 

-1 cZ d~E 
T = E2NEC dz . (9) 

The result (9) was first obtained in Reference l. 

The dipole LHT instability growth rate is proportional to the nonlinear slippage factor 

E and the dependence of the beam energy loss on the bunch length. Whether the system 

is stable or unstable is determined by the sign of E(d~E/dz). Usually the quantity d~E/dz 

is positive (a short bunch loses more energy than a long one. In our convention, ~E < 0). 

This means the bunch oscillation is unstable if E > 0 and stable if € < O. 

Consider a bunch executing a longitudinal dipole oscillation relative to a synchronous 

particle. Due to the nonlinear slippage factor, as the bunch executes a dipole oscillation, 

its length is modulated by the factors 1 + E8, where 8 is the instantaneous relative energy 

of the bunch. If E > 0, the length of the bunch is going to be shorter when its energy is 

lower than the synchronous energy (8 < 0), and is longer when its energy is higher than 

the synchronous energy (8 > 0). If a short bunch loses more energy in the wake field than 
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a long bunch, i.e., if dtic:/dz > O. the bunch will lose energy when b < 0 and gains energy 

when b > O. This means an ever-increasing amplitude of the dipole motion of the bunch, 

leading to an instability. If € < 0, the opposite happens, and the beam dipole motion is 

damped. 

We have so far studied the effect of a non-harmonic term in the dz/ds equation which is 

nonlinear in b. Naturally one could ask the counterpart problem when the non-harmonicity 

is contained in the db / ds equation due to a term nonlinear in z. This system describes a 

potential-well distortion effect. The analysis to be described in the next section, as well as 

the physical picture described in the present section, can be extended to that system as 

well. We have not pursued it in the present report. Suffice it to say here that the collective 

wake forces do not cause an instability of this system; they cause only collective mode 

frequency shifts. 

3.0 PERTURBATION APPROACH 
The conventional approach to treat the longitudinal collective instabilities is as follows. 

One starts with a certain stationary bunch distribution (usually ignoring the potential well 

distortion effects). One then assumes that on top of this stationary distribution, there is a 

time-dependent perturbation which oscillates with a certain coherent frequency n that is 

to be determined. The equation that governs the perturbation distribution is the Vlasov 

equation. By solving the Vlasov equation, one obtains solutions for n. The imaginary part 

of n then gives the stability growth rate. 5,6 

If we adopt the simple harmonic oscillation as the unperturbed model (unperturbed 

is used here to refer to the case when wake field effects are neglected), the action-angle 

variables form a pair of canonical variables. In fact, the action is proportional to the 

Hamiltonian and the canonical transformation from the (z, 8) to the action-angle variables 

is the transformation from the Cartesian coordinates to the polar coordinates. 

From the previous section we knew that to study the LHT instability, we will have to 

consider an unperturbed system which is described by a non-simple-harmonic Hamiltonian. 

For such a system, the conventional method of Cartesian-to-polar transformation no longer 

applies. The technique we develop in this paper is to introduce a new pair of dynamical 

variables: the Hamiltonian H itself and another variable Q which assumes the role of the 

time variable. The advantage of using the new variables is we only need to deal with 

one complicated variable Q. This point will become clear in the later derivation. Having 

introduced the new dynamical variables, the procedure we use to solve the Vlasov equation 

then follows basically the conventional treatment. 
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We start with a general situation when the accelerator is described by a Hamiltonian 

H(q,p;s). The beam distribution 'l/.'(q,p;s) in the phase space (q,p) behaves in this envi

ronment according to the Vlasov equation 

81/; + {of, H} _ 84' + 8'l/.' 8H _ 84) 8H 
8s '1/, - 8s 8q 8p 8p 8q = O. (10) 

Here we have introduced the Poisson bracket notation. Later we will relate the canonical 

variables q and p to z and b according to Eq.( 4), but we leave them general for now. 

The unperturbed part of the Hamiltonian H is 

1 2 
Ho(q,p) = 2'p2[1 + f(p)] + ;;2 q2 , (11) 

where the function f(p) represents a small deviation of the system from simple harmonicity. 

In the following we will study how f(p) contributes to the LHT instability, particularly for 

the system described by Eq.(3) for which 

€ 
f(p) = --po 

1]0 
(12) 

Consider a beam with an unperturbed distribution 1/;0 which is executing a collective 

oscillation due to the interaction of wake fields. Let the collective oscillation be described 

by a small distribution perturbation 1/;1 and let the oscillation frequency be n. The total 

beam distribution is then given by 

(13) 

The normalization is chosen such that 

f: dq 1: dp 1/;0 = N. (14) 

To describe the stationary distribution of the unperturbed system, 1/;0 must be a function 

of Ho alone. 

The distribution perturbation induces a collective wake force which affects the motion of 

the beam particles. This additional wake force is described by the perturbed Hamiltonian 

H(q,p; s) = Ho(q,p) + HI (q)e- iOs/ c , (15) 

where the unperturbed term Ho is given by Eq. (11), and the wake induced term HI is 

given by 
q 

HI = - ~o~ J VI(q')dq', (16) 
-00 
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where "VI (q) is the retarding wake voltage per turn induced bY~'I and is related to the 

longitudinal wake function lV(q) and impedance Z~(w) according to 

( 17) 

The wake term HI contains the effect due to the perturbation distribution 'l/JI; the wake 

force induced by the unperturbed distribution 'l/Jo has been ignored. This amounts to 

ignoring the potential-well distortion effect, which is not of interest in the present study. 

In writing down Eq.( 17), we have also ignored multi-turn wake effects. 

Considering'l/JI is a small quantity, the Vlasov equation (10) can be linearized by keeping 

the first order terms in 'l/JI, 

(18) 

We now introduce a canonical transformation from the old variables (q, p) to the new 

variables (Q, P), 

with the generating function 

8F 
q=--

8p 
and 

p 

8F 
Q= 8P' 

F(p, P) = - J q(P,p')dp'. 

o 

(19) 

(20) 

The basic idea is to choose the unperturbed Hamiltonian Ho as the new canonical momen

tum, i.e., P = Ho. Then the other canonical variable is given by 

P , 

Q = _ J 8q( H 0 , p ) d ' 
aHo p. (21) 

o 

The advantage of having P = Ho lies in the fact that 'l/Jo depends on Ho only, and we have 

(22) 

Notice the period of the motion of a particle is 

if.. = f 8q(Ho,p')d ' 
'Jc' 8Ho p. (23) 
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This period depends on the value of Ho for the particle under consideration. In the simple 

harmonic case, we have <P = 27rC/"'-'8. 

Since the Poisson bracket is invariant under canonical transformations, we can express 

it in either the new or the old variables. In particular, we use the new variables to obtain 

(24) 

and, noting HI is independent of ]J, use the old variables to obtain 

(25) 

Following the definition of HI in Eq.(16), we have 

oHI = _ 'floe V ( ) 
oq EC 1 q . (26) 

The linearized Vlasov equation (18) becomes 

_ .n .1. O~I 'floe V; ( ) a~o oHo - 0 
t c '1-'1 + oQ + EC 1 q oHo op - . (27) 

To solve the Vlasov equation, we first Fourier expand ~1 as 

00 

~l = L RI(Ho)ei27rIQ/~(Ho), (28) 
1=-00 

where the 1 = 0 term in the summation is to be excluded because it violates the total 

charge conservation for a given Ho. The Fourier expansion is possible because the motion 

is periodic in Q with period <P. Note that <P depends on Ho. 

Substituting Eq.(28) into Eq.(17), we find 

00 

TT e J d Zll() [. q(Q,Ho)] 
y 1 = -2 WOW exp ZW 

7r C 
-00 

(29) 
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Multiplying both side of Eq.(27) by exp( -i2r.lQjiP) and integrating over Q from 0 to iP, 

we obtain 

[ 
27rlc ] . 17oe2c 

n - iP(Ho) Rl(Ho) + 127rECiP(Ho) 

00 ip(Ho) 

x J dwZIl(w) J dQ 8'1/)0 aHo exp [iW q(Q, Ho)] 
o aHo ap c 

-00 0 

00 ip(H~) 

x J dHb J dQ' exp [-iW q( Q'~ Hb)] 

-00 0 

x "I;oo R,,(H;) exp [;2,,1' if!t~;) - ;2,,1 if!(~o)] ~ 0, 1 ~ ± integers, (30) 

For a general equilibrium distribution 'l/!o (Gaussian, for example), the analysis to solve 

Eq.(30) is involved. Pursuing along this line would yield the radial modes of the collective 

oscillation. For one simple beam distribution, the water-bag model, however, the radial 

modes degenerate and the equation can be solved analytically. In the following, we will 

assume that the unperturbed beam has a water-bag distribution 

'l/!o(Ho) = {Nj JoB dHoiP(Ho) if 0 < Ho < iI, 
o otherwise. 

(31) 

The normalization is given by Eq.(14), together with the condition dQdHo = dqdp. For 

small €, the overall normalization of (31) can be approximated to give 
wsN ~ 

'l/!o(Ho) ~ --~ 8(H - Ho), 
27rcH 

where 8( x) is the step function. 

(32) 

Since any perturbation of a water-bag distribution has to occur around the edge of the 

bag, we have 

Rl(Ho) ex 6(Ho - iI). (33) 

After adopting the water-bag model, Eq.(30) simplifies considerably to yield, for the I-th 

mode (for example, 1 = 1,2,3 correspond to the dipole, quadrupole, and sextupole modes), 

-00 

(34) 
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where, and form this point on, <I> is evaluated at Ho = II. In obtaining Eq.( 34). the coupling 

among the different modes with l' =1= 1 are neglected. The validity of this approximation 

assumes the mode frequency shifts are small compared with 27TC<I> :::::: Ws. 

For the longitudinal head-tail instability problem. we now substitute Eq.( 11) for Ho and 

Eq.(12) for f(p). We further define an angular variable B according to 

q = ~J2Ho cosB, 
WS 

PV1 - E P = J2Ho sinB. 
1]0 

We then have, from Eqs.(21) and (23), 

(J 

Q = -~ J G(B')dB', 
Ws 

o 
211" 

<I> = ~ J G( B)dB - 27TC (G) , 
Ws Ws 

o 

with 
,,11- ..Lp 

G( ) 
_ 7]0 

P - 3 ( . 
1- --p 

27]0 

(35) 

(36) 

(37) 

The size of the water-bag II is related to the bunch length z through II = w;z2 j8c2. 
Below, we will introduce another convenient parameter 

~ z 2V2H T=-= 
C 

In terms of the new variable B, Eq.(34) can be written as 

211" 

X J dB sin B exp 

o 

211" 

X J dB' G( B') exp 

o 

-00 

(J 

~ J G( BI)dB" 
.WT BOl o z2 cos + z --(-;-G~)--

(J' 

~ J G( B")dB" 
oWT B' '1 0 -z2 cos - z ~-(-:-G"""')--

10 
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If the non-harmonici ty is weak, we assume I n/2'H /170 I ~ 1 and keep the first order terms 

in E to obtain 

Er:7C 
G ( B) :::::; 1 + - V 2H sin B, 

170 

(G) = 1 + O(f2) :::::; 1. 

Substituting the above expression into Eq.(39), we finally find the mode frequency 

where 

(I) . 170 Ne2c E ~ n = lws + z2 3EC JA + ~wsTB), 
Ti WsT ~170 

00 211' 

A = J dwZ~(w) J dB sinBeiwTcosO/2+ilO 

-00 0 
211" J dB' e -iWT cos 0/2 -ilO' , 

o 
00 211" 

B = J dwZ~(w){il J dB sinB(l- cos B)eiWT cos O/2+iIO 

-00 0 

211" 211" J dB' e -iWTCOSO/2'-iIO' + J dB sin BeiwTCOSO/2+iIO 

o 0 
211" 

/ dB'[sinB' - il(l- cosB')]e-iWTCOSO/2-iIO'}. 

o 

The quantities A and B can be simplified as 

-00 

32 2 /00 ZIIC) ~ ~ ~ 
B = _~l2 d 0 W [WT J(~)J (~) 

f2 w w2 2 1 2 1+1 2 + 
-00 

2 wf 
(1 - 1)J1 ("2 )]. 

The longitudinal impedance satisfies 

Z~(w) = Z~*( -w). 

11 

(40) 

(41) 

( 42) 
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It follows that A is a purely imaginary and B is real. If E = 0, only the A coefficient 

plays a role; the result describes the solution of the conventional longitudinal instability 

problem. In particular, the fact that A is purely imaginary means the mode frequency n 
is real, and the beam is always stable. This is a well-known result 5,6 when mode coupling 

and multi-turn effects are ignored, as is presently assumed. If E =I- 0, the B term also 

contributes to the mode frequency n. This contribution, being imaginary, is the cause of 

the LHT instability. The instability growth rate is 

-00 

Equation (45) is our main result of the LHT instability growth rate for mode 1. 

We will next establish Eq.(9) as follows. The energy loss in one turn is given by 

-00 

For the water-bag distribution, we have 

and the corresponding Fourier spectrum is 

_( ) _ 4Nc J (WZ) pw --~- 1-
2

. 
wz C 

Substituting Eqs.( 46) and (48) into Eq.(9), we find 

-1 = 4Ne
2
c
2 

JOO d ~Z~(W)J (wz)J (wz). 
r E EC~ W 1 2 2 2 rr z W C C 

-00 

(45) 

(46) 

( 47) 

(48) 

(49) 

This is the same result as Eq.( 45) for the case 1 = 1. The simple physical picture and the 

self-consistent calculation thus give identical result for dipole motion. 
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4.0 NUMERICAL RESULTS 
vVe may apply the result of the last section to specific models of the impedance. For 

example, the diffraction model of cavity structures gives an impedance 7 

Z~(w) = ZOb J C,g, [1 + sgn(w)i], 
27r 7r W 

(50) 

where Zo = 377n is the impedance of free space, b is the radius of the beam pipe at the 

location of the cavity structure, and 9 is the longitudinal length of the gap of the cavity. 

The corresponding growth rate is found to be 

(51) 

For the 1 = 1 dipole mode, this gives 

(52) 

In case the dominating cavity structures are the accelerating rf cavities, one would have 

9 ~ c/2frf where frf is the rf frequency. 

As a second impedance model, we consider the resonator model 

ZII(w) = R . ° 1 + iQ(~ -~) 
W Wr 

The growth rate for dipole mode is found to be 

4Ne2c2R 
1"-1 = €~(I1 - 12 ) 

ECiV4Q2_1 ' 

where 
I - J (x )J (x ) _ 2i ~ (-1)n(2n)!!(x1,2)2n 

1,2 - 1 1,2 2 1,2 L.. (2 l)"f( _ l)f( 2) 
7r n=O n + .. n 2 n + 2 

and 

(53) 

(54) 

(55) 

(56) 

For the CERN SPS collider, we take E = 26 GeV, N = 1011, C = 6.9 X 103 m, i/c = 5 ns 

(Reference 1) which gives a bunch length 7 ns for the cosine squared distribution. The z is 
obtained by equaling rms bunch length of two distribution, the water-bag and the cosine 

squared), and € = 1. We also assume there are two sets of rf cavities. The first set contains 

198 rf cells with frf = 200.222 MHz, b = 6.5 em, R/Q = 114.5 n. The second set contains 

32 rf cells with frf = 200.3982 MHz, b = 7.8 em, R/Q = 216 n.l,8 The growth time 1" is 
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5.4 s for the diffraction model and 23 s for the resonator model. The observed growth rate 

is 5 '" 6 s.1 

For SSCL machines the parameters are as follows: For the Collider, we assume E = 

2000 GeV, N = 8.1 X 109
, C = 8.712 X 104 m, i = 5.4 cm and there are 40 rf cells 

with irf = 359.75901 MHz. For the HEB, we assume E = 199.1 GeV, N = 8.1 X 109 , 

C = 1.08 X 104 m, i = 30.7 cm and there are 10 rf cells with irf = 59.957832 MHz. For the 

MEB, we assume E = 11.1 GeV, N = 8.3 x 109 , C = 3.96 x 103 m, i = 22.0 cm and there 

are 18 rf cells with irf = 59.776 MHz. For the LEB, we assume E = 0.6 GeV, N = 8.7x 109
, 

C = 5.7 x 102 m, i = 143.0 cm and there are 8 rf cells with irf = 47.514 MHz, Reference 9. 

We also assume b ~ 5 cm and € ~ 1 for all machines. The growth time are 7.0 x 104 s, 

3.4 X 103 s, 32 sand 1.2 s, respectively. 

The LHT instabilities tend to playa more important role in the lower energy accelerators, 

particularly those operated close to transition. In all cases studied, however, the LHT 

instability does not constitute a serious limit on beam intensities. 

We may also apply the result to the resistive wall impedance 

Z~(w) = ~ J ~:~[1- sgn(w)i], (57) 

where (j is metal conductivity. We obtain 

(58) 

For the resistive wall, we find growth rate is negligible. For the LHT instability, resistive 

walls do not play an important role. 

5.0 SUMMARY 

If the unperturbed beam motion is distorted from that of a simple harmonic motion, 

the non-harmonic distortion will create a new collective instability. We have developed 

a formalism based on the Vlasov equation to analyze this instability. The technique is 

then applied to the longitudinal head-tail instability effect. Explicit expressions of growth 

rates are obtained for the water-bag distribution model for various collective modes. The 

analytical result for the dipole mode seems to agree with the observation made at the 

SPS. Application to the SSC Collider and Boosters show that the longitudinal head-tail 

instability is not a serious limit on the SSC beam intensities. 
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