
MXIbus Data
Throughput Tests

Superconducting Super Collider
Laboratory

SSCL-603
November 1992
Distribution Category: 400

M. Botlo
J. Dunning
M. Jagieski
L. Miller
A.Romero

SSCL-603

MXlbus Data Throughput Tests

M. Bodo, J. Dunning, M. Jagieski, L. Miller, and A. Romero

Superconducting Super Collider Laboratory*
2550 Becldeymeade Ave.

Dallas, TX 75237

November 1992

*Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract No.
DE-AC35-89ER40486.

1.0 INTRODUCTION
A series of tests were conducted to evaluate data transfer rates using the MXIbus architecture. The tests

were conducted by the DAQ group in the Physics Research Division.

The MXIbus from National Instruments provides a multisystem extension interface bus. It allows
multiple VME chassis to be networked. Other bus architectures that can participate in the network include
VXIbus, mM PC-AT bus, Sun Sbus, Mac NuBus and stand-alone instruments with the appropriate MXIbus
adapter cards.

From a functional standpoint the MXlbus provides the capability to enlarge the address space in a fashion
that is transparent to the software applications. For data acquisition systems it offers the following advantage:

• reduced overhead associated with traditional networking systems

• reduced software development time-applications can access devices across multiple platforms
through standard memory operations.

• flexibility-interconnecting multiple buses allows the use of off-the-shelf

• growth-the data acquisition system is not limited by the size of the chassis back plane

The tests were designed to measure data throughput when using the MXlbus with other industry
off-the-shelf hardware. Report sections are as follows.

• Section I is an introduction

• Section 2 is intended to familiarize the reader with MXIbus architecture and provide general guidelines.

• Section 3 enumerates the commercial hardware and software used in each set of tests.

• Section 4 is a brief description of each set of tests, observations and conclusions.

• Section 5 is the list of reference materials.

• Appendixes A-D. There is one appendix for each set of tests. A synopsis of each test, data
throughput, and results can be found in these appendixes.

• Appendix E. Source code for MVMEI67-DMA transfers.

2.0 THE MXI BUS

The MXIbus from National Instruments can provide a common bus to network multiple VME chassis)
The network is implemented using VME-MXlbus adapter boards. The VME chassis are daisy-chained using
specialized cables that plug into the adapter board. The MXI network has a tree topology with the first node
acting as the root (See Figure 1). A second VME-MXIbus adapter board in the chassis will add a new branch
to the tree. (See Figure 2).

MXlbus adapter boards are also used to interface to SBUS,2 NuBus3 and VXIbus. The SB-MXI adapter
board (interface to Sun SBus) or NB-MXI adapter board (interface to Macintosh NuB us) can act as the root
node for the MXIbus network. (See Figure 3).

The MXIbus architecture extends the VMEbus in a manner that is transparent to the software applications.
Each device (VME chassis, PC or Instrument) is a frame on the MXIbus network. Each frame has its own
local bus (i.e., NuBus, SBus, VMEbus) and a common bus that links all the frames together. The MXIbus
adapter boards have dual circuitry to interact with both the local bus and the common MXIbus.

VME
Chassis#l

VME
Chassis #2

ROOT

LEVEL 1

Figure 1. VME-MXlbus Network, One Level.

VME
Chassis#l

VME
Chassis #2

ROOT

VME
Chassis #3

VME
Chassis #5

VME
Chassis #4

Figure 2. VME-MXlbus Network, Two Levels.

PC, SUN,
or MAC

VME
Chassis #1

ROOT

VME
Chassis #3

Figure 3. Mixed MXlbus Network.

2

MXlbus
Device

LEVEL 1

LEVEL 2

LEVEL 1

LEVEL 2

For the MXI adapter boards that plug directly into the PC, Mac, and Sun workstations, a device driver,
software tools, and a set of library functions are provided by National Instruments to develop software
applications.4, 5, 6 For applications running on the VME chassis, standard memory transactions are used to
interact across VME chassis. The VME-MXlbus adapter boards support short 110, A16, A24 and A32; data
transfers in D08, D 16, D32 and block mode (BLT). In addition the adapters will extend IRQ[I-7] , SYSFAIL
signals.

Each VME-MXlbus adapter has a unique logical address in the range 1-254, which is set using an eight bit
switch on the VME-MXI board. The logical address detennines a 64-byte address range where the adapter
registers map into short 110 space. The following formula determines the base address for the registers: base
address = (logical address)*Ox40 + OxCOOO

base address = (logical address) * 0><40+ oxCOOO

The registers contain identification information (model, version, manufacturer, etc.) . The registers are
used to program the direction of memory mapping (in or out of the frame). Separate registers are used for each
addressing mode. (short 110, A16, A24 and A32). Table 1 shows all the 16-bit registers on the VME-MXI
adapter card. A detailed description of the registers and their functions can be found in the VME-MXI User
Manual.'

TABLE 1. REGISTER LAYOUT FOR THE VME-MXIBUS ADAPTER BOARD.

REGISTER NAME OFFSET FROM BASE

Id Register 0

Device Type Register 2

Status/Control Register 4

Logical Address Window Register A

A 16 Window Map Register C

A24 Window Map Register E

A32 Window Map Register 10

Subclass Register 1E

MXlbus Status/Control Register 20

MXlbus Lock Register 22

MXlbus IRQ Configuration Register 24

Read LA Register 26

Interrupt Status/Control Register 2A

Status/ID Register 2C

Interrupt Acknowledge for IRQ[1-7] 32-3E

3

Setting up an MXI network involves several steps in the process. The hardware programmable features
(Table 2) of each VME-MXI adapter include:

• Logical Address

• VMEbus system controller

• VMEbus Request Level

• VMEbus time out value

• VMEbus TImeout Chain Value

• VMEbus Interlocked Arbitration Mode

• MXIbus system controller

• MXIbus system controller timeout

• MXIbus fairness option

• System Reset vs ACFAIL

• MXIbus terminators

TABLE 2. SYNOPSIS OF HARDWARE CONFIGURABLE ITEMS.

VME-MXI ADAPTER DESCRIPTION

S5 switch VMEbus System Controller (Enable/disable)

a-bit DIP switch Logical Address

W3,W4,W5,W6 jumper VMEbus Requester Level

W1 jumper VMEbus timeout

S2 switch Interlocked Arbitration Mode

S4 switch MXlbus System Controller

W7 jumper MXlbus Timeout value

S3 switch MXlbus Fair Requester

S1 switch Enable/disable SYSRESET on front panel

For each VME-MXI adapter, the software configurable features include:

• Type of memory mapping (Base/Size vs LowlHigh).

• LA, A16, A24 and A32 memory mapping:

enable/disable

- direction of the mapping (in/out of the frame)

• MXIbus lock for indivisible operations

• IRQ and SYSFAIL configurations:

- enable/disable

- direction of the mapping

4

For the set of frames CVME chassis) that participate in a network, the following factors should also be
taken into account:

• The memory mapping of all the devices in each frame

• The VMEbus configuration for all the devices in each frame.

• The direction and type of VMEbus cycles that devices in one
frame will request from other devices in different VME frames

A full chapter in the VMA-MXI User Manual is dedicated to explain the procedure of setting up the MXI
network. Step-by-step instructions and worksheets are provided with special attention given to the memory
mapping of the VMEbus devices.

During our tests we received excellent and rapid response to questions and problems from the Technical
Support line at National Instruments.

3.0 CONFIGURATION
This section lists the commercially available hardware and software used for each set of tests. It also

describes the hardware and software configuration details of each test.

3.1 For Data Throughput to and from the MVME 147SA-2

Hardware:

1. MVME 147SA-2, MPU VMEmodule, MC68030, 32 MHz, 8 Mb, Motorola.8

2. Two VME 6U chassis.

3. MVME 224A-2, DRAM Memory Module, 8 Mb, Motorola.9

4. MXIbus cable, '!ype Ml, Straight Point-to-Point Connector, PIN 180758-XX,
National Instruments, 4-meter cable.

5. MXIbus cable, '!ype M2, Straight Point-to-Right Angle Daisy-Chain Connector,
PIN 180760-XX, National Instruments, 8-meter cable.

6. SB-MXI, Sun MXlbus interface board, PIN 181155-01, National Instruments.

7. Sun SPARC Station-2.

8. VBT-321B, VME bus tracer, VMetro.

Software:

1. VxWorks 5.0.2b, from Wind River Systems, Inc.

2. Sun OS 4.1.2.10

Configuration:

1. Tests A.I-AA.

2. Tests A.2-A.4.

MVME 224A-2: set the base address to Ox2000000.

VME-MXI #1: set to logical address 1.
VME System Controller.
set LA Window Register to Ox5800.

(from VxWorks command line)

5

3. Tests A.2 &A.3.

4. Tests A.4.

VME-MXI #2: set to logical address 2.
VME System Controller.
Not MXI System Controller.
set A32 Window Map Register to Ox7800.

(from VxWorks command line)

VME-MXI #1: MXI System Controller.

VME-MXI #1: Not MXI System Controller.

3.2 For Data Throughput to and from the MVME 167B

Hardware:

1. MVME 167SA-2, MPU VMEmodule, MC68040, 25 MHz, 16 Mb, Motorola. ll

2. Two VME 6U chassis.

3. MVME 224A-2, DRAM Memory Module, 8 Mb, Motorola.

4. MXlbus cable, 1Ype Ml, Straight Point-to-Point Connector, PIN 180758-XX,
National Instruments.

5. MXIbus cable, 1Ype M2, Straight Point-to-Right Angle Daisy-Chain Connector,
PIN 180760-XX, National Instruments.

6. SB-MXI, Sun MXlbus interface board, PIN 181155-01, National Instruments.

7. Sun SPARC station-2.

8. VBT-321B, VME bus tracer, VMetro.

9. MVME 167B, Single Board Computer, MC68040, 25 MHz, Motorola.

Software:

1. VxWorks 5.0.2b, from Wind River Systems, Inc.

2. Sun OS 4.1.2.

Configuration:

1. Tests B.I-B.7. MVME 224A-2: set the base address to 0x2000000.

2. TestB.8. MVME 224A-2: set the base address to Ox8000000.

3. Tests B.2, B.3, B.5-B.7. VME-MXI #1: set to logical address 1.
VME System Controller.
MXI System Controller.
set LA Window Register to Ox5800.

(from VxWorks command line)

VME-MXI #2 set to logical address 2.
Not MXI System Controller.

4. Tests B.2, B.3, B.5, B6. VME-MXI #2: VME System Controller.
set A32 Window Map Register to Ox7800.

(from VxWorks command line)

6

5. Test B.7.

6. Test B.9.

VME-MXI #1: set A32 Window Map Register to Ox7800.
VME-MXI #2: Not VME System Controller.

set LA Window Register to Ox5800.
set A32 Window Map Register to Ox5800.

(from VxWorks command line)

VME-MXI #1: set to logical address 1.
VME System Controller.
MXI System Controller.
Fairness Enabled (S3).
set LA Window Register to OxI800.
set A16 Window Map Register to OxI800.
set A24 Window Map Register to Ox1800.
set A32 Window Map Register to Ox7800.

VME-MXI #2: set to logical address 2.
Not VME System Controller.
Not MXI System Controller.
Fairness Enabled (S3).
set LA Window Register to Ox5800.
set A16 Window Map Register to OxI800.
set A24 Window Map Register to OxI800.
set A32 Window Map Register to Ox5800.

3.3 For Data Throughput to and from the Macintosh NuBus

Hardware:

1. MVME 147SA-2, MPU VMEmodule, MC68030, 32 MHz, 8 Mb, Motorola.

2. Two VME 6U chassis.

3. MVME 224A-2, DRAM Memory Module, 8 Mb, Motorola.

4. MXIbus cable, Type Ml, Straight Point-to-Point Connector, PIN 180758-XX,
National Instruments.

5. MXIbus cable, Type M2, Straight Point-to-Right Angle Daisy-Chain Connector,
PIN 180760-XX, National Instruments.

6. SB-MXI, Sun MXlbus interface board, PIN 181155-01, National Instruments.

7. Sun SPARC Station-2.

8. VBT-321B, VME bus tracer, VMetro.

9. MVME 167B, Single Board Computer, MC68040, 25 MHz, Motorola.

10. Macintosh IIcx.

11. Macintosh IIci.

Software:

1. VxWorks 5.0.2b, from Wind River Systems, Inc.

2. Think C Software Development Tools.12

3. NI-VXI for the NB-MXI and the Macintosh, National Instruments.

7

Configuration:

1. Tests C.I-C.3. MVME 224A-2: set the base address to Ox2000000.

VME-MXI #1: set to logical address 1.
VME System Controller.
Not MXI System Controller.
set A32 Window
Map Register to Ox7800.

(from VICtext).

VME-MXI #2: set to logical address 2.
VME System Controller.
Not MXI System Controller.

NOTE: Run the Resource Manager after configuring the hardware, then run VICtext to set the Window
Map Register.

3.4 For Data Throughput to and from the SUN SPARC Station·2

Hardware:

1. MVME 147SA-2, MPU VMEmodule, MC68030, 32 MHz, 8 Mb, Motorola.

2. Two VME 6U chassis.

3. MVME 224A-2, DRAM Memory Module, 8 Mh, Motorola.

4. MXlbus cable, '!ype Ml, Straight Point-to-Point Connector, PIN 180758-XX,
National Instruments.

5. MXIbus cable, Type M2. Straight Point-to-Right Angle Daisy-Chain Connector,
PIN 180760-XX, National Instruments.

6. SB-MXI, Sun MXIbus interface board, PIN 181155-01. National Instruments.

7. Sun SPARC station-2.

8. VBT-321B, VME bus tracer, VMetro.

Software:

1. VxWorks 5.0.2b, from Wind River Systems. Inc.

2. Sun as 4.1.2.

3. NI-VXI for the SB-MXI and the Macintosh. National Instruments.

Configuration:

1. Test Dl: MVME 224A-2: set the base address to Ox2000000.

VME-MXI #1: set to logical address 1.
VME System Controller.
Not MXI System Controller.
set the A32 Window Map Register to Ox7800.

(from VICtext)

VME-MXI #2: set to logical address 2.
VME System Controller.
Not MXI System Controller.

NOTE: Run the Resource Manager after configuring the hardware, then run VICtext to set the Window
Map Register.

8

4.0 TEST DESCRIPTION, OBSERVATIONS, AND RESULTS

4.1 Data Throughput to/from MVME 147 and External Memory

In the first set of tests, memory transactions between the MVME 147SA-2 (68030) and external memory
(MVME224A-2) were evaluated. The Operating System used for the 68030 was the VxWorks Real Time
Kernel, Version 5.0.2b.

A baseline was established where the MXIbus adapters did not participate in the memory transactions
across the VMEbus. VMEbus read/write cycles were generated to and from external memory using the
following "e" code:

i=size

do {

*dscptr++ = *src-ptr++;

while (i-);

The software modules were compiled using the VxWorks cross compiler for the 68XXX that runs on the
Sun Workstations. A 50-MHz VME tracer (resolution of 20 ns) was used to measure the time between
VMEbus transactions. The time measured between VMEbus events takes into account hardware and
software overhead. Data transfers for all the tests used 4-byte (long word) transfers to achieve maximum data
throughput.

A synopsis and results of each test in this set can be found in Appendix A.
The first test (A. 1) was the baseline. It measured VMEbus read and write cycles in a single VME chassis.

MXIbus adapter boards were not plugged into the VME backplane. The following results were observed:

• Time between VMEbus read cycles: 0.90 J.ls

• Time between VMEbus write cycles: 0.48 J.ls

In the second test (A.2), a single level MXIbus network was established. Two VME chassis were
networked with MXIbus adapter boards. The memory transactions however, were carried out in the same
VME chassis. In such a setup, the MXIbus is passive and, as expected, no difference in data throughput was
observed:

• Time between VMEbus read cycles: 0.90 J.ls

• Time between VMEbus write cycles: 0.50 J.ls

In the next test (A.3), the memory transactions were carried out across VME chassis. In such a setup, the
MXIbus adapter boards were active and the following data rates were observed:

• Time between VMEbus read cycles: 1.70 J.ls

• Time between VMEbus write cycles: 1.40 J.ls

9

In the last test (A.4), a third MXI device was added to the network. The memory transactions were carried
out between two VME chassis. The third device did not participate in the memory transactions, and as
expected, data throughput,was the same as A.3.

• Time between VMEbus read cycles:

• Time between VMEbus write cycles:

1.70~

1.40 J.ls

A detailed description of each test can be found in Appendix A.

4.2 Conclusions

With the hardware and software used in this test we found (Figures 4 and 5):

1. Data transfer rates across VME chassis, on a single level MXlbus network, of 2.34 Mb/s for
VMEbus read cycles and 2.86 Mb/s for VMEbus write cycles.

2. If the network is kept at one level, data throughput degradation is not expected.

3. The memory translation from VMEbus to MXlbus and then back from MXlbus to VMEbus
imposed a penalty of 0.8 J.ls for VMEbus read cycles and 0.9 J.ls for VMEbus write cycles.
Further degradation is expected in MXlbus networks with more than one level. Keep in mind
that each level adds two memory translations.

12 -r--~~~--------__,

6

4.44
3.54 3.03

2.34

o ---'----
147 167 167 with DMAC

• Baseline read, no MXlbus

II Read across VME Chassis

Figure 4. Data Throughput in Mbls (VMEbus Read Cycles).

10

21~---'

10.5

8.33

6.25

2.86 2.65

0
147 167 167 with DMAC

• Baseline write, No MXlbus

m Write across VME chassis

Figure 5. Data Throughput In Mb/s (VMEbus Write Cycles).

4.3 Data Throughput to/from MVME 167 and External Memory

In the second set of tests, memory transactions between the MVME 167B (68040) and external memory
(MVME224A-2) were evaluated.

Tests similar to the MVME 147 set were conducted. In addition, tests were added to evaluate DMA
transactions managed by the VMEchip2 DMA controller resident on the MVME 167B board. The "C" code
used for the DMAC transactions can be found in Appendix E.

A synopsis and results of each test in this set can be found in Appendix B.

The first test (B.1) was the baseline. It measured VMEbus read and write cycles in a single VME chassis.
MXIbus adapter boards were not plugged into the VME backplane. The following results were observed:

• Time between VMEbus read cycles: 1.08 J.ls

• Time between VMEbus write cycles: 0.64 J.ls

In the second test (B.2), a single-level MXIbus network was established. Two VME chassis were
networked with MXIbus adapter boards. The memory transactions however, were carried out in the same
VME chassis. In such a setup, the MXlbus is passive and, as expected, no difference in data throughput was
observed:

• Time between VMEbus read cycles:

• Time between VMEbus write cycles:

1.08 J.ls

0.64 J.ls

In the next test (B.3), the memory transactions were carried out across VME chassis. In such a setup, the
MXlbus adapter boards were active and the following data rates were observed:

• Time between VMEbus read cycles: 2.00 J.ls

• Time between VMEbus write cycles: 1.50 J.ls

11

The next test (B.4) was the baseline for DMA memory transactions. A single VME chassis with no
MXIbus adapter boards was used. The following results were observed:

• Time between VMEbus read cycles: 0.36 Jls

• Time between VMEbus write cycles: 0.20 Jls

In test B.6, the DMA transactions were carried out across two VME chassis, with the following results:

• Time between VMEbus read cycles: 1.32 Jls

• Time between VMEbus write cycles: 1.24 Jls

In test B.8, the DMA BLT transactions were measured in the same VME chassis to estab!ish a baseline.
The external memory resides in a second MVME167 board. Results:

• Time between VMEbus BLT read cycles: 0.24 Jls

• Time between VMEbus BLT write cycles: 0.24 Jls

In test B.9, the DMA BLT transactions were measured across VME chassis, with the following results:

• Time between VMEbus BLT read cycles: 0.90 Jls

• Time between VMEbus BLT write cycles: 0.90 Jls

4.4 Conclusions

With the hardware and software used in this set of tests we found:

1. Data transfer rates across VME chassis, on a single-level MXIbus network, of 1.97 Mb/s for
VMEbus read cycles and 2.65 Mb/s for VMEbus write cycles (Figures 4 and 5).

2. Data transfer rates across VME chassis, on a single-level MXIbus network, of3.03 Mb/s for DMA
VMEbus read cycles and 3.23 Mb/s for VMEbus write cycles (Figures 4 and 5).

3. If the network is kept at one level, data throughput degradation is not expected.

4. The memory translation from VMEbus to MXIbus and then back from MXIbus to VMEbus
imposed a penalty of:

• 0.92 JlS for VMEbus read cycles

• 0.86 Jls for VME write cycles.

• 0.96 JlS for DMA driven VMEbus read cycles

• 1.04 Jls for DMA driven VMEbus write cycle

Further degradation is expected in MXIbus networks with more than one level. Keep in mind that
each level adds two memory translations.

5. Data transfer rates across VME chassis, on a single-level MXIbus network, of 4.44 Mb/s for
VMEbus BLT read and BLT write cycles (Figure 6).

12

21~--~~

10

167 to
External Memory

Read

R Baseline, no MXlbus

167 to
External Memory

Writes

ffJ Transfers across VME chassis

167 -167
BLT Reads

Figure 6. Data Throughput In Mbls (167 DMAC Transfers).

167-167
BLTWrltes

4.5 Data Throughput to/from NuBus and External Memory on the VME Chassis

In the third set of tests, memory transactions between the NuBus on the Mac IIcx/IIci and external memory
(MVME224A-2) were evaluated. Source code provided by National Instruments was used.

The NB-MXIbus board failed during the course of the tests. National Instruments exchanged the board
after confirming hardware failure.

The first test (C. I) measured data transfer rates between the Mac IIcx NuBus and external memory on the
VME chassis. A single-level MXIbus network was used, with the following results:

13

• Time between VMEbus read cycles:

• Time between VMEbus write cycles:

120.9 ~s

121.6 ~s

The second test (C.2) measured data transfer rates between the Mac llci NuBus and external memory on
the VME chassis. The Mac llci was running in 24-bit-addressing mode. A single-level MXIbus network was
used, with the following results:

• Time between VMEbus read cycles:

• Time between VMEbus write cycles:

79.3 ~s

79.3 ~s

The third test (C.3) measured data transfer rates between the Mac IIci NuBus and external memory on the
VME chassis. The Mac llci was running in 32 bit addressing mode. A single-level MXIbus network was
used, with the following results:

• Time between VMEbus read cycles:

• Time between VMEbus write cycles:

4.6 Conclusions

6.00 ~s

6.50 ~s

With the hardware and software used in this set of tests we found (Figures 7 and 8):

1. When using the Mac IIcx, data transfer rates from the NuBus to VMEbus of 0.03Mb/s for
VMEbus read cycles, and 0.03 Mb/s for VMEbus write cycles.

2. When using the Mac IIci in 24-bit-addressing mode, data transfer rates of 0.05 Mb/s for VMEbus
read cycles and 0.05 Mb/s for VMEbus write cycles.

3. When using the Mac llci in 32-bit-addressing mode, data transfer rates of 0.66 Mb/s for VMEbus
read cycles and 0.612Mb/s for VMEbus write cycles.

The wide range of data rates between the cx, ci in 24-bit-addressing mode, and ci in 32-bit-addressing
mode might be attributed to software overhead in kernel space (mapping of virtual-to-physical-address space
per long word).

2.0-r--,

1.0

0.033

MAC lIex

0.66

MAC lIel
32 bit addr

Figure 7. Data Throughput in Mb/s (VMEbus Read Cycles).

14

1.67

SUN

2.5~--~

0.033
O.o-L_----BlBmlm __ ---

MAC lIex MAC lIel
24 bit addr.

0.82

MAC lIel
32 bit addr

Figure 8. Data Throughput In Mb/s (VMEbus Write Cycles).

z.o

SUN

4.7 Data Throughput to/from SBus and External Memory on the VME Chassis.

In the fourth set of tests, memory transactions between the SBus on the SPARC Station-2 and external
memory (MVME224A-2) were evaluated. Source code provided by National Instruments was used.

Test 0.1 measured data transfer rates between the SBus and external memory on the VME chassis. A
single-level MXIbus network was used, with the following results:

• TIme between VMEbus read cycles: 2.40 J.1s

• Time between VMEbus write cycles: 1.90 J.1s

4.8 Conclusions

With the hardware and software used in this set of tests we found:

When using the Sun SPARe station-2, data transfer rates from the SBus to VMEbus of 1.67
Mb/s for VMEbus read cycles, and 2.00 Mb/s for VMEbus write cycles (Figures 7 and 8).

15

REFERENCES

The following documents were used during the implementation of the tests:

1. Multisystem Extension Interface Bus Specification, Version 1.2, April 1991, PN 340007-01, National
Instruments.

2. Getting Started with Your VXI-SB2020 and the NI-VXI Software for the Sun OS, September 1991
Edition, PN 320329-01, National Instruments.

3. Getting Started with Your VME-NB2040 and the NI-VXI Software for the Macintosh, March 1992
Edition, PN 320414-01, National Instruments.

4.. NI-VXI C Software Reference Manual for VME, July 1991 Edition, PN 320389-01, National
Instruments.

5. NI-VXI Macintosh OS Utilities Reference Manual, March 1991 Edition, PN 320285-01, National
Instruments.

6. NI-VXI Text Utilities Reference Manual, November 1991 Edition, PN 320321-01, National
Instruments.

7. VME-MXI User Manual, June 1991 Edition, PN 320330-01, National Instruments.

8. MVME147S MPU VMEmodule User's Manual, April 1990 Edition, Motorola.

9 MVME224A-1I-2/-3/-4 Series of DRAM Memory Modules User's Manual, 1990 Edition, Motorola.

10. SUN OS Programmer's Guide, Vol. 1-3.

11. MVME167/MVME187 Single Board Computers Programmer's Reference Guide, July 1991 Edition,
Motorola.

12. THINK C 5.0 Programmer's Guide.

APPENDIX A

Data Throughputs using MXIbus and the MVME-147 (68030)

A.l.0 VMEbus READ AND WRITE CYCLES BETWEEN 147 AND EXTERNAL
MEMORY

A.I.I Synopsis

This experiment serves as a base line for measurements using the VME-MXIbus to interconnect mUltiple
VME chassis. In this test the VME-MXI board was not placed in the VME chassis. Each read/write cycle
transferred 32 bits between the 147 MPU and external memory. See Figure A-I and Table A-I.

VMEChassis

~
~

~ ~ ~
.....c F:: ~

~

) 1 t MVME 224A·2 ~ DRAM Memo<Y Module; • Mb

VBT-321B => VME bus tracer

MVME 147SA-2 => MPU VME Module; MC68030. 32 MHz. 8 Mb

Figure A-1. Hardware Setup for Transfers Between 68030 Bus and External Memory.

A.I.2 Conclusion

TABLE A·1. SNAPSHOT OF VBT·321B (VME BUS TRACER).

o
1
2
3
4
5
6
7
8
9

Read
0.88 U~
0.88
0.92
0.92
0.88
0.92
0.88
0.92
0.88
0.92

Write
0.48l1A
0.48
0.48
0.48
0.48
0.48
0.48
0.48
0.48
0.48

With this hardware setup, data transfer rates of 4.44 Mb/s (VMEbus read cycles) and 8.33 Mb/s (VMEbus
write cycles) were achieved.

A.2.0 VMEbus READ AND WRITE CYCLES BETWEEN 147 AND EXTERNAL
MEMORY WITH VME·MXI CONNECTED

A.2.t Synopsis

In this experiment. VME-MXI boards were placed in two VME chassis to test whether the presence of
these devices slowed the memory transfers taking place on Chassis #1. The VME-MXI board was not a
player in the experiment. As in experiment AI. each read/write cycle transferred 32 bits. See Figure A-2 and
Table A-2.

VME Chassis #1 VME Chassis #2 ____ -r-__ __

MXlbus cable::> Straight Point-to-Point Connector; Type M1

VBT-321B => VME bus tracer

MVME 224A-2 => DRAM Memory Module; 8 Mb

VME-MXI=> Interface Module; single slot, 6U VMEbus board

MVME 147SA-2=> MPU VME module; MC68030, 32M Hz, 8Mb

Figure A-2. Hardware Setup for Transfers Between 68030 Bus and External Memory Located on the Same
Chassis.

A.2.2 Conclusion

TABLE A-2. SNAPSHOT OF VBT-321B (VME BUS TRACER).

o
I
2
3
4
5
6
7
8
9

Read
0.92 II!!

0.88
0.92
0.88
0.92
0.88
0.92
0.88
0.92
0.88

Write
0.48 II!!

0.52
0.48
0.52
0.48
0.52
0.48
0.52
0.48
0.52

With this hardware setup. data transfer rates of 4.44 Mb/s (VMEbus read cycles) and 8.00 Mb/s (VMEbus
write cycles) were achieved.

A.3.0 VMEbus READ AND WRITE CYCLES BETWEEN 147 AND EXTERNAL
MEMORY ON SECOND CHASSIS

A.3.t Synopsis

In this experiment VME-MXI boards were placed in two VME chassis to test memory transfer rates across
the MXIbus. Each read/write cycle transferred 32 bits. See Figure A-3 and Table A-3.

VME Chassis #1
~----.----

VME Chassis #2

VBT-321B => VME bus tracer

MVME 224A-2 => DRAM Memory Module; 8 Mb

MXlbus cabl8=> Straight Point-to-Point Connector; Type M1

VME-MXI=> Interface Module; single slot, 6U VMEbus board

MVME 147SA-2=> MPU VME module, MC68030, 32 MHz, 8Mb

Figure A.3. Hardware Setup for Transfers Between 68030 Bus and External Memory Located on a Second
Chassis.

A.3.2 Conclusion

TABLE A-3. SNAPSHOT OF VBT-321 B (VME BUS TRACER).

o
1
2
3
4
5
6
7
8
9

Read
1.68 U~
1.72
1.68
1.72
1.80
1.72
1.68

1.72
1.68
1.72

Write
1.40 Il~
1.40
1.40
1.40
1.40
1.40
1.40
1.40
1.40
1.40

With this hardware setup, data transfer rates of 2.34 Mb/s (VMEbus read cycles) and 2.86 Mb/s (VMEbus
write cycles) were achieved.

A.4.0 VMEbus READ AND WRITE CYCLES BETWEEN 147 AND EXTERNAL
MEMORY WITH SUN AS ROOT NODE IN THE MXI NETWORK

A.4.1 Synopsis

In this experiment, VME-MXI boards were placed in two VME chassis. The SUN acted as the root node in
the MXI network. 32-bit data was transferred between the 68030 bus and memory located on the second
chassis. See Figure A-4 and Table A-4.

~

~ ~~
~~ CI'.l

VME Chassis #1 VME Chassis #2

~

T
r- ><
~ ~
~

,
11:1
~
>

~ r---..
1 ~ ~ ~
~ ~

~ ~

MXlbus cabl8=> Straight Point-to-Point Connedor, Type M1 J
MVME 224A-2 => DRAM Memory Module; 8 Mb

VBT-321B => VME bus tracer

VME-MXI=> Interface Module; single slot, 6U VMEbus board

MVME 147SA-2=> MPU VME module; MC68030, 32MHz, 8Mb

MXlbus cable=> Straight Point-to-Right Angle Daisy-Chain Connector; Type M2

SB-MXI=> Interface Board

Figure A.4. Hardware Setup for Transfers Between 68030 Bus and External Memory Located on a Second
Chassis.

A.4.2 Conclusion

TABLE A-4. SNAPSHOT OF VBT-321B (VME BUS TRACER).

o
1
2
3
4
S
6
7
8
9

Read
1.72 us
1.72
1.68
1.72
1.68
1.72
1.68
1.72
1.68
1.72

Write
1.40 us
1.40
1.40
1.40
1.40
1.40
1.40
1.40
1.40
1.40

With this hardware setup, data transfer rates of 2.34 Mb/s (VMEbus read cycles) and 2.86 Mb/s (VMEbus
write cycles) were achieved.

APPENDIXB

Data Throughputs using MXlbus and the MVME-167 (68040)

B.l.0 VMEbus READ AND WRITE CYCLES BETWEEN 167 AND EXTERNAL
MEMORY

B.1.1 Synopsis

This experiment serves as a base line for measurements using the VME-MXIbus to interconnect multiple
VME chassis. In this test the VME-MXI board was not placed in the VME chassis. Each read/write cycle
transferred 32 bits between the 167 and external memory. See Figure B-1 and Table B-1.

VMEChassis

~
~

t- e \0 ~
~ ~

G.)

;;S

l it IMIE 224A-2 => DRAM MemOIy Module; BlAb

VBT-321B => VME bus tracer

MVME 1678--> Single Board Computer; MC68040. 25MHz

Figure B-1. Hardware Setup for Transfers Between 68040 Bus and External Memory.

B.1.2 Conclusion

TABLE B-1. SNAPSHOT OF VBT-321 B (VME BUS TRACER).

o

2
3
4
5
6
7
8
9

Read
1.12 U!;

1.24
1.08
1.08
1.08
1.24
1.08
1.08
1.08
1.28

Write
0.64 U!;

0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64

With this hardware setup. data transfer rates of 3 .54 Mb/s (VMEbus read cycles) and 6.25 Mb/s (VMEbus
write cycles) were achieved.

B.2.0 VMEbus READ AND WRITE CYCLES BETWEEN 167 AND EXTERNAL
MEMORY WITH VME-MXI CONNECTED

B.2.1 Synopsis

In this experiment, VME-MXI boards were placed in two VME chassis to test whether the presence of
these devices slowed the memory transfers taking place on Chassis #1. The VME-MXI board was not a
player in the experiment. Each read/write cycle transferred 32 bits. See Figure B-2 and Table B-2.

VME Chassis #1 VME Chassis #2

~
f ~ 1

'"" t r--.. >< 8 ~ \0 ~ ~
(I) F=

,
,.......c I.:l I.:l

~ ::E ~
> >

MXlbus cable=> Straight Point-ta-Point Connector; Type M1

VBT-321B => VME bus tracer

MVME 224A-2 => DRAM Memory Module; 8 Mb

VME-MXI=> Interface Module; single slot, 6U VMEbus board

MVME 167B => Single Board Computer; MC68040, 25 MHz

Figure B-2. Hardware Setup for Transfers Between 68040 Bus and External Memory Located on the Same
Chassis.

B.2.2 Conclusion

TABLE B-2. SNAPSHOT OF VBT-321 B (VME BUS TRACER).

o
I
2
3
4
5
6
7
8
9

Read
1.40 us
1.44
1.08
1.08
1.08
1.44
1.08
1.08
1.08
1.32

Write
0.64 us
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64

With this hardware setup, data transfer rates of3.31 Mb/s (VMEbus read cycles) and 6.25 Mb/s (VMEbus
write cycles) were achieved.

B.3.0 VMEbus READ AND WRITE CYCLES BETWEEN 167 AND EXTERNAL
MEMORY ON SECOND CHASSIS

B.3.1 Synopsis

In this experiment, VME-MXI boards were placed in two VME chassis to test memory transfer rates
across the MXIbus. Each read/write cycle transferred 32 bits. See Figure B-3 and Table B-3.

VME Chassis #1 VME Chassis #2

VBT·321B => VME bus tracer

MVME 224A·2 => DRAM Memory Module; 8 Mb

MXlbus cable=> Straight Point-to-Point Connector; Type M1

VME·MXI=> Interface Module: single slot, 6lJ VMEbus board

MVME 167B => Single Board Computer; MC68040, 25 MHz

Figure B·3. Hardware Setup for Transfers Between 68040 Bus and External Memory Located on a Second
Chassis.

B.3.2 Conclusion

TABLE B-3. SNAPSHOT OF VBT-321 B (VME BUS TRACER).

o
1
2
3
4
5
6
7
8
9

Read
1.96 II ~

2.28
1.92
1.96
1.96
2.24
1.96
1.96
2.00
2.08

Write
1.52 II~
1.52
1.48
1.52
1.48
1.52
1.57
1.48
1.52
1.48

With this hardware setup, data transfer rates of 1.97 Mb/s (VMEbus read cycles) and 2.65 Mb/s (VMEbus
write cycles) were achieved.

B.4.0 VMEbus READ AND WRITE CYCLES BETWEEN 167 AND EXTERNAL
MEMORY USING DMA TRANSFERS

B.4.1 Synopsis

This experiment serves as a base line for measurements using the VME-MXlbus to interconnect multiple
VME chassis. In this text the VME-MXI board was not placed in the VME chassis. Each read/write cycle
transferred 32 bits between the 167 and external memory, using DMA transfers. See Figure B-4 and Table
B-4.

VMEChassis

~
~

I- ~ \0 ~
,....,.-t F:::

Q)

::g

l it MVME 224M! => CRAM MemOIy Module; • II>

VBT·321B => VME bus tracer

MVME 167B=> Single Board Computer; MC68040,25MHz

Figure B-4. Hardware Setup for Transfers Between 68040 Bus and External Memory.

B.4.2 Conclusion

TABLE B-4. SNAPSHOT OF VBT-321 B (VME BUS TRACER).

o
I
2
3
4
5
6
7
8
9

Read
0.36 II!;

0.36
0.36
0.36
0.36
0.36
0.36
0.36
0.36
0.36

Write
0.20 us
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20

With this hardware setup, data transfer rates of 11.11 Mb/s (VMEbus read cycles) and 20.00 Mb/s
(VMEbus write cycles) were achieved.

B.S.O VMEbus READ AND WRITE CYCLES BETWEEN 167 AND EXTERNAL
MEMORY WITH VME-MXI CONNECTED, USING DMA TRANSFERS

B.S.l Synopsis

In this experiment, VME-MXlbus boards were placed in two VME chassis to test whether the presence of
these devices slowed the memory transfers taking place on Chassis #1. The VME-MXI boards were not
involved in the experiment. Each read/write cycle transferred 32 bits, using DMA transfers. See Figure B-5
and Table B-5.

VME Chassis #1 VME Chassis #2

~
f ~

~
1

t'-- >< ~ ~ \0 ::E ~ ,
Q) ~ ,..-.4 ~ f: ~ :E ::E

>

MXlbus cable=> Straight Point-lo-Point Connector; Type M1

VBT·321B => VME bus tracer

MVME 224A·2 => DRAM Memory Module; 8 Mb

VME·MXI=> Interface Module; single slot, 6U VMEbus board

MVME 167B => SUlgle Board Computer, MC68040, 25 MHz

Figure B-S. Hardware Setup for Transfers Between 68040 Bus and External Memory Located on the Same
Chassis.

B.S.2 Conclusion

TABLE B-S. SNAPSHOT OF VBT-321 B (VME BUS TRACER).

o
I
2
3
4
5
6
7
8
9

Read
0.36 II~
0.36
0.36
0.36
0.36
0.36
0.36
0.36
0.36
0.36

Write
0.20 UA

0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20

With this hardware setup, data transfer rates of 11.11 Mb/s (VMEbus read cycles) and 20.00 Mb/s
(VMEbus write cycles) were achieved.

B.6.0 VMEbus READ AND WRITE CYCLES BETWEEN 167 AND EXTERNAL
MEMORY ON SECOND CHASSIS, USING DMA TRANSFERS

B.6.1 Synopsis

In this experiment, VME-MXI boards were placed in two VME chassis to test memory transfers rates
across the MXlbus. Each read/write cycle transferred 32 bits, using DMA transfers. See Figure B-6 and Table
B-6.

VME Chassis #1 VME Chassis #2
~~.-.----------

•

VBT -321 B => VME bus tracer

MVME 224A-2 => DRAM Memory Module; 8 Mb

MXlbus cable=> Straight Point-to-Point Connector; Type M1

VME-MXI=> Interface Module; single slot, 6U VMEbus board

MVME 167B => Single Board Computer, MC68040, 25 MHz

Figure B-6. Hardware Setup for Transfers Between 68040 Bus and External Memory Located on a Second
Chassis.

B.6.2 Conclusion

TABLE B-6. SNAPSHOT OF VBT-321 B (VME BUS TRACER).

o
I
2
3
4
S
6
7
8
9

Read
1.32 us
1.32
1.32
1.32
1.32
1.32
1.32
1.32
1.32
1.32

Write
1.24 ~
1.24
1.28
1.24
1.24
1.24
1.24
1.24
1.24
1.24

With this hardware setup, data transfer rates of3.03 Mb/s (VMEbus read cycles) and 3.23 Mb/s (VMEbus
write cycles) were achieved.

B.7.0 VMEbus READ AND WRITE CYCLES BETWEEN 167 AND EXTERNAL
MEMORY LOCATED ON THE 147 BOARD, USING DMA TRANSFERS

B.7.1 Synopsis

In this experiment, the 147s on-board RAM was mapped into VME address space. The 32-bit transfers
were using read/write bus cycles, and the DMA controller was used on the 167. See Figure B-7 and Table B-7.

VME Chassis #1 VME Chassis #2

~
'1""""4

f

~
::E
>

~

J ~ F:::

~
l" ~ \0 ,
'1""""4 UJ

::E
>

MVME 1678--> Single Board Computer; MC68040, 25 MHz

MXlbus cable::> Straight Point-to-Point Connector; Type M

VBT-321B => VME bus tracer

MVME 224A-2 => DRAM Memory Module; 8 Mb Qnactive in this experiment)

VME-MXI=> Interface Module; single slot, 6U VMEbus board

MVME 147SA-2=> MPU VME module; MC68030, 32MHz, 8Mb

B. 7.2 Conclusion

Figure B-7. Hardware Setup for Transfers Between 167 and 147.

TABLE B-7. SNAPSHOT OF VBT-321B (VME BUS TRACER).

o
1
2
3
4
5
6
7
8
9

Read
1.52 11S

1.56
1.56
1.52
1.52
1.56
1.56
1.52
1.56
1.52

Write
1.52 I/!;

1.48
1.52
1.48
1.52
1.48
1.52
1.48
1.52
1.48

With this hardware setup, data transfer rates of 2.60 Mb/s (VMEbus read cycles) and 2.67 Mb/s (VMEbus
write cycles) were achieved.

B.8.0 VMEbus BLOCK (BLT) TRANSFERS BETWEEN 167 AND EXTERNAL
MEMORY LOCATED ON A SECOND 167 BOARD IN SAME CHASSIS

B.S.1 Synopsis

This experiment serves as a base line for measurements using the VME-MXIbus to interconnect BLT
multiple chassis. In this text the VME-MXI board was not placed in the VME chassis. Each read/write cycle
transferred 32 bits between the 167's, using the DMA controller. The MVME 224A-2 served as the
backplane anchor. See Figure B-8 and Table B-8.

B.S.2 Conclusion

VMEChassis

t + MVME 224A-2 => DRAM Memory Module; 8 Mb

VBT-321B => VME bus tracer

MVME 167B=> Single Board Computer; MC68040, 25MHz

MVME 167B=> SlIlgle Board Computer; MC68040,25MHz

Figure B-8. Hardware Setup for Transfers Between 167s.

TABLE B-8. SNAPSHOT OF VBT-321 B (VME BUS TRACER).

o
1
2
3
4
S
6
7
8
9

Read
0.24 II~
0.24
0.24
0.24
0.24
0.24
0.24
0.24
0.24
0.24

Write
0.24 II!::

0.24
0.24
0.24
0.24
0.24
0.24
0.24
0.24
0.24

With this hardware setup, data transfer rates of 16.67 Mb/s (VMEbus BLT read cycles) and 16.67 Mb/s
(VMEbus BLT write cycles) were achieved.

B.9.0 VMEbus BLOCK (BLT) TRANSFERS BETWEEN 167 AND EXTERNAL
MEMORY LOCATED ON A SECOND 167 BOARD ON A SECOND CHASSIS

B.9.1 Synopsis

In this experiment, VME-MXI boards were placed in two VME chassis to test memory transfer rates
across the MXIbus. Each BLT read/write cycle transferred 32 bits, using the DMA controller. See Figure B-9
and Table B-9.

VME Chassis #1

~
VME Chassis #2

MVME 167B (Master) => Single Board Computer; MC68040, 25 MHz

MXlbus cable=> Straight Point-to-Point Connector; Type M1

VME-MXI=> Interface Module; single slot, 6U VMEbus board

VBT-321B => VME bus tracer

MVME 167B (Slave) => Single Board Computer; MC68040, 25 MHz

Figure B-9. Hardware Setup for Transfers Between 167s on Separate Chassis.

B.9.2 Conclusion

TABLE B-9. SNAPSHOT OF VBT-321 B (VME BUS TRACER).

o
1
2
3
4
5
6

7
8
9

Read
0.88 us
0.92
0.88
0.92
0.88
0.92
0.88
0.92
0.88
0.92

Write
0.88 us
0.88
0.92
0.88
0.92
0.88
0.92
0.88
0.92
0.88

With this hardware setup, data transfer rates of 4.44 Mb/s (VMEbus BLT read cycles) and 4.44 Mb/s
(VMEbus BLT write cycles) were achieved.

APPENDIXC

Data Throughputs using MXlbus and the MacIIcx and MacIIci ,.

C.l.0 VMEbus READ AND WRITE CYCLES BETWEEN MacIIcx AND
EXTERNAL MEMORY

C.I.I Synopsis

In this experiment, VME-MXI boards were placed in two VME chassis. 32-bit data was transferred
between the Mac and memory located on the first chassis. See Figure C-l and Table Col.

VME Chassis #1 VME Chassis #2
~~----.--

~~~~--------~ 

IR j 
~--------------~ 

I' MXlbus cable=> Straight Point-to-Point Connector; Type M1 

VBT-321B => VME bus tracer 

MVME 224A-2 => DRAM Memory Module; 8 Mb 

VME-MXI=> Interface Module; single sloI, 6U VMEbus board 

MVME 167B=> Single Board Computer; MC68040, 25MHz 

MXlbus cable=> Straight Point-to-Right Angle Daisy-Chain Connector; Type M2 

NB-MXI=> Interface Board 

Figure C-1. Hardware Setup for Transfers Between Mac and External Memory. 

C.I.2 Conclusion 

TABLE C-1. SNAPSHOT OF VBT·321 B (VME BUS TRACER). 

o 

2 
3 
4 
5 
6 
7 
8 
9 

Read 
121.6 us 
120.3 
120.9 
120.9 
120.9 
120.9 
120.9 
120.9 
120.3 
120.9 

Write 
121.6 us 
121.6 
120.9 
120.9 
121.6 
121.6 
121.6 
121.6 
120.9 
120.9 

With this hardware setup, data transfer rates of 0.033 Mb/s (VMEbus read cycles) and 0.033 Mb/s 
(VMEbus write cycles) were achieved. 



C.2.0 VMEbus READ AND WRITE CYCLES BETWEEN MacIIci AND 
EXTERNAL MEMORY, USING Mac 24·BIT ADDRESSING 

C.2.1 Synopsis 

In this experiment, VME-MXI boards were placed in two VME chassis. 32-bit data was transferred 
between the Mac and memory location on the first chassis. See Figure C-2 and Table C-2. 

U .0-4 « 0 

:E= 

VME Chassis #1 VME Chassis #2 
~~-=-----~ --....... 

I! to] 
~ r~ ~ 

1 
t MVME 1678::> Single Board Computer; MC68040, 25MHz 

I MXlbus cable=> Straight Point-to-Point Connector; Type M1 

VBT-321B => VME bus tracer 

MVME 224A-2 => DRAM Memory Module; 8 Mb 

~ 8 
f" 

l" S< ceotl ~ ~ 
~~ ~ IZJ 

:I: 
> 

VME-MXI=> Interface Module; single slot, 50 VMEbus board 

MVME 147SA-2=> MPU VME Module; MC68030, 32 MHz, 8 Mb 

MXlbus cabl8=> Straight Point-to-Right Angle Daisy-Chain Connector; Type M2 

NB-MXI=> Interface Board 
Figure C-2. Hardware Setup for Transfers Between Mac and External Memory. 

TABLE C-2. SNAPSHOT OF VBT-321 B (VME BUS TRACER). 

o 
I 
2 
3 
4 
5 
6 
7 
8 
9 

Read 
84.1 U!! 

81.4 
79.3 
78.2 
79.3 
79.2 
79.3 
79.3 
80.1 
79.3 

Write 
85.1 II!! 

77.1 
79.3 
79.2 
77.1 
79.3 
80.3 
79.2 
78.2 
79.2 

C.2.2 Conclusion 

With this hardware setup, data transfer rates of 0.05 Mb/s (VMEbus read cycles) and 0.051 Mb/s 
(VMEbus write cycles) were achieved. 



C.3.0 VMEbus READ AND WRITE CYCLES BETWEEN MacIIci AND 
EXTERNAL MEMORY, USING Mac 32-BIT ADDRESSING 

C.3.1 Synopsis 

In this experiment. VME-MXI boards were placed in two VME chassis. 32-bit data was transferred 
between the Mac and memory location on the first chassis. See Figure C-3 and Table C-3. 

U .,-4 < 0 

~= 

VME Chassis #1 VME Chassis #2 

-~ ............. 
~----~--

~~ 
-.-

~ ~ 
~.s ~ ~ 

::E 
> I~ 1 
I

t MVME 1678--> Single Board Computer; MC68040, 25MHz 

I MXlbus cable::> Straight Point-ta-Point Connector; Type M1 

VBT-321B => WE bus tracer 

MVME 224A-2 => DRAM Memory Module; 8 Mb 

VME-MXI=> Interface Module; single slot, 6U VMEbus board 

MVME 147SA-2=> MPU VME Module; MC68030, 32 MHz, 8 Mb 

MXlbus cable:> Straight Point-ta-Right Angle Daisy-Chain Connector; Type M2 

NB-MXI=> Interface Board 

Figure C-3. Hardware Setup for Transfers Between Mac and External Memory. 

TABLE C-3. SNAPSHOT OF VBT-321 B (VME BUS TRACER). 

o 
I 
2 
3 
4 
5 
6 
7 
8 
9 

Read 
6.72 II ~ 

6.08 
6.12 
6.08 
6.00 
6.00 
6.00 
6.00 
6.00 
6.00 

Write 
6.52 II~ 

5.88 
6.60 
6.12 
5.88 
5.92 
6.52 
6.28 
6.08 
6.40 

C.3.2 Conclusion 

With this hardware setup. data transfer rates of 0.66 Mb/s (VMEbus read cycles) and 0.62 Mb/s (VMEbus 
write cycles) were achieved. 



APPENDIXD 

DATA THROUGHTPUTS USING MXIbus AND THE Sbus ADAPTER 



D.I.O VMEbus READ AND WRITE CYCLES BETWEEN SUN AND EXTERNAL 
MEMORY 

D.I.I Synopsis 

In this experiment, VME-MXI boards were placed in two VME chassis. 32-bit data was transferred 
between the SUN and memory location on the first chassis. See Figure D-l and Table D-1. 

5 
rI) 

..",-

a 8 
~i 
~:s 

VME Chassis #1 VME Chassis #2 

-....... ~ ~ 
T ~ tl I t' ~ 

0 
~ e ~ 
~ IlJ Q) F= ~ :::£ ::g 

> 

i t MXlbus cable=> Straight Point-to-Point Connector; Type M1 

VBT-321B => VME bus tracer 

MVME 224A-2 => DRAM Memory Module; 8 Mb 

VME-MXI=> Interface Module; single slot, 6U VMEbus board 

MVME 147SA-2=> MPU VME module; MC68030, 32MHz, 8Mb 

MXlbus cable--> Straight Point-to-Right Angle Daisy-Chain Connector; Type M2 

SB-MXI=> Interface Board 

Figure 0-1. Hardware Setup for Transfers Between SUN and External Memory. 

TABLE 0-1. SNAPSHOT OF VBT-321 B (VME BUS TRACER). 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Read 
2.40 us 
2.40 
2.40 
2.40 
2.40 
2.40 
2.40 
2.40 
2.40 
2.40 

Write 
2.68 us 
1.92 
1.88 
1.92 
1.88 
2.40 
1.92 
1.88 
1.92 
1.88 

D.I.2 Conclusion 

With this hardware setup, data transfer rates of 1.67 Mb/s (VMEbus read cycles) and 2.00 Mb/s (VMEbus 
write cycles) were achieved. 



APPENDIXE 

SOURCE CODE FOR MVME 167-DMA TRANSFERS 



iinclude "libdrna.h" 

#define DMAIRQ 3 
#define BUFFSIZE 1024 
long drnac_status=Ox3a3a; 
unsigned long buffer[BUFFSIZE]; 
S£l.CID drna_sem; 

int dma_isr(irq) 
int irq; 
{ 
register unsigned short *sp; 

/* 

} 

* DMAC operation complete, useful work here 
*/ 

/* 

* Clear DMAC interrupt, IRQ interrupt, and Release the semaphore. 
*/ 

sp = (unsigned short *)Oxfff40048; 
dmac_status = *sp; 
DMAC_CLEAR-INTERRUPT(); 
semGive(drna_sem); 

return 0; 

drnatest(op,vme_addr,size) 
char *op; 
unsigned long *vme_addr; 
long int size; 
{ 
re;ister int i; 
unsigned long *local_mem; 
unsigned long *lp,*lp1; 

/* 
* Set local memory and initialize 
*/ 

if (size>BUFFSIZE) ( 

} 

printf("request must be less than %d long words\n",BUFFSIZE); 
return 0; 

local-mem = lp = &buffer[O]; 
printf("local memory at %lx \n",local_mem); 
i = size; 
do { *lp++ = i; } while(i--); 

/* 
* Initialize DMA library 
*/ 
if (NULL == (drna_sem = (SEM_ID)drnaInit(drna_isr,Ox56,DMAIRQ,3») { 

printf("drnaInit failed\n"); 
return 0; 

/* 
* Perform DMA read or write as requested 
*/ 



} 

if ( strcmp(op,"read") == ° ) ( 
} 

printf("dmaRead .. \n"); 
dmaRead(dma_sem,vme_addr,local_mem,size*sizeof(long),O,l,l); 

if ( strcmp(op,"write") == 0) ( 

} 

printf("dmaWrite .. \n"); 
dmaWrite(dma_sem,local_mem,vme_addr,size*sizeof(long),O,l,1); 

printfC" dma status %d \n",dmac_status); 

/* 
* End communication with DMA library 
*/ 
dmaEnd(dma_sem,DMAIRQ); 

return 0; 



#inc1ude <vrne.h> 
#define VMECHIP2_BASE_ADP.S (Oxfff40000) /. VMEchip LCSR registers */ 
#inc1ude <drv/vmechip2.h> 
#inc1ude <semLib.h> 

1* 
* 
* 
* 

NAME 
dmaInit - initialize VMEchip2 for DMA transfers 

* SYNOPSIS 
* 
* 
* 
* 
* 
* 
* 

SEM_ID dmaInit(isr,vector,irq,leve1) 
FUNCPTR isr; 
int vector; 
int irq; 
int level; 

* DESCRIPTION 
* 
* 
* 
* 
* 
* • 
• 
• 
* 

Initialize the DMA controller in the VMEchip2. 
It sets the interrupt service routine to be executed upon 
completion of the DMA transfer. As a minimum the isr 
should execute a semGive() on the semaphore returned Py 
this function; it should also clear the irq enable. 
Vector is a number between 0-255 and indicates 
the vector table entry where the isr address will be placed. 
level determines the DMA interrupt level (0-7) 

• DIAGNOSTICS 
* 
* Upon failure returns NULL, on success returns the semaphore 
* address to synchronize DMA transfers. Causes for failure: 
* a. isr not set 
* b. vector out of range (0 <= vector <= 255 
* c. irq out of range ( 1 <= irq <= 7 ) 
• d. semaphore creation failed 
• e. interrupt level enable failed 
* 
*1 

SEM_ID drnaInit (isr,vector,irq, level) 
FUNCPTR isr; 
unsigned long vector; 
.int hQ; 
int level; 
{ 

SEM_ID semaphore; 

1* 
* Validate parameters 
*/ 

if( 

1* 

(isr == (FUNCPTR) NULL 
(vector < 0 I I vector > 
(level < 0 II level> 7) 
(irq < 1 I I irq > 7 ) 

return (SEM_ID) NULL; 

\I 
255) II 

\I 
) 

* Create a semaphore to block during DMA transfer 
*1 

if ( (SEM_ID)NULL == (semaphore = sernBCreate(SEM_Q_FIFO,SEM_EMPTY» ) 
return semaphore; 

1* 
* Clear DMA Controller interrupt, at interrupt clear register 



} 

* (bit 22) 
*/ 

/* 
* Set Interrupt Level Register 2, DI1A bits (24-26), 
* that is the DMA Controller interrupt level (1-7). 
*/ 
*VMECHIP2_ILR2 1= (level « 24); 

/* 
* Set interrupt service routine 
*/ 
if ( ERROR == intConnect(vector«2,isr,irq» { 

semDelete(semaphore); 
return (SEM_ID) NULL; 

} 

/* 

* Enable interrupt 
*/ 
if (ERROR == syslntEnable(level» 

semDelete(semaphore); 
return (SEM_ID) NULL; 

return semaphore; 



iinclude <vme.h> 
idefine VMECHIP2_BASE_ADRS (Oxfff40000) /* VMEchip LCSR registers */ 
iinclude <drv/vmechip2.h> 
#include <semLib.h> 

/* 
* NAME 
* dmaRead() transfer data from VMEbus to local bus using 

the DMA Controller in the MVME167 * 
* 
* SYNOPSIS 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

dmaRead(semaphore,src_addr,dst_addr,byte_len.dmode.block-cycle,wait) 
SEM_ID semaphore; synchronization semaphore 
unsigned long src_addr; VMEbus source address 
unsigned long dst_addr; local bus destination address 
int byte_len; length in bytes of transfer 
int block_cycle; generate VMEbus block cycles 
int dmode; data mode D16,D32 or D64 
int wait; wait on DMAC completion 

* DESCRIPTION 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*/ 

dmainit() should be called before using this function. 
semaphore is the SEM_ID returned by dmainit(). and is used 
for synchronization when the wait flag is set. If the wait 
flag is set, the interrupt service routine should release 
the semaphore semGive() and clear the irq interrupt. 
src_addr is the start of the VMEbus memory to be transferred. 
dst_addr is the destination local memory. 
byte_len is the size of the data block to be transferred. 
if block_cycle is set (VMEbus block cycles) : 

dmode 0 indicates D32 transfer. dmode 1 for D64 transfers 
if the block_cycle is not set (VMEbus read/write cycles): 

dmode 0 indicates D32 transfer, dmode 1 for D16 transfer 
The destination device must support VMEbus block cycles in 
order to set the block_cycle flag. 

dmaRead(semaphore,src_addr.dst_addr,byte_len.dmode,block_cycle.wait) 
SEM_ID semaphore; /* synchronization semaphore */ 
unsigned long src_addr; /* VMEbus source address */ 
unsigned long dst_addr; /* local destination address */ 
int byte_len; /* length in bytes of transfer */ 
int dmode; /* data mode D16,D32 or D64 */ 
int block_cycle; /* generate VMEbus block cycles */ 
int wait; /* wait on DMAC completion */ 
{ 

unsigned long dmacr2; 
unsigned long icr; 

/* DMA Control Register 2 */ 
/* Interrupt Control Register */ 

/* 
* Set the DMAC Control Register 2 
*/ 

dmacr2 = DMACR2_VINC 1 
DMACR2_LINC 1 
DMACR2_TO_LOCAL 1 
DMACR2_INTE 

if (block_cycle) { 

/* increment addr on D~~ */ 
/* increment local addr */ 
/* transfer to local bus */ 
/* interrupt enable */ 

dmacr2 1= ( dmode ? DMACR2_D64_BLOCK : DMACR2_D32_BLOCK 
DMACR2_SINK_DATA ; /* sink data */ 



else { 
dmacr2 1= 

} 

( dmode ? DMACR2_D16 : 
DMACP.2_SINK_DATA 1 
DMACP2_AM_EXT_USR_DATA 
DMACR2_NO_BLOCK; 

*VMECHIP2_DMACR2 = dmacr2; 

/* 

m{ACR2_D32 ) 1 
,- sink data 

1 /* addr modifier 

* Set source, destination and block size 
*/ 

*/ 
*/ 

*VMECHIP2_DMACLBAC = dst_addr; 
*VMECHIP2_DMACVAC = src_addr; 
*VMECHIP2_DMACBC = byte_len; 
*VMECHIP2_TAC = 0; 

/* Local bus address counter */ 
/* VMEbus address counter */ 
/* rry:e counter */ 

/* 
* Set the VMEbus Timeout Control Reg, DMAC Timers, VMEbus global 
* timeout. Set VME access, Local and Watchdog timeout. 
* Set the Prescaler Control Register 
*/ 

*VMECHIP2_TIMEOUfCR = TIMEOUTCR_ARBTO 
TIMEOUTCR_ON_DONE 
TIMEOUTCR_VGTO_DISABLE 
TIMEOUTCR_VATO_32MS 
TIMEOUTCR_LBTO_256US 
TIMEOUTCR_WDTO_512US 
Oxe7; 

/* 
* Clear MPU status bit 
*/ 

*VMECHIP2_ICR = ICR_MCLR; 

/* 
* Local Bus interrupt enable register, enable DMA interrupt 
*/ 

icr = *VMECHIP2_LB!ER; 
*\~ECHIP2_LBIER = icr 1 LBIER_EDMA; 

* 
* 
*/ 

Set the DMA Control Register, Local Bus to \'!-lE Requester 
Control Register, and the DMAC Control Register 1 

*VMECHIP2_DMACRl = DMACRl_125NS 
1 DMACRCLVRWD 
I DMACR1_LVREO-L3 
1 DMACRl_DREO-L3 
1 DMACR1_TlMER 
1 DMACRl_DEN 
1 DMACRl_DFAIR; 

/* 
* If required block for DMAC completion 
*/ 

if (wait) 
semTake(semaphore,WAIT_FOREVER); 

return Oi 



#include <vme.h> 
#define VMECHIP2_BASE_ADRS (Oxfff40000l /* VMEChip LCSR registers */ 
#include <drv/vmechip2.h> 
#include <semLib.h> 

/* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

NAME 
dmaWrite(l - transfer data from local bus to VMEbus using 

the DMA Controller in the MVMEl67 

SYNOPSIS 

dmaWrite(semaphore,src_addr,dst_addr,byte_1en,dmode,block_cycle,wait) 
SEM_ID semaphore; synchronization semaphore 
unsigned long src_addr; local or source address 
unsigned long dst_addr; VMEbus destination address 
int byte_len; length in bytes of transfer 
int block_cycle; generate VMEbus block cycles 
int dmode; data mode D16.D32 or D64 
int wait; wait on DMAC completion 

* DESCRIPTION: 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*/ 

dmainit() should be called before using this func~ion. 
semaphore is the SEM_ID returned by dmainit(l, and is used 
for synchronization when the wait flag is set. If the wait 
flag is set, the interrupt service routine should release 
the semaphore semGive() and clear the irq interrupt. 
src_addr is the start of the local memory to be transferred. 
dst_addr is the destination memory over VMEbus. 
byte_len is the size of the data block to be transferred. 
if block_cycle is set (VMEbus block cycles): 

dmode 0 indicates D32 transfer, dmode 1 for D64 transfers 
if the block_cycle is not set (VMEbus read/write cycles): 

dmode 0 indicates D32 transfer, dmode 1 for D16 transfer 
The destination device must support VMEbus block cycles in 
order to set the block_cycle flag. 

dmawrite(semaphore,src_addr,ds~_addr,by~e_len,dmode,block_cycle,wait; 
SEM_ID semaphore; 1* synchronization semaphore *1 
unsigned long src_addr; /* local or source address */ 
unsigned long dst_addri /* VMEbus destination address */ 
int byte_len; /* length in bytes of transfer */ 
int dmode; /* data mode D16,D32 or D64 *1 
int block_cycle; /* generate VMEbus block cycles */ 
int wait; /* wait on DMAC completion */ 
{ 

unsigned long dmacr2; 
unsigned long icr; 

/* DMA Control Register 2 *1 
1* Interrupt Control Register *1 

/* 
* Set the DMAC Control Register 2 
*/ 

dmacr2 = DMACR2_VINC I 
DMACR2_LINC I 
DMACR2_TO_VME 1 
DMACR2_!NTE 1 
DMACR2_SINK_DATA 1 
DMACR2_k~_EXT_USR_DATA; 

if (block_cycle) { 

/* increment addr on DMA *1 
/* increment local addr */ 
/* transfer to VHEbus */ 
/* interrupt enable */ 
/* sink data */ 
/* addr modifier */ 

dmacr2 1= ( dmode ? DMACR2_D64_BLOCK : DMACR2_D32_BLOCK l; 



} 
else { 

dmacr2 1= ( dmode ? DMACR2_D16 

*VMECHIP2_DMACk~ = dmacr2; 

/* 
* Set source, destination and block size 
*/ 

*VMECHIP2 DMACLBAC = src_addr; 
*VMECHIP2-DMACVAC = dst_addr; 
*VMECHIP2:DMACBC = byte_len; 
*VMECHIP2_TAC = 0; 

/* 

/* Local bus address counter */ 
/* VMEbus address counter */ 
/* byte counter */ 

* Set the VMEbus Timeout Control Reg, DMAC Timers, VMEbus global 
* timeout. Set VME access, Local and Watchdog timeout. 
* Set the Prescaler Control Register 
*/ 

*VMECHIP2_TIMEOUTCR = TIMEOUTCR_ARBTO 
TIMEOUTCR_OFF_32US 
TIMEOUTCR_ON_DDNE 
TIMEOUTCR_VGTO_DISABLE 
T!MEOUTCR_VATO_32MS 
T!MEOUTCR_LBTO_8US 
TIMEOUTCR_WDTO_Sl2US 
Oxe7; 

/* 
* Clear MPU status bit 
*/ 

*VMECHIP2_ICR = ICR_MCLR; 

/* 

* Local Bus interrupt enable register, enable DMA interrupt 
*/ 

icr = *VMECHIP2_LBIER; 
*VMECHIP2_LBIER = icr 1 LBIER_EDMA; 

/* 
* 
* 
*/ 

Set the DMA Control Register, Local Bus to VME Requester 
Control Register, and the DMAC Control Register 1 

*VMECHIP2_DMACRl = DMACRl_12SNS 
1 DMACRl_LVRWD 
1 DMACR1_LVRE~L3 
I DMACR1_DREQ_L3 
1 DMACR1_TIMER 
1 DMACR1_DEN 
I DMACR1_DFAIR 
1 DMACRl_SINK_DATA; 

/* 
* If required block for DMAC completion 
*/ 

if (wait) 
semTake(semaphore,WAIT_FOREVER); 

return 0; 



#include <vme.h> 
#define VMECHIP2_BASE~DRS (Oxfff40000) 1* VMEchip LCSR registers */ 
#include <drv/vmechip2.h> 
#include <semLib.h> 

1* 
* NAME 
* dmaEnd Called to end all dma operations 
* 
* SYNOPSIS 
* * int dmaEnd(semaphore,irq) 
* SEM_ID semaphore; 
* int irq; 
* 
* DESCRIPTION 
* * Deallocate resources initialized during dmaInit(). 
* Semaphore is the SEM_ID returned by dmalnit, and irq 
* is the same value passed to dmaInit. 
* 
*1 

int dmaEnd(semaphore,irq) 
SEM_ID semaphore; 
int irq; 
{ 

} 

if ( (SEM_ID)NULL != semaphore 
semDelete(semaphore); 

if ( irq > 0 && irq < 8 ) 
sysIntDisable(irq)i 


