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Notes on Amplitude Function Mismatch 

M.J. Syphers and T. Sen 

Abstract 

The design process of modern high-energy synchrotrons involves the development of 

the accelerator lattice in pieces, typically an arc made up of repetitive cells interrupted 

by occasional matched insertions for injection, extraction, acceleration, and various other 

systems required by the facility. The focusing elements of an insertion must be such 

that the periodic amplitude functions at the ends of the insertion match those of the 

cells on either side of the insertion. How well this match has to be and its sensitivity 

to the global betatron tunes of the accelerator as well as the particle momentum are the 

underlying themes of this report. Many of the relationships also are of use to the designers 

of beamlines which are used to transport and inject beams into a synchrotron. 

Most of the content of this paper is not new to the accelerator physics community, but 

we thought it would be useful to place this important, basic information all in one place. 

Besides the classic work of Courant and Snyder, our sources include other papers, internal 

reports, and numerous discussions with our colleagues. 
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1.0 BASICS 
The general solution for linear betatron oscillations in one transverse degree of freedom 

can be written as! 

x ( s) = A y' ,8 ( s ) cos [ 1jI ( s) + 15] (1) 

where A and 15 are constants given by the particle's initial conditions. The phase advance 

1jI( s) and the amplitude function ,8( s) satisfy the differential equations 

1jI' = ~, (2) 

2,8,8" - ,812 + 4,82 J{ = 4, (3) 

where J{ = e(oBy/ox)/p, with e = charge, p = momentum, oBy/ox = magnetic field 

gradient, and ,8' = d,8 / ds, etc. When one considers the periodic solution of the amplitude 

function, the motion through a single repeat period can be written in terms of the Courant

Snyder parameters ,8, 

in matrix form: 

Here, the phase advance is 

a(s) _ -~ d,8d(s) , and 
2 s 

1 + a 2 

,= ,8 

,8 sin !;:,.1jIc ) (X ) 
cos !;:,.1jIc - a sin !;:,.1jIc x, 80' 

_1 8o+C 
ds 

!;:,.1jIc - 80 ,8( s) 

(4) 

(5) 

(6) 

(7) 

where C is the repeat distance of the hardware, which may be the circumference of the 

accelerator. The tune of a synchrotron is 

1 f ds 
1I = 271" ,8(s)' (8) 

The matrix of Eq. (6) is often written in a compact way as 

M = I cos !;:,.1jIc + J sin !;:,.1jIc (9) 

where 

J=(a ,8) - -, -a . (10) 



Noting that J2 = -1, where 1 is the identity matrix, one may also write Eq. (9) in even 

more compact form: 

(11) 

The latter form often permits simplification of algebraic manipulations. 

The matrix M(81 -+ 82) which propagates motion between two points in the lattice may 

be written as 

(12) 

In this case, b..'ljJ is the phase advance from 81 to 82: 

(13) 

It is often easier to remember the differential Eq. (3) when written in terms of the 

Courant-Snyder parameters: 

I<{3 =, + a ' . (14) 

2.0 PROPAGATION OF THE AMPLITUDE FUNCTION 
One can see how the amplitude function and its slope propagate through an accelerator 

section by referring to Figure 1 and noting that 

(15) 

where M1 and M2 are the one-turn matrices corresponding to points 1 and 2. Then, using 

Eq. (9), one sees that 

(16) 

Figure 1. Definition of Matrix M(SI ---+ S2). 
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As an example, consider a thin quadrupole of length i whose matrix is 

where q is the strength q = B'ij(Bp). Then, 

132 ) _ (1 0) ( al 131) (1 0 ) 
-a2 - -q 1 -,I -al q 1 

from which we see that 

~a = f3q 

~f3 = 0 

~, = 2aq + f3q2 

when passing through a thin quadrupole. 

131 ) 
-(al + f31q) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

To see how the betatron phase advances through a region, let the transfer matrix for 

that region be given by 

(23) 

Then, equating this with Eq. (12), we see that 

-1 ( b ) ~'lj; = tan 13 b + 2?Tn, 
a 1 - al 

n = 0,1,2, ... (24) 

The value of n cannot be determined from the above relation of matrix elements. The 

total phase advance must be obtained using Eq. (13) or by dividing the problem into small 

enough pieces. The phase advance depends upon the initial values of a and 13 unless the 

matrix element b is zero (i.e., ifthe phase advance through the region is a multiple of 180°). 

3.0 PROPAGATION OF A THIN GRADIENT ERROR 
Let's see how the amplitude function downstream of a thin gradient error is altered. 

If Jo(so) is the matrix of unperturbed Courant-Snyder parameters at the lo'cation of the 

error and Jo( s) contains the unperturbed parameters at a point downstream, then, using 

Eq. (16), 

~J(s) = M(so -+ s)~J(so)M(so -+ s)-I, (25) 

where 

(26) 
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(3 is the new value of the amplitude function at s, (30 is the unperturbed value, etc. Using 

our results for ~a, ~f3, and ~I through a thin quad and our expression for M(so ~ s) 
(Eq. (12», we find that 

~f3(s) . 1 
f3o(s) = -«(3iq)sm21/;0(s - so) + 2(f3iq)2 [1 - cos 21/;0(s - so)] (27) 

where 1/;o(s-so) is the unperturbed phase advance between points So and sand (3i = f3o(so). 
The amplitude function perturbation oscillates at twice the betatron frequency and for 

«(3iq) sufficiently small, the perturbation describes simple harmonic motion. The change 

in a also propagates at twice the betatron frequency, it being given by 

~a( s) = f3iq [cos 21/;0( s - so) - ao( s) sin 21/;0( s - so)] 

- ~«(3iq)2 [sin 21/;0(s - so) - a o(s)(l - cos 21/;0(s - so»)] (28) 

Introducing this quad error also changes the phase advance across the lattice. The new 

transfer matrix M(so ~ s) from point So to s is 

- ( 1 M(so ~ s) = M(so ~ s) _q (29) 

The new phase advance 1/;( s - so) across this section may be calculated using 

. 1/;( ) M(SO~S)12 
SIn s - So = ----'v'r(3~i::;:(3 (:;:::s~) - (30) 

where M(so ~ S)12 is the (1,2) element of this matrix and f3(s) is the new amplitude 

function at s. Using Eq. (27), we obtain 

sin 1/;( s - so) = [1 - f3iq sin 21/;0( s - 80) + (f3iq)2 sin2 1/;0( s - so)] -1/2 sin 1/;0 ( s - so) . (31) 

An explicit result for the change in the phase advance may be obtained perturbatively in 

orders of the quad error q from the above exact expression. To second order in q, we find 

that the change ~1/; = 1/;(s - so) -1/;o(s - so) is 

~1/; = f3iq sin2 1/;0( s - so) - (f3iq)2 sin 21/;0( s - so) sin2 1/;0( s - so) + O( q3) (32) 

To first order in q, at a point 7r /2 away from the location of the error, there is no change 

in the 13 function while the change in phase advance is at its maximum value of f3iq. 

The above results may be especially useful in a beamline where they may be used to 

calculate the changes in lattice functions at any point due to quad errors upstream of this 

point. 
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4.0 EQUATION OF MOTION OF ,8-WAVE 
The equation of motion for an amplitude function mismatch is nonlinear when s is taken 

as the independent variable. A more congenial equation can be developed by using the 

reduced phase ¢ == 'l/J / v as the independent variable. For betatron oscillations the Floquet 

transformation, where the other variable is ( = x / V73, produces the equation of motion 

(33) 

which is pure simple harmonic motion with frequency (tune) v. For the amplitude function 

mismatch, we need to define the reduced phase in terms of the unperturbed functions. That 

is, let ¢ == 'l/Jo/vo, where d'l/Jo/ds = 1/,80, and Vo is the unperturbed tune. We then may 

derive an equation of motion for [,8( ¢) - ,80 ( ¢)]I ,80 ( ¢) = 6.,8/,80 in the absence of gradient 

errors: 

d2 6.,8 2 6.,8 2 
d¢2 ,80 (¢) + (2vo) To(¢) = - 2vo det6.J 

= 2v~[6.a2 - 6.,86./'l 

(34) 

(35) 

where 6.a = a(¢) - ao(¢), etc. The quantity det6.J is an invariant in portions of the 

lattice without gradient perturbations as can be seen with the aid of Eq. (16). 

So, the free amplitude function distortion oscillates with twice the betatron tune and 

with a constant offset given by the determinant of the 6.J matrix at any point. This offset 

must be there since ,8 > 0 and hence 6.,8/,80 must always be greater than -l. 

Rewritten in terms of the Courant-Snyder parameters, 

(AR)2 ( AR)2 
:::!t:.. + 6.a - ao :::!t:.. 

d t6.J = _ Po Po 0 
e 1 + 6.,8/,80 < . (36) 

Thus, Idet6.JI 1/ 2 can be interpreted as the relative amplitude of the ,8 mismatch for small 

perturbations. 

One can also express det6.J in terms of the unperturbed and the perturbed Courant

Snyder parameters: 

det6.J = -2(F - 1), (37) 

where 
1 

F = 2" [,80/' + /'0/3 - 2aoa]. (38) 

We will see this quantity F again later when we discuss injection mismatches. 

The solution to Eq. (34) is just simple harmonic motion with a constant term added: 

6.,8 . 1 
-,8 (¢) = A cos 2vo¢ + Bsm2vo¢ + -ldet6.JI· (39) 

o 2 
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The constants A and B are found from the initial conditions: 

A/3 1 
A = To(O) - 2"ldetAJI, (40) 

A/3 
B = ao /30 (0) - Aa(O). (41) 

Thus, the maximum value of A/3I/3o downstream of our starting point </> = 0 is given by 

( A/3) = .j A2 + B2 + ~ldetAJI 
/30 max 2 

~----------------

= Ide~~JI + Idet~JI + Cde~~JI)' 

where use has been made of Eq. (36). The maxima occur at phases where 

tan 211o</> = B I A 

( 
ao ¥a - Aa ) 

- ¥a - IdetAJI/2 0 

(42) 

(43) 

(44) 

(45) 

The usefulness of the above result is, of course, that once one calculates the mismatch of 

the amplitude function and its slope at one point in the lattice (at the end of a nearly 

matched insertion, for example), then the maximum mismatch downstream can be com

puted immediately. 

If we look once again at the perturbation downstream of a thin quadrupole error, we see 

that just after the quad, 

(46) 

where /3i = /30 at the location of the quadrupole. Then, 

d2 D./3 D./3 
d¢>2 /30 (</» + (2110)2 /30 (</» = 211g(q/3i)2 = constant (47) 

The initial conditions are D./31/3(0) = 0 and D.a(O) = q/3i. Solving for the constants A 

and B with these initial conditions we arrive once again at the solution Eq. (27). The 

maximum error in /3 downstream of the perturbation would be 

where the last line is valid for small perturbations. 
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To include the driving terms due to gradient errors in the equation of motion for 6.13/130, 
we let 130 satisfy the differential equation K 130 = ,0 + a~, and let 13 satisfy (K + k) 13 = ,+ a' , 

where 13 = 130 + 6.13, etc. Then, the relative 13 error satisfies 

:;2 ~: (¢) + (2VO)2 ~: (¢) = - 2V5 [f35(¢) k(¢) (1 + ~: (¢)) + det~J(¢)]. (50) 

Here, in general, det~J( ¢) is not invariant as it is altered by gradient perturbations. 

Noting that 
~f3 1 d ~f3 

6.a - ao -(¢) = --- -(¢) , 
130 2vo d¢ 130 

(51) 

one can easily exhibit the equation of motion entirely in terms of ~f3 /130 and its derivatives 

with respect to ¢. 

For small perturbations we can drop terms which are second order in the small quantities, 

e.g., k6.f3. This reduces the above equation to 

d2 ~f3 2 ~f3 2 2 
d¢2 j3;( ¢) + (2vo) j3;( ¢) = - 2vo 130 k( ¢) (52) 

as appears in Courant and Snyder. 

5.0 GENERAL INSERTION ERROR 

Up to this point we have not imposed any periodic boundary conditions in our examples 

of amplitude function mismatch. In this section, we will focus on the effect of an insertion 

error propagating around the ring. Accordingly we consider the synchrotron to be com

posed of an insertion described by a transfer matrix P and the rest of the ring described by 

a matrix U. Errors which are localized within the insertion perturb the transfer matrix P 

but leave U unchanged. Consider Figure 2. At point 0 the periodic ring matrix is 

Mo = p. U. (53) 

Due to the error in the insertion, 

P --+ P = P + ~P 
and this changes the ring matrix at point 0 to 

- - - 1 
Mo = PU = P . P- . Mo (54) 

Figure 2. Definition of Insertion. 
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In terms of the original phase advance Jio around the ring and the beam parameters at 

point 0, the unperturbed ring matrix can be written as 

Mo = I cos Jio + Jo sin Jio (55) 

while the changed ring matrix is 

Mo = I cos Ji + Jo sin Ji (56) 

with Ji the new phase advance around the ring. This new phase advance may be extracted 

if we know the matrix of the insertion P and the perturbation AP as, 

1 - 1 1 
cosJi = 2Tr Mo = 2 Tr[(1 + AP· P- )Mo] 

1 ( -1 ) = cos Jio + 2 Tr AP . P . Mo 

Writing the new matrix Jo at point 0 as, 

Jo = Jo + AJo 

and substituting in Eq. (56), we obtain 

(57) 

(58) 

AJo = _.1_[(1 + AP· P-1)Mo - (I cOSJi + Jo sinJi)] (59) 
smf-l 

= Tr(AP· p-1 . MO).1 + 2AP· p-1 . Mo + Jo (Si~f-lO _ 1) (60) 
2 sm f-l sm f-l 

The sign of sin f-l is the same as that of the (1, 2) element of the new ring matrix Mo. From 

the above expression we can calculate the change in f3 and a at the exit of the insertion. 

The changes at any other point s in the ring can be calculated by application of 

AJ(s) = M(O ~ s)· AJo . M(O ~ s)-l 

where M(O ~ s) is the transfer matrix from point 0 to s. At the entrance to the insertion 

(point 1 in Figure 2), the change to the J-matrix is 

AlI = -.l_[Ml(1 + p-1 . AP) - (I cos f-l + II sinf-l)] (61) 
smJi 

= Tr(Ml . p-1 . AP).1 + 2M1 . p-1 . AP + J
1 
(Si~f-lO _ 1) (62) 

2ffinf-l ffinJi 

where Ml is the original ring matrix at point 1 and J1 contains the unperturbed Courant

Snyder parameters corresponding to point 1. 
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5.1 Thin Quad Error in a Synchrotron 
We specialize the above general case to that of a thin quad error in a synchrotron. In 

the absence of the error, the matrix P is simply the identity. The presence of the thin 

quad at point 0 changes this to P where 

- (1 P= -q (63) 

q being the strength of the quad. The new ring matrix at point 0 is 

1\1, = (1 0) (cos /-Lo + ~o sin /-Lo 
o -q 1 -,0 sm J-lo 

130 sin /-LO ) 
cos J-l0 - ao sin /-Lo . (64) 

Using Eq. (58), the phase change due to the quad error is 

b./-L = /-L - /-Lo = arcos[cos /-Lo - ~qf3o sin /-Lo] - /-Lo . (65) 

Similarly the change in the amplitude functions at the location of the quad error may be 

found using 

We obtain 

1 -
b.Jo = -.-[Mo - (I cos /-L + Jo sin /-L)] 

Slll/-L 

b.f3 = 130 (Si~ /-Lo - 1) 
sm /-L 

1 sin /-Lo 
b.a = (ao + -2qf3o )-.- - ao 

sm /-L 
1 . 

b., = -.-[q cos /-Lo + (qao + ,0) sm /-Lo] -,0 . 
sm /-L 

(66) 

(67) 

Note that the above are exact results and not limited to being first order in q. To make 

contact with the usual first order results, we take the limit of small q and neglect terms 

of O( q2). In this limit, 

and the phase shift is 

In the same limi t 

cos /-Lo - ~qf3o sin /-Lo ~ cos (/-LO + ~q(30) 

sin /-L = [1 - ( cos /-Lo - ~qf3o sin /-Lo )2] 1/2 

~ sin /-Lo[1 + ~qf3ocot/-Lo] 
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Correspondingly, the changes in the amplitude functions at the location of the quad error, 

to first order in q, are 

(69) 

Downstream of the quadrupole error, the amplitude function mismatch will have maxima 

( 6.(3) ~ Jldet6.JI = q(3o 
(30 max 2 sin 27l' 1I0 

(70) 

and we see that the mismatch is enhanced when the tune is near an integer or half-integer. 

This result implies that the higher order tune shifts are also amplified near integer or 

half-integer tunes, as we shall see below. 

5.2 Second Order Tune Shift 
Generalizing Eq. (68) we obtain the well known result that the phase shift due to gradient 

errors k( s) in a ring of circumference C is, to first order, 

lie 6.f-l = - (30 ( 8 )k( s )ds . 
2 0 

(71) 

However the phase shift to second order in the gradient errors is directly related to the beta 

wave to first order, resulting from the gradient errors. We postpone a detailed derivation 

of this to another note and merely sketch the details here. 

Consider Figure 3 with two quad errors located at points 1 and 2. The new periodic 

matrix at point 1 in the presence of these two errors is 

(72) 

where M(SI --+ 82) is the transfer matrix from point 1 to point 2, etc. and PI, P2 are the 

matrices 

(73) 
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Figure 3. Interaction of Two Quad Errors. 

The new phase advance P can be found from 

1 
cos P = cos po + "2 Tr .6..Ml . (74) 

We may also write 

cos P = cos(po + .6..p) = cos Po cos .6..p - sin po sin.6..p (75) 

Expanding the phase shift in powers of a small quantity I: as 

(76) 

scaling the gradient errors as 

and substituting into Eqs. (74) and (75), we can equate like powers of 1:, take the limit of 

infinitesimally-thin quads distributed around the ring and integrate over the circumference. 

We obtain 

1 [0 
.6..Pl = "2 Jo k( s )(30 ( s )ds 

1 [0 .6..(31 ( s ) 
.6..P2 = 4: Jo k( s )(30 ( s) (30 ( s) ds (77) 

where 

.6..(31 ( S ) 1 18

+
0 

I I [( I )] I (3o(s) = -2sinpo 8 k(s )(3o(s ) cos 2 'ljJo(s) - 'ljJo(s) - Po ds (78) 

and 'ljJo( s) is the unperturbed phase advance to point s. This last expression is the change 

in (3 to first order in the gradient errors. This relation between the second order phase 

shift .6..P2 and the first order beta wave tells us that if we can localize the beta wave due to 

a set of gradient errors (or adjustments), then the higher order phase shift will be reduced. 

As a consequence, higher order chromatic effects are smaller if the first order beta wave is 
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reduced. Second order changes to the amplitude functions and to the chromaticity will be 

discussed in more detail in a forthcoming note. 

6.0 INJECTION MISMATCH 
Just as it is important to study the effects of amplitude function mismatches when de

signing insertions for circular accelerators, it is also of interest to look at the effects of 

mismatches of amplitude functions upon entrance to these accelerators. As one would 

expect, a beam which is described by Courant-Snyder parameters which are not the pe

riodic parameters of the accelerator into which it is injected will tend to filament due to 

nonlinearities and hence have its emittance increased. We wish to look at the severity of 

such mismatches. 

To begin with, we must differentiate between the amplitude function which is being de

livered by the beamline from the periodic amplitude function of the synchrotron. Suppose 

(3 and a are the Courant-Snyder parameters as delivered by the beamline to a particular 

point in an accelerator, and (30' ao are the periodic lattice functions of the ring at that 

point. A particle with trajectory (x, x') can be viewed in the (x, (3x l + ax) = (x, TI) phase 

space corresponding to the beamline functions, or in the (x, (3ox l + aox) = (x, Tlo) phase 

space corresponding to the lattice functions of the ring. If the phase space motion lies on 

a circle in the beamline view, then the phase space motion will lie on an ellipse in the ring 

VIew. 

The equation of the ellipse can be obtained by noting that 

Xl = (TI - ax)/(3 = (TIO - aox)/(3o 

or, 

(3 (3 
TI = (307]0 + (a - (30 ao)x 

= (3rTlO + ~arx. 

If the equation of the circle in the beamline view is 

(79) 

(80) 

(81) 

(82) 

where A2 is the Courant-Snyder invariant (the same A as in Eq. (1)), then the equation 

of the ellipse in the "ring" system will be 

(83) 
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It would be useful to rotate the coordinate axes so that they correspond to the major 

and minor axes of the ellipse. This amounts to rotating through an angle e so that the 

cross-term in the equation of the ellipse is eliminated, namely 

2(3rD..ar 
tan2e = D.. 2 (32 

1 + a r - r 
(84) 

The resulting equation in the rotated coordinates Xe = x cos e + TJo sin e, TJoe = -x sin e + 
TJo cos e will be, after some manipulation, 

(85) 

where 

br = F+ JF2_1 (86) 

and F is given by Eq. (38). Note that if D..ar = 0, then br = (3r. 

There is a physical significance to the quantity br ; it is the ratio of the areas of two 

circumscribed ellipses (as shown in Figure 4) which have shapes and orientations given by 

the two sets of Courant-Snyder parameters found in the matrices J and Jo. (This can be 

seen most easily by transforming from x-x' phase space to x-( aox + (3ox') phase space and 

using Eq. (85).) 

This might suggest that a beam contained within the smaller ellipse upon injection into 

the synchrotron (whose periodic functions give ellipses similar to the larger one) will have 

its emittance increased by a factor br . However, this would be an over-estimate of the 

increase of the average of the emittances of all the particles. 

x' 

'V x2 + 2a xx' + A x,2 - b A2 /0 0 1-'0 - r 

Figure 4. The Ratio of the Areas of the Two Circumscribed Ellipses is Given by br . 

We now compute the variance of the resulting particle distribution, assuming that the 

particles undergo betatron oscillations of c.onstant amplitude once in the synchrotron, 

but that the tune may depend upon the amplitude. For simplicity, we consider the case 

where the slope of the amplitude function (i. e., a) is matched and equal to zero at our 
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observation point in the ring but the function (3 itself is not matched. The final result 

does not depend upon this assumption. Then we can compare phase space trajectories by 

looking at Eqs. (82) and (85). We see that in the beamline view, the radius of a particle's 

trajectory in phase space would be increased by a factor of Vb; (= $r, here), as depicted 

in Figure 5, due to a mismatch. If in the beamline view the new phase space trajectory is 

(87) 

then in the synchrotron view, the equation of the ellipse would be 

(88) 

A particle with initial phase space coordinates Xi and TJoi will commence describing 

a circular trajectory in phase space upon subsequent passages through the synchrotron, 

where the radius of the phase space trajectory is given by a = J xl + TJ;i· 

Matched: 

11 = <X.x+~x' 

--~----~----+---x .. -~-----t-----i-- X 

Mismatched: 

11 = <X.x+~x' 

-+-------t-----~-x II -t------+-----~- X 

beamline synchrotron 
Figure 5. For an "Unmatched" Condition, the Beam Shape Would be Elliptical in the Phase Space Respecting 

the Synchrotron's Lattice Functions with (xl) = bru~, and (7];;) = u5Jbr . 
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Finally, imagine a beam distribution which has (x;) = (7J;i) = 0"5 for an incoming 

amplitude function which is perfectly matched. Then a mismatch would result in an 

initial distribution at the injection point which has 

and hence 

(a2
) = (x;) + (7J;i) 

2 1 2 
= brO"o + b

r 
0"0' 

(89) 

(90) 

(91) 

(92) 

It follows that the resulting distribution after filament at ion will have vanance in the 

x coordinate 

This expression can be rewritten in terms of detD.J which we found in Section 4.0: 

0"2 1 
2" = 1 + -ldet(D.J)1 . 
0"0 2 

(93) 

(94) 

(95) 

For the case where the slope of the amplitude function is matched and equal to zero, we 

have 

0"2 _ 1 + ~ D./3 / /30 
( )

2 

0"5 - 2 VI + D./3 / /30 
(96) 

This says that a 20% /3 mismatch at injection, for example, would cause only a 2% increase 

in emittance. 

It is interesting to note that the change in emittance (i.e., 0"2) generated by an amplitude 

function mismatch is proportional to the incoming emittance, in contrast to the effect of 

a steering error where the emittance increase is independent of the initial emittance. For 

a steering error at injection the resulting variance would be 

(97) 

In principle, the steering error can be corrected by the implementation of a feedback system 

designed to reduce transverse beam oscillations. The system must be able to damp the 

oscillations in a time shorter than the time it takes the particle motion to decohere. The 
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number of turns to decohere would be on the order of 1/ ~v, where ~v is the tune spread 

of the beam due to nonlinearities. While dampers will not help curtail amplitude function 

mismatches at injection, the results of the preceding paragraph point out that an injection 

j3 mismatch is not as critical as injection steering errors, especially at higher energies (and 

hence, smaller beam sizes). 

Perhaps a worse offender would be a mismatch of the dispersion function into a syn

chrotron, since this would be a trajectory error of off-momentum particles which cannot 

be corrected with dampers. For this case, the resulting variance of the particle distribution 

after filamentation at a point in the lattice would be 

2 2 1 [2 I 2] (app )2 a = ao + 2" ~D + (j3o~D + ao~D) (98) 

where (~D, ~D') is the error in the dispersion function delivered to that point of the 

synchrotron, and ap/p is the rms relative momentum deviation. In this case, the severity 

of the mismatch condition depends strongly on the relative momentum spread. 
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