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J. Koga 

Abstract 

The effects of the beam-beam interaction on particle dynamics in a synchrotron collider 

are investigated. The main highlight of this work is the investigation of collective effects 

of the beam-beam interaction in a self-consistent approach that naturally incorporates 

the correct single-particle dynamics. The most important target of this simulation is to 

understand and predict the long-time (l08-109 rotations) behavior of the beam luminosity 

and lifetime. 

For this task a series of computer codes in one spatial dimension has been developed 

in increasing order of sophistication. They are: the single-particle dynamics tracking 

code, the strong-strong particle-in-cell (PIC) code, and the particle code based on the 

8/ algorithm. The latter two include the single-particle dynamics of the first. The third 

approach is used to understand beam lifetime by trying to improve the numerical noise 

problem in the second. 

Scans in tune Vo and tune shift ~vo show regions of stability and instability that cor­

respond to the regions predicted by a linear theory. Strong resonance beam blowup is 

observed just above Vo = 1/2 and Vo = 1/4, where the rate of beam blowup drops with 

the order of the resonance. 

In both the strong-strong code and 8/ code using the reference parameters of the 

Superconducting Super Collider, oscillations in the tune shift, !::lv, are observed. The 

odd moments of the beam are increasing in oscillation amplitude with rotation num­

ber, while the amplitudes of the even moments either decrease or remain constant. The 

III 



"flip-flop" effect is observed in the strong-strong code simulations and is found to be sen­

sitive to the initial conditions. 

In studying slow particle diffusion in the phase space of the beams away from resonances, 

the tracking code shows no diffusion of particles from the beam-beam interaction after 

105 rotations. The 8 f code shows all particles diffusive after 105 rotations. The diffusion 

coefficient is an exponential function of the action. An attempt to understand the diffusion 

process based on the spontaneously generated beam offset model has brought an agreement 

between analytic theory and the tracking code with random beam offsets. The exponential 

behavior found in the self-consistent 8f code, however, remains unexplained, although the 

order of magnitude as well as the behavior at large tune shift are in agreement with the 

theoretical model. A possible cause of this discrepancy might be the presence of KAM 

surfaces in low tune shift regimes. 
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1.0 INTRODUCTION 
The key goal of high-energy particle accelerators in addition to achieving high energies 

is achieving a high number of collision events from high-energy colliding beams. In circular 

accelerators or synchrotrons, this is accomplished by colliding two focussed beams that are 

travelling in opposite directions. The beams can be either of the same or opposite charge 

slgn. The number of collision events depends on the interaction rate, R:l 

R = LUint, (1.1) 

where L is the beam luminosity and Uint is the interaction cross section of the particles in 

the beam. The luminosity of the colliding beams is defined as 

N 2 

L=f-4 2' 
'lrU 

(1.2) 

where N is the number of particles, U is the rms beam size, and f is the frequency of 

collisions. To achieve a large interaction rate, it is necessary that the luminosity be as high 

as possible. High luminosity is achieved by high collision frequencies, a large number of 

particles per beam, and small beam sizes. However, higher N increases collective effects, 

higher f results in multi-bunch instabilities, and lower U places more demands on focussing 

systems and beam sources. Typically the luminosity L is a number between 1030 and 

1033 cm-2sec-1 for contemporary high-energy accelerators. At high energies the interaction 

cross section Uint tends to be small, on the order of 10-32 to 10-33 cm2 , as it is inversely 

proportional to the square of the beam energy. A large number of collisions is necessary 

to achieve a statistically significant amount of data. For example, in the Superconducting 

Super Collider (SSC) the projected storage time in the main ring is 24 hours. In this 

amount of time the bunched beams will undergo approximately 108 rotations and collisions. 

Therefore, the beams need to remain coherent for a long period of time. The major concern 

with circular colliders is long-term beam stability. Beam instabilities can lead to beam 

spreading, which reduces beam luminosity and beam lifetimes. Beam instability is caused 

by many factors: 

• longitudinal and transverse momentum spread of the beam 

• noise in the system 

• magnetic field gradient errors 

• resonances 

• steering errors 

• focussing errors 

• beam-beam interaction. 



One of the principal limitations on beam intensity is due to the beam-beam interaction 

via their collective electromagnetic fields. 2,3 For the hadron colliders the beam-beam inter­

action is expected to be even more crucial, since there is no synchrotron radiation damping 

to stop beam blow-up as in electron storage rings.3 

In this paper we will concentrate on the beam-beam interaction with emphasis on the 

beam-beam kick and beam-beam plasma collective effects. In the beam-beam interaction, 

each beam imparts an impulse on the other beam at the interaction point where the beams 

cross. This impulse may be treated as a kick, as the interaction time is much shorter 

than the beam particle dislocation time due to collisions. The kick can include both 

the impulse acting on whole beams and impulses acting on individual particles within 

each beam. Beam-beam plasma collective effects include plasma instabilities or "soft" 

collisions. These instabilities modify the beam profile and can contribute to increasing 

beam size. Collective instabilities have the most effect in the interaction region, where 

the beam densities are highest in the accelerator. One of the fastest growing collective 

instabilities that can occur in a plasma is the filamentation instability. However, in typical 

high-energy heavy particle colliders the beam-beam interaction times are very short relative 

to the filamentation instability growth rate. In the SSC the interaction time is about 2% 

of the maximum growth rate time. The relative importance of collective effects in plasmas 

is determined from the plasma parameter g: 

9 = l/(nAb)' (1.3) 

where n is the density and AD is the Debye length. If 9 ~ 1, collective effects play an 

important role. For SSC-type parameters, 9 = 2.66. So collective effects are not dominant 

for a single beam-beam interaction. However, the effects of a large number of successive 

interactions have yet to be determined. 

The objective of this study is to determine beam-beam interaction effects on particle 

dynamics using a collective plasma model at the interaction point. A one-dimensional 

model is employed at the interaction point so that oscillations in only one transverse 

direction due to the counterstreaming beams are studied. The rest of the machine is 

treated by simple harmonic transport (betatron oscillations). By employing a fully self­

consistent model at the interaction point, an assessment of the relative importance of 

collisions as a whole and individual "soft" collisions (collective effects) can be determined. 

Specifically, we will examine the contribution of self-consistent effects on beam blowup and 

particle diffusion after a large number of interactions. 
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2.0 BASIC ACCELERATOR PHYSICS 
In this section we describe the basic equations and terminology of particle motion in 

modern circular accelerators or synchrotrons. The simplest configuration of a typical 

modern accelerator is shown in Figure 2.1. The basic components are:4 

• a charged particle source 

• main storage ring 

• accelerating system 

• interaction regions. 

Charged particle 
source 

RF cavities 

FODOcelis 

Interaction region 
TIP-03309 

Figure 2.1. Modern Accelerator Configuration. 

The charged particle source consists of a small volume of ionized hydrogen gas from 

which charged nuclei (protons) are accelerated. These charged particles are accelerated by 

an electric field before entering the main ring. A kicker makes these particles enter the 

mam rmg. 

In the main ring the particles are confined by magnetic fields. The confinement system 

consists of two parts: (1) the steering magnets and (2) the FODO cells. The steering 

magnets are the dipole magnets that keep the particles bent in the plane perpendicular to 

the magnetic field so as to keep the beam within a nearly circular path. The FODO (focus­

drift-defocus-drift) cells consist of a sequence of quadrupole magnets and drift regions (no 

magnets). The FODO cells cause net focussing of the beams and will be described in 

Section 2.2. Radio frequency (rf) cavities are used to aClcelerate the particles to high 

energies. The generated electromagnetic fields are resonant with the particles. 

In the following sections we concentrate on the basic equations describing the motion of 

particles perpendicular to the accelerator path (transverse motion) and the net transverse 

focussing of particles. The longitudinal motion will be omitted from this basic discussion. 
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2.1 Transverse Particle Motion 
An equation of motion for the transverse motion of particles travelling around a collider 

ring is obtained from the Lorentz force equation: 
dp ~ 
dt = qv x B/c. (2.1) 

The following assumptions can be made: 1 

1. The design trajectory of the machine is a straight line or a single planar closed 

curve. 

2. The field of the magnet is assumed to be two-dimensional. That is, the components 

of the magnetic field along the particle trajectory can be ignored. 

3. Transverse velocities are assumed to be much smaller than longitudinal velocities. 

This is known as the "paraxial" approximation, with v ~ vs, where Vs is the 

velocity of the particle along the particle trajectory and v is the total velocity. The 

"paraxial" approximation is used in most if not all particle acceleration designs. 

4. The fields of the magnet are restricted to be linearly dependent on transverse 

displacement of the particles. 

5. In a planar accelerator there is no radial component to the magnetic field. 

6. Derivatives of transverse field components in the directions of the components are 

assumed to be zero, allowing one to neglect coupling between the two transverse 

motions. 

The equation describing the transverse linear motion of particles travelling in the static 

magnetic field of the collider is, then, of the form: 

x" + K (s)x = 0 , (2.2) 

where x" = d2x/ds2, X is either direction perpendicular to the particle motion, s is the 

direction along the accelerator path, and K(s) is similar to a spring constant in harmonic 

motion, which is a function of s. This equation is known as Hill's equation and was 

studied in the 19th century. ·In circular accelerators the function K(s) is periodic-that 

is, K(s + C) = K(s), where C is the circumference of the accelerator. A general solution 

to Eq. (2.2) can be obtained of the form: 

x =A,81/2(S)COS[q,(S) +8], (2.3) 

where q,( s) is the phase advance of the particle as a function of distance along the collider s: 

r ds 
q,(s) = Jo ,8(s)' (2.4) 

,8( s) can be interpreted as the local wavelength of the oscillation divided by 271', or the 

betatron oscillation length. A storage ring normally is designed and operated with 1 < ,8, 
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where 1 is the beam bunch length. The betatron oscillation length f3(s) and K(s) are 

related through the differential equation: l 

2f3 f3/1 - f3'2 + 4f32 K = 4, (2.5) 

where f3' = df3 / ds and f3/1 = d2 f3 / ds2 . 

The phase advance of the particle per turn around the collider is called the "tune" 1I 
and is defined as: 

1 f ds 
1I=27l" f3(s)· (2.6) 

The tune 1I can be thought of as the rotation in phase space due to betatron oscillations. 

One can construct a transfer map from the entrance to the exit of the magnet section 

by writing the equations of motion in the form of a transfer matrix:5 

(x) (COS(27l"1I) + asin(27l"1I) f3sin(27l"~') ) (x) (2.7) 
x' n+l = - (l+~Ql) sin(27l"1I) cos(27l"1I) - a sin(27l"1I) x' n' 

where a = -f3' /2 and f3' = df3/ds, and the indices n and n + 1 refer to the turn number. 

One can define another parameter: 

(2.8) 

and then the transfer matrix can be written in the form: 

M = I cos(27l"1I) + J sin(27l"1I) , (2.9) 

where 

(2.10) 

and I is the identity matrix. The quantities a, f3, and 'Yare called the Courant-Synder 
parameters. 5 

2.2 Transverse Focussing 
The existence of radial electric fields from the accelerating fields of the rf cavities, space 

charge forces between individual particles, and forces on the particles due to image charges 

in the vacuum chamber contribute to the transverse expansion of beam particles. Due to 

these effects, transverse focussing is necessary. Net focussing in the transverse plane is 

accomplished with quadrupole magnets. In quadrupole magnets the Lorentz force acts 
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to focus in one coordinate and to defocus iq the other (Figure 2.2). The effect of the 

quadrupole magnet in the focussing direction can be represented by a matrix of the form: 

(2.11) 

where / is the focal length of the magnet. The paraxial and thin lens approximation has 

been made.6 In the defocussing coordinate the focal length is of the opposite sign. A linear 

focussing design is possible using transfer matrices for the field-free drift regions and the 

magnetic impulse sections. A drift region is represented by a matrix of the form: 

(2.12) 

where L is the length of the drift region. Net focussing is achieved by creating a lattice 

consisting of a focussing lens, a drift region, and a defocussing lens. The transfer matrix 

of this lattice is of the form: 

2L + L;) 
1 +.f ' f 

(2.13) 

where stability is achieved when L/2/ is less than unity. Thus net focussing is achieved 

when the focal length / is greater than half the lens spacing L. 

TIP-Q3310 

Figure 2.2. Fields of a Quadrupole Magnet. 
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3.0 THE BEAM-BEAM INTERACTION 

In this section we will review the basic concepts of the beam-beam interaction. The 

beam-beam interaction is an important factor in beam dynamics. It puts practical limits 

on the yield of the storage ring and prevents many existing storage rings from achieving 

design parameters.7 Substantial use of the review article by Chaos is made in this section. 

When two oppositely directed beams in a synchrotron meet at the interaction point 

of the collider, they give each other a kick. Consider an idealized collision event where 

cylindrical beams with radius a, length [, and N particles collide head-on. Figure 3.1 

shows the geometry of the beam-beam interaction where a test particle at radius r of one 

beam is passing through the other beam. We neglect space charge forces, since the force 

Ne 
e 

_~t,------

TIP-03311 

Figure 3.1. Geometry of the Beam-Beam Interaction for a Test Charge. 

that a particle sees from an oncoming beam is ~ 2,2 times larger than the force from the 

other particles in the same beam, where, is the relativistic factor. So for ultrarelativistic 

machines the space charge effect is relatively small. With a uniform cylinder of charge 

there is a radial electric field Er of the form: 

Ner 
Er = 2 a2[ , (3.1) 

where N is the number of particles in the beam, r is the distance from the center of the 

beam, a is the beam radius, and I is the length of the beam. In the relativistic limit v ~ c, 

where v is the beam velocity, the magnetic field Bo produced by the beam is of the form: 

These combined fields produce a net force Fr on the test charge: 

Fr = e(Er + Bo) 

4Ne2r 
a2[ 
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The impulse received by the test charge upon passing through the beam is 

Ar' = FrAt = 2Nro r (3.5) 
,me ,a2 ' 

where At = ic and ro = ~:2' the classical radius of the particle with mass m. Note that 

Eq. (3.5) is independent of the beam length I and can be rewritten in the form: 
, r 

Ar = -- (3.6) 
I 

1 2N 
- = --ro. (3.7) I ,a2 

The form of Eq. (3.6) makes the impulse look like a quadrupole error where I is the focal 

length. Keeping this in mind, one can define a beam strength parameter e due to the 

beam-beam interaction: 
1 (3* 

e = 471" f' (3.8) 

where (3* is the betatron oscillation length at the beam-beam collision point. Using 

Eq. (3.7), the beam strength parameter can be written in the form: 

e = Nro(3* (3.9) 
271",a2 

Typically in proton-antiproton colliders, e = 0.005, and in an electron-positron collider, 

e is as large as 0.05.9 The beam strength parameter e is related to the tune shift Av, as 

we shall describe below. The tune shift Av indicates how much the tune v is shifted by 

the beam-beam interaction. 

In realistic cases the beams are not uniform cylinders of charge. In general the beam­

beam force is nonlinear in x and y. Most often with large numbers of particles the beams 

are Bigaussian, where the widths in x and y direction are characterized by ax and ay • The 

kicks that particles get from such a beam may be expressed in the form: 8 

where 

AX' = - aU(x, y) (3.10) 
ax 

fj.y' = _ aU(x, y) , 
ay 

U(x,y) = _Nro (XJ dt exp [-2(:f+t) - 2(O"~2+t)] -1 

, Jo v(a; + t)(a; + t) 

(3.11) 

(3.12) 

The equations representing the kicks are both nonlinear and are coupled. For small 

values of y/ay ~ 1 and x/ax ~ 1 the force is linear and the two motions are decoupled: 
, x 

Ax =-
Ix 

(3.13) 
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where 

1 

A' Y u.y =-, 
fy 

2Nro 
-=---~-
fx "(aX(aX + ay) 

1 2Nro 
fy - "(ay(ax + ay) . 

(3.14) 

(3.15) 

(3.16) 

This holds for only a small number of particles in the beam. For values of x/ax ~ 1 and 

y/ay ~ 1, the forces are highly nonlinear. It is found that the optimum design occurs when 

ex = ey • Equivalently this can be expressed as 

p; p; 
-=-, 
fx fy 

(3.17) 

where P; and P; refer to the betatron oscillation lengths in x and y, respectively, at the 

interaction point. 

Two models are used to study the beam-beam interaction: the weak-strong and strong­

strong models. Both models are important. For the weak-strong model the internal struc­

ture of the so-called strong beam is unperturbed. This type of model involves a rigid 

nonlinear lens at the interaction point (IP) and becomes a problem of a nonlinear map. 

Particles in the weak beam are perturbed by this map. For the strong-strong model both 

beams are perturbed. 

The procedure in principle for solving the beam-beam problem is: 

• Let the unperturbed distribution '110 be, for example, a Gaussian. With the strong­

strong perturbation, '110 must be solved self-consistently. The perturbed beam 

steady-state distribution '110 is not Gaussian . 

• Given the perturbed distribution wo, let 

Are the infinitesimal perturbations ~Wl,2 stable under mutual interactions? 

(3.18) 

(3.19) 

Neither of these steps is easy. So far only bits and pieces have been done. Simple schemes 

have been developed to solve the beam-beam problem. 
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3.1 Dynamic Beta 
A simple model that has been developed to study the stability of the beam to an idealized 

beam-beam perturbation is the dynamic beta mode1.10 The main assumption of this model 

is that the beam-beam force is linear. So the model is valid for uniform cylindrical beams or 

for small values of x and y in nonuniform beams. The dynamic beta model is the simplest 

weak-strong or strong-strong model. The steady state distribution 'l10 is still Gaussian 

after the perturbation. Except that the tune, Vo, goes to v, the betatron oscillation length 

at the interaction point, f3o, goes to f3*, and the rms beam sizes, axo and avo' go to ax 

and a y • The variables with the zero subscripts are the unperturbed quantities. The motion 

of small amplitude particles is analyzed by using matrix techniques. We start with the 

Courant-Synder matrix in Eq. (2.7), which gives: 

(x) (COS(27rV) 
x' n+1 = - J. sin(27rv) 

f3* Sin(27rV») (x) , 
cos( 27r V ) x' 

n 

(3.20) 

where x' = dx'lds, s is the coordinate along the collider, the indices n and n + 1 refer to 

the turn number, and for simplicity we have taken a = o. A similar matrix can be written 

for the y direction. The matrix in Eq. (3.20) representing the perturbed matrix can be 

expressed in terms of perturbed and unperturbed quantities: 

where 

( 
cos (I') 

-J. sin(J.t) 

f3* Sin(J.t») _ ( cos(J.to) f30 sin(J.to) ) 
-B B, 

cos(J.t) - Jo sin(J.to) cos(J.to) 

I' = 27rv, 1'0 = 27rvo, and ex is the beam strength parameter: 

(3.21) 

(3.22) 

(3.23) 

The matrix B represents beam-beam kick through half of the interaction point. There 

is a similar expression for y transfer matrix. From these transfer matrices the following 
relations can be derived: 

f30 I f3* = sin 1'1 sin 1'0 . 
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Note that for e ~ 1 Eq. (3.24) reduces to 

(3.26) 

which can be rewritten as 

v ~ Vo +e, (3.27) 

where e is equal to the beam-beam tune shift parameter /j"v = v - vo. In the weak-strong 

case Eqs. (3.24) and (3.25) are the same. However, since the strong beam, which kicks the 

weak beam, is unperturbed, ex is defined in terms of unperturbed quantities: 

(3.28) 

Stability of the particle motion is achieved, when I cos ILl :::; 1 in Eq. (3.24). The stability 

conditions are 

e < cot(lLo/2)/27r 

eo < cot(lLo/2)/27r, 

(3.29) 

(3.30) 

where the first equation is for the strong-strong (coherent) case and the second equation 

is for the weak-strong (incoherent) case. The stability diagram from these equations is 

shown in Figure 3.2, which shows the stable and unstable regions in e - v space.8 In the 

weak-strong case e would be replaced by eo in the figure. Note that resonances occur at 

IL n - = V~-, 
27r 2 

(3.31) 

where n is an integer. The beam strength parameter e and the tune shift /j"v are related 

by 

~(/j"v) = cos(27rv) - cos (27r(v + ~,v» 
27r sin(27rv) . 

(3.32) 

When lei ~ 1, then /j"v ~ e. 

In the strong-strong case the perturbed quantities are interdependent-that is, CTx IS 

proportional to V7F and not ..Ji3t. The perturbed betatron oscillation length f3* depends 

on e, which in turn depends on CTx • This implies that CTx , f3*, IL, e, and L (luminosity) need 

to be found self-consistently for a given N. 
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Figure 3.2. Stability of a Uniform Cylindrical Beam to Beam-Beam Perturbations, Where e is Plotted 
Versus "0. 

For example, for a round beam U x = uy and /1-xo = /1-yO = /1-0. Defining po = 2rreo, we 

get from Eqs. (3.25) and (3.24): 

( f3*) 2 f3* (f3*) 2 f3~ = 1 + 2po cot /1-0 f3~ - P5 f3~ (3.33) 

From Eq. (3.33), we get an equation for the perturbed betatron oscillation length f3* in 

terms of unperturbed quantities: 

~; = (1 + [pol sin /1-0]2)1/2 - po cot /1-0 • (3.34) 

Also, all other perturbed quantities can be calculated based on the fact that 

e I eo = u5 I u2 = f30 I f3* = L I Lo , (3.35) 

where quantities with subscript 0 are the unperturbed quantities. We have assumed that 

the beam-beam interaction does not change the phase space area occupied by the beam 

particles. 

The dynamic beta model can be generalized by allowing the two beams to behave 

differently: 

( 
f3* ) 2 f3* ( f3* ) 2 f3~ = 1 + 2po cot /1-0 f3~ - P5 f3~ (3.36) 

( 
f3* ) 2 f3* ( f3* ) 2 f3~ = 1 + 2po cot /1-0 f3~ - P5 f3~ , (3.37) 
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where 

(30/(31 = 0"5/ O"i . 

One solution is (3+ = (3~. There is another set of solutions with (3+ =I- (3~: 

(3± 1 
(3* = 2 Po cot /-'0 ± 

o Po-1 

P5 cot2 /-,0(P5 - 3) + (P5 - 1)2 

P5 + 1 

(3.38) 

(3.39) 

The two different solutions for (3* imply that one beam is statically blown up ((3+), and 

the other pinches ((3~). This solution with different (3* is a model for "fiip-fiop.,,7 

3.2 Steady State Distribution 
The dynamic beta model is good only when the beam-beam force is linear in x and y. 

A linearized beam-beam force is inconsistent with a Gaussian distribution where the force 

is nonlinear for large amplitude in x or y. There may be two ways to proceed: 

• Include nonlinear beam-beam force in x and y for Gaussian beams, but consider 

only the second moment. This approximation is still not self-consistent.ll 

• Restart with the Vlasov equation and take into account self-consistency. 

The two beam distributions are coupled (assuming fiat beams) through: 

8YI} + y,8W l _ F2(y, s) 8W
l = 0 

8s 8y 8y' 
(3.40) 

(3.41) 

where 

(3.42) 

(3.43) 

27rNr 100 100 

= L °Op(s) dfiH(y-fj) dfj'Wj(fi,fj',s) , 
X'Y -00 -00 

(3.44) 

with H(x) = 1 if x > 0, and H(x) = -1 if x < 0, and opes) a periodic o-function with 

period s = L. The equal-beam steady state self-consistent distribution satisfies 

8wo ,8wo 8wo 
8s +y 8y - Fo(y,s) 8y' = 0, (3.45) 

where 

Fo(y,s) = K(s)y + Fb (3.46) 
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(3.47) 

27r N r 100 100 

= L °Sp(s) dyH(y-y) dy'Wo(y,y',s). 
XI -00 -00 

(3.48) 

There are a few solvable cases. One solution is obtained when the beam-beam force 

is proportional to Sp( s)y and is similar to the dynamic beta model. The solution does 

not give the assumed beam-beam force. It is also not self-consistent except for uniform 

distributions. Another solvable case is for two oppositely-charged, unbunched (continuous), 

round beams self-pinching with line density Ao. The beam-beam force is independent of s. 

There is no resonance structure. Then 

(3.49) 

where 

(3.50) 

and A is an arbitrary constant.S,12 

These solvable cases have limitations. The linearized Sp( s) beam-beam force sees only 

vo = 1/2 resonances. The smoothed beam-beam force sees no resonances. 

In general, Wo is "transverse potential well distorted"S and is difficult to solve. Note 

that unlike the longitudinal potential well distortion due to wake fields, this potential well 

excites resonances Vo = p/q, where p and q are integers. The periodic delta function, Spes), 

is not in the longitudinal potential well distortion. 

3.3 Dynamics About the Steady State 
The key is to determine whether the motion is stable against small perturbations from 

the steady state. Table 3.1 shows the steps that have been taken to study the beam­

beam interaction problem.8 The cases are listed in decreasing order of confidence. Case 1 

represents the simplest coherent beam-beam model that includes dynamics.13- 15 
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Table 3.1. Cases That Have Been Studied in Coherent Beam-Beam Dynamics 
in Increasing Complexity. 

Case steady state perturbation 

1 unperturbed rigid center-of-mass 

2 unperturbed perturbation on rms beam sizes 

3 dynamic beta perturbation on rms beam sizes 

4 unperturbed higher order modes 

5 dynamic beta higher order moments 

6 potential well distorted distribution repeat cases 1-5 

7 potential well distorted and flip-flop repeat cases 1-5 

For case 1 we assume rigid round beams. Let the unperturbed distribution be w(r) and 

the center-of-mass coordinate be Y. The center-of-masses exert beam-beam kicks on each 

other for small Y's:1l,16 

(3.51) 

(3.52) 

where f is the focal length for incoherent motion, for example, ~y' = -y' / f, and 1/ f = 
47reo/(3'O. The beam-beam kick is averaged over w(r), where G is the form factor: 

G = 1000 

dr r w2(r) 
w(O) 1000 dr r w(r) . 

(3.53) 

G = 1/2 for a round Gaussian beam and 1 for a round uniform disk. Considering one 

bunch per beam the transformation for [Y1, Y{, Y2, Y;] from interaction point to interaction 

point is 

1 0 0 0 

-G/f 1 G/f 0 

0 0 1 0 
xR, (3.54) 

G/f 0 -G/f 1 

where 

cosp,o (3'0 sin p,o 0 0 
1 . 

0 0 
R= 

- (3; Slllp,O cosp,o 

0 0 cosp,o (3'0 sinp,o 
(3.55) 

0 0 1 . - (3; Slllp,o cosp,o 
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By performing eigenmode analysis it can be shown that there are two modes: the O-mode 

and the 7r-mode. With the O-mode the two bunches move up and down together (or left 

and right). There is no coherent beam-beam force, and p, = P,o the tune maintains the 

unperturbed value. This mode is always stable. For the 7r-mode the two bunches are out 

of phase. The effective separation is 2G larger than the incoherent case (G is the form 

factor and the 2 is due to both beams moving). The mode frequency p, satisfies Eq. (3.24) 

with e -+ 2Geo. The motion is stable if 7r-mode is stable. For example, 

eo < cot(p,0/2)/47rG. (3.56) 

Resonance occurs when p,o = 7r, or vo = 1/2, which is just like the incoherent and dynamic 

beta cases. The O-mode and the 7r-mode have been observed experimentally.17 

When the beams are not rigid, the beam motion is determined by the sum of all beam 

modes (Table 3.2). Consider one bunch per beam. The bunches collide head-on, but each 

executes coherent quadrupole oscillation. DefineS 

(x2 ) (xx') o o 
(xx') (x 2 ) 

E= o o 
(3.57) 

o o (yy') 

where there is one of these arrays for each bunch. Consider small perturbations around a 

steady state: 

~- = Eo +6.E-

The transformations for the E matrices are in the arcs (round beams): 

At the interaction point, 

(6.E+)out = TBB-(6.E+)inTBB­

(6.E_ )out = TBB+(6.E- )inTBB+ , 

where TBB± is the perturbed beam-beam matrix (linearized): 

1 0 0 0 
1 1 0 0 

TBB±= 
-/± 

0 0 1 0 

0 0 1 1 -/± 

16 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 



This matrix determines the effect on one beam at the interaction point due to the oscillating 

beam size of the other beam. 

Table 3.2. Beam Modes and Associated Resonances. 

mode resonances 

rigid dipole total tune v = n 

quadrupole v= n/2 

sextupole v= n/3 

etc. 

Linearize this with respect to the elements in D.~± for small perturbations. This will 

result in 12 x 12 transformation matrices that can be eigen-analyzed for six modes. Two 

of the six modes give constants of the motion. The remaining four dynamic modes give 

cos P = cos 2p, + 

2 

1 

-1 

-2 

Po sin Po cos P, 

cos p, = cos Po - po sin po . 

(3.64) 

(3.65) 

One can obtain a stability diagram from these equations. A similar analysis can be 

performed for M bunches per beam. From this one gets 4M dynamic modes. 

The dynamic beta analysis gives a steady-state second moment. The dynamics of the 

second moment is given by transformation matrices for D.~±. This formulation was based 

on a linear beam-beam force that is inconsistent with a Gaussian beam. With a nonlinear 

beam-beam force, higher moments are excited, the distribution is non-Gaussian, and the 

beam-beam force is modified. A self-consistent (Vlasov) treatment is needed. 

3.4 Vlasov Approach 
A general approach to the analysis of the beam-beam interaction is to use the Vlasov 

equation.18- 21 Let 

(3.66) 

where Wo is the steady-state distribution and D.Wl,2 are the perturbations. Chao and 

Ruth18 linearized the Vlasov equation in D. W, transformed to action-angle variables (J, ¢», 
and assumed a waterbag model:8,18 

Wo = (1/7r€)H(€/2 - J), (3.67) 
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where € is the unperturbed beam emittance, J is the action, and 

1 for x > 0 
H(x) = . o for x < 0 

The waterbag model is simple but inconsistent with the steady-state condition. 

The coherent beam-beam instability is pronounced near 

v=2vo~plq· 

The q-th mode is the most perturbed where 

A W f"V exp( iq</J ) , 

and the mode frequency isIS 

cos Jl = cos(27T"qv) ± ~q 1 e sin(27T"qv) . 
4q -

The stopband width around a resonance is 

e 16 
8vq = 27T"4q2 -1 . 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) 

The stopband is a region around a resonance in which the beams are unstable. Figure 3.3 

shows the stability diagrams for two bunches per beam, where the beams are of oppo­

site charge. IS As the number of modes is increased, higher and higher resonances can be 

excited. When the maximum number of modes is n, the highest resonances are excited 

near v = min. 

Beams blow up in the unstable regions, but only by so much that stability sets in, 

for example, just under the sawtooth curve. This stabilization is analogous with bunch­

lengthening observed in electron storage rings and has already been hinted by dynamic 

f3 analysis where the beam blows up but stays below the instability. 
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Figure 3.3. Stability Diagrams for the Case of Two Bunches per Beam and Maximum Modes of m = 2,4,6, 
and 8. 

3.5 Diffusion from Beam Offset 
Another contribution of the beam-beam interaction is the enhancement of particle diffu-

sion. It is anticipated that at each collision the pair of colliding beams suffer collisions with 

the centers of the beams offset, instead of head-on, resulting in diffusion of the beam par­

ticles, as they experience stochastic kicks. According to analytic theory on beam offset,22 

a Fokker-Planck equation can be derived for the averaged perturbation of the distribution 

function t:..F = F - Fo: 

(3.73) 

where Fo is the initial unperturbed distribution function of the beam, J is the action, and 

< (6.JM? > is the averaged change in the action due to beam offsets. < (6.JM)2 > /2 
can be thought of as the diffusion coefficient. An expression for < (t:..J M? > has been 

derived using the "weak-strong" approximation for the beam-beam interaction and the 

assumption that the strong beam is Gaussian:22 

(3.74) 

19 



where e is the beam strength parameter, Jo is the unperturbed action, h is the modified 

Bessel function of order k, and Rk is 
00 

Rk = L K(n) cos (21Tvn(2k + 1)) , (3.75) 
n=-oo 

where K(n) is the auto-correlation function < (m(m+n >, (m is the beam offset for turn m, 

and v is the tune. 

Equation (3.74) can be simplified with the assumption that the beam offsets ( are uncor­

related on a turn-by-turn basis. Then, K(D) is the only non-zero term in the calculation of 

Rk (the Markov process assumption). Also noting that the Bessel functions fall off with k, 

Eq. (3.74) can be written in the form:22 

< (fUM)2 >= 16".2e Joexp( -Jo)M [10 ( ~o) + I, C;) r Ro. (3.76) 

After integrating over Jo, an approximate value for the diffusion coefficient can be obtained 

from the change in the luminosity of the beam:22 

~~ = -6.25eM~:, (3.77) 

where 6.L is the change in luminosity, Lo is the initial luminosity, e is the beam strength 

parameter, bx is the beam displacement normalized to (J'x, M is the number of turns, and 

6.v is the distance of the tune v from the nearest integer. The diffusion coefficient may be 

defined as 

Thus, D can be expressed in the form: 

d(1~) 
D= dM . 

bx2 

D = -6.25e 6.v . 

4.0 FILAMENTATION INSTABILITY 

(3.78) 

(3.79) 

When collective effects are taken into account between two counterstreaming beams, 

one of the most important instabilities is the filamentation instability.23 The filament at ion 

instability is one of the fastest growing collective effects that can occur in a plasma. From 

linear theory the maximum growth rate for counterstreaming electron and positron beams 
. is23 

1 Wb 
rmax = --, 2v/f 

(4.1) 

where I = b, f3 = ~, w~ = 41Tenb/me, nb is the beam density, and me is the electron 

or positron mass. The filamentation instability generates a mode that propagates nearly 
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perpendicular to the beam direction. The onset of this instability can lead to beam fila­

mentation and heating. Lee and Lampe24 have studied a relativistic electron beam in a 

plasma via simulations. They found that as a result of the filamentation instability the 

electron beam splits into filaments, each of which self-pinches. 

There are two factors that may determine the effect of the filamentation instability 

on collective motion of counterstreaming beams in circular accelerators. They are the 

time scale of the interaction and the transverse size of the beam. The time scale of the 

interaction Tint is determined by the length of the beam bunches Lb, where Tint = Lb/2c. 

The maximum growth rate of the filament at ion instability for large beams is r max = Wb/2 

for p - p collisions and for p - p collisions, where Wb = v4rre2nb/"Im is the beam plasma 

frequency, nb is the beam density, "I is the relativistic factor, and m is the proton mass.23 

The factor r max Tint determines the fraction of the growth rate time the beams interact. 

The fraction of the growth rate varies between different types of colliders. In the sse the 

beams interact for a small fraction of the growth time of the instability (r max Tint R: 0.035). 

Therefore, the only way the filamentation instability may be of some importance to the 

beam dynamics is by repeated interactions over many turns. Since the typical beam life is 

R: 108 revolutions, the effects of the filamentation instability may be important. In electron 

synchrotrons the fraction of the growth rate is higher because the growth rate increases 

with the decrease in mass. So the filamentation instability could be more significant over 

a smaller number of rotations. 

The transverse size of the beam may be another factor limiting the effects of the fila­

mentation instability. The typical scale of the filamentation instability is the collisionless 

skin depth >'c = C/Wb. It has been found that the filamentation instability is suppressed 

when the beam width Wb is small compared to >'c.25 For the sse the ratio of Wb to >'c is 

R: 2 X 10-5, so both the fraction of the interaction time and the width of the beam are 

small. 

5.0 PREVIOUS BEAM-BEAM SIMULATION RESULTS 
Since a complete analytical treatment of beam-beam interaction does not yet exist,8 

study of the problem has relied heavily on various types of computer codes. In this section 

a review of previous simulation results is presented. Substantial use is made of the review 

article by Siemann26 on electron-positron storage rings. 

Two main types of computer codes have been used to study the beam-beam interaction: 

weak-strong codes27 and strong-strong codes.28,29 Typically the 101°-1011 beam particles 

are simulated with 103-104 simulation particles. In the strong-strong simulations both 

beams are tracked, and the evolution of their phase space distributions is followed. The 
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purpose of these programs is to measure the effects of storage ring parameters on the 

beam core. In the weak-strong simulations one beam (weak beam) is tracked and the 

other beam (strong beam) is kept stationary. The weak beam is perturbed by the strong 

beam's scattering potential. Weak-strong simulations cannot be used to study the beam 

core. However, they are mainly used to study the dynamics of particles in the tails of the 

beam distribution. The goal of tracking is to directly simulate single-particle motion in 

circular accelerators and to determine regions of phase space that are stable.3o 

The simulation particles are tracked for many turns. For each turn the particles pass 

through each other at the interaction point (IP) and are then transported through the rest 

of the storage ring via matrices representing the various magnetic transport components. 

At the IP the usual approximations are made that the beams are Gaussian in the trans­

verse directions, x and y, and can be treated as thin elements along the collider in s. By 

treating the beams as thin elements the kick approximation can be made.31 In this approx­

imation the fields are determined by the rms width in x and y of the opposing beam. The 

approximation of the kick for the beam-beam interaction is valid so long as the betatron 

oscillation length at the IP (3* is not comparable to the longitudinal length of the beam (jl. 

When (jl is comparable to (3*, it is necessary to treat the beam-beam interaction as a thick 

element. In the weak-strong simulation the rms values are fixed. In the strong-strong 

simulations the rms widths are varying for each beam. 

In the strong-strong simulations the particles are initialized in the simulation with 

Gaussian distributions and the required variances.28 ,29 The particles are tracked through 

a sector-an accelerating cavity, a beam-beam interaction, and a normal machine arc 

(lattice )-and particles exceeding the aperture limits are removed from the simulation. 

The aperture limits in the transverse direction are determined by machine acceptance, 

and in the longitudinal phase plane they are determined by acceptance of the rf accelerat­

ing "bucket." 

After each turn new beam parameters are computed; for example, beam size and inten­

sity are computed and used to recalculate the beam-beam force parameters. The beam size 

is calculated from the rms value of the displacements of the superparticles. This value is 

used as the sigma of the assumed Gaussian distribution. The beam-beam kick is evaluated 

by linear interpolation of tabulated values of the complex error function:28,29 
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, Nre 27l' x + ZZ x Z Xii ZZ'b fh [( .) (2 2) ( b +' a )] 
6.z = ----;y a2 _ b2Re w V2(a2 _ b2 ) - exp - 2a2 - 2b2 w v2(a2 _ b2 ) , 

(5.1) 

where 6.z' is the kick in the vertical kick, a and b are the standard deviations in the 

x and z directions, N e is the total charge in the bunch, 'Y is the relativistic parameter, and 

w( A + iB) is the complex error function. 

Typically the simulations uses about 100 particles, and beam size reaches steady-state 

value in less than one-half of a transverse-damping time. Simulations are run to one 

damping time after the steady-state equilibrium has been reached. Statistical fluctua­

tions associated with each bunch are rather large due to the limitations on the number of 

superparticles that can be used. So it is difficult to obtain reliable information about the 

form of the distribution function or about the tails of the distribution function. Once an 

apparent steady state distribution has been reached in the presence of beam-beam forces, 

the statistical fluctuations may be reduced. Binning the particles into histograms after 

traversal of each machine sector over many turns accomplishes this reduction.28,29 This 

binning of particles has been applied to the computation of distributions in the betatron 

and synchrotron tune and in betatron and synchrotron displacement.29 This method of 

binning also allows the calculation of the average tune shift and the tune spread for one 

or all beam-beam crossings. 

In the absence of the beam-beam interaction the beams would remain Gaussian. How­

ever, because of the beam-beam interaction the strong-strong beams do not remain Gaus­

sian, as shown in Figure 5.1 from Siemann.26 The beam profile is non-Gaussian in both 

the core and the tails. Beam-beam resonances are modifying the distribution. The 

deviation of the beams from the Gaussian profile is the main problem with these types of 

simulations. The fields are calculated based on a Gaussian, which is inconsistent with the 

actual distribution of the particles. Therefore, the beams may be prevented from reaching 

a distribution that is self-consistent with the fields. 
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Figure 5.1. Simulation of the Vertical Beam Profile. The histogram is the result of binning each test particle 
over 1000 turns. The solid curve is the original Gaussian profile of the beam. 

Both qualitative and quantitative comparisons between simulations and storage ring 

experiments have been made. Piwinski reported qualitative agreement between simulations 

and the operating point characteristics for PETRA.32 Simulations show that the beam­

beam interaction is dominated by resonances, as shown in Figure 5.2, where a Poincare map 

of the motion of a single test particle near the 1/3 resonance is plotted.32 At the beginning 

of the simulation the particle is near the origin. After about 8000 turns, the particle is 

moved quickly out to the resonance islands from quantum fluctuations and the nonlinear 

beam-beam force. Myers has found in the Large Electron-Positron Collider CLEP) storage 

ring simulations29 that: 

• beam-beam limit decreases slightly with the number of bunches 

• beam-beam limit decreases rapidly when the value of f3* approaches around twice 

the bunch length (q s ) 

• beam-beam limit is strongly dependent on the transverse damping 

• transverse tune modulation caused by residual chromaticity produces no significant 

reduction in the beam-beam limit. 

• machine "errors" can produce significant reduction in the beam-beam limit. 
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Figure 5.2. Poincare Map of a Test Particle, Where V~ = 25.2 and Vy = 23.32 After 10,348 Turns. 

Hutton33 compared the Positron-Electron Project (PEP) luminosity at two machine oper­

ating points with the strong-strong simulation of Myers.29 Agreement was found between 

the absolute luminosity and the current dependence. Jackson and Siemann have found 

similar agreement with the Cornell Electron Storage Ring (CESR).28 They also compared 

simulation results with CESR results away from operating points. Good agreement was 

found in some regions around the operating point for the luminosity versus the tune. Qual­

itative agreement was found in other regions. Substantial disagreement was found from 

low vertical tune values.28 Weak-strong simulations of CESR show good agreement for 

beam blow-up by resonances and particle distributions in the tails.34 

Recently, non-Gaussian simulations have been performed.35 The simulations show that it 

is critical to use general field calculations in the study of coherent beam-beam phenomena. 

Higher-order coherent resonances were a direct consequence of the general field calculation. 

6.0 SIMULATION MODELS 

In the course of our investigation, various simulation models have been developed to 

study the beam-beam interaction. These models are presented in increasing order of 

sophistication and inclusion of physical effects. 

Numerical simulation of accelerator beam dynamics has a relatively short history. As 

accelerators become increasingly more costly and complex, computers and computational 

techniques become increasingly more developed. Computer simulation has recently become 

an accepted standard method of investigation of accelerators. It certainly is this way for 

the Tevatron at Fermi National Accelerator Laboratory. For the SSC one may even say 

that computer simulation has become one of the central design techniques. An obvious 
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reason for developing computer models is the cost. It is much less expensive to run a 

simulation than to build a device. Also, simulations allow the study of a problem under very 

controlled conditions with accuracy limited only by the precision of the computer. This 

is not the case with experimental setups. Analytical methods provide a means to study 

the problem in the linear regime. However, nonlinear aspects are not easily accessible. 

Numerical methods allow the study of this regime with fewer approximations than analytic 

methods. Simulation schemes such as the Particle-in-Cell (PIC) methods36,37 represent a 

common ground between the two-particle picture of the beam-beam interaction and the 

full statistical picture representing all particles in the beams. 

In the following sections the various numerical codes used to study the beam-beam 

interaction will be described. They are the tracking code, Vlasov code, PIC codes, and 

the Sf algorithm. 

6.1 Tracking Code 
The basic principle of tracking codes is to follow the dynamics of single particles around 

the machine.27 In the beam-beam interaction the tracking code consists of two components: 

a target beam and a projectile beam. The target beam is treated as a rigid, smooth, Gaus­

sian distribution of a large number of particles. It remains unchanged from interaction to 

interaction. The projectile beam is considered to be a collection of mutually noninteracting 

particles that are perturbed by the target beam. This is the so-called "weak-strong" ap­

proximation as described in Section 3.0. In tracking-code simulations in the "weak-strong" 

approximation, transport about one-turn is simulated as the product of two matrices, one 

for the one-turn Courant-Synder map,s and the other for the impulsive application of the 

beam-beam interaction discussed above:27 

[Xl [xl I =M I ' 

X final X initial 

[ 
cos(27rvo) 

M= 
-sin(27rvo)/ f30 

f30 Sin(27rVO)] [ 1 
cos(27rvo) 47r!::"voF(x)/f3o 

(6.1) 

(6.2) 

where x is the position of the particle, x, is dx/ds, s is the distance along the collider, 

Vo = § ds / f3( s) is the tune, !::"vo is the input tune shift, f30 is the betatron oscillation 

amplitude at the interaction point (IP), and F(x) is the 1-D truncation of the force from 
a round Gaussian beam 

(6.3) 
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where O'xo is the beam standard deviation in x. This formulation is similar to that of 

Neuffer et al.;27 however, here both beams are of the same charge. For comparison with 

one-dimensional simulation results, F( x) becomes the force of a 1-D Gaussian slab: 

(6.4) 

where erf is the error function. 

The first matrix in Eq. (6.2) takes into account the particle motion from the lattice 

magnets.s The second matrix takes into account the kick from the beam-beam interaction. 

6.2 Vlasov Code 
This section describes a Vlasov-Maxwell code. Vlasov-Maxwell codes can be used to 

simulate various electromagnetic phenomena that occur in plasmas or charged-particle 

systems.38,39 

In this simulation technique, a plasma is represented by a discretized version of the 

Vlasov-Maxwell system of equations. The Vlasov equation is a continuity equation rep­

resenting a system of particles as a fluid in phase space. Thus it is free of the noise 

plaguing PIC models due to the finite number of discrete particles. On the other hand, it 

needs to follow greater dimensions (typically twice as many) than the PIC models, since 

it represents phase space instead of the configuration space. It is written in the form: 39 

a fs Ps. a fs f. a fs - 0 at + m ax + s ap - , (6.5) 

where the subscript s refers to the individual species (background electrons, beam electrons, 

ions, etc.) and Fs is the Lorentz force: 

(6.6) 

One of the greatest shortcomings of the Vlasov model, that of too much grid space 

information, may be ameliorated by the adoption of the recent development of massively 

parallel computation. In this section we specifically describe the implementation of a 2-D 

Vlasov-Maxwell system on a MIMD (multiple instruction multiple data) parallel computer. 

A Vlasov-Maxwell code that is already running in parallel on the Connection machine40 

is chosen as an initial code platform. The fields (E, E) in the Lorentz force equation are 

obtained from the set of Maxwell's equations: 

V· E = 47fp, 

- 1 aE V xE=--­
c at ' 

27 

(6.7) 

(6.8) 



"\1·:8=0, 

... ... loE 
"\1 x B = 411" J + - - . 

c ot 

The density p and current i are calculated self-consistently from 

p(x) = L qs J dp fs(x,p, t), 
s 

i(x) = Lqs J dpvs fs(x,p,t). 
s 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

In the current formulation the electrostatic field calculated from Eq. (6.7) is neglected. 

This approximation assumes that the charge density p is 0 everywhere at all times and, 

therefore, the electrostatic component of the field is O. The approximation of p = 0 

everywhere eliminates plasma oscillations from the system. 

The Vlasov equation is discretized in two dimensions using a "splitting" technique.39 

In this technique the distribution function f = f( Vxi, VZj, Xk, ZI) is advanced in time in a 

four-step process for each species 8:39 ,41 

f n+l/4 fn 6.t Pxi (fn fn) 
ijkl = ijkl - 26.x lij· k+l - k-l ijl 

(6.13) 

f n+l/2 _ f n+1/4 _ 6.t PZj . (fn+1/4 _ fn+1/4) 0 0 

ijkl - ijkl 26.z lij 1+1 1-1 I)k 

+ ( 6.t PZj)2 . (fn+l/4 _ 2fn+l/4 + I n+1/4) 0 ok 
26.z lij 1+1 I 1-1 I) (6.14) 

+n+3/4 _ +n+1/2 iJ.t F (+n+1/2 +n+l/2) 
Jijkl - Jijkl - 26.px xjkl· Ji+l - Ji-l jkl 

+ (~F 0 )2 . (+,,!+1/2 _2+"!+1/2 + +,,!+1/2)0 
26.px x)kl JI+l J, J,-1 )kl (6.15) 

+n+l _ +n+3/4 6.t n+3/4 n+3/4 
Jijkl - Jijkl - 26.pz Fzikl . (fj+1 - f j - 1 )ikl 

( 
6.t F ) 2 ( n+3/4 n+3/4 n+3/4) + 26.pz zikl . f j+1 - 2fj + f j - 1 ikl, (6016) 
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where 

( VZI) n+! 
Fxjkl = qs Exkl + -;;BYkl (6.17) 

( Vxl )n+! 
Fzikl = qs Ezkl - -;;BYkl , (6.18) 

and 

n+l 1 
(6.19) EXkl 2 = 2(Exl+1 + Exl-l+l)k 

2 2 

n+l 1 
(6.20) EZkl 2 = 2(Ezk+1 + Ezk_l), 

2 2 

B n+! 1 (B n+1 B n) 
Y kl = 2 Y kl + Y kl . (6.21) 

In each step the distribution function is advanced a full time step using only one term at 

a time in the Vlasov equation. The fractional time indices for the distribution function f at 

each step are used for notational purposes only. This discretization scheme is numerically 

stable when the following conditions are met: 39,41 

Px~t 1 
~<, 
m~x 

Fx~t 1 
~<, 
~Px 

Pz~t 1 
~< , 
m~x 

Fx~t 1 
~< . 
~pz 

Maxwell's equations are written in a left-handed Cartesian system for convenience: 

8Ex = c8By _ J 
at 8z x 

8Ez = _c 8By _ J 
at 8x z, 

8By = c [8Ex _ 8Ez ] 

at az ax 
These equations are dis~retized in the following manner: 
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(6.22) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

(6.28) 



c~t (n+l n+l ) 
- ~Zl E Xk+t 1+1 - EXk+t 1 . (6.29) 

The currents Jx and Jz are calculated from 

J/kl = L qs L L Aij!':ijkl ( PXi .. ) ~vx~vz 
., mO/I) s I) 

(6.30) 

(6.31) 

where Aij is a normalization constant, and then 

Jx~+! 1 = ~(Jxk+1 1 + JXk I) (6.32) 

(6.33) 

A similar set of finite-difference equations for the Vlasov equation and Maxwell's equa­

tions can be written in cylindrical coordinates. 

6.2.1 Boundary Conditions 
The boundary conditions used are dependent on whether Cartesian or cylindrical coordi-

nates are used for the test problem. In both geometries the boundary conditions are taken 

to be periodic in the z direction. In the case of Cartesian coordinates periodic boundary 

conditions are employed in the two spatial directions (x, z). Also the distribution func­

tions are 0 beyond the momentum coordinate boundaries (Px, pz) for the Cartesian case 

and (Pr, pz) for the cylindrical case. 

In the case of cylindrical coordinates, conducting wall boundary conditions are employed 

at r = R, where R is the maximum radius of the domain. For conducting wall boundary 

conditions all field quantities, currents, and distribution function values are equal to o. 
Handling the field, currents, and distribution function at r = 0 is a little trickier. The field 

quantity'that needs special care is the EZ1 I+! field component. Its calculation requires 

the knowledge of BOl 1+1 for r = o. By symmetry arguments the field BOl 1+1 can be said 
2 2 

to equal -Be! 1+1' so the time advance equation becomes 
:I 

E n+! _ n-! n c~t ( n ) 
zl /+1 - EZ1 1+1 - ~tJz1 /+1 - 2~ B8! /+1 . 

2 2 2 ~r1 2 2 
(6.34) 

All other field quantities can be calculated once this field component is determined. The 

distribution function !ijll at the r = 0 boundary is also calculated using the symmetry 
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argument. In this case fij21 is chosen equal to fijOI because the distribution function is 

symmetric about r = O. The time advance equation becomes 

n+l/4 n f::lt Pxi n n 
( )

2 

f ijll = fijll + 2f::lx 'Yij • 2(f2 - fl )ijl . (6.35) 

6.2.2 Square Geometry 
The implementation of the code on the Intel i860 involves decomposing the spatial grid 

of the simulation into square blocks and assigning one node to each block. Each node 

communicates with four other nodes as shown in Figure 6.1. Communication between 

nodes must occur in four directions (North, South, East, and West). 

East 

---.. .. 
.... ..... 

.4~ ~~ 

North 
South 

~r ,~ 

... ... 

""""-..... 

... 
West 

TIP-<l3315 

Figure 6.1. Communication Path for North, South, East, and West Communication in the Square Geometry. 

The grid is decomposed in the following manner. First the number of nodes is determined 

in the program. The dimension of the nodes used determines the number of cells in the 

x direction and the z direction in Cartesian coordinates. The dimension n is defined as 

nodes = 2n where nodes is the number of nodes used. The number of blocks in the 
respective directions is 

(6.36) 
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(nbh = 2n- nxr , 

(6.37) 

(6.38) 

where nx and nz are the size of the total grid in the x and z directions, respectively, and 

(nb)x and (nb)z are the number of blocks in the x and z directions, respectively. The 

number of cells per node is 

nxm = nx/(nb)x 

nzm = nz/(nb)z. 

(6.39) 

(6.40) 

Nodes north, south, east, and west of a particular node are calculated in the following 

manner: 

ix = menod/(nb)z + 1 (6.41) 

iz = (menod + 1) - (ix - 1) * (nbh (6.42) 

izp = iz + 1 (6.43) 

izm = iz-1 (6.44) 

ixp = ix + 1 (6.45) 

ixm = ix-1 (6.46) 

North = (ix - 1) * (nb)z + izp - 1 (6.47) 

South = (ix - 1) * (nbh + izm - 1 (6.48) 

East = (ixp - 1) * (nbh + iz - 1 (6.49) 

West = (ixm - 1) * (nb)z + iz - 1 , (6.50) 

where menod is the node number of the specific node and North, South, East, and West 

are the node numbers of the north, south, east, and west nodes, respectively. 

The quantities that are transferred between nodes are fields, currents, and distribution 

functions. They update the boundary cells of each square block assigned to each node. 

This update is done at every time step. The dominant data transfer is done with the 

distribution function. The boundaries need to be updated at both the x and z boundaries 

in Cartesian coordinates or at the r and z boundaries in cylindrical coordinates. Therefore, 

in the square decomposition scheme the distribution function is transferred twice. 

Boundary conditions are handled in the transfer of the data to the respective boundary 

cells. In the case of Cartesian coordinates, periodic boundary conditions are imposed on all 

quantities. Blocks at either end of the grid transfer data in a wraparound fashion. Blocks 

at the west end transfer data to the east blocks, and blocks at the east end transfer data 
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to blocks at the west end. A similar situation occurs for blocks at the north and south 

ends. In the case of cylindrical coordinates, the north and south block data are handled 

in the same manner since the boundary conditions are periodic in this direction. Blocks 

at the east end have all quantities at their eastern boundaries set equal to 0, which takes 

into account the conducting wall boundary conditions there. The western blocks are at 

the r = 0 boundary. The west end of these blocks handles the fields, distribution function, 

and currents as described in Section 6.2.1. 

6.3 Particle-in-Cell Codes 
In this section collider models using Particle-in-Cell (PIC) codes are described. In these 

models the collider is broken into two sections; one section models the interaction region, 

and the other models the rest of the storage ring. In the interaction region it is neces­

sary to take into account the beam-beam interaction. Since self-consistent effects play an 

important role in the beam dynamics there, PIC codes are used. The rest of the collider 

is modelled using the Courant-Synder map, which simply involves a symplectic rotation of 

the particles in phase space.5 

Two types of PIC codes are used to model the beam-beam interaction region: a fully 

electromagnetic code and a strong-strong code. The strong-strong code uses the "strong­

strong" model described in Section 3.0. Our model differs from previous models of the 

beam-beam interaction.26- 28,42 Previous models as described in Section 5.0 approximated 

the beam-beam interaction as either a two-particle interaction, a single-particle-many­

particle interaction ("weak-strong" approximation),27,42 or a many-particle-many-particle 

interaction ("strong-strong"), where the beam is constrained to be a Gaussian.26,28 Using a 

PIC code in the beam-beam model allows a many-particle-many-particle interaction with 

internal degrees of freedom in the beam shapes. 

The steps of the simulation for one turn in the collider are: 

1. interaction region 

2. reset of fields to 0 

3. symplectic mapping. 

These steps are repeated until the necessary number of turns is attained. Figure 6.2 shows 

the basic geometry used in the simulation models. 
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Storage ring 

Interaction region 
TIP·03316 

Figure 6.2. The Two Components Used to Model the Collider. 

6.3.1 Accelerator Model 
The model we use for the accelerator is shown in Figure 6.2. Outside of the interac-

tion region self-consistent effects are not as important as in the interaction region, since 

the density of the beams is much lower. Therefore, the approximation of single-particle 

dynamics is a very good one. With this approximation a linear map can represent the 

collider in matrix notation: 

(
X,) _ (1 -LlS) ( cos(27rvo) 

X n+l 0 1 - J; sin(27rvo) 

.80' Sin(27rVO)) (x) , 
cos(27rvo) x' n 

(6.51) 

where Lls is the drift length along the collider path. The first matrix accounts for the finite 

length of the interaction region by treating the region as a free drift space and subtracting 

it from the full rotation. The second matrix is the Courant-Synder map around the collider, 

where Vo = i ds/.8(s) is the unperturbed tune and a = 0 everywhere in the ring,S 

6.3.2 Electromagnetic Code 

A 1-2/2 dimensional (x,Px,Py,Pz) relativistic electromagnetic PIC code is used to model 

the interaction region.36,37 The main purpose of this code is to determine the electro­

magnetic effects on the beams. Detailed descriptions of this type of code can be found 

elsewhere.36,37 The particular modifications made to this code to study the beam-beam 

interaction will be described in this section. 
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Typically, fully electromagnetic codes solve the full set of Maxwell's Eq. (6.7). The main 

constraint on these types of codes is the time step size D..t, which needs to be small enough 

to follow light waves for numerical stability:36,37 

cD..t < D.., (6.52) 

where c is the speed of light and D.. is the grid size of the simulation. Because of the small 

time step size, the number of time steps to follow particles in the interaction region is 

prohibitively large for sse parameters. For realistic sse parameters the simulation time 

step size D..t is about 3 X 1O-5Tint , where Tint is the interaction time. So 30,000 time steps 

would be necessary for one interaction. To reduce this constraint, the energy of the beams 

can be reduced. When sse parameters are relaxed to reduce the number of time steps, 

the electrostatic field begins to dominate, causing the beams to spread too quickly. In 

order to eliminate this spreading, the electrostatic field in Eq. (6.7) is ignored. The main 

purpose of this code is to examine the effects of the transverse fields on the beam-beam 

interaction at high beam energies, where the electrostatic fields causing beam spread are 

small. Therefore, the approximation is justified. 

6.3.3 Strong-Strong Code 
The shortcoming of the fully self-consistent electromagnetic treatment described in the 

previous section is the time step size. Since light waves are followed in this code, a large 

number of time steps is needed to maintain numerical stability. To eliminate this, a 

strong-strong code is developed. The code has one spatial dimension x and three velocity 

coordinates (vx , vY' vz ). In this strong-strong code two approximations are made: (1) light 

waves are ignored and (2) self fields (space charge effects) among particles of the same beam 

are ignored. Ignoring the effects of light waves can be justified for the sse by considering 

the collisionless skin depth, Ac , of the beam, where 

(6.53) 

(6.54) 

Using parameters for the sse, Ac ~ w, where w is the width of the beam and Ac is the 

scale length over which a plasma responds to light waves. Since Ac is much larger than 

the size of the beam, particles do not strongly interact with light waves. Self fields of the 

beam are neglected, since the forces from the other beam are much larger. The ratio of 

the self fields to the kick fields from the other beam is 
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(self fields) ~ ~(kick fields) , 
'1 

where '1 = 2.13 X 104 for SSC parameters. 

(6.55) 

With the elimination of light waves the time step of the simulations can be on the order 

of the plasma frequency wP' which occurs on a much longer time scale than light waves. 

The time of interaction between the two beams is Tint = D..s/2c, where Tint is the time the 

simulation is run before the particles are rotated in phase space. With simulation time 

steps in units of fractions of wp , the time period can now be represented by 1-4 simulation 

time steps. 

In particle simulations the beams are represented by a number of macroparticles. Each 

particle in the simulation has a particle shape factor S( x). S( x) is chosen to give the 

particles finite size, so that short wavelength oscillations are filtered out in the fields. 36,37 

This reduces noise and short-range collision forces. The particular form chosen is 

1 (x2 ) Sex) = --exp -- , 
~a 2a2 

(6.56) 

where a is the finite particle size. 

Care must be taken when choosing the particle size a. When it becomes comparable to 

the beam width w, the tune shift D..v is reduced. This can be expressed by 

D..Vpoint = (1 + 4 (~) 2) 1/2 , 
D..v/sp w 

(6.57) 

where D..Vpoint is the tune shift for a point particle, D..v/sp is the tune shift for a finite size 

particle, a is the particle size, and w is the beam width. This calculation is based on the 

assumption that the particle is Gaussian in shape, as in Eq. (6.56). The particle size must 

be chosen so that a < < wand, therefore, 

(6.58) 

The macroparticles are advanced by the Lorentz force equation: 

?ti = e 1: dxS(x - xi)(B(x) + Vi x B(x)/c) , (6.59) 

where Xi is the position, Pi is the momentum, Vi is the velocity of particle i, Sex) is the 

particle shape factor, and B( Xi) and B( Xi) are the electric and magnetic field of the other 

beam, respectively. The integral over x takes into account the finite size of the particle. 
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The calculation of the fields can be simplified by performing the appropriate Lorentz 

transforms and taking into account the highly relativistic nature of the beams being stud­

ied. For a general Lorentz transformation to a frame moving at velocity V, the transfor­

mation of the fields can be written:43 

2 ... ....,........, ,.............., 
E = ,( E + (3 x B ) - -1 (3({3 . E ) , ,+ 

2 ..... .....,.........., 'Y.............., 
B = ,( B - (3 x E ) - -1 (3({3 . B ) , ,+ 

(6.60) 

(6.61) 

where i3 = vIc and , is the relativistic factor. Eqs. (6.60) and (6.61) can represent 

transformations of the fields from the frame moving with the beam (E', B') to the lab 

frame (E, B). In the beam frame the beam particles have only thermal velocities. These 

velocities are small and randomly oriented. Therefore, only small remnant currents are 

present, and the approximation IB'I ~ 0 can be made. Eqs. (6.60) and (6.61) become 

2 ..... -', , ........ ...." 

E = ,E - -(3({3. E), ,+1 
..... ..... ..... , 

B = -,({3 x E ) . 

Assuming the motion of the beams is in the z direction, the fields can be written: 

Ex =,E~, 

By = ,{3E~. 

(6.62) 

(6.63) 

(6.64) 

(6.65) 

Since the beams are highly relativistic (, ~ 1), the approximation li3I ~ 1 can be made. 

Thus, Ex ~ By. Using this in Eq. (6.59), we obtain 

dp' 100 

dt' ~ e -00 dxS(x - xi)Ex(x)(1 + vi/c), (6.66) 

where Vi is the velocity of the beam kicked by the other beam. Again the approximation 

Vi ~ c can be used: 

dp' 100 

dt' ~ 2e -00 dxS(x - xi)Ex(x). (6.67) 

Therefore, including the effects of the magnetic field kick to the beam simply involves 

doubling the contribution of the electrostatic field of the other beam. 
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The electric field Ex is calculated from 

8!x = 47re J Sex - x')p(x')dx' , (6.68) 

where p(x) is the charge density and Sex) is the particle shape factor. The charge density 

p( x) is the accumulation of the finite size macroparticles: 

N 

p(x) = L qjS(x - Xj), (6.69) 
j=l 

where N is the number of particles and qj is the charge of particle j. Since the charge is 

accumulated on a grid, Fast Fourier Transforms (FFT) can be used to transform the grid 

to k space, where manipulation is easier: 

N 
p(x) = L qje-(x-Xj)2/2a2, (6.70) 

j=l 

p(k) = qe-k2a2/2 Le- ikxg Le-ikc5j , (6.71) 
g jEg 

where a Gaussian shape factor is used Sex - Xj) = exp[-(x - xj)2/2a2 ], the sum on 9 is 

over the grid points, a is the particle size, and 8j is the distance of the particle from the 

nearest grid point Xj - Xg' The summation term with j Egis a sum over all particles j in 

grid cell g. 

In order to increase the accuracy, the accumulation is done using cubic spline 

interpolation.37,44 This assignment technique allows a smoother grid assignment than 

lower-order methods such as the subtracted-dipole scheme (SUDS) or area-weighting 

scheme.36,37 The charge density then takes the form: 37 

p(k) = qe-k2a2/2 [L e- ikxg (:?: 81 + .L 8 2) - ik L e- ikxg (:?: 83 + .L 8 4)] , 

g )Eg )Eg-1 g )Eg )Eg-1 

(6.72) 

where the summation terms with j E 9 -1 are sums over all particles j in grid cell 9 - 1, 

and the 8 terms are the weighting factors: 

(6.73) 

(6.74) 

(6.75) 
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84 = -(1 - hj)hJ~. (6.76) 

The electric field in Eq. (6.68) can be transformed to k space using the FFT: 

-ikEx = 47l"ep(k) , (6.77) 

where p(k) is from Eq. (6.72). Using Eq. (6.72) and rearranging terms,37 we obtain 

. _k2 a2 /2 
Ex(k) = l,qe k [FFT(G1X) - ikFFT(G2X)], (6.78) 

where FFT is the Fast Fourier Transform and 

G1X = L 81 + L 82 (6.79) 
jEg jEg-1 

G2X = L 83 + L 84, (6.80) 
jEg jEg-1 

where G2X corresponds to derivatives of the charge density. Note that two quantities, 

G1X and G2X, need to be accumulated in this method. The force on the particles F(x) 

can be calculated in a similar manner:37 

F(x) = qE(x) (6.81) 

where h is the distance from the nearest grid point x - x g , and 

Fs = 2;L FFT-1[e-k2a2/2 E(k)] , 

Fd = 2;L FFT-1[ike-k2a2 /2 E(k)], 

where L is the system length and FFT-1 is the inverse transform. 

(6.83) 

(6.84) 

The previous field calculation solves the field for periodic boundary conditions. Note 

that the field equation does not take into account finite charge in the system. Finite charge 

is included in the k = 0 term. However, this term cannot be incorporated, because we 

would be dividing by O. To account for finite charge in the system, the k = 0 term in Ex 
can be explicitly calculated:45 

E;=O(x) = -47l"p(0) (L; - x) , (6.85) 

where Lx is the length of the system and p(O) is the k = 0 component of the charge density 

that calculates the total charge in the system. By adding this field to the field calculated 

from Eq. (6.78), one obtains the field with vacuum boundary conditions. 
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In the SSC design each beam has '" 1010 particles and a large number of beam-beam 

interactions (l08). Due to computer time limitations the beams may be represented only by 

'" 103-104 particles. We find that the representation of Eqs. (6.68) and (6.59) by the well 

known PIC method36,37 with macroparticles shows a large amount of noise due to the small 

number of computational macroparticles. This is especially apparent when single-particle 

diffusion is studied. To study particle diffusion, therefore, we implemented a few improved 

algorithms for noise reduction. One is the cubic spline for smoother interpolation,37 which 

was described above. Another is the loading of the macroparticles using a quiet start.36 The 

third is to follow the portion of the particles due to the perturbed distribution only.37,46,47 

This is described in the next section. 

Normally simulation macroparticles are distributed initially in a Gaussian profile via ran­

dom number generators. A distribution produced from this method is shown in Figure 6.3. 

The distribution integrated over Px is shown in Figure 6.4. Although the distribution 

resembles a Gaussian, it contains spikes and peaks that produce start-up noise. 
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Figure 6.3. A Gaussian Distribution of Particles Produced from a Random Number Generator. 
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Figure 6.4. Distribution Integrated over P:r: with Random Number-Generated Phase Space Positions. 

This start-up noise can be minimized by using the technique of the quiet start to load the 

macroparticles.36 Two methods of loading simulation macroparticles are described. One 

method distributes the particles uniformly in phase space and assigns charge nonuniformly 

to the particles based on the initial particle distribution. The other method involves 

nonuniform distribution of the particles in phase space and uniform charge for each particle. 

In the first method the particles are distributed uniformly in rand (), where rand () are 

defined in terms of x and Px as 

2 x 2 Px 2 
r =- +-{30 P 

x p 
tan(()) = --;-, 

{30 Px 

(6.86) 

(6.87) 

where {30 is the betatron oscillation length at the interaction point and p is the particle 

momentum along the collider. The increments in rand () are determined from values input 

into the code. The r increment ~r is rmax/nr, where rmax is the maximum value of r, and 

nr is the number of r segments. The angle increment ~() is 27r / no, where no is the number 
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of angle segments. The initial distribution for 10,000 particles is shown in Figure 6.5. We 

assume a Gaussian profile for the beam in x - Px of the form 

(6.88) 

Each particle can be assigned charge qi: 

(6.89) 

where N is the number of simulation particles, e is the unit charge, ri is obtained from 

Eq. (6.86) for particle i, and u is U x • Although each particle is assigned a different charge qi, 

each particle is also assigned a different mass mi, so that the force on each particle is the 

same. 
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Figure 6.5. Uniform Distribution of 10,000 Particles in X,Pz Phase Space. 

The distribution integrated over Px after the charge assignment is shown in Figure 6.6. In 

comparison with the random distribution (Figure 6.4), this distribution is much smoother 

in the tails and is more symmetric about the center. This symmetry reduces the higher­

order moments in the distribution and, therefore, produces less start-up noise. 
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In the second quiet start method, particles are distributed nonuniformly in rand (), 

where rand () are defined in terms of x and Px in Eqs. (6.86) and (6.87).48 The number of 

particles at each r value is determined by a cumulative integration method.36,37 Again a 

Gaussian distribution f(x,px) in x and Px is assumed (Eq. (6.88)). This function can be 

integrated in rand () coordinates to yield 

N (r) = N [1 - exp ( - ;:; ) ] , (6.90) 

where N(r) is the number of particles contained within radius rand N is the total number 

of simulation particles. Eq. (6.90) can be used to obtain the number of particles to add 

between rand r + D.r : 

[ ( 
r2 ) ((r + D.r)2)] D.N = N exp 217-; - exp 20"; , (6.91) 

where D.N is the number of particles to be added. The D.N particles between rand 

r + D.r are distributed uniformly in (), with a random offset ()ran at r + D.r/2. The 

initial distribution for 10,000 particles is shown in Figure 6.7. The distribution integrated 

over Px is shown in Figure 6.8. This distribution is smoother than both the random 

distribution of particles (Figure 6.4) and the uniform distribution of differently charged 

particles (Figure 6.6). 
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6.3.4 Noisy Model 
In order to study particle diffusion brought about by the beam-beam interaction, sources 

of numerical noise in the PIC codes need to be quantified. One source of noise is the 

fluctuations due to the use of a finite number of particles. To model this noise in PIC 

simulations, noise is added to the tracking code described in Section 6.1. This is done by 

adding a fluctuation term to the tune shift ~vo: 

~v = ~vo(l + R n(x)), 

1 
n( x) = r;::rr::\ , 

yN(x) 

(6.92) 

(6.93) 

where N(x) is the number of particles contained between -x and +x, and R is a random 

number between -1 and 1. n( x) gives an idea of the fluctuation level: 

N(x) = N erf (~o"x) , (6.94) 

where N is the total number of particles. Eq. (6.94) is calculated for a Gaussian distribution 

of particles. 

6.4 8 f Algorithm. 
PIC codes typically use macroparticles to represent the entire distribution of particles. 

In the beam-beam interaction for the SSC, the beams consist of 1010 particles each. Sim­

ulating this many particles with the PIC technique is computationally prohibitive. With 

the conventional PIC code 1010 particles are represented by only 103-104 simulation parti­

cles, allowing simulation of the beam-beam interaction in a reasonable computation time. 

However, the fluctuation level of various quantities such as the beam density p in the 

code is much higher than that of the real beam. The fluctuation level 8p is described 

approximately as 

8p v'N 
-~--
p N' 

(6.95) 

where N is the number of particles. Therefore, the fluctuation level of the PIC code is 

about 103 times higher than that of the real beam. Although this probably is not significant 

for beam blowup near resonances, the higher fluctuation level has a large effect on more 

subtle phenomena such as particle diffusion. To facilitate the study of subtle effects, 
a 8f code has been developed.37,46,47,49 

The 8 f method follows only the fluctuating part of the distribution instead of the 

entire distribution. This is essentially modelling the numerator on the right-hand side 
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of Eq. (6.95), which goes as VN. SO the 103-104 computational particles are used to rep­

resent VlOlO or 105 real fluctuation particles. This is only one or two orders of magnitude 

beyond the number of computer particles. 

In the previous sections the strong-strong code used a finite number of particles to 

represent the Vlasov equation or Klimontovich equation. 50 In the particular case of the 

beam-beam interaction, 

8f 18f (,() )) 8f -+x-- J'\. sx-F(x,s -=0, 
8s 8x 8x' 

(6.96) 

where K(s)x is the usual magnetic guiding force and F(x,s) is the beam-beam force 

F( ) - 2eEx(x) 1: ( ) 
x, s - 2 up S , 

,mv 
(6.97) 

where Ex( x) is calculated from the distribution of the particles, and 6p ( s) is the peri­

odic 6-function. 6p ( s) = 1 when s = nL, where L is the accelerator circumference and 

n = 0,1, .... The distribution function f is represented by a finite number of particles by 

N 

f( x, x' , s) = L 6 (x - Xi( s)) 6 (x' - xi( s)) , (6.98) 
i=l 

where N is the number of simulation particles used. 

In the 6f method only the perturbative part of the distribution is followed. 37,46,47 The 

total distribution function f(x, x', s) is decomposed into 

f(x, x', s) = fo(x, x', s) + 6f(x, x', s), (6.99) 

where fo(x, x', s) is the steady or slowly varying part of the distribution and 6f(x, x', s) is 

the perturbative part. The key to this method is finding a distribution fo(x, x', s) that is 

close to the total distribution f(x,x',s). The perturbative part 6f(x,x' ,s) is then small, 

causing only small changes to the distribution, and thus representing only the fluctua­

tion levels. If a distribution fo( x, x', s) close to the total distribution is not found, then 

6 f( x, x' , s) represents more than the fluctuating part of the total distribution. This defeats 

the purpose of the method. The ideal situation is for fo(x, x', s) to have an analytic solu­

tion. In this case any numerical truncation errors that result from the necessary derivatives 

of this function are eliminated. If an analytic solution cannot be found, then a numerical 

solution needs to be found that is close to the total distribution f(x,x',s) and is slowly 

varying. Continual numerical update of fo (x, x' , s) would also defeat the purpose of the 

6 f method, since the PIC technique essentially does this also. 
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In the particular case of the beam-beam interaction, an analytic solution to an equation 

close to the original Vlasov equation can be found. In the case of a linearized beam-beam 

force, the Vlasov equation can be written in the form: 

810 ,810 810 
8s + x 8x - (K(s) - Fo(s»x 8x' = 0, (6.100) 

where 

Fo(s) = Foop(s). (6.101) 

Fo is the linear portion of the beam-beam force F(x). The solution is a Gaussian of the 

form: 

N(3* (r2 ) 
10 (r) = 211'0'2 exp - 20'2 ' (6.102) 

where r2 = x 2 + (3*2 x'2, N is the total number of particles in the beam, (3* is the betatron 

oscillation length, and 0' is in the x direction. Note that if the beam-beam force were 

linear, this solution 10(r) would represent the distribution for all time in the interaction 

region as well as in the rest of the storage ring. Only the values of (3* and 0' differ between 

the two regions. In the interaction region the (3* and 0' are calculated using the dynamic 

(3 model, which assumes a linear beam-beam force: 10,51 

. cos(27rv) = cos(27rvo) + 27rD.vsin(27rvo), (6.103) 

(3* sin(27rvo) -= , 
(30 sin(27rv) 

(6.104) 

where Vo and (30 are the unperturbed quantities valid in the rest of the storage ring, 

and v and (3* are the quantities perturbed by the linearized beam-beam force. From the 

perturbed (3* the perturbed beam width 0' can be calculated from the formula: 

(30 _ 0'5 

(3* - 0'2 ' 
(6.105) 

where 0'0 is the unperturbed beam width that is obtained from the assumption that the 

beam emittance is unchanged due to this linear beam-beam force. An equation for the per-

turbed (3* can be written in terms of unperturbed quantities from Eqs. (6.103) and (6.104): 

(
(3*) 2 ((3*) 3/2 ((3*) (30 - 47rD.vo cot(27rvo) (30 - (27rD.vO)2 (30 - 1 = 0, (6.106) 

where D.vo is the unperturbed, one-dimensional tune shift. Eq. (6.106) can be expressed 

in terms of the perturbed 0' using Eq. (6.105): 

( :. r -4". ~vo cot (2". Vo ) (:.)' - (2". ~vo)' (:.)' - 1 = O. (6.107) 
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Both equations can be solved for the perturbed 0' or f3* using a root finder. Once this 

is obtained the other perturbed quantities, v and .6. v , are obtained from Eqs. (6.103) 

and (6.104). 

Subtracting the linearized equation in Eq. (6.100) from the total Vlasov equation in 

Eq. (6.96), we obtain the perturbative part of Eq. (6.96) for hf: 

ohf ,ohf (,. ) ohf ofo 
as +x ax - K(s)x -Fo(x,s) ax' = -(F(x,s) -Fo(s)x) ax" (6.108) 

Fo(x,s) is the kick from a Gaussian beam, and F(x,s) is the kick from a Gaussian beam 

Fo(x, s) plus the perturbation hF(x, s). As a result of using the dynamic beta model for the 

stationary solution fo, only the nonlinear part of the beam-beam force on the right-hand 

side of Eq. (6.108) is used to advance hf. The terms ~ and Fo(x,s) are calculated using 

the perturbed dynamic beta quantities f3* and 0'. Note that the unperturbed Gaussian 

field Fo(x,s) is used on the left-hand side of Eq. (6.108), which makes the equation linear 

in h f. The term that has been neglected is 

ohf 
hF(x,s) ax' . (6.109) 

This term can be shown to be small in our problem. A possible incorporation of this term 

in the algorithm is described in Section 8.0. The reason for choosing the particular form of 

the steady-state solution is apparent. It is chosen so that the right-hand side ofEq. (6.108) 

is small. 

6.4.1 Finite Particle Representation 
The perturbative part of the distribution hf (Eq. (6.108)) can be represented by a finite 

number of particles (characteristics): 

N 

hf(x,x',s) = LWi[S,Xi(S),xi(s)]h(x - xi(s))h(x' - xi(s)). (6.110) 
;=1 

Substituting this into the equation for h f advance, we obtain 

dWi 1 [ Ofo] 
ds = -;:; (F(x, s) - Fo(s )x) ax' i' (6.111) 
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where 

(6.112) 

This density n is calculated on the assumption that the particles are distributed uni­

formly in phase space. The density n is assumed constant through the entire run. This 

approximation is no longer valid when there is either significant clumping of particles or 

the particles have spread out in phase space. Thus, the of algorithm is most suited to 

problems that occur far away from resonances. 

In the of algorithm Xi, x~, and Wi are advanced. The advance of the extra term Wi 

increases the number of operations over the PIC method and leads to other numerical 

constraints that will be described in the next section. 

The simulation particles are distributed evenly in phase space upon initialization. The 

particles are distributed uniformly in X and Px p4,ase space in a cylindrical coordinate 

system rand (). rand () are defined in terms of X and Px: 

2 X 2 Px 2 

r = (30 + P , 
X P 

tan( ()) = (3* - , 
o Px 

(6.113) 

(6.114) 

where (30 is the betatron oscillation length at the interaction point and p is the particle 

momentum along the collider in s. The maximum r value is input into the code and 

is broken up into segments of length ..6.r. The number of particles at each r value is 

determined by a cumulative integration method.37 The particular functional form is 

N 
..6.N = N2(2r - 1), 

r 
(6.115) 

where ..6.N is the number of particles to be added, N is the number of particles, and Nr is 

the number of ..6.r segments to the edge of the distribution. Once the number of particles 

between rand r+..6.r is known, they are distributed uniformly in () with a random offset ()ran 

at r +..6.r /2. The initial distribution for 1000 particles is shown in Figure 6.9. The purpose 

of this method is to have each particle cover an equal area of phase space. 
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Figure 6.9 .. Uniform Distribution of 1000 Particles in X,Pz Phase Space. 

6.4.2 Symplectic Mapping 
Results from previous runs indicate that a higher-order integration scheme for the char­

acteristic advance is necessary for the 6 f algorithm. In runs where only the leapfrog scheme 

is used, the code is inaccurate in the particle push. This higher-order integration scheme 

for the particles is needed in the 6 f algorithm because small changes to the initial distribu­

tion are being studied. In the PIC codes the numerical noise caused by the finite number 

of particles is larger than that produced by the numerical diffusion of the particles caused 

by the leapfrog integration scheme. 

In this section we describe a symplectic, finite-difference scheme to counter the effects of 

numerical diffusion on the particle motion. In this scheme the normal symplectic mapping 

is used to advance the particles with an additional perturbation term. 

Without the beam-beam force term, a symplectic transformation map for the character­

istics with the magnetic field can be written. Also in the case of a linearized beam-beam 

force a symplectic transformation map can be written with slight modifications. The map 

can be written in the form: 
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( 

cos(8) 

- 10 sin(8) 
f30 Sin(8)) (x) , 

cos(8) x'. 
I 

(6.116) 

where x = dx / ds, s is the coordinate along the collider, 8 = J; ds / f3o, and the indices i 

and f refer to the initial and final positions, respectively. This map is used at all places 

in the storage ring, including the interaction region. Upon adding the symplectic map the 

particle motion is accurate to many decimal places. 

A simple implementation of the beam-beam force that preserves symplecticity involves 

approximating the force with an impulse. Using Hill's equation: 

" ) F( x) () x + K( s x = --2 Dp s , 
,mv 

(6.117) 

where the term on the right-hand side of the equation is due to the beam-beam force. The 

mapping is the same as a tracking code with the beam-beam force: 

(6.118) 

where 

G(x) = Fo(x) ~, 
,mv2 x 

(6.119) 

and Fo( x) is the unperturbed force due to a Gaussian beam. 

In the particle advance scheme the particles are advanced first using the transfer matrix 

for a distance in 8 = !:l.s /4f3o, where !:l.s = c!:l.t. The particles are then kicked by the 

beam-beam field for !:l.s/2f3o and then advanced again !:l.s/4f3o. The total matrix is 

( 
cos( 8) 

M(8) = 1 
- Po sin(8) 

f30 sin( 8)) , 
cos(8) 

(6.120) 

(6.121) 

where 8 = !:l.s/(4f3'O) and x used in G(x) is the intermediate x value obtained from the first 

transfer matrix application: 

G(x) = Fo(x) ~ !:l.s . 
,mv2 x 2 
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6.4.3 Time Advance 
In this section the time advance scheme of the code is described. The entire predictor­

corrector advance scheme is shown in Table 6.1. 

1 

2 

3 

Table 6.1. Steps for Advance of 6f Algorithm. 

Start with xn ,xln ,6fn,6fn-l 

6fn+l. from xn xln 6fn- 1 Fn(xn 6fn) predIct " , , 

6fn+t - !(6r+l + 6r) predict - 2 predict 
4 xn+txln+t , 
5 6r+1 from xn+t xln+t 6r Fn+t(xn+t 6fn+t . ) correct ' , , predIct 

6 

7 repeat steps 1-6 until the end of the interaction region 

8 

9 repeat steps 1-8 until the end of the simulation run 

The n in Table 6.1 refers to the time step number. In step 2 8jn+ld· t is calculated from 
pre lC 

the discretization of Eq. (6.111): 

w·n+1 . = w·n- 1 _ .!.. [(Fn(x"!- 8fn) _ R x"!-) ofo(xf, x~n )]26.S 
'predlct • n • , 0 'ox' ' (6.123) 

where 6.s = c6.t, and F n(xf,8fn) is the force calculated from the unperturbed Gaussian 

beam Fo(xf) plus the perturbation force 8Fn(xf,6fn). 6jn+1d· t is then calculated using pre lC 
Eq. (6.110): 

N 

8f(x, x', S t+1d· t = ~ win+1d· t8(x - Xi(S ))6(x' - x~(s)) . pre lC ~ pre lC 
i=l 

(6.124) 

The same procedure is used in step 5 to calculate 8 f~;;r~ect: 

.n+l _.n + A w, correct - W, L.l.W, (6.125) 

6.S. (6.126) 

In steps 4 and 6 x and x' are advanced using Eq. (6.120). In step 8 x and x' are advanced 

using Eq. (6.116): 

(:,f' -( 
cos(21i"v) 

- J; sin(21i"v) 
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,80 Sin(21i"V)) (x) n+l 
cos(21i"v) x'. 

I 

(6.127) 



where 
.6.8 

V = Vo - f30 ' 
(6.128) 

which takes into account the finite length of the interaction region .6.8 in the phase space 

rotation. 

6.5 Diagnostic Quantities 
Analysis of the dynamics of the beam-beam interaction requires diagnostics of several 

quantities. Two typical accelerator quantities, the beam-beam tune shift parameter .6.v 

and the beam emittance E, are calculated from the simulation. These quantities give an 

idea of the beam strength and beam size, respectively. Various moments of the beam 

are also measured to get an idea of macroscopic beam behavior. It is also important to 

determine the amount of particle diffusion occurring within the beams. This diffusion is 

measured using Poincare sections and the method of Chirikov. 3 Each of these diagnostic 

quantities is described in more detail in the following sections. 

6.5.1 Emittance 
A quantity of importance to accelerator physics is beam emittance E. It is a measure of 

phase space area occupied by the beam particles. In a Hamiltonian system phase space 

area is conserved and, therefore, the phase space area should be conserved. The quantity 

often calculated in acceierator physics is the normalized emittance En: 27 

N 

) 1 1 ,,( 2 * 12) 
En = (f3, 7r2 f3* ~ Xi + f30xi , 

o i=l 

(6.129) 

where f3 and, are the usual relativistic quantities, f30 is the betatron oscillation length at 

the interaction point, x' = Px/p, Px is the transverse momentum, p is the momentum along 

the collider path, and N is the number of simulation particles. By including" En remains 

constant even during the boost or acceleration phase of the beam. In the PIC codes En may 

be calculated by just summing over the number of particles. In the 61 algorithm an initial 

unperturbed emittance is calculated: 
N 

( ) 1 1" 2 *,2 
EnO = f3, 7r2 (.1* ~(Xi + (30 Xi )WOi' 

PO ;=1 

(6.130) 

where WOi is the initial unperturbed distribution function fo for particle i. The perturba­

tion is 
N 

c () 1 1" 2 * 12) 
vEn = (3, 7r2 f3* ~(Xi + f30 xi Wi, 

o i=l 

(6.131) 

where Wi is the time-evolving perturbation 61 for particle i. This perturbation emittance 

is calculated and added to the initial En to obtain the total En. 
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6.5.2 Tune Shift 
As described previously, the tune shift D.v stands as a measure of the strength of the 

beam-beam kick. As the beams expand and contra.ct, the kick weakens and strengthens, 

respectively. The various methods by which D.v can be measured are described. 

One method for measuring D.v involves a least-squares-fit to the kicks of small and large 

amplitude particles. We use Sands,s2 expression for linear tune shift, which is valid for 

small amplitude particles: 

/3* D.v = --2.. D.K D.8, 
47r 

D.x' 
D.K D.8 =-, 

X 

(6.132) 

(6.133) 

where D.x' = D.px/p and D.px = 2eEx(x)D.t. A least-squares-fit to D.v can be performed: 

(
/3* 1) (D.V)Xi = 4~ P D.pXi' (6.134) 

where Xi and D.pxi are for individual particles and the average D.v is given as 

/3* 1 A D.v = --2.. __ , 
47rpB 

(6.135) 

where 

N N N 

A = N LXiD.pxi - LXi LD.pxi' (6.136) 
i=l i=l i=l 

N N N 

B = NLxr - LXi LXi. (6.137) 
i=l i=l i=l 

The sums are over the number of particles N used in the fit. The tune shift for small­

amplitude particles is measured from simulation particles lying within 0.10"0 of the beam. 

Tune shifts measured using particles of the entire beam are smaller only for small-amplitude 

particles, since D.v drops off at large amplitude. In the PIC codes the sums are carried 

out over the number of particles. In the 81 method the sums are also carried out over the 

number of particles with the modifications: 

N N N 

A = N L xiD.pXiwi - L XiWi L D.pxiwi , (6.138) 
i=l i=l i=l 

N N N 

B = N L XrWi - L Xi Wi L XiWi , (6.139) 
i=l i=l i=l 

where Wi is the total distribution function value I(x, x') = lo(x, x')+81(x, x') for particle i. 
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Another method for calculating 6.1/ uses the electric field Ex(x). This can be done at 

one point x in the beam or as an average over several points. For one point: 

and for several points: 

(3* 
6.1/ = ~6.K 6.8, 

47r 

6.K = 2eEx(x) 1 , 
,mv2 x 

(3* 
6.1/ = ~6.K 6.8, 

47r 

(6.140) 

(6.141) 

(6.142) 

(6.143) 

where the sum is over N particles. The tune shift 6.1/ is calculated in the h f algorithm 

at one point from Eq. (6.140) by using Ex(x) = Exo(x) + hEx(x), where Exo(x) is the 

unperturbed field and hEx(x) is the perturbation field. For several points in the hf method 

Eq. (6.142) becomes 

(3* 
6.1/ = ~ 6.K 6.8, 

47r 

""N 2eEz (xi) 1 W' 

6.K = L.."i=l ~mivl Xi I 

I:i=l Wi 

(6.144) 

(6.145) 

where Wi is the total distribution function value f(x, x') = fo(x, x')+hf(x, x') for particle i. 

The power spectra of the x position of sample particles are another diagnostic method. 

The x positions are sampled after each complete turn around the collider. The power 

spectral density P( 1/) is calculated from53 

P(1/) = i: dn' exp( -in'1/)C(n') , (6.146) 

where n refers to the turn number, and C(n), the autocovariance function, is given by 

G(n') ~ J~ {2~ l~ ",(n) ",'(n + n')dn} , (6.147) 
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where n' is the lag in the number of rotations. The previous expression assumes that 

x(n) is a continuous function of n. In the simulations, G(n') is calculated from a discrete 

set of values:54 

1 N-r 

G(r) = N _ r L x(n)x*(n + r), 
n=1 

(6.148) 

where r = 0, ... , m, r is the rotation lag, m is the maximum rotation lag, and N is the total 

number of rotations. The auto covariance function may be calculated using an FFT with 

N = 2k. The maximum rotation lag was constrained to be less than 0.25 N for accuracy. 

The power spectral density is calculated by 

P(v) = FFT[G(r)W(r)] , (6.149) 

where W(r) is the window function, the Parzen lag weighting functions. 55 The tune shift 

can be determined from the frequency shift in the power spectral peale The frequency 

spectrum peaks at the unperturbed tune Vo when the beam-beam interaction is not present. 

The error in measuring the tune shift !:!J.v is given by 

2 
8(!:!J.v) = -, 

m 

where m is the maximum lag in rotations. 

6.5.3 Determination of Beam Moments 

(6.150) 

Other quantities of importance in diagnosing beam dynamics are the beam moments, 

which may be studied in two different approaches. One way involves calculating the 

cumulants of the particle positions x for each beam:56 

1 N 
<x> = - LXi 

N. 
1=1 

1 N 
< x4 > = N 2)Xi- < x »4 - 3(Xi- < x »2, 

i=1 

56 

(6.151) 

(6.152) 

(6.153) 

(6.154) 



where N is the number of particles. In the 8 f technique the cumulants are calculated: 

1 N 
< x > = - LXiWi 

N. 
1=1 

1 N 
< x4 > = N L(Xi- < x »4 - 3(Xi- < x »2Wi . 

i=l 

(6.155) 

(6.156) 

(6.157) 

(6.158) 

Power spectra of the cumulants give the frequency components that contribute to each 

mode. 

Another method involves taking the moments directly from a certain functional form: 

N 

f(m) = L exp(imOi), (6.159) 
i=l 

where N is the particle number, m is the particular moment, and 

(6.160) 

where Xi is the particle position, and xi is ~~ i' The advantage of this method is in 

determining the mode structure of the beams. The growth of the quantity f*(m)f(m), 
where f* (m) is the complex conjugate of f( m), determines the strength of particular modes 

in the beam. For example, particular modes should dominate near resonances. The mode 

m = 4 should dominate near 1I = h and mode m = 6 should dominate near 1I = ~. 
6.5.4 Determination of Diffusion 

Two methods of determining the stochastic nature of particle motion are employed. 

One simple method involves the use of Poincare surface of sections. A Poincare map is 

generated of sample test particles that are placed in the code. The map plots the particle 

position in xl (3* and x, coordinates at each time step. Each point represents the particle 

on a turn-by-turn basis. The advantage of this method is in seeing the diffusive nature of 

the particles and in determining regions of stability in phase space. 
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The second method is to calculate the diffusion of particles. Diffusion coefficients may 

be calculated in the following manner:2,3 

k = 1,2, (6.161) 

where Nk is the number of subintervals, ~Nk is the size of the subinterval in terms of 

rotations, k refers to the subinterval type, and X (m) is the average of Xn over the subin­

terval m: 

(6.162) 

where 1 = m ~Nk' The total number of rotations is broken up into two different subinterval 

sizes. Diffusion coefficients are calculated for each different subinterval. If we find the 

coefficients computed with different sampling intervals, 

(6.163) 

then the motion x is diffusive. This occurs since a diffusive process should be independent 

of the number of subintervals. On the other hand, if the initial conditions are chosen within 

"islands" of stable oscillatory motion: [X(m) - X(l)] ex: (~Nk)-l, then 

(6.164) 

The average in Eq. (6.162) is intended to lower the influence of bounded energy oscil­

lations and to pick out accumulating changes.3 The averaging made over all pair combi­

nations of intervals is intended to increase the time scale for which diffusion is described 

by the rate, and it facilitates the separation of diffusion processes from side effects. The 

mean value of ~t is about half the total time and is independent of the length of the 

interval ~tn. 3 

7.0 SIMULATION RESULTS 

In this section we describe results of the study of the beam-beam interaction with the 

various codes that have been developed. The effects of the fllamentation instabili ty23 are 

examined using the electromagnetic code and Vlasov code. Beam-beam collective effects 

are examined using the electromagnetic code, strong-strong code, and 8 f code. Particle 

diffusion is also examined with the use of all the codes. A comparison of the different codes 
is made. 
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7.1 Filamentation Instability 
In this section we discuss the results from the electromagnetic PIC code and the Vlasov 

code. We focus on the filamentation instability in counterstreaming beams. 

7.1.1 Electromagnetic Code Results 
To test the electromagnetic code described in Section 6.3.2, runs are performed with two 

counterstreaming proton beams and with no rotation in phase space due to accelerator 

magnets. This is a control run to check the growth rate of the filamentation instability. 

Figure 7.1 shows the filament formation of one beam in (x,Px) space at WbT = 50, 100, 

and 150, where Wb is the beam plasma frequency. The beams are counterstreaming in the 

the y direction. The initial beam size is 128Ll, with a simulation box size of 512Ll and a 

relativistic factor of, = 100. The maximum growth rate expected is r max,1/2 /Wb = 0.5 

with a filament size of .x ~ .xc, where .xc = c,1/2/Wb is the collisionless skin depth. At 

WbT = 150 the separate filament sizes correspond approximately to a collisionless skin 

depth .xc, and the measured growth rate is r max/Wb ~ 0.3. Figure 7.2 shows results 

from varying the relativistic factor ,. The measured growth rates r max / Wn are in close 

agreement with the predicted growth rate of r max/wn = 1/2, where Wn = Wb/,1/2 is the 

beam plasma frequency normalized by ,. 

Results of simulation runs with a small ratio of beam radius, Wb, to collisionless skin 

depth, .xc = c,1/2/Wb , are shown in Figure 7.3. Growth rates were measured with and 

without the electric field included in the simulation. It is apparent that the growth rates 

with the electric field included in the simulation are in agreement with the theoretical 

growth rate of r /wn = 0.5. Thus, it appears as if the small beam width has not suppressed 

the instability. When the electric field calculation is not included, the growth rates increase 

by a factor of approximately two. The inclusion of the electric field causes expansion of 

the beams and suppresses the pinching in x of the beams by the magnetic field. 
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Figure 7.1. (x,Px) Phase Space Plots for wbT = 50, 100, and 150 at the Top, Middle, and Bottom of the 
Figure, Respectively, with "'f = 100. 
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Figure 7.2. Growth Rate of Filamentation Instability r maz/wn, Where Wn = wbf'yl/2, for Three Values of /. 
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7.1.2 Vlasov Code Results 
A problem involving two counterstreaming electron beams is examined with the Vlasov 

code. The beams are unstable to the filamentation instability, which has a maximum 

growth rate r max of23 

r max"(lj2 1 
Wb = 2'. (7.1) 

The code is timed for various problem sizes, and performance is compared with the Cray 

YMP. The results presented here are only for the Cartesian geometry case. 

Figure 7.4 shows the growth in the field energy as a function of time in units of the 

background plasma frequency, wpe. The field energies are plotted for the three machines 

on which the problem was run (Intel i860, a Connection Machine, and a Cray YMP). 

Note that the results agree well over the length of the run. The slight differences can 

be attributed to the differences in precision and random number generators used for the 

initialization of the fields. Using the growth time of 400 simulation time steps from the 

simulations, the measured growth rate is 

(7.2) 

This measured growth rate is close to the theoretical filamentation growth rate. The ratio 

of beam width Wb to the collisionless skin depth .xc is 
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Figure 7.4. Comparison Between the Intel Hypercube, the Connection Machine, and the Cray YMP on a 
Test Problem. The growth in field energy as a function of time (wpet) is shown. 
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The integrated distribution functions of one of the beams at various time steps are shown 

in Figures 7.5 and 7.6. The other beam evolves in a similar manner. The evolution of the 

x - z distribution function is shown in Figure 7.5. The beam starts out as a finite-width 

beam in x with an initial small perturbation in z. (The oscillations can be seen along the 

beam at the top.) As the beam evolves, it begins to spread in x. The filament formation is 

evident for f(x, z) in Figure 7.5 after 400 time steps. The filament sizes are approximately 

between 0.5Ac and Ac. By the end of a 1000-time step run the beam has spread to the 

point where the multiple beams are beginning to overlap due to the periodic boundary 

conditions. By the end of the run the results are no longer valid for a single beam, since 

overlap has occurred. Results before this point are valid. 

1.0 

f (x,z) 0.5 

o 

1.0 

f (x,z) 0.5 

o 
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3.2 
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x 

o 

x 
Figure 7.5. Integrated Distribution Function fez, z) at 0 and 400 Time Steps from the Top to the Bottom. 

Note that the z - pz distribution function in Figure 7.6 becomes negative, an inherent 

problem with Vlasov simulation techniques. Since only two points are chosen to represent 

the distribution function of the two beams in pz space, truncation errors result that cause 

the distribution function to become negative. A solution to this problem may be in higher 

resolution in Pz, which translates into a larger number of grid cells and more memory. 

Another approach may be to use transform methods in the momentum directions.38 This 

truncation error still needs to be resolved. 
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Figure 7.6. Integrated Distribution Function f( z, pz) at 0 and 400 Time Steps from the Top to the Bottom. 

The maximum speed of the code is approximately 152-million floating-point operations 

per second (MFLOPS) for 32 nodes. The efficiency of the code is dependent on the ratio 

of the number of floating-point operations per node to the number of transfers per node. 

It is obvious that reduction in communication increases efficiency. In the extreme case of 

no communication the number of MFLOPS would be linearly dependent on the number 

of nodes. We assume the exclusion of speedup due to vectorization that would depend on 

problem sizes. The amount of communication per node can be minimized by considering 

the shape of the region computed for each node. Two quantities that give an indication of 

the shape are the perimeter of the region, which is 2( ncz + ncz), and the area of the region, 

ncz . ncz, where ncz and ncz are the number of cells per node in the x and z direction, 

respectively. The ratio of the perimeter to the area of the region is in proportion to the 

amount of communication per computation for each node. The ratio can be represented 

by the formula 
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e = (2( r + 1)) _1_, 
a ,;r VN (7.4) 

where 

ncz (7.5) r=-, 
ncz 

N = ncz • ncz . (7.6) 

Minimizing pia reduces the amount of communication per computation for each node. 

The smallest value is achieved by choosing r = 1 for a fixed number of cells per node N. At 

this point it can be seen why a slab geometry is not optimal for communication. Although 

the slab geometry needs only two directions of communication, the ratio r is generally far 

from 1. Also, as the number of nodes is increased, the ratio r increases. Eq. (7.4) also 

shows that the larger the total problem size, the larger N is for a fixed number of nodes. So 

efficiency is also enhanced when the problem size is large. The problems with the highest 

efficiency or MFLOPS per node are the problems with the largest number of grid points 

per node. 

As a comparison of outright speed, a serial version of the code was also run on the Cray 

YMP at NASA Ames. No effort was made to optimize the code for vectorization. Tests 

are performed on the code with 32 nodes on the Ames hypercube. The speed was 2.3 times 

faster than the Cray YMP for the largest problems run. Although this may not be a fair 

test, it does give a rough idea of the size of the parallel machine necessary to achieve speeds 

comparable to a Cray YMP. Obviously a more rigorous test needs to be performed where 

both codes are optimized for each specific machine. 

There are a few improvements that can be made. The distribution function goes negative 

after a few hundred time steps. A solution may be to increase the resolution of the velocity 

distribution or to go to some type of transform method.38 Another solution is to use the 

~ f method on the Vlasov technique, which will be discussed in Section B.O. 

7.2 Collective Beam-Beam Effects 
In this section the object is to describe the effects of the beam-beam interaction on 

macroscopic beam behavior-that is, phenomena that deal with the entire beam, such as 

beam blowup. 

7.2.1 Reference Parameters 
Our research is generic enough to cover the beam-beam interaction of various colliders 

or storage rings. We make specific reference to the parameters of the SSC, shown in 

Table 7.1. Using the numbers from the table we have: , = 2.13 X 104 and WbTint = 0.035, 
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where Wb = .J47re2nb/,mb, nb = N B/(lwh) is the beam density, mb is the mass of the beam 

particles (protons), , is the relativistic factor, and Tint = L/2c is the interaction time of 

the colliding beams. The horizontal tune shift jj.VHO is calculated for a two-dimensional 

Gaussian beam. Since the present simulations deal with only one-dimension, this quantity 

is recalculated. Using the equation for the one-dimensional tune shift: 

(7.7) 

and using values from Table 7.1, the one-dimensional tune shift is jj.vQ = 2.1 X 10-3• 

A series of simulation runs is performed using the parameters described in Table 7.1. 

Table 7.1. sse Parameters. 

I x w x h = 7.5 em x10-3 em x10-3 em 

NB = 7.3 X 109 

T 20 Te V protons 

f3* 50 em 

tlllHO 0.84 x 10-3 

IIHO = 0.285 

Luminosity 1033 em-2 s-l 

Lifetime = 24 h or 108 turns 

Electromagnetic Code Results. Runs of 1000 turns are performed using the reference 

parameters described in Table 7.1, with VQ = 0.285 and jj.vQ = 2.1 X 10-3• In order to 

keep the time between rotations reasonable (~ 1000 time steps), a beam width larger than 

that of the sse is used. This is due to constraints of following light waves in the electro­

magnetic code. The ratio Wb/.xc is still small at ~ 10-3. Also, to save on computation 

time 256 particles are used for each beam. Measurements of the tune shift jj.v for both 

beams for small-amplitude particles are shown in Figure 7.7. The tune shift jj.v oscillates 

about an average of 1.87 x 10-3 and 1.93 X 10-3 for beams 1 and 2, respectively. The pre­

dicted tune shift for a one-dimensional Gaussian beam using sse parameters is 2.1 x 10-3. 

The fluctuation level of jj.v is approximately ±15%jj.vQ. This large fluctuation level is 

attributed to the small number of particles used. Figure 7.8 shows the initial and final 

(x/ux,Px/up) phase space particle positions. Little difference is seen between the initial 

and final configurations. 

Some of the shortcomings of this fully self-consistent method are clear: 1) it is too costly 

for such a small number of particles, and 2) a large number of time steps is necessary for one 
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rotation. For realistic sse parameters the simulation time step size ~t is about 3 X IO-STint. 

We will concentrate on more efficient methods of modelling the beam-beam interaction in 

the rest of the paper. 
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Figure 7.7. Tune Shift of Interacting Beams. 
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Strong-Strong Simulation Results. A series of strong-strong simulations has been 

performed to determine long time characteristics. The initial distribution of particles is 

shown in Figure 6.5. In this run 104 particles are used in each beam, with variable charge 

per particle initially to maintain a Gaussian distribution. The tune Vo = 0.285 and the 

tune shift .6.vo = 2.1 X 10-3 • The simulation box size is 128.6., where .6. is the cell size. 

The beam width w is 30.6. and the particle size a is .6.. The particle size a is small enough 

in relation to the beam width w so that from Eq. (6.57): 

.6.Vpoint = 1.0022 , 
.6.v/sp 

(7.8) 

where .6.Vpoint is the tune shift for a point particle and .6.v/sp is the tune shift for a finite-size 

particle. Thus, finite-size particle effects on the kicks that the simulation particles receive 

are minimal. By normalizing the code to a plasma with density lower than the beam, where 

Wo is the normalization plasma frequency and Wb is the beam plasma frequency, only four 

simulation time steps are needed to cover the interaction region. So wo.6.t = 0.25, where 

.6.t is the simulation time step size. 

Figure 7.9 shows the distribution of 104 particles in (x/O"x,Px/O"p) phase space for one 

beam after 10,240 rotations. The particles were initialized using the nonuniform charge 

distribution (Figure 6.5). After 10,240 rotations the particles are no longer uniformly 

distributed in (x / 0" x, pd 0" p) space. Clumping of particles has occurred, and small regions 

contain no particles. However, no dominant mode such as an m = 2 mode (football shape) 

or m = 4 mode (square shape) has appeared, which would distort the shape of the whole 

beam. A profile in x of the distribution of particles in Figure 7.10 shows the deviation of 

the distribution from the initial Gaussian profile. The center of the beam is at x = 64.6.. 

Large spikes in the distribution are visible at x ~ 50.6. and x ~ 80.6.. 
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We measure the tune shift D.v by two methods described in Section 6.5.2. One method 

involves a least-squares-fit to the kicks of small- and large-amplitude particles. 

Results from the least-squares-fit method for one beam are shown in Figure 7.11. The fit 

is done for small-amplitude particles x < O.lax at the top of the figure, and for the entire 

beam for the bottom of the figure. The tune shift D.v oscillates around the unperturbed 

values of D.vo = 2.1 X 10-3 for small-amplitude particles and D.vo ~ 1.55 X 10-3 for all 

the particles. The discrepancy is due to the drop-off of the kick at large values of x. 

When all particles are included in the least-squares-fit, the measured D.v is lowered by the 

particles with large x. The amplitude of the variation in D.v for small-amplitude particles 

is approximately ±20% of D.vo near the end of the run. The tune shift obtained from all 

particles decreases in amplitude with the number of rotations. The maximum variation 

of D.v is approximately ±3% of its average value and occurs within the first 500 rotations. 

The oscillations in D.v indicate expansion and contraction of the beam. The expansion 

and contraction of the beam decreases and increases D.v, respectively. Notice that the 

beam is expanding and contracting differently at different particle positions. The small­

amplitude portion of the beam is increasing in oscillation amplitude, while the entire beam 

is decreasing in oscillation amplitude. 
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Figure 7.11. Tune Shift ll.v from a Least-Squares-Fit to Small-Amplitude Particles x < O.IO'x (Top) and All 
Particles (Bottom) for M = 10,240 Rotations. 
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The other method by which the tune shift D..v is measured is by obtaining power spectra 

of the x positions of sample particles, which are sampled once every complete rotation. 

Figures 7.12 and 7.13 show the particle positions and power spectra for a small- and 

large-amplitude particle, respectively. The tune shift D..v is measured from the shift in 

the power spectral peak from the unperturbed tune Vo. The small-amplitude particle in 

Figure 7.12 shows smearing in the particle position in phase space. This is indicative 

of particle diffusion, which will be discussed in Section 7.3. The peaks in S(v) are at 

v = ±0.2827148. The difference from Vo is 2.2852 X 10-3• The error in this measurement 

is hv = 7.8125 x 10-4, where the maximum lag time is 2560 rotations for the power 

spectrum calculation. Although the value is higher than the unperturbed tune shift D..vo, 

it is within the errors of the calculation. The large amplitude particle in Figure 7.13 also 

shows smearing in the particle position in phase space, but it is less than that observed for 

the small-amplitude particle. The peaks in S(v) are at v = ±0.2832031. The difference 

from Vo is 1.7969 X 10-3• The error in this measurement is also hv = 7.8125 X 10-4• The 

tune shift, D..v, for the large-amplitude particle is smaller than the one measured for the 

small-amplitude particle, since D..v drops off with large x for the beam-beam interaction. 

Moments of one beam are shown in Figures 7.14 and 7.15. At the top of Figure 7.14 

the oscillation of the average beam center < x > is apparent. The beam oscillates 

with a maximum beam amplitude of hx/O'x ~ ±8 x 10-4 • The average < x > and 

< (x- < x »3 >, the odd moments, are both increasing in oscillation amplitude with 

rotation number. The increase is more obvious for < (x- < x »3 > at the bottom of 

Figure 7.14. At the top of Figure 7.15 the oscillation of the beam width can be seen. The 

beam is oscillating about the initial beam width 0'; with a maximum amplitude of approx­

imately ±0.040';. Oscillations are also apparent for < (x- < x »4 > at the bottom of the 

figure. The amplitudes of the even moments < (x- < x »2 > and < (x- < x »4 > are 

both decreasing with the number of rotations. Note that the variation in the second mo­

ment < (x- < x »2 > closely corresponds with the variation of the tune shift measured 

from all beam particles in Figure 7.11. Both D..v and < (x- < x »2 > give a measure of 

the width of the kicking beam and the kicked beam, respectively. Since both beams are 

oscillating in width in the same manner, the agreement is expected. 

Figures 7.16 and 7.17 show the moments and their associated power spectrum. The 

power spectrum of the average of x, < x >, is shown at the bottom of Figure 7.16. 

There is a peak in S(v) at v ~ o. This peak corresponds to oscillations seen in < x > 
with periods between 500 and 1000 rotations. The smaller peaks at v ~ ±(vo - D..vo) 

correspond to the betatron motion. In Figure 7.17 the peaks in the power spectra S(v) at 

v ~ ±(1 - 2(vo - D..vo)) also correspond to the betatron motion of the beam. 
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The emittance e of each beam for 10,240 rotations is shown in Figure 7.18. The emittance 

for one beam is at the top of the figure, and the other is at the bottom. Until about 

6000 rotations the beams show similar behavior. They oscillate about the initial emittance 

eo = 9.586~. After this the beams begin to deviate from one another. One beam is 

decreasing in phase space area, and the other beam is increasing. This phenomenon is 

similar to the "flip-flop" effect observed experimentally with equal-strength beams.7 One 

beam blows up and the other decreases in size. The difference in e is small between the 

two beams; by the end of the run it is oe/ eo = 4.4 x 10-3• This variation in e is very 

sensitive to the initial conditions. Figure 7.19 shows the emittance for both beams when 

the distribution is initialized with different random offsets in 8 for the nonuniform charge 

distribution. The increments in r / u are the same. The beams begin to deviate from one 

another at about 9000 rotations. The deviation is much smaller than the previous case. 

By the end of the run it is oe/eo = 5 x 10-4 • 

Runs with the uniform charge and nonuniform position initialization show different 

behavior than the runs with nonuniform charge and uniform position. Figure 7.20 shows 

the distribution of 104 particles in (x/ux,p,;jup ) phase space for one beam after 10,240 ro­

tations. The particles were initialized using the uniform charge distribution (Figure 6.7). 

After 10,240 rotations the particle distribution shows spiral arms in (x/ux,px/up ) space. 

However, no dominant mode such as m = 2 (foot ball shape) or m = 4 (square shape) has 

appeared that is distorting the shape of the whole beam. A profile in x of the distribution 

of particles in Figure 7.21 shows the deviation of the distribution from the initial Gaussian 

profile. The center of the beam is at x = 64~. The profile is much smoother than the 

profile from the nonuniform charge distribution run (Figure 7.10). 

Results from the least-squares-fit method for one beam are shown in Figure 7.22. The 

fit is done for small-amplitude particles x < O.lux . ~v oscillates around the unperturbed 

tune-shift values of ~vo = 2.1 X 10-3 for small-amplitude particles. It is found that 

~v ~ 1.55 X 10-3 for all the particles. The discrepancy is due to the drop-off of ~v at 

large values of x. When all particles are included in the least-squares-fit, the measured 

~v is lowered by the particles with large x. The amplitude of the variation in ~v for 

small-amplitude particles is approximately ±3% of ~vo near the end of the run, which is 

about a factor of 6 smaller than the deviations observed in the nonuniform charge run. 

The tune shift ~v obtained from all particles decreases in amplitude with the number of 

rotations. The maximum variation of ~v is approximately ±3% of its average value and 

occurs within the first 500 rotations. The oscillations in ~v indicate that the expansion 

and contraction of the beam that is kicking the particles is smaller than the nonuniform 

charge runs. 
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Figure 7.18. The Emittance f of Both Beams for 10,240 Rotations. One beam is at the top and the other 
beam is at the bottom of the figure. 
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The emittance f of each beam for 10,240 rotations is shown in Figure 7.23. The emittance 

for one beam is at the top of the figure, and the other is at the bottom. In this case 

the beams are oscillating in f. The amplitude of the oscillations is largest for the first 

1000 rotations. The magnitude of these oscillations is &/ fO ~ 10-3 , where fO is the initial 

emittance. By the end of the run the oscillations are Of/ fO ~ 10-4 • 
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Figure 7.22. Tune Shift tJ.v Measured from a Least-Squares-Fit to Small-Amplitude Particles x < O.lur for 
M = 10,240 Rotations. 

10.044 

10.043 

10.042 

10.041 

E 10.040 

10.039 

10.038 

10.037 

1 0.036 r-L-...J---l.---l.--'----1..---L.. ......... ......i-......i--L-.....i-...J........L.......L..-...L..-...L..-J.-.L..-U 

10.046 

10.045 

10.044 

10.043 

10.042 

E 10.041 

10.040 

10.039 

10.038 

10.037 

o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

0 

M 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
M 

Figure 7.23. The Emittance € of Both Beams for 10,240 Rotations. One beam is at the top and the other 
beam is at the bottom of the figure. 
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61 Simulation Results. A series of 61 simulations has been performed to determine long 

time characteristics. We use 103 particles in the runs. The fluctuation level 6 expected 

for the actual sse beam is 6 ~ 10-5 for 1010 particles. Figure 7.24 shows the variation 

with particle number of the minimum and maximum perturbations 61/10 for runs with 

10,240 rotations. We see that the maximum perturbation is nearly independent of particle 

number. The minimum fluctuation value decreases exponentially with increasing particle 

number. It can be seen that the minimum perturbation drops below 10-5 for simulations 

with 103 particles and larger. Because 103 particles could be used, larger rotations of 105 

could be run. The initial distribution of particles is shown in Figure 6.9. In this run 

103 particles are used in each beam with variable charge per particle initially to maintain 

a Gaussian distribution. The tune 1/0 = 0.285 and the tune shift ~1/0 = 2.1 X 10-3 • The 

simulation box size is 128~, where ~ is the cell size. The beam width w is 30~ and the 

particle size a is ~. The particle size a is small enough in relation to the beam width w 

so that from Eq. (6.57): 

~1/point = 1.0022 , 
~1/f8P 

(7.9) 

where ~1/point is the tune shift for a point particle and ~1/f8P is the tune shift for a finite-size 

particle. Thus, finite-size particle effects on the kicks that the simulation particles receive 

are minimal. By normalizing the code to a plasma with density lower than the beam, where 

Wo is the normalization plasma frequency and Wb is the beam plasma frequency, only four 

simulation time steps are needed to cover the interaction region. Thus, wo~t = 0.25, where 

~t is the simulation time-step size. 

Figure 7.25 shows the distribution of 103 particles in (x/ux,pdup) phase space for 

one beam after 105 rotations. After 105 rotations the particles are no longer uniformly 

distributed in (x/Ux,Px/up) space. Some clumping of particles has occurred, and small 

regions contain no particles. The clumping is not significant enough to affect the validity 

of the constant phase space density assumption as a good approximation. A profile in x 

of a Gaussian distribution of particles in Figure 7.26 is shown. Figure 7.27 shows the 

perturbations from the 61 code to the Gaussian profile after 105 rotations. The center of 

the beam is at x = 64~. The maximum perturbations are only 0.1% of the maximum in 

the Gaussian profile. Thus, the 61 code is still a valid approximation. Notice that the 

perturbed distribution makes sense physically. There is a depletion of particles from the 

center of the beam and an increase in particles at about ±2u x' The beam is expanding 

slightly. 
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Results from the least-squares-fit method for one beam are shown in Figure 7.28. The fit 

is done for small-amplitude particles x < O.lO"x at the top of the figure and for the entire 

beam at the bottom of the figure. The tune shift !::!..v oscillates around the unperturbed 

values of !::!..vo = 2.1 X 10-3 for small-amplitude particles and !::!..vo ~ 1.52 X 10-3 for 

all the particles. The discrepancy is due to the drop-off of !::!..v at large values of x. The 

amplitude of the variation in !::!..v for small-amplitude particles is approximately ±3% of !::!..vo 

throughout the run. The tune shift obtained from all particles increases in amplitude with 

the number of rotations until approximately 15,000 rotations; it then remains somewhat 

constant until the end of the run. The maximum variation of !::!..v is approximately ±4%. 

The oscillations in !::!..v indicate expansion and contraction of the beam that is kicking the 

particles. Notice that the beam that is kicking the particles is expanding and contracting 

differently at different particle positions. The small-amplitude portion of the beam is at 

constant oscillation amplitude, while the entire beam is increasing in oscillation amplitude 

for the first 15,000 rotations. 

The other method by which the tune shift !::!..v is measured is by obtaining power spectra 

of the x positions of sample particles that are sampled once every complete rotation. 

Figure 7.29 shows the shift in the power spectral peak from 100 particle positions in phase 

space. The tune shift !::!..v is measured from the shift in the power spectral peak from the 

unperturbed tune Vo. Notice that !::!..v decreases with increasing riO" of the sample particle, 

where riO" = JX210"; + p;IO";. 

Moments of one beam and their associated power spectra S(v) are shown in Figures 7.30, 

7.31, 7.32, and 7.33. At the top of Figure 7.30 the oscillation of the average beam center 

< x > is apparent. The beam oscillates with a maximum beam amplitude of 8xlO"x ~ 

±1.6 x 10-4. The average < x > and < (x- < x »3 > (Figure 7.32), the odd moments, are 

both increasing in oscillation amplitude with rotation number. At the top of Figure 7.31 

the oscillation of the beam width can be seen. The beam is oscillating about the initial 

beam width 0"; with a maximum amplitude of approximately ±0.0030";. Oscillations are 

also apparent for < (x- < x »4 > at the top of Figure 7.33. These oscillations are 

induced spontaneously. This is in spite of the initial lack of offset and initial lack of noise 

due to the finite number of particles. The latter is due to our adoption of the 8 f algorithm. 

The particle weights Wi were taken to be zero at t = O. 
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The bottoms of Figures 7.30, 7.31, 7.32, and 7.33 show the moments and their associated 

power spectra. The power spectrum of the average of x, < x >, is shown at the bottom 

of Figure 7.30. There are peaks in S(v) in descending power at v ~ ±v' and ±(5v' - 1), 

where v' = vo - ~vo. These peaks correspond to harmonics of the betatron motion. 

In Figure 7.31 the peaks in the power spectrum S(v) at v ~ ±(1 - 2(vo - ~vo)) also 

correspond to the betatron motion of the beam. The peak near v ~ 0 corresponds to 

low-frequency oscillations with periods longer than 104 rotations. Figure 7.32 shows S(v) 

for < (x- < x »3 >. The peaks in S(v) in descending power are at ±(5v' - 1), v ~ ±v', 

±(1 - 3v'), and ±(2 - 7v'), where v' = Vo - ~vo. Similarly, in Figure 7.33, S(v) for 

< (x- < x »4 > has peaks in descending power at ±(1 - 2v') and ±(1 - 4v'), where 

v' = Vo - ~vo. As in the case with < (x- < x »2 >, there is a low-frequency peak with 

oscillations having time scales longer than 104 rotations. It appears from these results that 

the even beam moments contain more power in the low-frequency components of S( v) than 

do the odd beam moments. 

The discrepancy between the odd and even moments is also indicative in the mode 

expansions of the beam distributions. Figures 7.34 and 7.35 show the variations of the 

odd and even modes, respectively, with rotation number. The modes are calculated from 

Eq. (6.159) in Section 6.5.3 for m = 1 to m = 6. As in the calculation of moments, the 

odd modes m = 1,3,5 are increasing with rotation number (Figure 7.34). The intensity 

I( m) of the odd modes also increases with mode number m. The even modes m = 2,4,6 

oscillate about an average throughout the entire run. The oscillation amplitude decreases 

with mode number m. The overall intensity I( m) of the even modes is about a factor of 10 

higher than that of the odd modes. 

The emittance e of each beam for 105 rotations is shown in Figure 7.36. The emittance 

for one beam is at the top of the figure, and the other is at the bottom. The beams show 

similar behavior through the 105 rotations. They expand and contract in phase space 

simultaneously. The maximum expansion is about oe/ eo ~ 2 x 10-3• 
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Figure 7.28. Tune Shift tl.v Measured from a Least-Squares-Fit to Small-Amplitude Particles x < O.lO"z 
(Top) and All Particles (Bottom) for M = 10,240 Rotations. 
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7.2.2 Vo - ~vo Stability 
In this section we examine the variation of beam stability with tune Vo and tune shift ~vo. 

The strong-strong PIC simulation code is employed exclusively here. Although the 81 code 

is quieter, it is not well-suited for studying beam blowup phenomena that distort the 

original distribution by a significant amount. 

Figure 7.37 shows a stability diagram of ~vo versus vo. The dotted lines are obtained 

from a linear theory developed by Chao and Ruth. I8 The lines demarcate regions of linear 

stability and instability for equal charge beams. The stable regions are those regions 

contained by the dotted lines. The lines plotted are for up to eight beam modes. As is the 
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general case with any linear theory, the theory can predict the initial growth rates of the 

instability, but not the saturation levels. The points in Figure 7.37 represent strong-strong 

simulation code results, in which the unperturbed ~ZlO and ZlO are varied. The unperturbed 

tune shift ~ZlO is scanned between the SSC reference value of 2.1 x 10-3 and a maximum 

value of 0.04. In each of the simulations 104 simulation particles are used. The codes are 

run for 104 rotations, with the exception of one run that is run for 3 x 104 rotations. All the 

runs are initialized with variable charge and uniform distribution. All other parameters 

are the same as previous strong-strong simulation runs. Beam stability for various values 

of ~ZlO and ZlO is determined from emittance growth. If the emittance of the beams € 

increases by 50%, then the run is designated unstable. The marginally stable case noted 

in Figure 7.37 is determined from the emittance growth after 30,000 rotations. 
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Figure 7.37. Vo - .6.vo Stability Diagram. 
TIP-03325 

The results from the simulations show good agreement with the linear theory of Chao 

and Ruth. IS The beams are unstable in regions of instability and are stable in regions of 

stability. 

We examine in more detail the cases where ~ZlO is small. In this case similarly charged 

beams with values of the unperturbed tune Zlo just above a resonance are kicked towards 

the resonance by the beam-beam interaction. In this case the beams are expected to be 

unstable. For beams with values of ZlO just below a resonance, the beam-beam kick is away 

from the resonance and the beams are expected to be stable. Beam blowup due to strong 

resonance is observed just above Zlo = 1/2 and ZlO = 1/4 for values of ~ZlO = 2.1 X 10-3• 
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Figures 7.38 and 7.39 show the phase space distribution of the simulation particles. In 
Figure 7.38 phase space plots show simulation results around the Vo = 1/2 resonance. 

At the top of Figure 7.38, where Vo = 1/2 + ~vo, the beam blows up. At the bottom of 

Figure 7.38, where Vo = 1/2 - ~vo, it is seen that mode 2 dominates the shape ofthe beam 

in phase space (football shape). In Figure 7.39 phase space plots show simulation results 

around the vo = 1/4 resonance. At the top of Figure 7.39, where Vo = 1/4 + ~vo, the 

beam particles are clumping, and the emittance is observed to increase by more than 50%. 

At the bottom of Figure 7.39, where Vo = 1/4 - ~vo, it is mode 4 that dominates (square 

shape). The beams in the case of Vo = 1/2 + ~vo blow up very quickly. It takes only a few 

hundred rotations. The beams blow up more slowly for Vo = 1/4 + ~vo. This behavior is 

expected. Higher-order resonances have lower growth rates of instability. The beams are 

stable just below Vo = 1/2 and Vo = 1/4 for small values of ~vo. 
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A point is scanned just above Vo = 1/3 with v = Vo + ~vo, where ~vo = 4 X 10-3• In 

this case the emittance € is slowly growing (Figure 7.40). The beam emittance € keeps 

growing until approximately 24,000 rotations, after which it appears to saturate until the 

end of the run at 30,000 rotations. The phase space distribution of one beam is shown in 

Figure 7.41. It can be seen that mode 6 is beginning to slowly dominate the distribution. 

Since two (i.e., an even number of) beams are colliding, mode 2/6 is expected to dominate 

for Vo = 1/3 + ~vo. Since this is a high-order mode, the slow growth rate is expected. 
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Figure 7.40. Emittance as a Function of Rotations for 110 Just Above 1/3. 
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7.3 Particle Diffusion 
In this section we examine particle diffusion brought about by the beam-beam interac­

tion. The diffusion is measured from the tracking code, the strong-strong code, and the 

b f code. We compare the diffusion coefficients measured for each of these runs. Of the 

three codes, the b f code gives the best representation. It is quieter than the PIC code and 

allows degrees of freedom of evolution from the initial distribution that are not permit­

ted in the tracking code. We use the two methods described in Section 6.5.4 to measure 

particle diffusion. 

7.3.1 Tracking Code Results 
We first examine particle diffusion for particles tracked using the 1 - D tracking code 

describe in Section 6.!. 

Reference parameters described in Section 7.2.1 for the sse are used: the tune Vo = 0.285 

and the tune shift 6.vo = 2.1 X 10-3• The initial particle positions are shown in Figure 7.42. 

The Poincare map of two sample particles is shown after 105 rotations in Figure 7.43. The 

particles are sampled once every complete rotation. They show little diffusive motion. The 

circles that each particle traces out in phase space are due to the betatron motion of the 

particles. 
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Figure 7.42. Initial Particle Positions for 100 Tracking Code Particles in (1:/u:&,p:&/p) Phase Space. 
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A better grasp of the diffusive motion of the sample particles can be obtained from their 

diffusion coefficients. The diffusion coefficients, dfl and df2, calculated after 10,240 rota­

tions, are shown in Figure 7.44, where 

r 
(7.10) 

x 2 Px 2 
+-

U x Up 

is the distance in phase space from the center of the beam. The Dx means that dfl and df2 

are calculated for diffusion in position Ixl from Eq. (6.161). The diffusion is normalized 

to u~/Nr, where Nr is the number of rotations. In Figure 7.44 it is apparent from the 

fact dfl > > df2 that the motion is largely oscillatory in phase space. The coefficients 

calculated over two time scales differ on average by a factor of approximately 100. This is 

expected for oscillatory motion, where 

df2 (!:::..N1)3 
df1 ex: !:::..N2 

1 
ex: 1000 . (7.11) 
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Figure 7.44. D:c from the Tracking Code with ~vo = 2.1 X 10-3 and v = 0.285 for M = 10,240 Rotations. 
dfl and df2 have time scales of ~Nl = 102 and ~N2 = 1024 rotations, respectively. 

Figures 7.45 and 7.46 show the diffusion coefficients calculated for M = 40,960 and 

M = 105 rotations, respectively. The average diffusion rate is decreasing with increasing 

rotations. The range of coefficients for 40,960 rotations is 10-9-10-14 , and for 105 rotations 

it is 10-1°_10-15 . This drop with increasing rotation number is another indication that 

the particle motion is still oscillatory and not diffusive. If the particles are diffusive, the 

diffusion coefficients would settle down to values independent of the time scale. There are 

some points between r / a = 1.5 and r / a = 2 that meet the criteria for diffusivity. That is, 

dfl ~ df2. However, most of the coefficients differ by a factor of approximately 100. So, in 

tracking code simulations a majority of the particles exhibit oscillatory motion at different 

values of position x up to 105 rotations. 
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Figure 7.45. Dx from the Tracking Code with .6.vo = 2.1 X 10-3 and v = 0.285 for M = 40,960 Rotations. 
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Figure 7.46. Dx from the Tracking Code of the Beam with .6.vo = 2.1 X 10-3 and v = 0.285 for 
M = 105 Rotations. dfl and df2 have time scales of .6.N1 = 1000 and .6.N2 = 10,000 rotations, 
respectively. 
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7.3.2 Strong-Strong Simulation Results 
In this section results from the strong-strong code on particle diffusion are presented. 

The effects of the particle initialization method are examined, and the results are compared 

with the tracking code. Again reference parameters described in Section 7.2.1 for the sse 
are used. So the tune vo = 0.285 and the tune shift Avo = 2.1 X 10-3, 

Results from the strong-strong code with variable charge per particle are shown in 

Figure 7.47. Each beam in the simulation has 104 simulation particles, with 'the initial 

distribution in (x,Px) phase space shown in Figure 6.5 and the resulting profile shown in 

Figure 6.88. 

The Poincare map of two sample particles after 10,240 rotations is shown in Figure 7.48. 

The particles are sampled once every complete rotation. Diffusion is apparent for both 

particles, even after only 10,240 rotations. The small-amplitude particle, especially, shows 

the smearing out of the ring observed from the tracking-code Poincare map (Figure 7.43). 

The diffusion coefficients are calculated for 100 sample particles after 10,240 rotations. 

The initial particle positions are the same as the tracking code shown in Figure 7.42. As 

in the tracking code results in the previous section, the diffusion coefficients, dfl and df2, 

are calculated at various Ixl in Eq. (6.161). The diffusion Dx is normalized to O";INr, 

where Nr is the number of rotations. The diffusion coefficients differ substantially from 

those obtained from the tracking code (Figure 7.44). All the particles in this case show 

the diffusive nature. Dx is uniform across the beam radial position and is nearly an 

order of magnitude higher than the tracking code values. Some of this diffusiveness is 

from fluctuations due to the finite number of particles of the strong-strong code. This 

dependence is shown in Figures 7.49 and 7.50. These figures show the diffusion coefficients, 

dfl and df2, for two different particles after 1000 rotations. One is for a sample particle at 

rIO" = 0.1 (Figure 7.49), and the other is for a sample particle at rIO" = 0.9 (Figure 7.50). 

In both figures the solid lines and the dashed lines refer to the diffusion coefficients, dfl 

and df2, respectively, calculated from a tracking code. Note that the tracking code values 

are independent of the number of particles, since the field is calculated from one Gaussian 

particle ("strong beam"). Both plots show a reduction in the diffusion coefficient for the 

strong-strong code calculated on the longer time scale (df2). It is more apparent for the 

particle at rIO" = 0.1 (Figure 7.49). The reduction goes as 1/VN, where N is the number 

of particles. This 1/VN dependence shows that finite particle fluctuation noise,36,37 which 

goes as 1/VN, is contributing to the diffusion of the sample particles. 
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Figure 7.47. Dr from the Strong-Strong Code with Alia = 2.1 x 10-3 and II = 0.285 for M = 10,240 
Rotations. dfl and df2 have time scales of ANl = 102 and AN2 = 1024 rotations, respectively. 
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Figure 7.48. Poincare Section in (x/ur,Pr/Up) Space of Small- and Large-Amplitude Strong-Strong Code 
Particles After M = 10,240 Rotations. 
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Figure 7.49. D:c Versus Particle Number for a Sample Particle at riO' = 0.1 for M = 1000 Rotations. dfl 
and df2 have time scales of ilNl = 10 and ilN2 = 100 rotations, respectively. 
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Figure 7.50. D:c Versus Particle Number for a Sample Particle at riO' = 0.9 for M = 1000 Rotations. dfl 
and df2 have time scales of ilNl = 10 and ilN2 = 100 rotations, respectively. 
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In order to reduce the fluctuation noise, we use the nonuniform particle initialization 

method described in Section 6.3.3. The simulation particles are given equal charge and 

are nonuniformly distributed in (x,Px) phase space (Figure 6.7). The resulting profile in x 
is shown in Figure 6.8 for 10,000 simulation particles. SSC reference parameters are used, 

with Vo = 0.285 and ~vo = 2.1 X 10-3
• The initial positions in (xlux,Pxlup) phase space 

of the 100 sample particles are shown in Figure 7.51. The nonuniform initialization of 

the simulation particles does make a difference in the finite particle fluctuation noise level. 

The Poincare map of two sample particles after 10,240 rotations is shown in Figure 7.52, 

where the particles are sampled once every complete rotation. Diffusion is apparent for 

both sample particles. However, the smearing seen for the small amplitude is much less 

than that observed with the nonuniform charge particle initialization (Figure 7.47). 

The reduced diffusion is evident in Figure 7.53, where the variable charge and uniform 

charge diffusion coefficients are shown for M = 10,240 rotations. The uniform charge ini­

tialization is much quieter. It shows oscillatory particle motion for particles with r I u < 2. 

The only particles that exhibit diffusive characteristics are those particles with r I u > 2-

that is, particles in the tails of the distribution. In comparison with the tracking code 

the sample particles from the uniform charge initialization show more diffusive behavior 

(Figure 7.54). The agreement is good between the tracking code and strong-strong code 

for the shorter time scale diffusion coefficient, dfl, for values of rlu < 2. However, the 

longer time scale diffusion coefficient for the uniform particle initialization shows higher 

values for all values of r I u, especially in the tail of the distribution. 

It has been shown that finite particle fluctuation noise plays a role in the diffusion 

of particles in the strong-strong simulations. This noise can be somewhat offset by using 

quieter particle initialization schemes such as the smooth charge loading scheme. However, 

there are still significant differences from the tracking code. Although the strong-strong 

code should show differences from the tracking code because of the self-consistent solution 

of the fields, it is difficult to determine whether the differences observed are due to particle 

fluctuation noise alone. In order to get a better grasp of the effects of this fluctuation 

noise, the noisy tracking code described in Section 6.3.4 is used. Figure 7.55 shows the 

results for 10,240 rotations where noise added to the tracking code is of the form described 

in Section 6.3.4. The noise level 6 is determined by 

6 = 1 
IN(x) , 

(7.12) 

where N(x) = Nerf(xlV2ux ) and N is the particle number. Notice that the small­

amplitude particles at rlu = 0.1 are diffusive for the noisy tracking code and the PIC 

code. The larger-amplitude particles at r I u = 0.9 are both oscillatory. The PIC code 
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is more diffusive than the noisy tracking code at ria = 0.1 and is less oscillatory than 

the noisy tracking code at ria = 0.9. These results indicate that some of the diffusion 

observed in the PIC code is from finite particle noise. The discrepancy in the diffusion 

coefficients between the PIC code and the noisy tracking code may be due to other types 

of numerical noise or collective phenomena. 
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Figure 7.51. Initial Particle Positions for 100 Strong-Strong Sample Particles in (x/u:r;,P:r;/p) Phase Space. 
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Particles with Uniform Charge After M = 10,240 Rotations. 
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Figure 7.53. Dr from the Strong-Strong Code with the Variable Charge and Uniform Charge Particle 
Initialization for M = 10,240 Rotations. dfl and df2 have time scales of t1Nl = 102 and 
t1N2 = 1024 rotations, respectively. 
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Figure 7.55. Dz from Noisy Tracking Code and PIC Code for M = 10,240 Rotations at r/u = 0.1 and 0.9. 
dfl and df2 have time scales of IlNl = 102 and IlN2 = 1024 rotations, respectively. 

7.3.3 b f Simulation Results 
In this section we describe particle diffusion results obtained from the b f simulation 

code described in Section 6.4. sse reference parameters from Section 7.2.1 are used, with 

lIo = 0.285 and ~lIO = 2.1 X 10-3• Each beam in the simulation has 103 simulation particles, 

with the initial distribution in (x,Px) phase space shown in Figure 6.9. The Poincare 

map of two sample particles after 105 rotations is shown in Figure 7.56. The particles 

are sampled once every complete rotation. Little diffusion is apparent for both sample 

particles. The smearing seen for the small amplitude is much less than that observed with 

either strong-strong code. 

The diffusion coefficients are calculated for 100 sample particles after 10,240 rotations. 

The initial particle positions are shown in Figure 7.57. As in previous sections the diffusion 
coefficients, dfl and df2, are calculated using Ixl in Eq. (6.161). The diffusion Dx is 

normalized to u;/Nr , where N r is the number of rotations. Results from the bf code and 

tracking code after 10,240 rotations are shown in Figure 7.58. The diffusion coefficients for 

the b f and tracking code nearly overlay each other. Both codes show oscillatory motion 

for 10,240 rotations. Thus, the noise level of the b f code is less than the strong-strong 

code with either the variable or uniform charge distribution. 
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Figure 7.58. D:c from the 6f Code with 1000 Simulation Particles and the Tracking Code for M = 10,240 
Rotations. dfl and df2 have time scales of ANl = 102 and AN2 = 1024 rotations, respectively. 

Simulations with 100, 1000, and 10,000 particles show little effect on the diffusion of the 

particles from particle number for M = 10,240 rotations (Figure 7.59). For 100 simulation 

particles, there is some deviation for sample particles with r / (j < 1. The noise level is not 

as strong a function of particle number as the strong-strong code . 
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Figure 7.59. Variation of the Diffusion Coefficients with Particle Number N for M = 10,240 Rotations. 

104 



The sample particles begin to show diffusive behavior when the number of rotations is 

increased. Figure 7.60 shows the diffusion coefficients, dfl and df2, calculated for 40,960 ro­

tations. Particles with r / u > 2 are diffusive (dfl ~ df2). This same behavior is observed 

for 10,240 rotations in the strong-strong code with the uniform charge distribution (Fig­

ure 7.54). The particles with r/u < 2 are still somewhat oscillatory in nature. It appears 

that the particles in the tail of the distribution are most sensitive to either noise or collec­

tive motion in the beams. This diffusion in the tails is not due to finite particle noise, as is 

evident in Figure 7.61. The figure shows the diffusion coefficients calculated for N = 1000 

and N = 104 simulation particles for 40,960 rotations. The results are nearly identical. 

A comparison of the 8f and tracking code at 40,960 rotations is shown in Figure 7.62. 

The tracking and 8 f code diffusion coefficients are nearly equal to the short time scale coef­

ficient dfl, with values of r/u < 1.5. For the long time scale coefficient, df2, and r/u > 1.5, 

the 8f code shows more diffusive behavior. This indicates that the phenomenon that causes 

the diffusive motions for large r / u is most evident on time scales of 409 rotations. Diffusive 

motion is not evident for particles with r / u < 1.5. This indicates that the diffusion occurs 

on longer time scales there. This is shown in longer runs. It appears that the diffusion is 

largest for large r / u and smallest for small r / u . 

In order to determine the source of the diffusion observed in the 8f code, noise of the 

form described in Section 6.3.4 is added to the tracking code. Figure 7.63 shows the results 

for 40,960 rotations, where the noise level 8 is determined by 

8 = 1 
VN(x) , 

(7.13) 

where N(x) = Nerf(x/V2ux ) and N is the particle number. Notice that the long time 

scale coefficient df2 increases for small r / u and, therefore, df2 is more uniform in r / u. 

The form of Dx as a function of r/u is different from Dx calculated from the 8f code. 

It is apparent that the enhanced diffusion observed in the tails of the distribution for the 

8 f code is due to the self-consistent treatment of the beams. This enhanced diffusion in 

the tails was also observed in the strong-strong code with the uniform charge initialization 

and fewer rotations. 

When the 8 f code is run for 105 rotations, all the sample particles show diffusive behavior 

(Figure 7.64). The diffusion Dx is an approximately exponential function of r/u. The 

coefficients take nearly the same value as the long time scale diffusion coefficient, df2, 

calculated for 40,960 rotations (Figure 7.60). The diffusive time scale appears to be in the 

range of 400 to 4000 rotations. 
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Figure 7.60. D:t: from the 6f Code with 1000 Simulation Particles for M = 40,960 Rotations. dfl and df2 
have time scales of ANl = 409 and AN2 = 4096 rotations, respectively. 
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Figure 7.61. Variation of the Diffusion Coefficients with Particle Number N for M = 40,960 Rotations. 

106 



10-8 

10-10 

Dx 

10-12 

10-14 
0 

.". 

t+ 
0 

• df1 
Tracking code 

~ df2 

+++ 8 
+:t:~o 0 880 

-tTi 0 0 + + 8 9 0 
0 

0 0 0 
0 

0.5 1.0 1.5 

ria 

0 

0 

* df1 of code 
+ df2 

+ 

• • 8 

e 8: 8g~ 
S08e! §o 

e 0 
e 

2.0 2.5 3.0 
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Figure 7.63. Dx from Noisy Tracking Code for M = 40,960 Rotations. dfl and df2 have time scales of 
.t::..Nl = 409 and .t::..N2 = 4096 rotations, respectively. 

107 



• df1 
o df2 

o 10-13 ~~~~LL~~~LL~~~~~~~~ 
o 0.5 1.0 1.5 

rIa 

2.0 2.5 3.0 

Figure 7.64. D;c from the 6/ Code for M = 105 Rotations. dfl and df2 have time scales of t1Nl = 1000 and 
t1N2 = 10,000 rotations, respectively. 

A comparison of the 8 f and tracking code results at 105 rotations is shown in Figure 7.65. 

As in the run with 40,960 rotations, the diffusion coefficients obtained from the tracking and 

8f runs are nearly equal for the short time scale coefficient, df1, with values of ria < 1.5. 

For the long time scale coefficient, df2, and ria> 1.5, the 8 f code shows diffusive behavior 

and is higher in value than the coefficients from the tracking code. 

Figure 7.66 shows the diffusion coefficients calculated for N = 1000 and N = 104 

simulation particles for 105 rotations. The coefficients for both particle numbers overlap, 

indicating that the diffusion observed is not strongly dependent on the simulation particle 

number. 

In order to get an idea of where the stochastic regions are in phase space, the simulation 

code is run forward and backward in time. In chaotic regions the particle motion is very 

sensitive to initial conditions, and the orbits bifurcate exponentially. Since the numerical 

integration of the code has finite accuracy, the particles that have passed through chaotic 

regions most likely would not return to their initial conditions when the code is run forward 

and then backward. Figure 7.67 shows results from running the 8f code forward and 

backward 105 rotations with 1000 particles. In the figure contour, surface, and grey-scale 

plots of the particle, weights 8 Ii of one of the beams are shown. The reference parameters 

Vo = 0.285 and ~vo = 2.1 X 10-3 are used. It is found that the particle positions return to 

their original positions within 8 decimal places. The deviation from the initial conditions 
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is found in the weights 6fi for each particle i. Figure 7.67 is the result of a dump of 

200 consecutive rotations of particle weights. The weights from the forward time-stepping 

are subtracted from the corresponding weights from the backward time-stepping. The 

figure shows positive deviations for small-amplitude particles and negative deviations for 

large-amplitude particles. It may be interpreted that these particles are in stochastic 

regions. The positive and negative deviation regions are separated by a thin ring where 

there is no deviation. The lack of deviation does not automatically determine a region 

of non-stochasticity. However, we may imagine there lie regions of non-stochasticity in 

this ring area. Due to the limited resolution the ring may consist of islands separated by 

stochastic regions. 
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Figure 7.65. D:c from Tracking Code and the of Code for M = 105 Rotations. dfl and df2 have time scales 
of ilNl = 1000 and ilN2 = 10, 000 rotations, respectively. 
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Figure 7.66. Variation of the Diffusion Coefficients with Particle Number N for M = 105 Rotations. 
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7.3.4 Beam Offset Effects 
In this section we examine the effects of beam offset on particle diffusion. Simulation 

results are compared with the theoretical predictions of Stupakov.22 A tracking code and a 

Sf code are used to compare with Eq. (3.76) described in the previous section. Parameters 

from the sse are used to compare the analytic results with the simulation results. In this 

case v = 0.285 and fl.v = e = 2.1 x 10-3• These numbers can be used to get an approximate 

number for the diffusion from Eq. (3.79). An estimate of Sx can be obtained from plots of 

the average x position of the beam versus the number of rotations M (Figure 7.68). The 

estimate of Sx = Ax is 0.0005. From this an approximate value of the diffusion D is 
Us 

(7.14) 

Figure 7.69 shows the total change in the action < (fl.JM)2 > versus the action J for 

various values of the beam offset' calculated from Eq. (3.74). The action J is normal­

ized to pa; / (3* and the beam offset is normalized to a x' The plot is obtained with the 

assumption that the beam offsets are uncorrelated, so that the k = 0 term in Eq. (3.76) is 

the only nonzero one. The offsets plotted are for, = 0.0001, 0.001, and 0.01. Note that 

< (fl.J M)2 > increases with, as ,2, which is expected from Eq. (3.76). 

Figure 7.70 shows tracking code and analytic results. The tracking code is run for 

M = 105 turns, with Va = 0.285 and fl.va = 2.1 x 10-3• The total change in the action 

< (fl.J M? > /2 is divided by M, the number of turns, to get the change per turn. The data 

points represent 100 uniformly distributed tracking particles that are run for each value 

of the beam offset' (Figure 7.71). As is evident in Figure 7.68, the diffusion coefficients 

( dfl, df2) calculated on different time scales for each particle are close to one another, 

indicating that all the particles show diffusive behavior. There is good agreement between 

the tracking code results and the analytic predictions based on the random offset model of 

Stupakov.22 Both show leveling off in the diffusion with increasing values of the action J. 

The Sf code results over 105 turns are shown in Figure 7.72. The Sf code is started with 

zero offset and is allowed to evolve self-consistently for M = 105 turns. Analytic results for 

3 values of the beam offset, , = 0.01 to O.OOOlax, are shown in the background, while the 

simulation value of , is in the range of 0.0005 to O.OOlax. As is evident in the figure, the 

values of the diffusion in the action variable J cross the range of the analytic prediction. 

However, the functional dependence on the action J is very different. The Sf results show 

an exponential dependence on the action J for large values of J, whereas the Stupakov 

theory shows the diffusion leveling off. The approximate value for the diffusion calculated 

from the change in the luminosity (Eq. (7.14)) produces a value that is lower than most of 

the Sf simulation values. 
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Figure 7.72. 6/ Code Results Showing the Change in the Action /lJM Per Turn Versus the Action J for 
Zero Initial Beam Offset. The time scales over which dfl and df2 are calculated are 103 and 
104 rotations, respectively. 

Several avenues are examined in order to get an idea of the cause of the exponential 

dependence in the diffusion. Figure 7.73 shows the effects of adding terms of k = 1 and 

k = 2 to Eq. (3.76). The coefficients are chosen from peaks at the appropriate frequency 

in the power spectra of < x > from Figure 7.68. The effect of adding the k = 1 and 

k = 2 terms to Eq. (3.76) is negligible. The change in the action still levels off for large J. 

Figure 7.74 shows the results of using the output < x > from the 6 f code shown in 

Figure 7.68 in the tracking code. Analytical results are also plotted for various values 

of the beam offset (. The tracking code and analytic results show the same functional 

behavior with respect to J. The corresponding beam offset is in the range ( = 0.001 

to 0.01. Although the diffusion from the tracking code is in the same range as the 6f code 

results, the exponential behavior for large J is not seen (Figure 7.75). The exponential 

dependence can be reproduced from Eq. (3.76) when the arguments to the modified Bessel 

functions 10 and II are replaced with J rather than J /2. The reason for this agreement is 

still under investigation (Figure 7.76). The diffusion from Stupakov's theory22 is dependent 

on the < x > offset of the beam. Figure 7.77 shows the dependence of < x > offset on r /0", 

where r/O" is from Eq. (7.10). <?' refers to particles in the range 0 < r/O" < 1. <~t2 refers 

to particles in the range 1 < r / 0" < 2. <?3 refers to particles in the range 2 < r / 0" < 3. 

The fluctuation levels increase in magnitude with r / 0". So large amplitude particles have 

< x > motions that are about an order of magnitude higher than those at small amplitudes. 
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This difference in < x > with r / (7 would explain the higher diffusion coefficients in the 

tails of the distribution. The reason for this larger beam offset is still under investigation. 
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Figure 7.73. A Comparison of k = 0 with Terms k = 1 and k = 2. 
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The leveling off in the diffusion is produced in the 6 f code when the beam strength is 

increased. When the tune shift is increased from ~vo = 2.1 x 10-3 to ~vo = 8.4 x 10-3 , the 

resulting motion of the beam about the original beam center increases by approximately 

an order of magnitude (Figure 7.78). The diffusion coefficients Dx calculated for ~vo = 

2.1 x 10-3 and ~vo = 8.4 x 10-3 are shown in Figure 7.79. It is evident from the figure that 

the diffusion increases for the small-amplitude particles (ria < 2) when ~vo is increased 

to 8.4 x 10-3
• The net effect is uniform diffusion across the beam in this case. The resulting 

diffusion is similar to that of beam offset diffusion.22 
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Figure 7.79. DII: of the Beam with ~vo = 2.1 X 10-3 and ~vo = 8.4 X 10-3 for M = 40,960 Rotations. The 
time scales of dfl and df2 are 409 and 4096 rotations, respectively. 
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This same behavior is seen in the strong-strong simulations. Figure 7.80 shows the dif­

fusion coefficients calculated for the PIC and the 6/ codes. The leveling off in the diffusion 

is seen for the PIC code and not for the 6/ code. The 6/ code for M = 10,240 rotations 

still shows oscillatory behavior for all values of r / u . 

10-6 

• df1 
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... df1 
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1 0-12 L.4.l.J....L...J.....L~L......L..J....L.~~L......L..J.....L....L...L....L...JL......L..L...L-...L...L....L...J'-'--' 

o 0.5 1.0 1.5 

ria 

2.0 2.5 3.0 

Figure 7.80. D:r; from PIC and 6f Codes of the Beam with ~vo = 2.1 X 10-3 for M = 10,240 Rotations. 
The time scales of dfl and df2 are 102 and 1024 rotations, respectively. 

It appears as if the fluctuation level of the simulation determines whether the diffusion 

due to the presence of nonvanishing < x > suggested by Stupakov22 dominates the particle 

diffusion. In the cases where the fluctuation level is high-either from the strength of 

the kick L),vQ or from simulation noise-the < x > type of diffusion dominates. This 

behavior in the diffusion may be viewed as a process similar to the breakup of KAM 

tori. 57 For low fluctuation levels where the tune shift is small and the noise level is low, 

the phase space may contain many stable regions surrounded by regions of stochasticity. 

As the fluctuation level is increased, the stable regions disappear and the whole phase 

space becomes stochastic. When this occurs, the diffusion of the particles becomes nearly 

uniform across the phase space, as observed in the simulations with high L),vQ and high 

noise levels. 

8.0 CONCLUSIONS 

In this section we discuss the results of our investigations of the beam-beam interaction 

and their relevance to modern circular accelerators. We also suggest future improvements 

that can be made to the currently developed numerical tools. 
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S.l Summary of Results 
We have examined the effects of collective interactions between counterstreaming proton 

beams via various simulation techniques. Two types of code have been developed to study 

the effects of the filamentation instability: an electromagnetic PIC code and a Vlasov 

code. Three types of code have been developed in increasing sophistication to study the 

beam-beam interaction: (1) a tracking code, (2) a strong-strong code, and (3) a 8/ code. 

S.1.1 Filamentation Instability 
Fair agreement is found between linear theory of the filamentation instability23 and 

the electromagnetic PIC code for beams with width Wb greater than Ac the collisionless 

skin depth. The filament sizes correspond approximately to a collisionless skin depth Ac, 

and the measured growth rate is close the maximum growth rate. It is found that the 

filamentation instability is not suppressed by having the counterstreaming beams small in 

width in comparison with the collisionless skin depth of the beam Ac. 

In the Vlasov code two counterstreaming electron beams are also found unstable to the 

filamentation instability. The maximum growth rate r max/Wb ~ 0.4 is close to the theo­

retical maximum filament at ion growth rate. As the beam evolves, it begins to spread in x. 

The filament sizes are between approximately 0.5Ac and Ac. The code is timed for various 

problem sizes, and performance is about 2.3 times faster than the Cray YMP. However, the 

distribution function becomes negative from truncation error. This an inherent drawback 

with the Vlasov simulation technique. 

From these results it is apparent that the filamentation instability will have much more 

of an effect on electron-electron or electron-positron synchrotrons. The fraction of the 

growth time is higher on such machines than it. is on hadron machines such as the SSC. 

S.1.2 Collective Beam-Beam Effects 
Among the codes developed, the strong-strong and 8/ codes are best suited for studying 

beam-beam collective effects. The electromagnetic PIC code requires too many time steps 

to cover one interaction time, and the tracking code does not show beam collective motions. 
The strong-strong code's main drawback is the amount of fluctuation noise produced by 

the finite number of particles used. This noise may be reduced by initializing the particles 

using the quiet start.36 Also, although the 8/ code is much quieter than the strong-strong 

code, it is better suited for studying the beam-beam interaction away from resonances. 

Using the reference parameters of the SSC, oscillations in 6.v are observed in the strong­

strong simulations. The oscillations indicate expansion and contraction of the beams. 

The beam expansion and contraction varies with different particle positions. The small­

amplitude portion of the beam is increasing in oscillation amplitude while the entire 
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beam is decreasing in oscillation amplitude. The odd moments of the beam, < x > 
and < (x- < x >)3 >, are increasing in oscillation amplitude with rotation number. The 

amplitudes of the even moments, < (x- < x »2 > and < (x- < x »4 >, both decrease 

with the number of rotations. The phenomena of the "flip-flop" effect,7 where one beam 

is decreasing in phase space area and the other beam is increasing, is observed in our 

simulations. It is found to be sensitive to the initial conditions. 

Differences between the nonuniform charge and uniform charge initializations are found. 

The beam distribution from the uniform charge initialization is smoother than the distribu­

tion from the nonuniform charge distribution at the beginning and end of the simulation. 

The oscillations in Av indicate that the expansion and contraction of the beam with 

uniform charge initialization is smaller than the nonuniform charge initialization. Overall 

the fluctuation levels in the uniform charge initialization are smaller than in the nonuniform 

charge initialization. 

The simulations based on the 6 f algorithm show the lowest fluctuation levels of all the 

codes except the tracking code. However, the tracking code does not include internal 

dynamics of the beam. After 105 rotations the two main approximations of the 6 f code 

are still valid. The deviation from the initial Gaussian distribution is still small. The 

maximum perturbations to the Gaussian background are only 0.1% of the background 

distribution. Also, the constant phase space density assumption remains a good approxi­

mation. After 105 rotations in the 6 f code the simulation particles are no longer uniformly 

distributed in (x / (j x, Px / (j p) space. However, clumping of particles is not significant. In the 

simulations using the reference SSC parameters, the amplitude of the variation in Av for 

small-amplitude particles is approximately ±3% of Avo throughout the run. As observed 

in the strong-strong simulations, the beams are expanding and contracting differently at 

different particle positions. The small-amplitude portion of the beam is constant oscil­

lation amplitude, while the entire beam is increasing in oscillation amplitude. The odd 

moments, < x > and < (x- < x »3 >, are both increasing in oscillation amplitude with 

rotation number. This increase in the odd moments is also observed in the strong-strong 

simulations. 

8.1.3 Stability in the Tune Versus Tune Shift Space 
Scans in p'arameters tune and tune shift, Vo and Avo, show regions of stability and 

instability against the beam blowup. These regions correspond closely to the regions 

predicted by the linear theory of Chao and Ruth. IS For small values of the tune shift Avo, 

the beams are unstable just above a resonance. For beams with values of Vo just below 

a resonance, the beams are stable. Strong resonant beam blowup is observed just above 

Vo = 1/2 and Vo = 1/4 for values of Avo = 2.1 X 10-3• Just below these tune values 
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the beams are stable, as expected. However, each of the beams shows dominant modes 

distorting the beams in (X/C1x,Px/C1p) space. For lIO = 1/2 - 6l1o mode 2 dominates, and 

for lIO = 1/4 - 6l1o mode 4 dominates. It is also found that the rate of beam blowup above 

the resonance drops with the order of the resonance. With lIO = 1/2 + 6l1o the beams 

blow up very quickly within a few hundred rotations. The beams blow up more slowly 

for lIO = 1/4 + 6l1o. The slowest beam blowup is observed for II = lIO + 6l1o, where in 

the case of two beams lIO = 2/6 and 6l1o = 4 X 10-3• In this case mode 6 dominates the 

distribution. 

8.1.4 Particle Diffusion 
In studying particle diffusion away from resonances, it is found that the tracking code 

shows no diffusion of particles from the beam-beam interaction over 105 rotations. The 

strong-strong codes are too noisy to study the process of diffusion of beam particles due to 

the beam-beam interaction. With variable charge initialization all particles show diffusive 

behavior after 10,240 rotations. The diffusion differs substantially from the tracking code. 

The diffusion coefficient Dx is uniform across the beam radius and is nearly an order 

of magnitude higher. With uniform charge initialization where the fluctuation noise is 

lower, only particles with large r/C1, where r/C1 = ...j(X/C1x )2 + (Px/C1p)2, are diffusive after 

10,240 rotations. Results from noisy tracking codes modelling the finite particle fluctuation 

noise indicate that some of the diffusion can be attributed to this noise. This noise can be 

somewhat offset by using quieter particle initialization schemes such as the uniform charge 

scheme. However, there are still significant differences from the tracking code. Although 

the strong-strong code should show differences from the tracking code because of the self­

consistent solution of the fields, it is difficult to determine whether the differences observed 

are due to particle fluctuation noise alone. However, it is apparent that the enhanced 

diffusion observed in the tails of the distribution for the strong-strong code is due to the 

self-consistent treatment of the beam dynamics. 

The hf code with the lowest fluctuation level shows no particle diffusion up to 10,240 ro­

tations, agreeing with the tracking code. The noise level of the hf code is less than the 

strong-strong code with either the variable or uniform charge distribution. However, par­

ticle diffusion is observed after 40,960 rotations for particles with large values of r / C1 > 2. 

It appears that"the particles in the tail of the distribution are most sensitive to either noise 

or collective motion in the beams. Variation of the hf particle number indicates that this 

diffusion in the tails is not due to particle noise. All particles are diffusive after 105 rota­

tions. The magnitude of the diffusion is found to increase exponentially with the action J, 

where J = (x / C1 x? + (Px! C1 p? This exponential dependence is found to be independent 
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of the number of particles used in the 81 simulations. It appears, therefore, that collective 

beam effects are responsible. 

Stochastic regions in phase space are found using the 81 code by running the code 

forward and backward in time. They are found for particles with r / (j small and r / (j large. 

Between the two regions there is a thin ring where the particles may not be chaotic. Due 

to limited resolution the ring may consist of islands separated by stochastic regions. 

8.1.5 Beam Offset Effects 
In examining the effects of beam offset on diffusion, good agreement is found between 

analytic theory22 and the tracking code. This is expected, since the tracking code is based 

on the "weak-strong" assumption, as is the theory. Results from the 81 simulations show 

general agreement with the range of values for the diffusion. The 81 code is started with 

a offset and is allowed to evolve self-consistently for M = 105 turns. The values of the 

diffusion in action are within the range of the analytic prediction. However, the 81 results 

show an exponential dependence on the action J for large values of J, whereas the theory 

shows the diffusion leveling off. The approximate value for the diffusion from the change 

in luminosity is lower than the diffusion for most of the sample particles in the 81 code. 

Tracking code results with < x > input from the 81 also do not show the same functional 

dependence on J as the 81 code. The values for the diffusion, however, are within the 

same range. The exponential dependence on the action J is still under investigation. 

Analysis of the variation of the beam offset with increasing r / (j or equivalently VJ shows 

that the offset < x > increases. It is apparent that because of the non-rigid character of 

the beam, particles at large J have much larger offsets than particles at small J. This 

variation of the offset with J explains the variation of the diffusion coefficients with J. 

The behavior is most likely due to the self-consistent effects included in the 81 code, 

which are still under investigation. The leveling off in the diffusion is observed in the 

81 simulation when the beam strength ~1I0 is increased. The increase in ~1I0 leads to 

the increased beam offset < x >. It appears that when this beam offset is large enough, 

the resulting diffusion is dominated by beam offset diffusion.22 This leveling-off in the 

diffusion is also seen for the strong-strong code. It appears as if the fluctuation level 

of the simulation determines whether the diffusion due to the presence of < x > offset 

suggested by Stupakov22 dominates the process of particle diffusion. This behavior in the 

diffusion is similar to the breakup of KAM tori.57 For low fluctuation levels where the 

tune shift is small and the noise level is low, the phase space may contain many stable 

regions surrounded by regions of stochastici ty. As the fluctuation level is increased, the 

stable regions disappear and the whole phase space may become stochastic. When this 
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occurs, the diffusion of particles is nearly uniform across the phase space, as observed in 

the simulations with high ~vo and high noise levels. 

8.2 Future Improvements 
In this section we discuss possible future improvements that can be made to the codes 

and future areas of study. 

One obvious improvement to the code is extension to x - y and x - y - z dimensions. 

This extension is straightforward. 

Improvements can be made to the simple storage ring model we employed. Some of the 

effects that can be included in the lattice traversal are: 29 

• betatron damping 

• synchrotron motion 

• non-zero chromaticity 

• longitudinal displacement 

• (3* variation along the length of the interaction point 

• energy loss and phase change between interaction points 

• quantum excitation. 

As shown earlier, the perturbation equation for the hf advance was linear m hf 

(Eq. (6.108)). The term that i~ neglected is Eq. (6.109): 

ahf 
hF(x,s) ax' ' (8.1) 

which was assumed to be small. This term, however, can be incorporated in the h f advance 

by placing it in the stationary Eq. (6.100): 

afo ,afo (,. ) afo - + x - - Ii. (s) - Fo( s) x - = 0 
as ax ax' 

(8.2) 

in the following manner: 

afo ,afo ( ) afo ahf 
as + x ax - K(s) - Fo(s) x ax' =< hF(x,s) ax' >, (8.3) 

where <>. refers to time average. The incorporation of this term in the stationary 

Eq. (6.100) forces the numerical advance now of fo(x,x',s). However, fo(x,x',s) is slowly 

varying as long as it is away from resonances, so that the equation would need to be 

advanced only every few thousand rotations. The term in Eq. (8.1) is similar to the quasi­

linear term used in plasma physics.58 

Another improvement that can be made includes a higher-order method of integration 

of the particle positions. Higher-order integration may be accomplished using the method 

of symplectic integration algorithms59 or Lie algebraic techniques.6o 
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Also a possibility exists of applying the technique of differential algebra61 to the 

81 algorithm. In this technique the 81 method could be treated as a mapping function 

that could be applied to any points in phase space. 

Another approach to the 81 method would involve using the Vlasov approach (Eulerian 

method). The main problem with the Vlasov technique has been that the distribution 

functions go negative due to truncation errors. However, in the 81 technique the main part 

of the distribution is already determined, and the perturbation can go negative without 

causing problems. 

One of the topics of future study for the beam-beam interaction would be the determina­

tion of the mechanism for the exponential dependence in action J observed in the diffusion 

of the particles. A theory which includes self-consistent treatment of the interaction would 

be a next step. Other areas of investigation include investigation of betatron resonance, 

applications to other machines such as HERA or LHe, and the effects of collision angle on 

beam dynamics. 
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