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Abstract

The effects of the beam-beam interaction on particle dynamics in a synchrotron collider
are investigated. The main highlight of this work is the investigation of collective effects
of the beam-beam interaction in a self-consistent approach that naturally incorporates
the correct single-particle dynamics. The most important target of this simulation is to
understand and predict the long-time (108-10° rotations) behavior of the beam luminosity

and lifetime.

For this task a series of computer codes in one spatial dimension has been developed
in increasing order of sophistication. They are: the single-particle dynamics tracking
code, the strong-strong particle-in-cell (PIC) code, and the particle code based on the
0f algorithm. The latter two include the single-particle dynamics of the first. The third
approach is used to understand beam lifetime by trying to improve the numerical noise
problem in the second.

Scans in tune vy and tune shift Avy show regions of stability and instability that cor-
respond to the regions predicted by a linear theory. Strong resonance beam blowup is
observed just above vy = 1/2 and vy = 1/4, where the rate of beam blowup drops with
the order of the resonance.

In both the strong-strong code and §f code using the reference parameters of the
Superconducting Super Collider, oscillations in the tune shift, Av, are observed. The
odd moments of the beam are increasing in oscillation amplitude with rotation num-

ber, while the amplitudes of the even moments either decrease or remain constant. The
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“flip-flop” effect is observed in the strong-strong code simulations and is found to be sen-

sitive to the initial conditions.

In studying slow particle diffusion in the phase space of the beams away from resonances,
the tracking code shows no diffusion of particles from the beam-beam interaction after
105 rotations. The 6f code shows all particles diffusive after 105 rotations. The diffusion
coefficient is an exponential function of the action. An attempt to understand the diffusion
process based on the spontaneously generated beam offset model has brought an agreement
between analytic theory and the tracking code with random beam offsets. The exponential
behavior found in the self-consistent § f code, however, remains unexplained, although the
order of magnitude as well as the behavior at large tune shift are in agreement with the
theoretical model. A possible cause of this discrepancy might be the presence of KAM

surfaces in low tune shift regimes.

iv



1.0
2.0

3.0

4.0
5.0
6.0

7.0

CONTENTS

FIGURES ottt ittt et it e te s ae ittt tia et aaenneenneann, vii
TABLES ottt i et ittt e et it et e e, xii
INTRODUCTION ittt ittt ettt et ettt et eee ettt aiieeennns 1
BASIC ACCELERATOR PHYSICS .. .ttt i i i iie e 3
2.1 Transverse Particle Motion ......... ...ttty 4
2.2 Transverse FOcuSSINg ... .ooiiii it i it it )
THE BEAM-BEAM INTERACTION .....oiniiiiiii ittt iieaennn. 7
31Dynamic Beta ..ot e e 10
3.2 Steady State Distribution ........ ... . o i 13
3.3 Dynamics About the Steady State ............ ... i, 14
3.4 Vlasov Approach ... .ovvviiiiiniiii it i it i i i 17
3.5 Diffusion from Beam Offset ........... ... i, 19
FILAMENTATION INSTABILITY ..ottt it iie i eerneeenn. 20
PREVIOUS BEAM-BEAM SIMULATION RESULTS ..................... 21
SIMULATION MODELS ...ttt ittt ittt e e et e einn e 25
6.1 Tracking Code . ...oviiiiiir ittt i ittt i e ettt 26
6.2 V10asov Code .. ovviiriit i e e e e e e 27
6.2.1 Boundary Conditions ..........covuiiiiiiiiininii it 30
6.2.2 Square GeOmetry ... ovvii ittt ittt ittt 31
6.3 Particle-in-Cell Codes . ... ...ttt it i i iaeaenne 33
6.3.1 Accelerator Model . ... ...t i i i i i e 34
6.3.2 ElectromagneticCode ........ ... i, 34
6.3.3 Strong-Strong Code . ...ttt i e e e 35
6.3.4 Noisy Model ...ttt i i i i et i et cieaneen, 45
6.4 0f Algorithm ... ... o e 45
6.4.1 Finite Particle Representation .............. ... ..o, 48
6.4.2 Symplectic Mapping ......covviirn e ieinieieinneeaenn. 50
6.4.3 Time Advance .......oviiiiiiin it ittt ittt iieeannn. 52
6.5 Diagnostic Quantities ........ccoiiiiiiiiiiii it i i i i 53
6.5.1 Emittance ..ottt i i i i et 53
6.5.2Tune Shift ....... ... .. i, e 54
6.5.3 Determination of Beam Moments .......... et e 56
6.5.4 Determination of Diffusion .............. ... i ... 57
SIMULATION RESULTS ..ottt ittt sttt et itieeannan, 58
7.1 Filamentation Instability ............ccc0iiiiiiiiiiie i iiiennnnnn. 59
7.1.1 Electromagnetic Code Results ...............iiiiiiiennnen... 59
712 VlasovCode Results .......... ..o, 61
7.2 Collective Beam-Beam Effects ..............ccciiiiiiiiininnnnnann. 64
7.2.1 Reference Parameters ............ccoiiieiiiiineennnneennnnnnnnn. 64
72200 —Appg Stability ..ot e 87



7.3 Particle DIffUusion . oo vt ittt ittt ettt e e e e e e e e 92

7.3.1 Tracking Code Results ..ottt 92
7.3.2 Strong-Strong Simulation Results ............................... 96
7.3.36f Simulation Results ......... ... o i i 102
7.3.4 Beam Offset Effects ...t i i, 111

8.0 CONCLUSIONS ..ttt ittt it ettt ittt ie e st enee e rneeennnanns 119
8.1 Summaryof Results ...... ..o i i i s 120
8.1.1 Filamentation Instability ............ ... ... i, 120
8.1.2 Collective Beam-Beam Effects ........... ..o, 120
8.1.3 Stability in the Tune Versus Tune Shift Space ..................... 121
8.1.4 Particle Diffusion .........cciiiiiiiiiniiin i iinennnnnnnnann 122
8.1.5 Beam Offset Effects ........coiiiiiiiiiiiiin e iiieennnenans 123

8.2 Future Improvements . ........c.iiiiiiiiiiin ittt e 124
ACKNOWLEDGEMEN TS ..ottt it ittt ittt ettt e tenenananes 127
REFERENCES .. i i i i ittt et ittt eniaeanananen 129

vi



2.1
2.2
3.1
3.2
3.3

5.1

5.2

6.1

6.2
6.3

6.4

6.5
6.6

6.7
6.8
6.9
7.1
7.2

7.3

7.4

7.5
7.6

7.7
7.8

7.9

FIGURES

Modern Accelerator Configuration. .........ccooiiiiiiiiiiiiiiiiinenn., 3
Fields of a Quadrupole Magnet. ..........coiiiiiiiiiiniiinninnnannaann. 6
Geometry of the Beam-Beam Interaction for a Test Charge. ................. 7
Stability of a Uniform Cylindrical Beam to Beam-Beam Perturbations,

Where £ is Plotted Versus vg. ....ooiinii ittt 12
Stability Diagrams for the Case of Two Bunches per Beam and Maximum

Modesof m=2,4,6,and 8. .......coiiuiiiiiriiiiiiiii ittt 19

Simulation of the Vertical Beam Profile. The histogram is the result of binning
each test particle over 1000 turns. The solid curve is the original Gaussian

profileof the beam. .........cooiiiiiiiiiii i e e 24
Poincare Map of a Test Particle, Where v, = 25.2 and v, = 23.32

After 10,348 TUIMS. ottt vte ittt it tae it iie et annnes 25
Communication Path for North, South, East, and West Communication in the

SquUAare GEOMEEIY. ..t viit ittt ittt i i i e 31
The Two Components Used to Model the Collider. ........................ 34
A Gaussian Distribution of Particles Produced from a Random

Number Genmerator. . ...vvitittn ittt teteaeeteeeaneneenaneneeneaenanas 40
Distribution Integrated over p, with Random Number-Generated Phase

Space Positions. .....iuviuiiiiiiiii i i i i i i i i e 41
Uniform Distribution of 10,000 Particles in z, p, Phase Space. ............... 42
Distribution Integrated over p, with Uniform Distribution and Nonuniform

Charge Assignment. ...........iiiiiiiiiiiiiiiiii ittt 43
A Nonuniform Distribution of 10,000 Particles with Equal Charge. ........... 44
The Profile in z of a Nonuniform Distribution of Particles. .................. 44
Uniform Distribution of 1000 Particles in z,p, Phase Space. ................ 50
(z,pz) Phase Space Plots for wpT = 50,100, and 150 at the Top, Middle,

and Bottom of the Figure, Respectively, with y =100. ..................... 59
Growth Rate of Filamentation Instability Tmaz /wn, Where wy, = wp/y1/2,

for Three Values of 4. .. oiiiiiiiiii it i i i it st eieiiaenanns 60

Maximum Growth Rate I'pqz /ws,, With and Without the Electrostatic

Field Calculation, Where wy, = wj/ ~1/2 Versus the Ratio of Beam Radius wj

to Collisionless Skin Depth Ap = ¢v/2/wp. «oviviiii it 60
Comparison Between the Intel Hypercube, the Connection Machine,

and the Cray YMP on a Test Problem. The growth in field energy as a function

of time (wpet) is shown. ... . i 61

Integrated Distribution Function f(z,z) at 0 and 400 Time Steps from the

Top to the Bottom. ... .o i i i e 62
Integrated Distribution Function f(z,p,) at 0 and 400 Time Steps from the

Top to the Bottom. ...... ..o ittt it ittt iieneenns 63
Tune Shift of Interacting Beams. ...............iiiiiiiiiiiiiiiennnnnn 66
Initial (Top) and After 1000 Rotations (Bottom) (z/os,ps/0p) Phase Space

Particle Positions. ......... i et 66
Distribution of 10* Simulation Particles in (z/0z,pz/0p) Space After

10,240 Rotations, with v9 = 0.285 and Ay =21 x 1073, ... ... ccoiiiioi... 68

vil



7.10
7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

7.26
7.27

7.28

7.29

7.30

Distribution of 10* Simulation Particles in z After 10,240 Rotations, with

v =0.285and Avg =21 x 1073, ... . 68
Tune Shift Av from a Least-Squares-Fit to Small-Amplitude Particles
z < 0.10; (Top) and All Particles (Bottom) for M = 10,240 Rotations. ...... 69

Position of an Initially Small- Amplitude Particle zp = 0.10; in (x/0z,pz/0p)

Space for M = 10,240 Rotations (Top) and Power Spectrum of z Position

of the Particle Versus v (Bottom). ............ciiiiiiiiiiiiiiiininn... 71
Position of an Initially Large-Amplitude Particle z9 = 0.90; in (z /0, pz/0p)

Space for M = 10,240 Rotations (Top) and Power Spectrum of = Position

of the Particle Versus v (Bottom). .......coviiiiiiiiiiiiiiiniiiiinnnennn 71
Beam Moments < z > and < (z— < z >)® > for M = 10,240 Rotations

at the Top and Bottom of the Figure, Respectively. ........................ 72
Beam Moments < (z— < z >)? > and < (z— < z >)* > for M = 10,240

Rotations at the Top and Bottom of the Figure, Respectively. ............... 72
Beam Moment < z > and Power Spectrum S(v) for M = 10,240 Rotations

at the Top and Bottom of the Figure, Respectively. ........................ 73
Beam Moment < (z— < z >)? > and Power Spectrum S(v) for M = 10,240
Rotations at the Top and Bottom of the Figure, Respectively. ............... 73
The Emittance € of Both Beams for 10,240 Rotations. One beam is at

the top and the other beam is at the bottom of the figure. ................... 75

The Emittance € of Both Beams for 10,240 Rotations with a Slightly
Different Initialization. One beam is at the top and the other beam is at

the bottom of the figure. ......... .. .0 i e 75
Distribution of 10* Simulation Particles in (z/0z,pz/0p) Space After

10,240 Rotations with vy = 0.285 and Ayp = 2.1 X 1078, 76
Distribution of 10* Simulation Particles in = After 10,240 Rotations

with 19 =0.285and Ay =21x 1073, ... ... .. i, 76
Tune Shift Av Measured from a Least-Squares-Fit to Small-Amplitude

Particles z < 0.10; for M = 10,240 Rotations. ...........c.viiitiienann. 77
The Emittance € of Both Beams for 10,240 Rotations. One beam 1is at

the top and the other beam is at the bottom of the figure. ................... 7
The Minimum and Maximum Perturbation Values 6f/ fo for M = 10,240

Rotations, vp = 0.285, and Arvg = 2.1 X 1073, ... .. i 79
Distribution of 10% Simulation Particles in (z/0z,ps/0p) Space After

10° Rotations with 75 =0.285 and Avg =2.1x 1073, ... ... it 79
Gaussian Steady-State Distribution. ........ ... . .. .. i, 80
Distribution of 10% §f Simulation Particles Including the Particle

Weights in z After 10° Rotations with vg = 0.285 and Ayp =2.1 x 1073, ... .. 80

Tune Shift Av Measured from a Least-Squares-Fit to Small-Amplitude
Particles z < 0.10; (Top) and All Particles (Bottom) for M = 10,240

Rotations. ...ttt i i i i i i e et e e 83
The Tune Shift Ay Measured from the Shift in the Power Spectral Peaks
of the = Positions of 100 Sample Particles After M = 10° Rotations. ......... 83

Beam Moment < z > and S(v) for M = 10° Rotations at the Top
and Bottom of the Figure, Respectively. ............c.cciiiiiiiiiiiinn, 84

viti



7.31

7.32

7.33

7.34

7.35

7.36

7.37
7.38

7.39

7.40
7.41

7.42

7.43

7.44

7.45

7.46

7.47

7.48

7.49

7.50

7.51

Beam Moment < (z— < z >)? > and S(v) for M = 10° Rotations at the

Top and Bottom of the Figure, Respectively. ............. ...l
Beam Moment < (z— < z >)® > and S(v) for M = 10° Rotations at the

Top and Bottom of the Figure, Respectively. ..............................
Beam Moment < (z— < £ >)* > and S(v) for M = 10° Rotations at the

Top and Bottom of the Figure, Respectively. ........... ... .. ... o0
Odd Modes m = 1, 3,5 Down the Figure of the Distribution of Particles

for M = 10% ROtAtIONS. «vvveeetteneneeeeeeenteeenaeeannnneeennnn.
Even Modes m = 2,4,6 Down the Figure of the Distribution of Particles

for M = 10% Rotations. . ...vveuurrerinneeeereenuneeennneeeennnneennnnns
The Emittance € of Both Beams for 10° Rotations. One beam is at the top

and the other beam is at the bottom of the figure. .............. ... ... .. ..
vo — Ayp Stability Diagram. .......ciiuiiiiiiiii i i i i
(z/B*,2') Distribution of Particles for 19 = 1/2 + Ay (Top) and

vp = 1/2 — Avyg (Bottom), Where Avg=2.1x1073. ... ... ... ... .......
(z/B*,z') Distribution of Particles for 19 = 1/4 + Avy (Top) and

vp = 1/4 — Avg (Bottom), Where Avg =2.1x 1073, ... ....................
Emittance as a Function of Rotations for vy Just Above 1/3. ................
(z/B*,2') Distribution of Particles for 19 = 1/3 + Ay, Where

Avg =21 x 1073
Initial Particle Positions for 100 Tracking Code Partlcles in (¢/0z,pz/p)
Phase Space. ... e e et
Poincare Section in (z /0%, ps/0p) Space of Small- and Large-Amplitude

Tracking Code Particles After M = 10° Rotations. .............ccvvvenrnn..
D, from the Tracking Code with Avg =2.1 x 1073 and v = 0.285

for M = 10,240 Rotations. dfl and df2 have time scales of AN; = 102

and AN, = 1024 rotations, respectively. .........c.ciiiiiiiiiiiiiiiiieea.
D, from the Tracking Code with Avg = 2.1 x 1073 and v = 0.285 for

M = 40,960 Rotations. dfl and df2 have time scales of AN; = 409

and AN, = 4096 rotations, respectively. .........c. ittt
D, from the Tracking Code of the Beam with Ay =: 2.1 x 10~% and

v = 0.285 for M = 10% Rotations. dfl and df2 have time scales of AN; = 1000
and ANy = 10,000 rotations, respectively. ..........cciiiiiiiineiinnnnn..
D, from the Strong-Strong Code with Ay = 2.1 x 10~2 and

v = 0.285 for M = 10,240 Rotations. dfl and df2 have time scales

of ANy =102 and AN = 1024 rotations, respectively. .....................
Poincare Section in (z/0z,ps/0p) Space of Small- and Large-Amplitude
Strong-Strong Code Particles after M = 10,240 Rotations. ..................
D; Versus Particle Number for a Sample Particle at r/o = 0.1 for

M = 1000 Rotations. dfl and df2 have time scales of AN; = 10 and

AN; = 100 rotations, respectively. .........c.cuiiiiiiiiiiiiiiiiiiiiiiaaans
D, Versus Particle Number for a Sample Particle at r/o = 0.9 for

M = 1000 Rotations. dfl and df2 have time scales of AN; = 10 and

AN; = 100 rotations, respectively. .............c. i,
Initial Particle Positions for 100 Strong-Strong Sample Particles

in (¢/0z,pz/p) Phase Space. ..........uiiiiiiiiii i

87



7.52

7.53

7.54

7.55

7.56

7.57

7.58

7.59

7.60

7.61

7.62

7.63
7.64
7.65
7.66
7.67
7.68
7.69

7.70

7.71

Poincare Section in (z/04,ps/0p) Space of Small- and Large-Amplitude

Strong-Strong Code Particles with Uniform Charge After

M =10,240 Rotations. . ...i.iiiiiiiniiiininennrneenenrenennnenenennnen 100
D, from the Strong-Strong Code with the Variable Charge and Uniform

Charge Particle Initialization for M = 10,240 Rotations. dfl and df2 have

time scales of AN7 = 102 and AN, = 1024 rotations, respectively. ........... 101
D, from Tracking Code and the Strong-Strong Code with Uniform Charge

Particle Initialization for M = 10,240 Rotations. dfl and df2 have time

scales of ANy = 102 and AN2 = 1024 rotations, respectively. ................ 101
D, from Noisy Tracking Code and PIC Code for M = 10,240 Rotations

at r/o = 0.1 and 0.9. dfl and df2 have time scales of AN; = 102 and

AN; = 1024 rotations, respectively. .........ciiiiiiiiiiiii i i 102
Poincare Section in (z /0, p;/0p) Space of Small- and Large-Amplitude

6f Code Particles After M = 10,240 Rotations. .............c.ciiiiien. 103
Initial Distribution in (z,p;) Phase Space of 100 Sample Particles. ........... 103

D, from the §f Code with 1000 Simulation Particles and the Tracking
Code for M = 10,240 Rotations. dfl and df2 have time scales of AN; = 102

and AN, = 1024 rotations, respectively. ..... e ettt 104
Variation of the Diffusion Coefficients with Particle Number N for
M =10,240 Rotations. ......c.iuiiutiintinnernneeonneronasonesnansanennn 104

D, from the éf Code with 1000 Simulation Particles for M = 40,960 Rotatlons
dfl and df2 have time scales of AN; = 409 and ANz = 4096 rotations,

TESPECHIVElY. L.ttt e i i i e i et i e e 106
Variation of the Diffusion Coefficients with Particle Number NV for
M =40,960 Rotations. ......iviiriinritineeneneneeeneeaneanenncnnennnas 106

D, from Tracking Code and the §f Code for M = 40,960 Rotations.
dfl and df2 have time scales of AN; = 409 and AN, = 4096 rotations,

) 1oLt 5 =) 2O 107
D, from Noisy Tracking Code for M = 40,960 Rotations. dfl and df2 have time
scales of AN; = 409 and AN, = 4096 rotations, respectively. ................ 107
D, from the §f Code for M = 10° Rotations. dfl and df2 have time scales

of AN; = 1000 and AN, = 10,000 rotations, respectively. .................. 108
D, from Tracking Code and the §f Code for M = 10° Rotations. dfl and df2

have time scales of AN; = 1000 and AN; = 10,000 rotations, respectlvely .... 109
Variation of the Diffusion Coefficients with Part1c1e Number N for

M =10% Rotations. ......ccoveerenenreeeeneneeaneenaneeaceneeeeeeennens 110
A (z/0z,pz/0p) Space Plot with Contour, Surface, and Grey-Scale Plots

from the Top to the Bottom of the Figure. ............ .. ..o, 110
< z > [og Versus M from §f Simulation, with vy = 0.285 and

Avg =0.0021. ..o i i et e et i it i s 112
Total Change in the Action AJys Versus the Action J for Three Values

of the Beam Offset €. ... oo ittt ittt eneeeneneaenens 112

Tracking Code Results Showing the Change in < (AJp)? > /2 Per Turn

Versus the Action J for Three Values of the Beam Offset (. The time scales

over which dfl and df2 are calculated are 103 and 10* rotations, respectively. .. 113
Positions in (z/f*,z') Space of 100 Sample Particles. ...................... 113



7.72

7.73
7.74
7.75
7.76

7.77
7.78
7.79

7.80

§f Code Results Showing the Change in the Action AJy Per Turn Versus

the Action J for Zero Initial Beam Offset. The time scales over which dfl

and df2 are calculated are 10% and 10* rotations, respectively. ...............
A Comparison of k =0 with Terms k=1land k=2. .......................
A Comparison of Tracking Code with Input < ¢ > and Theory. .............
A Comparison of Tracking Code with Input < z > and §f Results. ..........
The Function Dependence of the Change in the Action with Argument J
Rather Than J/2. ... i i i
The Average Beam Offset < z > /A for Small, Medium, and Large

r/o Particles Down the Figure. ........... ..o it
< z > of the Beam with Avg=84x1073. ............ e
D, of the Beam with Ayg = 2.1 x 10~3 and Avy = 8.4 x 1073 for

M = 40,960 Rotations. The time scales of dfl and df2 are 409 and

4096 rotations, respectively. ......... ..ttt e e i e e
D, from PIC and §f Codes of the Beam with Avg = 2.1 x 1073 for

M = 10,240 Rotations. The time scales of dfl and df2 are 102 and

1024 rotations, respectively. .......... ...t e e

xi



3.1

3.2
6.1
7.1

TABLES

Cases That Have Been Studied in Coherent Beam-Beam Dynamics

in Increasing Complexity. ........ciiniiiiiiiiii ittt 15
Beam Modes and Associated Resonances. ..........ccoviirinirnnnennnnnnn 17
Steps for Advance of 6f Algorithm. .......... ... . ... o i i, 52
SO C ParameterS. «vv v vttt ees e ettt ettt e 65

xii



1.0 INTRODUCTION

The key goal of high-energy particle accelerators in addition to achieving high energies
is achieving a high number of collision events from high-energy colliding beams. In circular
accelerators or synchrotrons, this is accomplished by colliding two focussed beams that are
travelling in opposite directions. The beams can be either of the same or opposite charge

sign. The number of collision events depends on the interaction rate, R:!
R= Lo’,nt, (1.1)

where L is the beam luminosity and oy,; is the interaction cross section of the particles in
the beam. The luminosity of the colliding beams is defined as
N2
L=f—— (1.2)

d7g?’

where N is the number of particles, o is the rms beam size, and f is the frequency of
collisions. To achieve a large interaction rate, it is necessary that the luminosity be as high
as possible. High luminosity is achieved by high collision frequencies, a large number of
particles per beam, and small beam sizes. However, higher N increases collective effects,
higher f results in multi-bunch instabilities, and lower o places more demands on focussing
systems and beam sources. Typically the luminosity L is a number between 10%° and
103 cm~2sec™! for contemporary high-energy accelerators. At high energies the interaction

cross section i, tends to be small, on the order of 10732 to 10733 ¢m?

, as it is inversely
proportional to the square of the beam energy. A large number of collisions is necessary
to achieve a statistically significant amount of data. For example, in the Superconducting
Super Collider (SSC) the projected storage time in the main ring is 24 hours. In this
amount of time the bunched beams will undergo approximately 108 rotations and collisions.
Therefore, the beams need to remain coherent for a long period of time. The major concern
with circular colliders is long-term beam stability. Beam instabilities can lead to beam
spreading, which reduces beam luminosity and beam lifetimes. Beam instability is caused
by many factors:

¢ longitudinal and transverse momentum spread of the beam

noise in the system

magnetic field gradient errors

® resonarnces

steering errors

focussing errors

beam-beam interaction.



One of the principal limitations on beam intensity is due to the beam-beam interaction
via their collective electromagnetic fields.?® For the hadron colliders the beam-beam inter-
action is expected to be even more crucial, since there is no synchrotron radiation damping
to stop beam blow-up as in electron storage rings.?

In this paper we will concentrate on the beam-beam interaction with emphasis on the
beam-beam kick and beam-beam plasma collective effects. In the beam-beam interaction,
each beam imparts an impulse on the other beam at the interaction point where the beams
cross. This impulse may be treated as a kick, as the interaction time is much shorter
than the beam particle dislocation time due to collisions. The kick can include both
the impulse acting on whole beams and impulses acting on individual particles within
each beam. Beam-beam plasma collective effects include plasma instabilities or “soft”
collisions. These instabilities modify the beam profile and can contribute to increasing
beam size. Collective instabilities have the most effect in the interaction region, where
the beam densities are highest in the accelerator. One of the fastest growing collective
instabilities that can occur in a plasma is the filamentation instability. However, in typical
high-energy heavy particle colliders the beam-beam interaction times are very short relative
to the filamentation instability growth rate. In the SSC the interaction time is about 2%
of the maximum growth rate time. The relative importance of collective effects in plasmas

is determined from the plasma parameter g:

g=1/(n)\}), (1.3)

where n is the density and Ap is the Debye length. If ¢ < 1, collective effects play an
important role. For SSC-type parameters, g = 2.66. So collective effects are not dominant
for a single beam-beam interaction. However, the effects of a large number of successive

interactions have yet to be determined.

The objective of this study is to determine beam-beam interaction effects on particle
dynamics using a collective plasma model at the interaction point. A one-dimensional
model is employed at the interaction point so that oscillations in only one transverse
direction due to the counterstreaming beams are studied. The rest of the machine is
treated by simple harmonic transport (betatron oscillations). By employing a fully self-
consistent model at the interaction point, an assessment of the relative importance of
collisions as a whole and individual “soft” collisions (collective effects) can be determined.
Specifically, we will examine the contribution of self-consistent effects on beam blowup and

particle diffusion after a large number of interactions.



2.0 BASIC ACCELERATOR PHYSICS
In this section we describe the basic equations and terminology of particle motion in

modern circular accelerators or synchrotrons. The simplest configuration of a typical

modern accelerator is shown in Figure 2.1. The basic components are:*

e a charged particle source
e main storage ring
e accelerating system

e interaction regions.

Charged patrticle
source

FODO cells

RF cavities

FODO cells

Interaction region

TIP-03309
Figure 2.1. Modern Accelerator Configuration.

The charged particle source consists of a small volume of ionized hydrogen gas from
which charged nuclei (protons) are accelerated. These charged particles are accelerated by
an electric field before entering the main ring. A kicker makes these particles enter the
main ring,.

In the main ring the particles are confined by magnetic fields. The confinement system
consists of two parts: (1) the steering magnets and (2) the FODO cells. The steering
magnets are the dipole magnets that keep the particles bent in the plane perpendicular to
the magnetic field so as to keep the beam within a nearly circular path. The FODO (focus-
drift-defocus-drift) cells consist of a sequence of quadrupole magnets and drift regions (no
magnets). The FODO cells cause net focussing of the beams and will be described in
Section 2.2. Radio frequency (rf) cavities are used to accelerate the particles to high

energies. The generated electromagnetic fields are resonant with the particles.
In the following sections we concentrate on the basic equations describing the motion of

particles perpendicular to the accelerator path (transverse motion) and the net transverse

focussing of particles. The longitudinal motion will be omitted from this basic discussion.



2.1 Transverse Particle Motion
An equation of motion for the transverse motion of particles travelling around a collider

ring is obtained from the Lorentz force equation:

-

dp - -
7 = 90 % Bfc. (2.1)

The following assumptions can be made:!
1. The design trajectory of the machine is a straight line or a single planar closed

curve.

2. The field of the magnet is assumed to be two-dimensional. That is, the components

of the magnetic field along the particle trajectory can be ignored.

3. Transverse velocities are assumed to be much smaller than longitudinal velocities.
This is known as the “paraxial” approximation, with v =~ wvs;, where v, is the
velocity of the particle along the particle trajectory and v is the total velocity. The

“paraxial” approximation is used in most if not all particle acceleration designs.

4. The fields of the magnet are restricted to be linearly dependent on transverse
displacement of the particles.

5. In a planar accelerator there is no radial component to the magnetic field.

6. Derivatives of transverse field components in the directions of the components are
assumed to be zero, allowing one to neglect coupling between the two transverse

motions.

The equation describing the transverse linear motion of particles travelling in the static

magnetic field of the collider is, then, of the form:
" + K(s)z =0, (2.2)

where 2" = d?z/ds?, x is either direction perpendicular to the particle motion, s is the
direction along the accelerator path, and K(s) is similar to a spring constant in harmonic
motion, which is a function of s. This equation is known as Hill’s equation and was
studied in the 19th century. ‘In circular accelerators the function K(s) is periodic—that
is, K(s + C) = K(s), where C is the circumference of the accelerator. A general solution
to Eq. (2.2) can be obtained of the form:

z = ABY?*(s)cos[¥(s) + 8], : (2.3)
where ¥(s) is the phase advance of the particle as a function of distance along the collider s:
® ds
¥(s) = — 2.4
(#) o B(s) 24)

B(s) can be interpreted as the local wavelength of the oscillation divided by 27, or the
betatron oscillation length. A storage ring normally is designed and operated with ! < 8,
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where [ is the beam bunch length. The betatron oscillation length B(s) and K(s) are
related through the differential equation:!

266" — B + 46°K =4, (2.5)

where ' = df/ds and B" = d?B/ds?.
The phase advance of the particle per turn around the collider is called the “tune” v

and is defined as:
1 ds

2r | B(s)"

The tune v can be thought of as the rotation in phase space due to betatron oscillations.

(2.6)

One can construct a transfer map from the entrance to the exit of the magnet section

by writing the equations of motion in the form of a transfer matrix:®
z cos(2mv) + asin(27v) B sin(27v) z 2.1)
' il B _ﬁligﬁﬁl sin(2rv)  cos(27v) — asin(27v) g ) , '

where @ = —f'/2 and 8’ = dB/ds, and the indices n and n + 1 refer to the turn number.

One can define another parameter:

1+ o?
— , 2.8
% 5 (2.8)
and then the transfer matrix can be written in the form:
M = Icos(2nv) + J sin(27v), (2.9)

where

J=(a ﬂ) (2.10)
Y

and I is the identity matrix. The quantities @, 8, and v are called the Courant-Synder

parameters.?

2.2 Transverse Focussing

The existence of radial electric fields from the accelerating fields of the rf cavities, space
charge forces between individual particles, and forces on the particles due to image charges
in the vacuum chamber contribute to the transverse expansion of beam particles. Due to
these effects, transverse focussing is necessary. Net focussing in the transverse plane is

accomplished with quadrupole magnets. In quadrupole magnets the Lorentz force acts

5



to focus in one coordinate and to defocus in the other (Figure 2.2). The effect of the

quadrupole magnet in the focussing direction can be represented by a matrix of the form:

T 1 0 T
o = 1 1 o R (2.11)
n+l I n

where f is the focal length of the magnet. The paraxial and thin lens approximation has
been made.® In the defocussing coordinate the focal length is of the opposite sign. A linear
focussing design is possible using transfer matrices for the field-free drift regions and the

magnetic impulse sections. A drift region is represented by a matrix of the form:

(2)..- (D) =
z' n+1— 0 1 z' n’ .

where L is the length of the drift region. Net focussing is achieved by creating a lattice
consisting of a focussing lens, a drift region, and a defocussing lens. The transfer matrix
of this lattice is of the form:

1—&— ()2 oL+ L
M= ! L(f) 2. (2.13)
—F 1+ 7

where stability is achieved when L/2f is less than unity. Thus net focussing is achieved

when the focal length f is greater than half the lens spacing L.

BAS

TIP-03310
Figure 2.2. Fields of a Quadrupole Magnet.




3.0 THE BEAM-BEAM INTERACTION

In this section we will review the basic concepts of the beam-beam interaction. The
beam-beam interaction is an important factor in beam dynamics. It puts practical limits
on the yield of the storage ring and prevents many existing storage rings from achieving
design parameters.” Substantial use of the review article by Chao® is made in this section.

When two oppositely directed beams in a synchrotron meet at the interaction point
of the collider, they give each other a kick. Consider an idealized collision event where
cylindrical beams with radius a, length [, and N particles collide head-on. Figure 3.1
shows the geometry of the beam-beam interaction where a test particle at radius r of one

beam is passing through the other beam. We neglect space charge forces, since the force

Ne

1 I ' TIP-03311

Figure 3.1. Geometry of the Beam-Beam Interaction for a Test Charge.

that a particle sees from an oncoming beam is & 272 times larger than the force from the
other particles in the same beam, where « is the relativistic factor. So for ultrarelativistic
machines the space charge effect is relatively small. With a uniform cylinder of charge

there is a radial electric field E, of the form:

Ner

Er =207

(3.1)

where N is the number of particles in the beam, r is the distance from the center of the
beam, a is the beam radius, and ! is the length of the beam. In the relativistic limit v ~ c,
where v is the beam velocity, the magnetic field By produced by the beam is of the form:

=2Ner

By =E, 2 (3.2)
These combined fields produce a net force F, on the test charge:
4Ne?r
=— (34)

7



The impulse received by the test charge upon passing through the beam is
Ar’ — FrAt — 2N7‘0
ymc ~va?

r, (3.5)

where At = 2I—c and rg = -;‘i%g, the classical radius of the particle with mass m. Note that

Eq. (3.5) is independent of the beam length [ and can be rewritten in the form:

AT, = —-j: (36)
1 2N
}: = —-’;;37‘0 . (3.7)

The form of Eq. (3.6) makes the impulse look like a quadrupole error where f is the focal
length. Keeping this in mind, one can define a beam strength parameter £ due to the

beam-beam interaction:

1 8*
“T (3.8)
where (* is the betatron oscillation length at the beam-beam collision point. Using

Eq. (3.7), the beam strength parameter can be written in the form:
_ Nrog*
T 2nya?

Typically in proton-antiproton colliders, £ = 0.005, and in an electron-positron collider,

(3.9)

£ is as large as 0.05.° The beam strength parameter ¢ is related to the tune shift Av, as
we shall describe below. The tune shift Av indicates how much the tune v is shifted by
the beam-beam interaction.

In realistic cases the beams are not uniform cylinders of charge. In general the beam-
beam force is nonlinear in = and y. Most often with large numbers of particles the beams
are Bigaussian, where the widths in z and y direction are characterized by o, and oy. The

kicks that particles get from such a beam may be expressed in the form:®

Az = —a—U—é%y—) (3.10)
Ay = ___—_aUg;’ y). (3.11)
where
© exp|— :2 - (;"2 -1
U(:z;,y) = —%/0 dt [ 2( 3""t) 2( §+t)] . (312)

\/(0‘3 +t)(oZ + 1)

The equations representing the kicks are both nonlinear and are coupled. For small

values of y/o, < 1 and x/0; < 1 the force is linear and the two motions are decoupled:

Az' = fi (3.13)



Ay = =, 3.14
V=7 (3.14)
where
1 2Nrg
—_—= 3.15
fz 70’1;(0'1 + O'y) ( )
1 2Nrg (3.16)

o~ roy(os +0y)

This holds for only a small number of particles in the beam. For values of z/o,; =~ 1 and
y/oy = 1, the forces are highly nonlinear. It is found that the optimum design occurs when

& = &y. Equivalently this can be expressed as

b _ b
£ A

where 3; and f; refer to the betatron oscillation lengths in z and y, respectively, at the

(3.17)

interaction point.

Two models are used to study the beam-beam interaction: the weak-strong and strong-
strong models. Both models are important. For the weak-strong model the internal struc-
ture of the so-called strong beam is unperturbed. This type of model involves a rigid
nonlinear lens at the interaction point (IP) and becomes a problem of a nonlinear map.
Particles in the weak beam are perturbed by this map. For the strong-strong model both

beams are perturbed.
The procedure in principle for solving the beam-beam problem is:

e Let the unperturbed distribution ¥y be, for example, a Gaussian. With the strong-
strong perturbation, ¥y must be solved self-consistently. The perturbed beam
steady-state distribution ¥q is not Gaussian.

e Given the perturbed distribution ¥y, let
U =T+ AYy (3.18)
¥y = g + AD,. (3.19)
Are the infinitesimal perturbations A¥; 2 stable under mutual interactions?

Neither of these steps is easy. So far only bits and pieces have been done. Simple schemes
have been developed to solve the beam-beam problem.



3.1 Dynamic Beta
A simple model that has been developed to study the stability of the beam to an idealized

beam-beam perturbation is the dynamic beta model.!® The main assumption of this model
is that the beam-beam force is linear. So the model is valid for uniform cylindrical beams or
for small values of z and y in nonuniform beams. The dynamic beta model is the simplest
weak-strong or strong-strong model. The steady state distribution ¥q is still Gaussian
after the perturbation. Except that the tune, vg, goes to v, the betatron oscillation length
at the interaction point, 83, goes to f*, and the rms beam sizes, oz and Oy 8O tO 02
and oy. The variables with the zero subscripts are the unperturbed quantities. The motion
of small amplitude particles is analyzed by using matrix techniques. We start with the
Courant-Synder matrix in Eq. (2.7), which gives:

z cos(2mv *sin(27v z

2 ) —gesin(2ry)  cos(27v) z /
where z' = dz'/ds, s is the coordinate along the collider, the indices n and n + 1 refer to
the turn number, and for simplicity we have taken o = 0. A similar matrix can be written

for the y direction. The matrix in Eq. (3.20) representing the perturbed matrix can be

expressed in terms of perturbed and unperturbed quantities:

oS *sin cos g sin
( 1 fﬂ) B*si (#)) _3 ( 1 (ko) s (uo)) B (3.21)
—esin(u)  cos() ~&sin(uo)  cos(io)
where
1 0
B = omt, , (3.22)
Bs
p = 2mv, po = 21y, and {; is the beam strength parameter:
€z = Nrofg [2myo,(0z + 0y). (3.23)

The matrix B represents beam-beam kick through half of the interaction point. There
is a similar expression for y transfer matrix. From these transfer matrices the following
relations can be derived:

cos pt = cos pg — 2wz sin po (3.24)
Bo/B" = sin u/ sin g . (3.25)
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Note that for £ < 1 Eq. (3.24) reduces to
B & po +27E, (3.26)

which can be rewritten as

vy +€, (327)

where £ is equal to the beam-beam tune shift parameter Av = v — vy. In the weak-strong
case Egs. (3.24) and (3.25) are the same. However, since the strong beam, which kicks the

weak beam, is unperturbed, £, is defined in terms of unperturbed quantities:

€z = Nrofg/2my020(0z0 + 0yg) - (3.28)

Stability of the particle motion is achieved, when | cos | < 1 in Eq. (3.24). The stability

conditions are

§ < cot(uo/2)/2m (3.29)

o < cot(po/2)/2m, (3.30)

where the first equation is for the strong-strong (coherent) case and the second equation
is for the weak-strong (incoherent) case. The stability diagram from these equations is
shown in Figure 3.2, which shows the stable and unstable regions in ¢ — v space.® In the

weak-strong case £ would be replaced by £ in the figure. Note that resonances occur at

7

n
or “VR S (3.31)

where n is an integer. The beam strength parameter £ and the tune shift Av are related
by

cos(2mv) — cos (2m(v + Av))
27 sin(27v) )

E(Av) = (3.32)
When [€| < 1, then Av = €.

In the strong-strong case the perturbed quantities are interdependent—that is, o, is
proportional to 4/B* and not /5. The perturbed betatron oscillation length $* depends

on ¢, which in turn depends on o;. This implies that o, 8*, y, £, and L (luminosity) need
to be found self-consistently for a given N.

11



O.SOIIIIIIIIIIIIIIIIIII

0.25

0.20 Unstable

Stable
0.10

Jve

o

-—h

(¢}
IIIII'IIIIIIIII'IIIIIIIII

0.05

lIlllllllIlllllllllllllllllll

IIIIIJ!IIII!II[I|II111!

0.1 0.2 0.3 0.4 0.5
Vo

o
O 1T

TIP-03312

Figure 3.2. Stability of a Uniform Cylindrical Beam to Beam-Beam Perturbations, Where £ is Plotted
Versus vg.

For example, for a round beam o; = oy and pgzg = gy, = po. Defining po = 27&o, we
get from Eqgs. (3.25) and (3.24):

*\ 2 * * 2
(%) = 1+ 2pg cot uog‘} - 0y (%) . (3.33)

From Eq. (3.33), we get an equation for the perturbed betatron oscillation length f* in

terms of unperturbed quantities:

%

g =+ [po/ sin po]*)!/? — po cot po - (3.34)
0
Also, all other perturbed quantities can be calculated based on the fact that

£/é = op /0 = B5/B* = L/ Ly, (3.35)

where quantities with subscript 0 are the unperturbed quantities. We have assumed that
the beam-beam interaction does not change the phase space area occupied by the beam
particles.

The dynamic beta model can be generalized by allowing the two beams to behave

differently:
Y\ 2 * *\ 2
(g—;-) =1+ 2pg cot uog—g - pﬁ (-g%) (3.36)
x\ 2 * %\ 2
() =1+2men wot -t (88) (3.37)
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where
BB =ob /ot . (3.38)

One solution is B} = BX. There is another set of solutions with 8} # B2:

* 2 cot2 2 _ 2 _1)2
gy _ 1 po cot o £ \/Poco po(pg =3) +(pg —1)* (3.39)

Bs  pp—1 pf+1
The two different solutions for 8* imply that one beam is statically blown up (83.), and
the other pinches (8%). This solution with different 8* is a model for “flip-flop.””

3.2 Steady State Distribution
The dynamic beta model is good only when the beam-beam force is linear in z and y.
A linearized beam-beam force is inconsistent with a Gaussian distribution where the force
is nonlinear for large amplitude in z or y. There may be two ways to proceed:
¢ Include nonlinear beam-beam force in z and y for Gaussian beams, but consider
only the second moment. This approximation is still not self-consistent.!!
e Restart with the Vlasov equation and take into account self-consistency.

The two beam distributions are coupled (assuming flat beams) through:

6’\111 0‘1/1 0‘1’1
as +y ay F2(yas) dy' = (340)
oYy 0, 3\1’2 B
e +y = By Fl(y,s) =0, (3.41)
where
Fi(y,s) = K(s)y + Fy (3.42)
2rNr, o
Ro=5205s) [ dgH( - 9)pi) (3.49)
= -0
27rNr0

= I 6p(s) /_ N dyH(y — §) / dy'¥;i(5,7,s), (3.44)

with H(z) = 1 if z > 0, and H(z) = —1 if z < 0, and 6,(s) a periodic §-function with
period s = L. The equal-beam steady state self-consistent distribution satisfies

9Ly 3T o
=, +v ay° Fo(y ,s) > =0, (3.45)
where
Fo(y,s) = K(s)y+ Fy (3.46)
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F, = 27rN 0

5p(3) / dgH(y — §)p;(9) (3.47)

27!'N'r‘o

6(5) / dgH(y - §) / 47 Vo(@, 7, 5). (3.48)

There are a few solvable cases. One solution is obtained when the beam-beam force
is proportional to 8,(s)y and is similar to the dynamic beta model. The solution does
not give the assumed beam-beam force. It is also not self-consistent except for uniform
distributions. Another solvable case is for two oppositely-charged, unbunched (continuous),
round beams self-pinching with line density Ag. The beam-beam force is independent of s.
There is no resonance structure. Then

e\g exp (—%ﬂﬁ)

2m20"2A2(1 + %ﬁy ’

Yo = (3.49)

where

0’2 = Xoro/7 (3.50)

and A is an arbitrary constant.812

These solvable cases have limitations. The linearized §,(s) beam-beam force sees only
vo = 1/2 resonances. The smoothed beam-beam force sees no resonances.

In general, ¥y is “transverse potential well distorted”® and is difficult to solve. Note
that unlike the longitudinal potential well distortion due to wake fields, this potential well
excites resonances vg = p/q, where p and ¢ are integers. The periodic delta function, &p(s),

is not in the longitudinal potential well distortion.

3.3 Dynamics About the Steady State

The key is to determine whether the motion is stable against small perturbations from
the steady state. Table 3.1 shows the steps that have been taken to study the beam-
beam interaction problem.® The cases are listed in decreasing order of confidence. Case 1

represents the simplest coherent beam-beam model that includes dynamics.13715
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Table 3.1. Cases That Have Been Studied in Coherent Beam-Beam Dynamics
in Increasing Complexity.

Case steady state perturbation
1 unperturbed rigid center-of-mass
2 unperturbed perturbation on rms beam sizes
3 dynamic beta perturbation on rms beam sizes
4 unperturbed higher order modes
5 dynamic beta higher order moments
6 | potential well distorted distribution repeat cases 1-5
7 |potential well distorted and flip-flop repeat cases 1-5

For case 1 we assume rigid round beams. Let the unperturbed distribution be ¥(r) and

the center-of-mass coordinate be Y. The center-of-masses exert beam-beam kicks on each
other for small ¥ ’s;11:16

Aw=-%n—n) (3.51)

Aw=—%n—nx (3.52)

where f is the focal length for incoherent motion, for example, Ay’ = —y'/f, and 1/f =
4n€o/B;. The beam-beam kick is averaged over ¥(r), where G is the form factor:

G- f0°° dr r ¥3(r) .
v(0) fooo dr r ¥(r)

(3.53)

G = 1/2 for a round Gaussian beam and 1 for a round uniform disk. Considering one

bunch per beam the transformation for [Y1, Y], ¥2,Y,] from interaction point to interaction

point is
1 0 0 0
GO/f (1) Gl/f g x R, (3.54)
G/f 0 -G/f 1
where
COS 1o B3 sin po 0 0
R— —ﬁlg- sinpg  cos g 0 0 ' (3.55)
0 0 COS [0 B5 sin po
0 0 -—ﬁl‘; singg  €OS g
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By performing eigenmode analysis it can be shown that there are two modes: the O-mode
and the m-mode. With the O-mode the two bunches move up and down together (or left
and right). There is no coherent beam-beam force, and p = po the tune maintains the
unperturbed value. This mode is always stable. For the m-mode the two bunches are out
of phase. The effective separation is 2G larger than the incoherent case (G is the form
factor and the 2 is due to both beams moving). The mode frequency u satisfies Eq. (3.24)

with £ — 2G&p. The motion is stable if 7—mode is stable. For example,
o < cot(uo/2)/4nG. (3.56)

Resonance occurs when po = =, or vg = 1/2, which is just like the incoherent and dynamic

beta cases. The O-mode and the 7-mode have been observed experimentally.l?

When the beams are not rigid, the beam motion is determined by the sum of all beam
modes (Table 3.2). Consider one bunch per beam. The bunches collide head-on, but each

executes coherent quadrupole oscillation. Define®
(%) (z2') O 0
(zz')  (z?) 0 0
0 0 () (w)
0 0 (w) ()

where there is one of these arrays for each bunch. Consider small perturbations around a

, (3.57)

steady state:
Yo =%+ AT (3.58)
Y=+ A%, (3.59)

The transformations for the ¥ matrices are in the arcs (round beams):

(AZ1)out = R(AZ1)inR. (3.60)
At the interaction point,
(AT} )out = Tep-(AZ4)inToB- (3.61)
(AT )out = TpB+(AZ-)inTBB+ (3.62)
where Tgpy is the perturbed beam-beam matrix (linearized):
1 0 0 0
-4~ 1 0 0
Tppy = ({* o 1 o (3.63)
0 -7 1

16



This matrix determines the effect on one beam at the interaction point due to the oscillating

beam size of the other beam.

Table 3.2. Beam Modes and Associated Resonances.

mode resonances

rigid dipole | total tune v = n

quadrupole v=n/2
sextupole v=n/3
etc.

Linearize this with respect to the elements in AY, for small perturbations. This will
result in 12 x 12 transformation matrices that can be eigen-analyzed for six modes. Two

of the six modes give constants of the motion. The remaining four dynamic modes give

2
1

cospu =cos2f + . po sin po cos i (3.64)
-2

cos i = cOS 1o — Po Sin po - (3.65)

One can obtain a stability diagram from these equations. A similar analysis can be
performed for M bunches per beam. From this one gets 4M dynamic modes.
The dynamic beta analysis gives a steady-state second moment. The dynamics of the
-second moment is given by transformation matrices for A¥X,. This formulation was based
on a linear beam-beam force that is inconsistent with a Gaussian beam. With a nonlinear
beam-beam force, higher moments are excited, the distribution is non-Gaussian, and the

beam-beam force is modified. A self-consistent (Vlasov) treatment is needed.

3.4 Vlasov Approach
A general approach to the analysis of the beam-beam interaction is to use the Vlasov
equation.18721 Let

\111,2 =Wy + A\Ill,z s (3.66)

where Wq is the steady-state distribution and AU, are the perturbations. Chao and
Ruth!® linearized the Vlasov equation in A¥, transformed to action-angle variables (J, ¢),

and assumed a waterbag model:818
Vo= (1/7e)H(e/2 - J), (3.67)
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where € is the unperturbed beam emittance, J is the action, and

1 for z>0

H(z) = .
(=) 0 for z<0

The waterbag model is simple but inconsistent with the steady-state condition.

The coherent beam-beam instability is pronounced near
v=2y xp/q.
The ¢g-th mode is the most perturbed where
A¥ ~ exp(igé),

and the mode frequency is!®

cos p = cos(2mgv) £ gzs—q_—lf sin(2wqv).

The stopband width around a resonance is

_& 16
T 2m4qt -1

bvyg

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

The stopband is a region around a resonance in which the beams are unstable. Figure 3.3

shows the stability diagrams for two bunches per beam, where the beams are of oppo-

site charge.!® As the number of modes is increased, higher and higher resonances can be

excited. When the maximum number of modes is n, the highest resonances are excited

near v = m/n.

Beams blow up in the unstable regions, but only by so much that stability sets in,

for example, just under the sawtooth curve. This stabilization is analogous with bunch-

lengthening observed in electron storage rings and has already been hinted by dynamic

B analysis where the beam blows up but stays below the instability.
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Figure 3.3. Stability Diagrams for the Case of Two Bunches per Beam and Maximum Modes of m = 2,4, 6,

and 8.

3.5 Diffusion from Beam Offset

Another contribution of the beam-beam interaction is the enhancement of particle diffu-
sion. It is anticipated that at each collision the pair of colliding beams suffer collisions with
the centers of the beams offset, instead of head-on, resulting in diffusion of the beam par-
ticles, as they experience stochastic kicks. According to analytic theory on beam offset,??

a Fokker-Planck equation can be derived for the averaged perturbation of the distribution
function AF = F — Fy:

_1 6 2 6F0
< AF >—26J<(AJM) > 57 (3.73)

where Fj is the initial unperturbed distribution function of the beam, J is the action, and
< (AJp)? > is the averaged change in the action due to beam offsets. < (AJp)? > /2
can be thought of as the diffusion coefficient. An expression for < (AJp)? > has been

derived using the “weak-strong” approximation for the beam-beam interaction and the
assumption that the strong beam is Gaussian:?2

o0 2
< (AJM)2 >= 167!'262JO exp(—]o)MZ [Ik (%) -|— Ik+1 (izo‘)] Rk 2 (374)

k=0
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where ¢ is the beam strength parameter, Jy is the unperturbed action, I} is the modified

Bessel function of order k, and R} is

R = i K(n)cos (2rvn(2k + 1)), (3.75)

n=—oo
where K(n) is the auto-correlation function < (mCm+n >, (m is the beam offset for turn m,
and v is the tune.

Equation (3.74) can be simplified with the assumption that the beam offsets ¢ are uncor-
related on a turn-by-turn basis. Then, K(0) is the only non-zero term in the calculation of

Ry (the Markov process assumption). Also noting that the Bessel functions fall off with &,
Eq. (3.74) can be written in the form:?2

J 2
< (AJp)? >=167%¢% Jg exp(—Jo)M [Io (%) + I (;“)} Ro. (3.76)
After integrating over Jy, an approximate value for the diffusion coefficient can be obtained
from the change in the luminosity of the beam:??
AL 2 6.’172
— = —6. —_— 3.77
o 6.256"M =, (3.77)

where AL is the change in luminosity, Lo is the initial luminosity, £ is the beam strength
parameter, dz is the beam displacement normalized to o,, M is the number of turns, and

Av is the distance of the tune v from the nearest integer. The diffusion coefficient may be
defined as

d(35)
D= d]I\IJ (3.78)
Thus, D can be expressed in the form:
D= —6.255215’”—2. (3.79)
Av

4.0 FILAMENTATION INSTABILITY

When collective effects are taken into account between two counterstreaming beams,
one of the most important instabilities is the filamentation instability.23 The filamentation
instability is one of the fastest growing collective effects that can occur in a plasma. From
linear theory the maximum growth rate for counterstreaming electron and positron beams

'ig28

Fmam -

, (4.1)

b | =
¢

1
V1-82’
or positron mass. The filamentation instability generates a mode that propagates nearly

where v = B =21, wf = 4mwenp/me, n; is the beam density, and m. is the electron
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perpendicular to the beam direction. The onset of this instability can lead to beam fila-
mentation and heating. Lee and Lampe?* have studied a relativistic electron beam in a
plasma via simulations. They found that as a result of the filamentation instability the

electron beam splits into filaments, each of which self-pinches.

There are two factors that may determine the effect of the filamentation instability
on collective motion of counterstreaming beams in circular accelerators. They are the
time scale of the interaction and the transverse size of the beam. The time scale of the
interaction Tin: is determined by the length of the beam bunches Ly, where Tint = Ly/2c.
The maximum growth rate of the filamentation instability for large beams is I'maz = wp/2
for p — p collisions and for p — p collisions, where wy = \/Zl-7r—ez_n_b7'y—m is the beam plasma
frequency, ny is the beam density, v is the relativistic factor, and m is the proton mass. 23
The factor I'ymazTint determines the fraction of the growth rate time the beams interact.
The fraction of the growth rate varies between different types of colliders. In the SSC the
beams interact for a small fraction of the growth time of the instability (I'mazTint = 0.035).
Therefore, the only way the filamentation instability may be of some importance to the
beam dynamics is by repeated interactions over many turns. Since the typical beam life is
~ 108 revolutions, the effects of the filamentation instability may be important. In electron
synchrotrons the fraction of the growth rate is higher because the growth rate increases
with the decrease in mass. So the filamentation instability could be more significant over

a smaller number of rotations.

The transverse size of the beam may be another factor limiting the effects of the fila-
mentation instability. The typical scale of the filamentation instability is the collisionless
skin depth A; = ¢/wyp. It has been found that the filamentation instability is suppressed
when the beam width wy is small compared to A..2° For the SSC the ratio of wy to A is
~ 2 x 107, so both the fraction of the interaction time and the width of the beam are
small.

5.0 PREVIOUS BEAM-BEAM SIMULATION RESULTS

Since a complete analytical treatment of beam-beam interaction does not yet exist,®
study of the problem has relied heavily on various types of computer codes. In this section
a review of previous simulation results is presented. Substantial use is made of the review

26

article by Siemann®® on electron-positron storage rings.

Two main types of computer codes have been used to study the beam-beam interaction:
weak-strong codes?” and strong-strong codes.28:2% Typically the 101°~10!! beam particles
are simulated with 10%-10* simulation particles. In the strong-strong simulations both

beams are tracked, and the evolution of their phase space distributions is followed. The
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purpose of these programs is to measure the effects of storage ring parameters on the
beam core. In the weak-strong simulations one beam (weak beam) is tracked and the
other beam (strong beam) is kept stationary. The weak beam is perturbed by the strong
beam’s scattering potential. Weak-strong simulations cannot be used to study the beam
core. However, they are mainly used to study the dynamics of particles in the tails of the
beam distribution. The goal of tracking is to directly simulate single-particle motion in

circular accelerators and to determine regions of phase space that are stable.3°

The simulation particles are tracked for many turns. For each turn the particles pass
through each other at the interaction point (IP) and are then transported through the rest

of the storage ring via matrices representing the various magnetic transport components.

At the IP the usual approximations are made that the beams are Gaussian in the trans-
verse directions, ¢ and y, and can be treated as thin elements along the collider in s. By
treating the beams as thin elements the kick approximation can be made.3! In this approx-
imation the fields are determined by the rms width in = and y of the opposing beam. The
approximation of the kick for the beam-beam interaction is valid so long as the betatron
oscillation length at the IP 8* is not comparable to the longitudinal length of the beam 0.
When o7 is comparable to £*, it is necessary to treat the beam-beam interaction as a thick
element. In the weak-strong simulation the rms values are fixed. In the strong-strong

simulations the rms widths are varying for each beam.

In the strong-strong simulations the particles are initialized in the simulation with
Gaussian distributions and the required variances.?®?° The particles are tracked through
a sector—an accelerating cavity, a beam-beam interaction, and a normal machine arc
(lattice)—and particles exceeding the aperture limits are removed from the simulation.
The aperture limits in the transverse direction are determined by machine acceptance,
and in the longitudinal phase plane they are determined by acceptance of the rf accelerat-
ing “bucket.”

After each turn new beam parameters are computed; for example, beam size and inten-
sity are computed and used to recalculate the beam-beam force parameters. The beam size
is calculated from the rms value of the displacements of the superparticles. This value is
used as the sigma of the assumed Gaussian distribution. The beam-beam kick is evaluated

by linear interpolation of tabulated values of the complex error function:282
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(5.1)

where Az’ is the kick in the vertical kick, a and b are the standard deviations in the
z and z directions, Ne is the total charge in the bunch, v is the relativistic parameter, and

w(A + :B) is the complex error function.

Typically the simulations uses about 100 particles, and beam size reaches steady-state
value in less than one-half of a transverse-damping time. Simulations are run to one
damping time after the steady-state equilibrium has been reached. Statistical fluctua-
tions associated with each bunch are rather large due to the limitations on the number of
superparticles that can be used. So it is difficult to obtain reliable information about the
form of the distribution function or about the tails of the distribution function. Once an
apparent steady state distribution has been reached in the presence of beam-beam forces,
the statistical fluctuations may be reduced. Binning the particles into histograms after
traversal of each machine sector over many turns accomplishes this reduction.?®2° This
binning of particles has been applied to the computation of distributions in the betatron
and synchrotron tune and in betatron and synchrotron displacement.?® This method of
binning also allows the calculation of the average tune shift and the tune spread for one

or all beam-beam crossings.

In the absence of the beam-beam interaction the beams would remain Gaussian. How-
ever, because of the beam-beam interaction the strong-strong beams do not remain Gaus-
sian, as shown in Figure 5.1 from Siemann.?® The beam profile is non-Gaussian in both
the core and the tails. Beam-beam resonances are modifying the distribution. The
deviation of the beams from the Gaussian profile is the main problem with these types of
simulations. The fields are calculated based on a Gaussian, which is inconsistent with the
actual distribution of the particles. Therefore, the beams may be prevented from reaching

a distribution that is self-consistent with the fields.
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Figure 5.1. Simulation of the Vertical Beam Profile. The histogram is the result of binning each test particle
over 1000 turns. The solid curve is the original Gaussian profile of the beam.

Both qualitative and quantitative comparisons between simulations and storage ring
experiments have been made. Piwinski reported qualitative agreement between simulations
and the operating point characteristics for PETRA.32 Simulations show that the beam-
beam interaction is dominated by resonances, as shown in Figure 5.2, where a Poincare map
of the motion of a single test particle near the 1/3 resonance is plotted.3? At the beginning
of the simulation the particle is near the origin. After about 8000 turns, the particle is
moved quickly out to the resonance islands from quantum fluctuations and the nonlinear
beam-beam force. Myers has found in the Large Electron-Positron Collider (LEP) storage
ring simulations?® that:

¢ beam-beam limit decreases slightly with the number of bunches
e beam-beam limit decreases rapidly when the value of 8* approaches around twice
the bunch length (o,)

e beam-beam limit is strongly dependent on the transverse damping

¢ transverse tune modulation caused by residual chromaticity produces no significant
reduction in the beam-beam limit.

e machine “errors” can produce significant reduction in the beam-beam limit.
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Figure 5.2. Poincare Map of a Test Particle, Where v, = 25.2 and v, = 23.32 After 10,348 Turns.

Hutton3? compared the Positron-Electron Project (PEP) luminosity at two machine oper-
ating points with the strong-strong simulation of Myers.?® Agreement was found between
the absolute luminosity and the current dependence. Jackson and Siemann have found
similar agreement with the Cornell Electron Storage Ring (CESR).?8 They also compared
simulation results with CESR results away from operating points. Good agreement was
found in some regions around the operating point for the luminosity versus the tune. Qual-
itative agreement was found in other regions. Substantial disagreement was found from
low vertical tune values.?® Weak-strong simulations of CESR show good agreement for
beam blow-up by resonances and particle distributions in the tails.34

Recently, non-Gaussian simulations have been performed.3® The simulations show that it
is critical to use general field calculations in the study of coherent beam-beam phenomena.

Higher-order coherent resonances were a direct consequence of the general field calculation.

6.0 SIMULATION MODELS

In the course of our investigation, various simulation models have been developed to
study the beam-beam interaction. These models are presented in increasing order of
sophistication and inclusion of physical effects.

Numerical simulation of accelerator beam dynamics has a relatively short history. As
accelerators become increasingly more costly and complex, computers and computational
techniques become increasingly more developed. Computer simulation has recently become
an accepted standard method of investigation of accelerators. It certainly is this way for
the Tevatron at Fermi National Accelerator Laboratory. For the SSC one may even say

that computer simulation has become one of the central design techniques. An obvious
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reason for developing computer models is the cost. It is much less expensive to run a
simulation than to build a device. Also, simulations allow the study of a problem under very
controlled conditions with accuracy limited only by the precision of the computer. This
is not the case with experimental setups. Analytical methods provide a means to study
the problem in the linear regime. However, nonlinear aspects are not easily accessible.
Numerical methods allow the study of this regime with fewer approximations than analytic
methods. Simulation schemes such as the Particle-in-Cell (PIC) methods36:37 represent a
common ground between the two-particle picture of the beam-beam interaction and the

full statistical picture representing all particles in the beams.

In the following sections the various numerical codes used to study the beam-beam

interaction will be described. They are the tracking code, Vlasov code, PIC codes, and
the 6 f algorithm.

6.1 Tracking Code
The basic principle of tracking codes is to follow the dynamics of single particles around

the machine.?” In the beam-beam interaction the tracking code consists of two components:
a target beam and a projectile beam. The target beam is treated as a rigid, smooth, Gaus-
sian distribution of a large number of particles. It remains unchanged from interaction to
interaction. The projectile beam is considered to be a collection of mutually noninteracting
particles that are perturbed by the target beam. This is the so-called “weak-strong” ap-
proximation as described in Section 3.0. In tracking-code simulations in the “weak-strong”
approximation, transport about one-turn is simulated as the product of two matrices, one
for the one-turn Courant-Synder map,’ and the other for the impulsive application of the

beam-beam interaction discussed above:2”

T T
| o=Mm|7| (6.1)
z final z initial

M=[ cos(2mvo) By sin(27w0)” 1 0]’

. (6.2)
—sin(2mvp)/B;  cos(2mug) drAvoF(z)/B; 1

where z is the position of the particle, «' is dz/ds, s is the distance along the collider,
vo = §ds/B(s) is the tune, Ay is the input tune shift, B is the betatron oscillation
amplitude at the interaction point (IP), and F(z) is the 1-D truncation of the force from
a round Gaussian beam

— exp (—22%/204¢?)

1
F(z) = x2/2o-z02 ’

(6.3)
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where o;¢ is the beam standard deviation in z. This formulation is similar to that of
Neuffer et al.;?” however, here both beams are of the same charge. For comparison with

one-dimensional simulation results, F((z) becomes the force of a 1-D Gaussian slab:

F(z) = g(";")erf( \/;m), (6.4)

where erf is the error function.

The first matrix in Eq. (6.2) takes into account the particle motion from the lattice

magnets.® The second matrix takes into account the kick from the beam-beam interaction.

6.2 Vlasov Code
This section describes a Vlasov-Maxwell code. Vlasov-Maxwell codes can be used to
simulate various electromagnetic phenomena that occur in plasmas or charged-particle

systems.38'39

In this simulation technique, a plasma is represented by a discretized version of the
Vlasov-Maxwell system of equations. The Vlasov equation is a continuity equation rep-
resenting a system of particles as a fluid in phase space. Thus it is free of the noise
plaguing PIC models due to the finite number of discrete particles. On the other hand, it
needs to follow greater dimensions (typically twice as many) than the PIC models, since

it represents phase space instead of the configuration space. It is written in the form:3°

of B Of , 5 O _
ot Tm oz T =0 (6.5)

where the subscript s refers to the individual species (background electrons, beam electrons,

ions, etc.) and f"'; is the Lorentz force:
F, = q(E + ¥, x B/c). (6.6)

One of the greatest shortcomings of the Vlasov model, that of too much grid space
information, may be ameliorated by the adoption of the recent development of massively
parallel computation. In this section we specifically describe the implementation of a 2-D
Vlasov-Maxwell system on a MIMD (multiple instruction multiple data) parallel computer.
A Vlasov-Maxwell code that is already running in parallel on the Connection machine?
is chosen as an initial code platform. The fields (E, E) in the Lorentz force equation are

obtained from the set of Maxwell’s equations:

V-E = 47p, (6.7)
~_10B
VUxE=_222 )
8 cot’ (6:8)



v-B=0, (6.9)

V xB=d4ni+ -1-66—? (6.10)

The density p and current J are calculated self-consistently from

p@ =Y a [ 47 5,50, (6.11)
5@ =Y 0 [ 550 12,50, (6.12)

In the current formulation the electrostatic field calculated from Eq. (6.7) is neglected.
This approximation assumes that the charge density p is 0 everywhere at all times and,
therefore, the electrostatic component of the field is 0. The approximation of p = 0

everywhere eliminates plasma oscillations from the system.

The Vlasov equation is discretized in two dimensions using a “splitting” technique.3?

In this technique the distribution function f = f(vs;,v.4, 2k, 21) is advanced in time in a

four-step process for each species s:3941

1/4 At p
f.";'tz/ = fiik — 55 ,yz' (few: — fe—1)ijt
At p
(2Az 7:) (fegr — 2f% + fi-1ijt (6.13)
n+1/2 _ nt1/4 _ At pzj frHi /ey
Fiji'” = fiju 207 7i; (fiy )ik
At pzj n+1/4 n+1/4 | n+1/4
*\2ar ( o T2 AL ik (6.14)
At
fi';'tl3/4 f:;ttl/z 20ps Faju - (FI = 528 5m
At n+1/2 n+1/2 n+1/2
+ 220, Frjn ( - 2f; + 577k (6.15)
At
f:;tll = f?j-&a/‘t - _2Ap zzkl ( n+3/4 n+3/4)1
At n+3/4 n+3/4 n+3/4
+ 7D, Fz:kl (fig1 —2f; +f )ikt s (6.16)

28



where

Frjk = s (Ezkl + 21LBykz) s (6.17)
Foiti = ¢s (Ezkl - MBW) ak ) (6.18)
and
Ez;:l-l-% = %(Eu% + Ezp141)k (6.19)
Bt = l(Ez,cJ,% + Eap—i) (6.20)
By’l:l-l-% = 2(Bykl + Byrr) - (6.21)

In each step the distribution function is advanced a full time step using only one term at
a time in the Vlasov equation. The fractional time indices for the distribution function f at
each step are used for notational purposes only. This discretization scheme is numerically

stable when the following conditions are met:3%41

ps At pAt
g < 1, Sy W 1, (6.22)
F At Fp At

<1, <1. 6.23
A, Ap. (6.23)

Maxwell’s equations are written in a left-handed Cartesian system for convenience:

8E, _ 0B,
—a't—' = CW - Jz (624)
6t — C 61} —Jz, (6.25)

aBy _ aEz aEz
ot _c[é‘z T oz | (6.26)
These equations are discretized in the following manner:

Boyif1=Bopd 1= M+ 3 (Bytss ios=Bilya i) (620)

n+i cAt
Ezk l+1 = Ezk H_l Ath;: H‘% - A:Bk (Byk+1 H_l Byk__ l-l-%) (628)
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B, — B cAt (E n+y E n+3 )

E+3 1+ T ?/k+2 H'z Az k41 143 2k 143
cAt ntid ntl
- (Beert 11— Bopad ) - (6.29)
The currents J; and J, are calculated from

Th= 0> > Aijftiu ( p’“’_.) AvzAv, (6.30)

s i J moYij
Jzkl qu ZZAU‘f‘"]kI ( ) szsz, (6.31)

mo7ij

where A;; is a normalization constant, and then
1
Jokss 1= E(JzZH 1+ Izt 1) (6.32)
T = I TR (6.33)
zp i+t = gWsk i+ ek 1) .

A similar set of finite-difference equations for the Vlasov equation and Maxwell’s equa-

tions can be written in cylindrical coordinates.

6.2.1 Boundary Conditions
The boundary conditions used are dependent on whether Cartesian or cylindrical coordi-

nates are used for the test problem. In both geometries the boundary conditions are taken
to be periodic in the z direction. In the case of Cartesian coordinates periodic boundary
conditions are employed in the two spatial directions (z,z). Also the distribution func-
tions are 0 beyond the momentum coordinate boundaries (p;,p.) for the Cartesian case
and (py, p;) for the cylindrical case.

In the case of cylindrical coordinates, conducting wall boundary conditions are employed
at r = R, where R is the maximum radius of the domain. For conducting wall boundary
conditions all field quantities, currents, and distribution function values are equal to 0.
Handling the field, currents, and distribution function at r = 0 is a little trickier. The field
quantity that needs special care is the E,, ; +1 field component. Its calculation requires
the knowledge of B9% 141 for r = 0. By symmetry arguments the field Bg% 141 can be said

to equal —Bg% 1+1, So the time advance equation becomes

nt+i n— cAt
By I-T-% = E"l I+ — AtJyy I+~ 2A ™ (393 I+1 ) (6.34)
All other field quantities can be calculated once this field component is determined. The

distribution function f;;1; at the r = 0 boundary is also calculated using the symmetry
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argument. In this case fjjo is chosen equal to f;jo because the distribution function is

symmetric about r = 0. The time advance equation becomes
2
n+l/4 _ At ps; n ..
fiu" = fiu+ (2 ~ 77’) “2f2 = gt (6.35)

6.2.2 Square Geometry

The implementation of the code on the Intel 1860 involves decomposing the spatial grid
of the simulation into square blocks and assigning one node to each block. Each node
communicates with four other nodes as shown in Figure 6.1. Communication between

nodes must occur in four directions (North, South, East, and West).

East

North South

<«

-

West
TIP-03315

Figure 6.1. Communication Path for North, South, East, and West Communication in the Square Geometry.
The grid is decomposed in the following manner. First the number of nodes is determined
in the program. The dimension of the nodes used determines the number of cells in the

z direction and the z direction in Cartesian coordinates. The dimension n is defined as

nodes = 2" where nodes is the number of nodes used. The number of blocks in the
respective directions is

r=ng/(ns +n;) (6.36)
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(nb)g = 27%" (6.37)
(nd); = 2777, (6.38)

where n, and n, are the size of the total grid in the z and 2 directions, respectively, and
(nb); and (nb), are the number of blocks in the z and z directions, respectively. The
number of cells per node is

nzm = ng/(nb); (6.39)
nzm = n;[/(nb),. (6.40)

Nodes north, south, east, and west of a particular node are calculated in the following

manner:
iz = menod/(nb); + 1 (6.41)
iz = (menod + 1) — (iz — 1) * (nbd), (6.42)
izp=1iz+1 (6.43)
izm =iz — 1 (6.44)
izp =1tz +1 (6.45)
izm =iz — 1 (6.46)
North = (iz — 1) * (nb), +izp—1 (6.47)
South = (ix — 1) * (nb), + tzm — 1 (6.48)
East = (izp — 1) * (nb); +iz -1 (6.49)
West = (izm — 1) % (nb), + iz — 1, (6.50)

where menod is the node number of the specific node and North, South, East, and West
are the node numbers of the north, south, east, and west nodes, respectively.

The quantities that are transferred between nodes are fields, currents, and distribution
functions. They update the boundary cells of each square block assigned to each node.
This update is done at every time step. The dominant data transfer is done with the
distribution function. The boundaries need to be updated at both the z and z boundaries
in Cartesian coordinates or at the r and z boundaries in cylindrical coordinates. Therefore,
in the square decomposition scheme the distribution function is transferred twice.

Boundary conditions are handled in the transfer of the data to the respective boundary
cells. In the case of Cartesian coordinates, periodic boundary conditions are imposed on all
quantities. Blocks at either end of the grid transfer data in a wraparound fashion. Blocks

at the west end transfer data to the east blocks, and blocks at the east end transfer data
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to blocks at the west end. A similar situation occurs for blocks at the north and south
ends. In the case of cylindrical coordinates, the north and south block data are handled
in the same manner since the boundary conditions are periodic in this direction. Blocks
at the east end have all quantities at their eastern boundaries set equal to 0, which takes
into account the conducting wall boundary conditions there. The western blocks are at
the r = 0 boundary. The west end of these blocks handles the fields, distribution function,

and currents as described in Section 6.2.1.

6.3 Particle-in-Cell Codes

In this section collider models using Particle-in-Cell (PIC) codes are described. In these
models the collider is broken into two sections; one section models the interaction region,
and the other models the rest of the storage ring. In the interaction region it is neces-
sary to take into account the beam-beam interaction. Since self-consistent effects play an
important role in the beam dynamics there, PIC codes are used. The rest of the collider
is modelled using the Courant-Synder map, which simply involves a symplectic rotation of

the particles in phase space.®

Two types of PIC codes are used to model the beam-beam interaction region: a fully
electromagnetic code and a strong-strong code. The strong-strong code uses the “strong-
strong” model described in Section 3.0. Our model differs from previous models of the
beam-beam interaction.?6728:42 Previous models as described in Section 5.0 approximated
the beam-beam interaction as either a two-particle interaction, a single-particle-many-
particle interaction (“weak-strong” approximation),?”? or a many-particle-many-particle
interaction (“strong-strong”), where the beam is constrained to be a Gaussian.26® Using a
PIC code in the beam-beam model allows a many-particle-many-particle interaction with
internal degrees of freedom in the beam shapes.

The steps of the simulation for one turn in the collider are:

1. interaction region
2. reset of fields to 0
3. symplectic mapping.

These steps are repeated until the necessary number of turns is attained. Figure 6.2 shows

the basic geometry used in the simulation models.

33



Storage ring

Interaction region

A TIP-03316
Figure 6.2. The Two Components Used to Model the Collider.

6.3.1 Accelerator Model

The model we use for the accelerator is shown in Figure 6.2. Outside of the interac-
tion region self-consistent effects are not as important as in the interaction region, since
the density of the beams is much lower. Therefore, the approximation of single-particle
dynamics is a very good one. With this approximation a linear map can represent the

collider in matrix notation:

T 1 —As cos(2mvy)  fg sin(27wg) z
! = 1 . 1] ’ (6'51)
g ) 0 1 7 sin(2wvy)  cos(2mup) /).

where As is the drift length along the collider path. The first matrix accounts for the finite
length of the interaction region by treating the region as a free drift space and subtracting
it from the full rotation. The second matrix is the Courant-Synder map around the collider,
where 19 = § ds/B(s) is the unperturbed tune and & = 0 everywhere in the ring.’

6.3.2 Electromagnetic Code

A 1-2/2 dimensional (z, ps, py, p:) relativistic electromagnetic PIC code is used to model
the interaction region.3¢:37 The main purpose of this code is to determine the electro-
magnetic effects on the beams. Detailed descriptions of this type of code can be found
36,37 The particular modifications made to this code to study the beam-beam
interaction will be described in this section.

elsewhere.
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Typically, fully electromagnetic codes solve the full set of Maxwell’s Eq. (6.7). The main
constraint on these types of codes is the time step size At, which needs to be small enough

to follow light waves for numerical stability:36:37

cAt < A, (6.52)

where c is the speed of light and A is the grid size of the simulation. Because of the small
time step size, the number of time steps to follow particles in the interaction region is
prohibitively large for SSC parameters. For realistic SSC parameters the simulation time
step size At is about 3 X 10 %7ins, where T is the interaction time. So 30,000 time steps
would be necessary for one interaction. To reduce this constraint, the energy of the beams
can be reduced. When SSC parameters are relaxed to reduce the number of time steps,
the electrostatic field begins to dominate, causing the beams to spread too quickly. In
order to eliminate this spreading, the electrostatic field in Eq. (6.7) is ignored. The main
purpose of this code is to examine the effects of the transverse fields on the beam-beam
interaction at high beam energies, where the electrostatic fields causing beam spread are

small. Therefore, the approximation is justified.

6.3.3 Strong-Strong Code
The shortcoming of the fully self-consistent electromagnetic treatment described in the

previous section is the time step size. Since light waves are followed in this code, a large
number of time steps is needed to maintain numerical stability. To eliminate this, a
strong-strong code is developed. The code has one spatial dimension z and three velocity
coordinates (vz,vy,v;). In this strong-strong code two approximations are made: (1) light
waves are ignored and (2) self fields (space charge effects) among particles of the same beam
are ignored. Ignoring the effects of light waves can be justified for the SSC by considering
the collisionless skin depth, A, of the beam, where

Ae=— (6.53)

2
wp = 1| 2FEM (6.54)
Ymy

Using parameters for the SSC, A\; > w, where w is the width of the beam and ). is the
scale length over which a plasma responds to light waves. Since ). is much larger than
the size of the beam, particles do not strongly interact with light waves. Self fields of the
beam are neglected, since the forces from the other beam are much larger. The ratio of
the self fields to the kick fields from the other beam is
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(self fields) =~ %(kick fields), (6.55)

where 7 = 2.13 x 10* for SSC parameters.

With the elimination of light waves the time step of the simulations can be on the order
of the plasma frequency wy, which occurs on a much longer time scale than light waves.
The time of interaction between the two beams is 7int = As/2¢, where Tin; is the time the
simulation is run before the particles are rotated in phase space. With simulation time
steps in units of fractions of wy, the time period can now be represented by 1-4 simulation
time steps.

In particle simulations the beams are represented by a number of macroparticles. Each
particle in the simulation has a particle shape factor S(z). S(z) is chosen to give the
particles finite size, so that short wavelength oscillations are filtered out in the fields.36:37

This reduces noise and short-range collision forces. The particular form chosen is

S(z) = \/21_7”1 exp (-é’%) : (6.56)

where a is the finite particle size.

Care must be taken when choosing the particle size a. When it becomes comparable to

the beam width w, the tune shift Av is reduced . This can be expressed by

AVpoint _ a\? 12
Avfgy (1 +4 (w) ) ’ (6:57)

where Avpoint is the tune shift for a point particle, Avy,, is the tune shift for a finite size
particle, a is the particle size, and w is the beam width. This calculation is based on the
assumption that the particle is Gaussian in shape, as in Eq. (6.56). The particle size must

be chosen so that a << w and, therefore,

Avpoint 1 (6.58)
Avggy

The macroparticles are advanced by the Lorentz force equation:

P /_ Z daS(z — 2i)(B(F) + 5 x B(2)/<), (6.59)

where &; is the position, p; is the momentum, ¥; is the velocity of particle ¢, S(z) is the
particle shape factor, and E(Z;) and E(:E‘.) are the electric and magnetic field of the other
beam, respectively. The integral over z takes into account the finite size of the particle.
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The calculation of the fields can be simplified by performing the appropriate Lorentz
transforms and taking into account the highly relativistic nature of the beams being stud-
ied. For a general Lorentz transformation to a frame moving at velocity ¥, the transfor-

mation of the fields can be written:43

—‘_ —i, - —cl 72 -— —o. -o’
E=o(l +FxB) - 1AF - B), (6.60)
-;— -c, - -;I ’yz - —o. —o,
B—%B—ﬂxE)—;;ﬁW-B% (6.61)

where § = ©/c and 7 is the relativistic factor. Eqs. (6.60) and (6.61) can represent
transformations of the fields from the frame moving with the beam (E', B') to the lab
frame (E, B ). In the beam frame the beam particles have only thermal velocities. These
velocities are small and randomly oriented. Therefore, only small remnant currents are

present, and the approximation |B'| &~ 0 can be made. Eqs. (6.60) and (6.61) become
o o '72 18- 0 5l
E=~F — —— - B, 6.62
vE - LB B (6:62)
B=—yBxE). (6.63)
Assuming the motion of the beams is in the 2 direcfion, the fields can be written:

E, =+E., (6.64)

B, =+PE.. (6.65)

Since the beams are highly relativistic (y > 1), the approximation |,§| ~ 1 can be made.
Thus, E; ~ By. Using this in Eq. (6.59), we obtain

dp; o0

- e dzS(z — z;)Ez(z)(1 + vi/e), (6.66)

dt —oo
where v; is the velocity of the beam kicked by the other beam. Again the approximation
v; & ¢ can be used:

dp;

rri 2e / N dzS(z — z;)E,(z). (6.67)

Therefore, including the effects of the magnetic field kick to the beam simply involves
doubling the contribution of the electrostatic field of the other beam.
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The electric field E; is calculated from
GE

= 41re/ S(z — z')p(a")dz' , (6.68)

where p(z) is the charge density and S(z) is the particle shape factor. The charge density
p(z) is the accumulation of the finite size macroparticles:

N
p(z) = ¢;S(z —z;), (6.69)
J=1

where N is the number of particles and g; is the charge of particle j. Since the charge is
accumulated on a grid, Fast Fourier Transforms (FFT) can be used to transform the grid

to k space, where manipulation is easier:

N
p(z) = Y gje~ (== /%", (6.70)
=1
p(k) = ge~¥'e ’/ZZ e~ikes 3 ikt (6.71)
Jj€g

where a Gaussian shape factor is used S(z — z;) = exp[—(z — z;)?/2a?], the sum on g is
over the grid points, a is the particle size, and §; is the distance of the particle from the
nearest grid point z; — z4. The summation term with J € g is a sum over all particles j in
grid cell g.

In order to increase the accuracy, the accumulation is done using cubic spline
interpolation.3"4* This assignment technique allows a smoother grid assignment than
lower-order methods such as the subtracted-dipole scheme (SUDS) or area-weighting
scheme.36:3" The charge density then takes the form:3’

p(k) = ge k'@’ /2 [zg:e-‘k% (Zsl + ) 82) —zkz ~ikz (233+ > 34)} )

J€g J€g—1 J€yg J€g9—1
(6.72)

where the summation terms with j € ¢ — 1 are sums over all particles j in grid cell g — 1,
and the s terms are the weighting factors:

sy = (1—6;)%(1 +26;) (6.73)
sg = 5]2-(3 — 26;) (6.74)
s3 = &;(1 - &;)2A (6.75)
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sa=—(1—§)63A. (6.76)

The electric field in Eq. (6.68) can be transformed to k space using the FFT:

—ikE, = 4mep(k), (6.77)
where p(k) is from Eq. (6.72). Using Eq. (6.72) and rearranging terms,3” we obtain
ge —k%a?/2
E (k)= —k———[FFT(GIX) — ikFFT(G2X)], (6.78)

where FFT is the Fast Fourier Transform and

GIX=) s1+ »_ s (6.79)

JEg Jj€g-1
G2X =) s3+ Z sS4, (6.80)
J€g Jjeg—1

where G2X corresponds to derivatives of the charge density. Note that two quantities,

G1X and G2X, need to be accumulated in this method. The force on the particles F(x)

can be calculated in a similar manner:37

F(z) = ¢E(z) (6.81)

= 81(6)Fs(zg) + 52(8)Fs(zg + A) + s3(8)Fy(xg) + s4(8)Fy(zg + L), (6.82)
where § is the distance from the nearest grid point z — z4, and

Fy= 2—EFFT'1[ e K2 k)], (6.83)

Fy= ﬁFFT‘l[ike‘kz“z/zE(k)], (6.84)

where L is the system length and FFT ™! is the inverse transform.
The previous field calculation solves the field for periodic boundary conditions. Note
that the field equation does not take into account finite charge in the system. Finite charge
is included in the £ = 0 term. However, this term cannot be incorporated, because we

would be dividing by 0. To account for finite charge in the system, the k = 0 term in E,
can be explicitly calculated:*3

EF=0(z) = —4np(0) (— - :c) (6.85)

where L; is the length of the system and p(0) is the ¥ = 0 component of the charge density
that calculates the total charge in the system. By adding this field to the field calculated
from Eq. (6.78), one obtains the field with vacuum boundary conditions.
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In the SSC design each beam has ~ 10! particles and a large number of beam-beam
interactions (10%). Due to computer time limitations the beams may be represented only by
~ 10%-10* particles. We find that the representation of Egs. (6.68) and (6.59) by the well
known PIC method?®$37 with macroparticles shows a large amount of noise due to the small
number of computational macroparticles. This is especially apparent when single-particle
diffusion is studied. To study particle diffusion, therefore, we implemented a few improved
algorithms for noise reduction. One is the cubic spline for smoother interpolation,3” which
was described above. Another is the loading of the macroparticles using a quiet start.3¢ The
third is to follow the portion of the particles due to the perturbed distribution only.3"+46:47
This is described in the next section.

Normally simulation macroparticles are distributed initially in a Gaussian profile via ran-
dom number generators. A distribution produced from this method is shown in Figure 6.3.
The distribution integrated over p, is shown in Figure 6.4. Although the distribution

resembles a Gaussian, it contains spikes and peaks that produce start-up noise.
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Figure 6.3. A Gaussian Distribution of Particles Produced from a Random Number Generator.
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Figure 6.4. Distribution Integrated over p, with Random Number-Generated Phase Space Positions.

f(x)

This start-up noise can be minimized by using the technique of the quiet start to load the
macroparticles.3® Two methods of loading simulation macroparticles are described. One
method distributes the particles uniformly in phase space and assigns charge nonuniformly
to the particles based on the initial particle distribution. The other method involves
nonuniform distribution of the particles in phase space and uniform charge for each particle.

In the first method the particles are distributed uniformly in r and 8, where r and 6 are
defined in terms of z and p; as

=Gty (6.86)
tan(f) = i*pﬁ, (6.87)
o Pz

where f§; is the betatron oscillation length at the interaction point and p is the particle
momentum along the collider. The increments in r and 8 are determined from values input
into the code. The r increment Ar is rmqz /1y, where g, is the maximum value of r, and

nr is the number of r segments. The angle increment A#f is 27 /ng, where ny is the number
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of angle segments. The initial distribution for 10,000 particles is shown in Figure 6.5. We

assume a Gaussian profile for the beam in z — p, of the form

N ' z? P2
f(zapz) - 27"0z0p, exp ( 20,3 - 20_}2,1) . (688)

Each particle can be assigned charge g;:

2
r; eXp (— 7;7)
N 2
D im1Ti€Xp (— 2ra )

where N is the number of simulation particles, e is the unit charge, r; is obtained from

gi= Ne , (6.89)

Eq. (6.86) for particle ¢, and o is 0. Although each particle is assigned a different charge g¢;,
each particle is also assigned a different mass m;, so that the force on each particle is the

same,.

-6 1 L1 1 I ] I 1 I ! I
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Figure 6.5. Uniform Distribution of 10,000 Particles in z, p, Phase Space.
The distribution integrated over p, after the charge assignment is shown in Figure 6.6. In
comparison with the random distribution (Figure 6.4), this distribution is much smoother

in the tails and is more symmetric about the center. This symmetry reduces the higher-

order moments in the distribution and, therefore, produces less start-up noise.
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In the second quiet start method, particles are distributed nonuniformly in r and 6,
where r and 6 are defined in terms of z and p, in Eqgs. (6.86) and (6.87).#8 The number of
particles at each r value is determined by a cumulative integration method.?®:37 Again a
Gaussian distribution f(z,p;) in ¢ and p, is assumed (Eq. (6.88)). This function can be
integrated in r and 8 coordinates to yield

N(r)=N [1 — exp (— 2’”;)] , (6.90)

r

where N(r) is the number of particles contained within radius r and N is the total number
of simulation particles. Eq. (6.90) can be used to obtain the number of particles to add

between r and r + Ar:

AN=N [exp ( 2;;) — exp (%)] , (6.91)

where AN is the number of particles to be added. The AN particles between r and
r + Ar are distributed uniformly in @, with a random offset 6,4, at r + Ar/2. The
initial distribution for 10,000 particles is shown in Figure 6.7. The distribution integrated

over p; is shown in Figure 6.8. This distribution is smoother than both the random
distribution of particles (Figure 6.4) and the uniform distribution of differently charged
particles (Figure 6.6).
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Figure 6.6. Distribution Integrated over p, with Uniform Distribution and Nonuniform Charge Assignment.
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Figure 6.8. The Profile in z of a Nonuniform Distribution of Particles.
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6.3.4 Noisy Model
In order to study particle diffusion brought about by the beam-beam interaction, sources

of numerical noise in the PIC codes need to be quantified. One source of noise is the
fluctuations due to the use of a finite number of particles. To model this noise in PIC
simulations, noise is added to the tracking code described in Section 6.1. This is done by

adding a fluctuation term to the tune shift Avy:

Av = Ayy(1 + R n(z)), (6.92)

1

VN()’

where N(z) is the number of particles contained between —z and +z, and R is a random

(6.93)

n(z) =

number between —1 and 1. n(z) gives an idea of the fluctuation level:

N(z) = N erf ( \/;az) , (6.94)

where N is the total number of particles. Eq. (6.94) is calculated for a Gaussian distribution

of particles.

6.4 6f Algorithm
PIC codes typically use macroparticles to represent the entire distribution of particles.

In the beam-beam interaction for the SSC, the beams consist of 10!° particles each. Sim-
ulating this many particles with the PIC technique is computationally prohibitive. With
the conventional PIC code 100 particles are represented by only 103-10% simulation parti-
cles, allowing simulation of the beam-beam interaction in a reasonable computation time.
However, the fluctuation level of various quantities such as the beam density p in the
code is much higher than that of the real beam. The fluctuation level ép is described
approximately as

6 N
2~ l/-_—, (6.95)
P N
where N is the number of particles. Therefore, the fluctuation level of the PIC code is
about 103 times higher than that of the real beam. Although this probably is not significant
for beam blowup near resonances, the higher fluctuation level has a large effect on more
subtle phenomena such as particle diffusion. To facilitate the study of subtle effects,
a §f code has been developed.37:46:47:49
The 6f method follows only the fluctuating part of the distribution instead of the

entire distribution. This is essentially modelling the numerator on the right-hand side
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of Eq. (6.95), which goes as v/N. So the 103-10* computational particles are used to rep-
resent V1010 or 10° real fluctuation particles. This is only one or two orders of magnitude
beyond the number of computer particles.

In the previous sections the strong-strong code used a finite number of particles to
represent the Vlasov equation or Klimontovich equation.’? In the particular case of the

beam-beam interaction,

of

,0 . ]
B +z a—i — (K(s)z — F(z,s)) a—::, =0, (6.96)

where K (s)z is the usual magnetic guiding force and F(z, s) is the beam-beam force

2eE.(z)

ymu?

F(xa S) = 6}’(3) ’ (697)
where Eg(z) is calculated from the distribution of the particles, and 8,(s) is the peri-
odic é-function. 8,(s) = 1 when s = nL, where L is the accelerator circumference and
n =0,1,.... The distribution function f is represented by a finite number of particles by

N
flz,2',8) =) 6(z — zi(s))8(z’ — 2l(s)), (6.98)

1=1
where N is the number of simulation particles used.

In the §f method only the perturbative part of the distribution is followed.3"4%4" The

total distribution function f(z,z',s) is decomposed into
f(z,2',s) = fo(z,2',8) + 6f(z,2',3), (6.99)

where fo(z,2',s) is the steady or slowly varying part of the distribution and é f(z,z', s) is
the perturbative part. The key to this method is finding a distribution fo(z,z’,s) that is
close to the total distribution f(z,z',s). The perturbative part §f(z,z’,s) is then small,
causing only small changes to the distribution, and thus representing only the fluctua-
tion levels. If a distribution fo(z,z’,s) close to the total distribution is not found, then
6f(x,z', s) represents more than the fluctuating part of the total distribution. This defeats
the purpose of the method. The ideal situation is for fo(z,z',s) to have an analytic solu-
tion. In this case any numerical truncation errors that result from the necessary derivatives
of this function are eliminated. If an analytic solution cannot be found, then a numerical
solution needs to be found that is close to the total distribution f(z,z’,s) and is slowly
varying. Continual numerical update of fo(z,z',s) would also defeat the purpose of the
6 f method, since the PIC technique essentially does this also.
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In the particular case of the beam-beam interaction, an analytic solution to an equation
close to the original Vlasov equation can be found. In the case of a linearized beam-beam

force, the Vlasov equation can be written in the form:

af0 /

St — (K (s )—F(s))x - (6.100)

where

Fo(s) = Fobp(s). (6.101)

Fy is the linear portion of the beam-beam force F(z). The solution is a Gaussian of the

form:

Ng* 2
folr) = %i > eXp (—;7) (6.102)

where r? = z2 4 8*22'2, N is the total number of particles in the beam, 8* is the betatron
oscillation length, and o is in the z direction. Note that if the beam-beam force were
linear, this solution fo(r) would represent the distribution for all time in the interaction
region as well as in the rest of the storage ring. Only the values of 5* and o differ between
the two regions. In the interaction region the 8* and ¢ are calculated using the dynamic

B model, which assumes a linear beam-beam force:1%:51

“cos(2mv) = cos(2myy) + 2w Avsin(27vg) , (6.103)

B* _ sin(2mwp)
B¢ sin(2mv)’

where 19 and f; are the unperturbed quantities valid in the rest of the storage ring,

(6.104)

and v and B* are the quantities perturbed by the linearized beam-beam force. From the

perturbed 8* the perturbed beam width o can be calculated from the formula:

B _ a3

5 = o2 (6.105)
where og is the unperturbed beam width that is obtained from the assumption that the
beam emittance is unchanged due to this linear beam-beam force. An equation for the per-

turbed * can be written in terms of unperturbed quantities from Eqgs. (6.103) and (6.104):

* 3/2 *
(%) — 4w Ay cot(2m1y) (go) — (27 Awp)? (go) 1=0, (6.106)

where Avg is the unperturbed, one-dimensional tune shift. Eq. (6.106) can be expressed
in terms of the perturbed o using Eq. (6.105):

<i)4 — 4mAvp cot(2mrp) (0_10)3 — (27 Arp)? (aio)z ~1=0. (6.107)

g0
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Both equations can be solved for the perturbed o or 8* using a root finder. Once this
is obtained the other perturbed quantities, v and Av, are obtained from Egs. (6.103)
and (6.104).

Subtracting the linearized equation in Eq. (6.100) from the total Vlasov equation in
Eq. (6.96), we obtain the perturbative part of Eq. (6.96) for éf:

asf

, . 06
5 +z a;—j — (K(s)z — Fo(x,s))ajl—c = —(F(z,s) — Fo(s)x)% . (6.108)

Fy(z, s) is the kick from a Gaussian beam, and F(z,s) is the kick from a Gaussian beam
Fy(z, s) plus the perturbation § F(z,s). As aresult of using the dynamic beta model for the
stationary solution fo, only the nonlinear part of the beam-beam force on the right-hand
side of Eq. (6.108) is used to advance 6§ f. The terms %g‘} and Fy(z,s) are calculated using
the perturbed dynamic beta quantities 8* and 0. Note that the unperturbed Gaussian
field Fp(z,s) is used on the left-hand side of Eq. (6.108), which makes the equation linear
in 6f. The term that has been neglected is

s
oz’

This term can be shown to be small in our problem. A possible incorporation of this term

§F(z, s) (6.109)

in the algorithm is described in Section 8.0. The reason for choosing the particular form of
the steady-state solution is apparent. It is chosen so that the right-hand side of Eq. (6.108)

1s small.

6.4.1 Finite Particle Representation
The perturbative part of the distribution éf (Eq. (6.108)) can be represented by a finite

number of particles (characteristics):

N
6f(z,2',s) = Z wi[s, zi(s), zi(s)] 6 (z — zi(s)) 6 (" — zi(s)) . (6.110)
1=1

Substituting this into the equation for é f advance, we obtain

| (GGORE ORI (6.111)
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where

_ (AiVAcx’)' (6.112)

This density n is calculated on the assumption that the particles are distributed uni-
formly in phase space. The density n is assumed constant through the entire run. This
approximation is no longer valid when there is either significant clumping of particles or
the particles have spread out in phase space. Thus, the éf algorithm is most suited to
problems that occur far away from resonances.

In the §f algorithm z;, z}, and w; are advanced. The advance of the extra term w;
increases the number of operations over the PIC method and leads to other numerical
constraints that will be described in the next section.

The simulation particles are distributed evenly in phase space upon initialization. The
particles are distributed uniformly in = and p, phase space in a cylindrical coordinate

system r and 6. r and 0 are defined in terms of z and p,:

& (6.113)

tan(f) = —-”- (6.114)

where fj is the betatron oscillation length at the interaction point and p is the particle
momentum along the collider in s. The maximum r value is input into the code and
is broken up into segments of length Ar. The number of particles at each r value is

determined by a cumulative integration method.?” The particular functional form is
AN = —(2r 1), (6.115)

where AN is the number of particles to be added, N is the number of particles, and N, is
the number of Ar segments to the edge of the distribution. Once the number of particles
between r and r+Ar is known, they are distributed uniformly in 8 with a random offset 6,4,
at r+ Ar /2. The initial distribution for 1000 particles is shown in Figure 6.9. The purpose

of this method is to have each particle cover an equal area of phase space.
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Figure 6.9. Uniform Distribution of 1000 Particles in z,p. Phase Space.

6.4.2 Symplectic Mapping

Results from previous runs indicate that a higher-order integration scheme for the char-
acteristic advance is necessary for the é f algorithm. In runs where only the leapfrog scheme
is used, the code is inaccurate in the particle push. This higher-order integration scheme
for the particles is needed in the é f algorithm because small changes to the initial distribu-
tion are being studied. In the PIC codes the numerical noise caused by the finite number
of particles is larger than that produced by the numerical diffusion of the particles caused
by the leapfrog integration scheme.

In this section we describe a symplectic, finite-difference scheme to counter the effects of
numerical diffusion on the particle motion. In this scheme the normal symplectic mapping
is used to advance the particles with an additional perturbation term.

Without the beam-beam force term, a symplectic transformation map for the character-
istics with the magnetic field can be written. Also in the case of a linearized beam-beam

force a symplectic transformation map can be written with slight modifications. The map
can be written in the form:
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z _ cos(6) B sin(8) T
(o =)

where z = dz/ds, s is the coordinate along the collider, § = foa ds/fg, and the indices 3
and f refer to the initial and final positions, respectively. This map is used at all places
in the storage ring, including the interaction region. Upon adding the symplectic map the
particle motion is accurate to many decimal places.

A simple implementation of the beam-beam force that preserves symplecticity involves
approximating the force with an impulse. Using Hill’s equation:
F(z)

ymuv?

" + K(s)z = 8p(s), (6.117)

where the term on the right-hand side of the equation is due to the beam-beam force. The

mapping is the same as a tracking code with the beam-beam force:

(2),~ (o0 ) () 19
7' f_ G(z) 1 7’ ’.’ ‘

Fy(z) 1
ymv2z’

where

G(z) = (6.119)
and Fy(z) is the unperturbed force due to a Gaussian beam.

In the particle advance scheme the particles are advanced first using the transfer matrix
for a distance in § = As/48;, where As = cAt. The particles are then kicked by the
beam-beam field for As/28; and then advanced again As/48§. The total matrix is

z 1 0 T
(2) oL %)) o120

cos(6)  f§sin(6) )

6.121
—3107 sin(6)  cos(6) ( )

M(9) = (
where § = As/(44;) and z used in G(z) is the intermediate = value obtained from the first
transfer matrix application:

Rz)14s
ymvlz 2

G(z) = (6.122)
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6.4.3 Time Advance
In this section the time advance scheme of the code is described. The entire predictor-

corrector advance scheme is shown in Table 6.1.

Table 6.1. Steps for Advance of § f Algorithm.

Start with z”,z™,6f" 67~

6f31:teldict from z",z'" 6 f*=1 F™(z", 6 f*)

n+d  _ 1ocendl
8f, predict — 2(6f, Sredict +8f7)

xn+%’xm+%
n+41 n+d m+l cen pntdo ontd n+i
8fcorrect from z™*3,2"¥3 §f7 FiTi(z 2’6fpredict)
zn+1 zm+1
,

repeat steps 1-6 until the end of the interaction region

rotate g+l g/nt+l

WO 0 =~ O Ot W W N

repeat steps 1-8 until the end of the simulation run

The n in Table 6.1 refers to the time step number. In step 2 6 f**! is calculated from

predict
the discretization of Eq. (6.111):
of 0(37 i xin)
oz’
where As = cAt, and F™(2?,6f") is the force calculated from the unperturbed Gaussian
beam Fy(z?) plus the perturbation force §F™(z?,6f"). 6§51 is then calculated using

1 1T, i
wi;-:édict = 0" - - [(F (z7,6f") — Foz?) 2As, (6.123)

predict
Eq. (6.110):
N
§f(z,', s);-l"-flzdict = Z w,-;'l"'édicté(x —zi(s))é(z’ — zi(s)) . (6.124)
1=
The same procedure is used in step 5 to calculate § fgg'rlr ect’
wiggx!rect = w;" + Aw, (6.125)
n+il 4+t
1 1 1\ Ofo(z; 2,z °
Aw=—= (F"+%(x;‘+2,5f"+%) - Fo(s)z?+2) ( lax' : ) As.  (6.126)

In steps 4 and 6 z and z' are advanced using Eq. (6.120). In step 8 z and z' are advanced

using Eq. (6.116):
n+l . n+1
z B cos(27v) B; sin(27v) z (6.127)
z /. —ﬁia- sin(27v)  cos(2wv) ). '

t 1
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where

As
v=1yy— —0, (6.128)
0
which takes into account the finite length of the interaction region As in the phase space

rotation.

6.5 Diagnostic Quantities
Analysis of the dynamics of the beam-beam interaction requires diagnostics of several

quantities. Two typical accelerator quantities, the beam-beam tune shift parameter Av
and the beam emittance ¢, are calculated from the simulation. These quantities give an
idea of the beam strength and beam size, respectively. Various moments of the beam
are also measured to get an idea of macroscopic beam behavior. It is also important to
determine the amount of particle diffusion occurring within the beams. This diffusion is
measured using Poincare sections and the method of Chirikov.? Each of these diagnostic

quantities is described in more detail in the following sections.

6.5.1 Emittance

A quantity of importance to accelerator physics is beam emittance e. It is a measure of
phase space area occupied by the beam particles. In a Hamiltonian system phase space
area is conserved and, therefore, the phase space area should be conserved. The quantity

often calculated in accelerator physics is the normalized emittance €,:%7

N
n = (B)7 5 Z (=2 + 832) (6.129)

where § and « are the usual relativistic quant1t1es, B; is the betatron oscillation length at
the interaction point, ' = p;/p, p; is the transverse momentum, p is the momentum along
the collider path, and N is the number of simulation particles. By including v, €, remains
constant even during the boost or acceleration phase of the beam. In the PIC codes €, may
be calculated by just summing over the number of particles. In the § f algorithm an initial

unperturbed emittance is calculated:

eno = (A7) 5 Z(z. + B3 woi (6.130)

where wy; is the initial unperturbed dlstrlbutlon function fo for particle :. The perturba-
tion is

Sen = (ﬂ'r)wz 72 Z(x, + B3zl Ywi, (6.131)

where w; is the time-evolving perturbation §f for particle . This perturbation emittance
is calculated and added to the initial €, to obtain the total €,.
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6.5.2 Tune Shift
As described previously, the tune shift Ay stands as a measure of the strength of the

beam-beam kick. As the beams expand and contract, the kick weakens and strengthens,

respectively. The various methods by which Av can be measured are described.

One method for measuring Av involves a least-squares-fit to the kicks of small and large

152

amplitude particles. We use Sands’* expression for linear tune shift, which is valid for

small amplitude particles:

Av = -ﬂ—OAK As, (6.132)
AK As = i"” , (6.133)
where Az' = Ap,/p and Ap, = 2eE,(z)At. A least-squares-fit to Av can be performed:
By 1
(AV):ZI;‘ = (Z‘%; Apzi’ (6134)
where z; and Ap;; are for individual particles and the average Av is given as
_BlA
= 4npB’ (6.135)

where

N
A=N Z ziApg; — Z z; Z Apg; , (6.136)

1=1 i=1
N N N

B=N) o) &) =i. (6.137)
i=1 =1 =1

The sums are over the number of particles N used in the fit. The tune shift for small-
amplitude particles is measured from simulation particles lying within 0.10¢ of the beam.
Tune shifts measured using particles of the entire beam are smaller only for small-amplitude
particles, since Av drops off at large amplitude. In the PIC codes the sums are carried
out over the number of particles. In the § f method the sums are also carried out over the
number of particles with the modifications:

N N N
A=N) ziApywi- D ziwiy Apgwi, (6.138)

1=1 i=1 i=1

B=N Z ziw; — Z Tiw; Z Tiw;i , : (6.139)

=1

where w; is the total distribution function value f(z,z') = fo(z,z')+6f(z,z') for particle .
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Another method for calculating Av uses the electric field E;(z). This can be done at

one point z in the beam or as an average over several points. For one point:

_5
Av = 47rAK As, (6.140)
AK = 26E’(f )1 (6.141)
ymv?
and for several points:

Av = —ﬂ-E—AK As (6.142)

4 ’

2¢E; (:1:,) 1

6.143
N ; 7mzv z;’ ( )

where the sum is over N particles. The tune shift Av is calculated in the §f algorithm
at one point from Eq. (6.140) by using E;(z) = Ezo(z) + 6Ez(z), where Eg¢(z) is the
unperturbed field and § E;(z) is the perturbation field. For several points in the § f method
Eq. (6.142) becomes

_ B Ay
Av=LAK As, (6.144)
2e x| .!
1 1 ymiv : 1
AK = , (6.145)

E =1 Wi

where wj is the total distribution function value f(z,z') = fo(z,z')+6f(z,z') for particle i.
The power spectra of the z position of sample particles are another diagnostic method.

The = positions are sampled after each complete turn around the collider. The power
spectral density P(v) is calculated from®?

P(v) = [-: dn' exp(—in'v)C(n'), (6.146)

where n refers to the turn number, and C(n), the autocovariance function, is given by

+N
C(n')= hm {%/ z(n) z*(n + n')dn} , (6.147)
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where n' is the lag in the number of rotations. The previous expression assumes that
z(n) is a continuous function of n. In the simulations, C(n') is calculated from a discrete
set of values:**

N—r
C(r)= N 1_ - z z(n)z*(n+r), (6.148)

n=1

where r = 0,...,m, r is the rotation lag, m is the maximum rotation lag, and NNV is the total
number of rotations. The autocovariance function may be calculated using an FFT with
N = 2%, The maximum rotation lag was constrained to be less than 0.25 N for accuracy.

The power spectral density is calculated by
P(v) =FFT[C(r)W(r)], (6.149)

where W (r) is the window function, the Parzen lag weighting functions.>> The tune shift
can be determined from the frequency shift in the power spectral peak. The frequency
spectrum peaks at the unperturbed tune vy when the beam-beam interaction is not present.

The error in measuring the tune shift Av is given by

§(Av) = —772; , (6.150)

where m is the maximum lag in rotations.

6.5.3 Determination of Beam Moments
Other quantities of importance in diagnosing beam dynamics are the beam moments,

which may be studied in two different approaches. One way involves calculating the

cumulants of the particle positions z for each beam:5°
1 N
<z>= N;xi (6.151)
1 N
<z?l>= ¥ D (@i— <z >) (6.152)
i=1
1 N
<z*>= N (zi— <z >)? (6.153)
1=1
1 N
4
<#t>= i}_:l(a:,-— <z >) -3(zi— <z >)?, (6.154)
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where N is the number of particles. In the é f technique the cumulants are calculated:

1
<z>=4 inw,' (6.155)
<z?>== Z(w;— <z >)2w; (6.156)

<zd>= -J%I—Z(:c,-— <z >)Pw; (6.157)

N
<zt>= %{‘Z(m— <z >) = 3(zi— <z >)w;. (6.158)

1=1
Power spectra of the cumulants give the frequency components that contribute to each

mode.

Another method involves taking the moments directly from a certain functional form:

N

f(m) = Z exp(tm¥;), (6.159)

1=1

where N is the particle number, m is the particular moment, and

§; = tan~! (ﬂ *””2) , (6.160)

Ty

where z; is the particle position, and z| is ‘fl—’;‘.. The advantage of this method is in

determining the mode structure of the beams. The growth of the quantity f*(m)f(m),
where f*(m) is the complex conjugate of f(m), determines the strength of particular modes
in the beam. For example, particular modes should dominate near resonances. The mode

m = 4 should dominate near v = %_, and mode m = 6 should dominate near v = %.

6.5.4 Determination of Diffusion
Two methods of determining the stochastic nature of particle motion are employed.

One simple method involves the use of Poincare surface of sections. A Poincare map is
generated of sample test particles that are placed in the code. The map plots the particle
position in z/B* and &' coordinates at each time step. Each point represents the particle
on a turn-by-turn basis. The advantage of this method is in seeing the diffusive nature of

the particles and in determining regions of stability in phase space.
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The second method is to calculate the diffusion of particles. Diffusion coefficients may

be calculated in the following manner:23

X(m) - X))

__ 2 [
Dy = Nk(Nk -1) mz>:l (ANk)(m =1) ’

k=1,2, (6.161)

where N} is the number of subintervals, AN} is the size of the subinterval in terms of
rotations, k refers to the subinterval type, and X (m) is the average of z, over the subin-

terval m:
AN,

% _ 1 Tlin
X(m) = —-——ANk ;

Oz

, (6.162)

where = m ANy. The total number of rotations is broken up into two different subinterval
sizes. Diffusion coefficients are calculated for each different subinterval. If we find the

coefficients computed with different sampling intervals,
D; ~ D,, (6.163)

then the motion z is diffusive. This occurs since a diffusive process should be independent
of the number of subintervals. On the other hand, if the initial conditions are chosen within
“islands” of stable oscillatory motion : [X(m) — X(I)] < (ANg)™!, then

D2 _(AN)®

1. .164
D1O((AN2)3< (6.164)

The average in Eq. (6.162) is intended to lower the influence of bounded energy oscil-
lations and to pick out accumulating changes.® The averaging made over all pair combi-
nations of intervals is intended to increase the time scale for which diffusion is described
by the rate, and it facilitates the separation of diffusion processes from side effects. The
mean value of At is about half the total time and is independent of the length of the
interval At,.3

7.0 SIMULATION RESULTS

In this section we describe results of the study of the beam-beam interaction with the
various codes that have been developed. The effects of the filamentation instability?® are
examined using the electromagnetic code and Vlasov code. Beam-beam collective effects
are examined using the electromagnetic code, strong-strong code, and §f code. Particle

diffusion is also examined with the use of all the codes. A comparison of the different codes
is made.
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7.1 Filamentation Instability
In this section we discuss the results from the electromagnetic PIC code and the Vlasov

code. We focus on the filamentation instability in counterstreaming beams.

7.1.1 Electromagnetic Code Results
To test the electromagnetic code described in Section 6.3.2, runs are performed with two

counterstreaming proton beams and with no rotation in phase space due to accelerator
magnets. This is a control run to check the growth rate of the filamentation instability.
Figure 7.1 shows the filament formation of one beam in (z,p;) space at wpT = 50, 100,
and 150, where wy is the beam plasma frequency. The beams are counterstreaming in the
the y direction. The initial beam size is 128A, with a simulation box size of 512A and a
relativistic factor of 4 = 100. The maximum growth rate expected is T'mazyY/2/wy = 0.5
with a filament size of A & A, where A = cy1/2/w; is the collisionless skin depth. At
wpT = 150 the separate filament sizes correspond approximately to a collisionless skin
depth )., and the measured growth rate is I'yyaz/wp = 0.3. Figure 7.2 shows results
from varying the relativistic factor 4. The measured growth rates I'jq;/wn are in close
agreement with the predicted growth rate of I'mqez /ws = 1/2, where w, = wy/y!/? is the
beam plasma frequency normalized by +.

Results of simulation runs with a small ratio of beam radius, wp, to collisionless skin
depth, A, = 071/ 2/wy, are shown in Figure 7.3. Growth rates were measured with and
without the electric field included in the simulation. It is apparent that the growth rates
with the electric field included in the simulation are in agreement with the theoretical
growth rate of I'/w, = 0.5. Thus, it appears as if the small beam width has not suppressed
the instability. When the electric field calculation is not included, the growth rates increase
by a factor of approximately two. The inclusion of the electric field causes expansion of

the beams and suppresses the pinching in z of the beams by the magnetic field.

2.93 — T 3.98 I — 6.87 S R l
1 |' t e .
‘. ’ e
1.49 - AWt - 211 : - 2.90 ~
-~ ] 2 o~ ~ R
'_O ‘ ' . e, ‘§_’ {.-; . Ng ’\,‘ . &
x 006+ Wi 4 %X o025 P 4 X -108F5" S
~ Ry = 1 g ,"-
x Y 5 T x ;4
-1.381 e 4 -2 ,{; . 1~ -s0ef 4
- 281 - -3.49 e ~9.04 P S——
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Figure 7.1. (z,p;) Phase Space Plots for w,T = 50, 100, and 150 at the Top, Middle, and Bottom of the
Figure, Respectively, with v = 100.
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Figure 7.2. Growth Rate of Filamentation Instability I'yn4z /wn, Where w, = wb/'yl/ 2, for Three Values of 7.
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Figure 7.3. Maximum Growth Rate ['yq, /w, With and Without the Electrostatic Field Calculation, Where
wn = wy /7y /2, Versus the Ratio of Beam Radius w, to Collisionless Skin Depth A, = ev!/2/wy.
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7.1.2 Vlasov Code Results
A problem involving two counterstreaming electron beams is examined with the Vlasov

code. The beams are unstable to the filamentation instability, which has a maximum
growth rate I'ypq, of 23

Tmaz'/? _1 (7.1)
wp 2

The code is timed for various problem sizes, and performance is compared with the Cray

YMP. The results presented here are only for the Cartesian geometry case.

Figure 7.4 shows the growth in the field energy as a function of time in units of the
background plasma frequency, wpe. The field energies are plotted for the three machines
on which the problem was run (Intel i860, a Connection Machine, and a Cray YMP).
Note that the results agree well over the length of the run. The slight differences can
be attributed to the differences in precision and random number generators used for the
initialization of the fields. Using the growth time of 400 simulation time steps from the

simulations, the measured growth rate is

1/2
DT o4, (7.2)

Wh

This measured growth rate is close to the theoretical filamentation growth rate. The ratio

of beam width wj to the collisionless skin depth A, is

W
— =~ 1.5. 7.3
» (7.3)
0.04 [} 1 1 l i
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Figure 7.4. Comparison Between the Intel Hypercube, the Connection Machine, and the Cray YMP on a
Test Problem. The growth in field energy as a function of time (wp,t) is shown.
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The integrated distribution functions of one of the beams at various time steps are shown
in Figures 7.5 and 7.6. The other beam evolves in a similar manner. The evolution of the
z — z distribution function is shown in Figure 7.5. The beam starts out as a finite-width
beam in z with an initial small perturbation in 2. (The oscillations can be seen along the
beam at the top.) As the beam evolves, it begins to spread in z. The filament formation is
evident for f(z, z) in Figure 7.5 after 400 time steps. The filament sizes are approximately
between 0.5A; and A;. By the end of a 1000-time step run the beam has spread to the
point where the multiple beams are beginning to overlap due to the periodic boundary
conditions. By the end of the run the results are no longer valid for a single beam, since

overlap has occurred. Results before this point are valid.

f(x,2)

f(x,z) 0.5

Figure 7.5. Integrated Distribution Function f(z,2) at 0 and 400 Time Steps from the Top to the Bottom.

Note that the z — p, distribution function in Figure 7.6 becomes negative, an inherent
problem with Vlasov simulation techniques. Since only two points are chosen to represent
the distribution function of the two beams in p, space, truncation errors result that cause
the distribution function to become negative. A solution to this problem may be in higher
resolution in p,, which translates into a larger number of grid cells and more memory.

Another approach may be to use transform methods in the momentum directions.3® This
truncation error still needs to be resolved.
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Figure 7.6. Integrated Distribution Function f(z,p,) at 0 and 400 Time Steps from the Top to the Bottom.

The maximum speed of the code is approximately 152-million floating-point operations
per second (MFLOPS) for 32 nodes. The efficiency of the code is dependent on the ratio
of the number of floating-point operations per node to the number of transfers per node.
It is obvious that reduction in communication increases efficiency. In the extreme case of
no communication the number of MFLOPS would be linearly dependent on the number
of nodes. We assume the exclusion of speedup due to vectorization that would depend on
problem sizes. The amount of communication per node can be minimized by considering
the shape of the region computed for each node. Two quantities that give an indication of
the shape are the perimeter of the region, which is 2(nc; +nc;), and the area of the region,
ne¢g - nez, where ne; and nc, are the number of cells per node in the z and z direction,
respectively. The ratio of the perimeter to the area of the region is in proportion to the

amount of communication per computation for each node. The ratio can be represented
by the formula
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- ()

where
T= e (7.5)
N =nc; - nc,. (7.6)

Minimizing p/a reduces the amount of communication per computation for each node.
The smallest value is achieved by choosing r = 1 for a fixed number of cells per node N. At
this point it can be seen why a slab geometry is not optimal for communication. Although
the slab geometry needs only two directions of communication, the ratio r is generally far
from 1. Also, as the number of nodes is increased, the ratio r increases. Eq. (7.4) also
shows that the larger the total problem size, the larger IV is for a fixed number of nodes. So
efficiency is also enhanced when the problem size is large. The problems with the highest
efficiency or MFLOPS per node are the problems with the largest number of grid points
per node.

As a comparison of outright speed, a serial version of the code was also run on the Cray
YMP at NASA Ames. No effort was made to optimize the code for vectorization. Tests
are performed on the code with 32 nodes on the Ames hypercube. The speed was 2.3 times
faster than the Cray YMP for the largest problems run. Although this may not be a fair
test, it does give a rough idea of the size of the parallel machine necessary to achieve speeds
comparable to a Cray YMP. Obviously a more rigorous test needs to be performed where

both codes are optimized for each specific machine.

There are a few improvements that can be made. The distribution function goes negative
after a few hundred time steps. A solution may be to increase the resolution of the velocity
distribution or to go to some type of transform method.?® Another solution is to use the
6f method on the Vlasov technique, which will be discussed in Section 8.0.

7.2 Collective Beam-Beam Effects

In this section the object is to describe the effects of the beam-beam interaction on
macroscopic beam behavior—that is, phenomena that deal with the entire beam, such as
beam blowup.

7.2.1 Reference Parameters

Our research is generic enough to cover the beam-beam interaction of various colliders
or storage rings. We make specific reference to the parameters of the SSC, shown in
Table 7.1. Using the numbers from the table we have: v = 2.13 x 10* and wyrins = 0.035,
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where wp = \/‘W, np = Np/(lwh) is the beam density, my is the mass of the beam
particles (protons), v is the relativistic factor, and 7i5; = L/2c is the interaction time of
the colliding beams. The horizontal tune shift Avgo is calculated for a two-dimensional
Gaussian beam. Since the present simulations deal with only one-dimension, this quantity

is recalculated. Using the equation for the one-dimensional tune shift:

_ [2p'rpNp
Ayy = \/; Thw (7.7)

and using values from Table 7.1, the one-dimensional tune shift is Ay = 2.1 x 1073,

A series of simulation runs is performed using the parameters described in Table 7.1.

Table 7.1. SSC Parameters.

Ixwxh =75cm x1073 cm x1073 ¢cm
Np = 7.3 x 10°
T = 20 TeV protons
o = 50 cm
Avgo = 0.84 x 1073
vao = 0.285
Luminosity = 1033 em~2 57!
Lifetime = 24 h or 108 turns

Electromagnetic Code Results. Runs of 1000 turns are performed using the reference
parameters described in Table 7.1, with v = 0.285 and Ayg = 2.1 x 1073, In order to
keep the time between rotations reasonable (= 1000 time steps), a beam width larger than
that of the SSC is used. This is due to constraints of following light waves in the electro-
magnetic code. The ratio wy/). is still small at ~ 1073, Also, to save on computation
time 256 particles are used for each beam. Measurements of the tune shift Av for both
beams for small-amplitude particles are shown in Figure 7.7. The tune shift Av oscillates
about an average of 1.87 x 1073 and 1.93 x 1073 for beams 1 and 2, respectively. The pre-
dicted tune shift for a one-dimensional Gaussian beam using SSC parameters is 2.1 x 1073,
The fluctuation level of Av is approximately +15%Auvy. This large fluctuation level is
attributed to the small number of particles used. Figure 7.8 shows the initial and final
(z/0z,pz/0p) phase space particle positions. Little difference is seen between the initial
and final configurations.

Some of the shortcomings of this fully self-consistent method are clear: 1) it is too costly

for such a small number of particles, and 2) a large number of time steps is necessary for one
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rotation. For realistic SSC parameters the simulation time step size At is about 3x 1073 p,.
We will concentrate on more efficient methods of modelling the beam-beam interaction in

the rest of the paper.

Beam 1

Av (x 1‘0‘3)

0 100 200 300 400 500 600 700 800 900 1000
Rotations

Beam 2

Av (x 1073)

0 100 200 300 400 500 600 700 800 900 1000

Rotations
Figure 7.7. Tune Shift of Interacting Beams.
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Figure 7.8. Initial (Top) and After 1000 Rotations (Bottom) (z/0z,p./0p) Phase Space Particle Positions.
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Strong-Strong Simulation Results. A series of strong-strong simulations has been
performed to determine long time characteristics. The initial distribution of particles is
shown in Figure 6.5. In this run 10* particles are used in each beam, with variable charge
per particle initially to maintain a Gaussian distribution. The tune vy = 0.285 and the
tune shift Ayg = 2.1 x 1073, The simulation box size is 128A, where A is the cell size.
The beam width w is 30A and the particle size a is A. The particle size a is small enough
in relation to the beam width w so that from Eq. (6.57):

Apoint _ 1 0022, (7.8)
Avggy
where Avpoint is the tune shift for a point particle and Avy,y, is the tune shift for a finite-size
particle. Thus, finite-size particle effects on the kicks that the simulation particles receive
are minimal. By normalizing the code to a plasma with density lower than the beam, where
wp is the normalization plasma frequency and wy is the beam plasma frequency, only four
simulation time steps are needed to cover the interaction region. So wgAt = 0.25, where
At is the simulation time step size.

Figure 7.9 shows the distribution of 10* particles in (z/0z,pz/0p) phase space for one
beam after 10,240 rotations. The particles were initialized using the nonuniform charge
distribution (Figure 6.5). After 10,240 rotations the particles are no longer uniformly
distributed in (x/0z, pz/0p) space. Clumping of particles has occurred, and small regions
contain no particles. However, no dominant mode such as an m = 2 mode (football shape)
or m = 4 mode (square shape) has appeared, which would distort the shape of the whole
beam. A profile in = of the distribution of particles in Figure 7.10 shows the deviation of
the distribution from the initial Gaussian profile. The center of the beam is at r = 64A.

Large spikes in the distribution are visible at £ =~ 50A and z = 80A.
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Figure 7.9. Distribution of 10* Simulation Particles in (z/0s,p./0p) Space After 10,240 Rotations, with
vy = 0.285 and Ayg = 2.1 x 1073,
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Figure 7.10. Distribution of 10* Simulation Particles in z After 10,240 Rotations, with vy = 0.285 and
Avg=2.1x 1073,
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We measure the tune shift Av by two methods described in Section 6.5.2. One method

involves a least-squares-fit to the kicks of small- and large-amplitude particles.

Results from the least-squares-fit method for one beam are shown in Figure 7.11. The fit
is done for small-amplitude particles z < 0.10; at the top of the figure, and for the entire
beam for the bottom of the figure. The tune shift Av oscillates around the unperturbed
values of Ay = 2.1 x 1073 for small-amplitude particles and Avy ~ 1.55 x 10~2 for all
the particles. The discrepancy is due to the drop-off of the kick at large values of z.
When all particles are included in the least-squares-fit, the measured Av is lowered by the
particles with large z. The amplitude of the variation in Av for small-amplitude particles
is approximately £20% of Avg near the end of the run. The tune shift obtained from all
particles decreases in amplitude with the number of rotations. The maximum variation
of Av is approximately 3% of its average value and occurs within the first 500 rotations.
The oscillations in Av indicate expansion and contraction of the beam. The expansion
and contraction of the beam decreases and increases Av, respectively. Notice that the
beam is expanding and contracting differently at different particle positions. The small-
amplitude portion of the beam is increasing in oscillation amplitude, while the entire beam

is decreasing in oscillation amplitude.
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Figure 7.11. Tune Shift Av from a Least-Squares-Fit to Small-Amplitude Particles z < 0.10, (Top) and All
Particles (Bottom) for M = 10,240 Rotations.
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The other method by which the tune shift Av is measured is by obtaining power spectra
of the z positions of sample particles, which are sampled once every complete rotation.
Figures 7.12 and 7.13 show the particle positions and power spectra for a small- and
large-amplitude particle, respectively. The tune shift Av is measured from the shift in
the power spectral peak from the unperturbed tune 3. The small-amplitude particle in
Figure 7.12 shows smearing in the particle position in phase space. This is indicative
of particle diffusion, which will be discussed in Section 7.3. The peaks in S(v) are at
v = $0.2827148. The difference from v is 2.2852 x 10~3. The error in this measurement
is v = 7.8125 x 10~%, where the maximum lag time is 2560 rotations for the power
spectrum calculation. Although the value is higher than the unperturbed tune shift Ay,
it is within the errors of the calculation. The large amplitude particle in Figure 7.13 also
shows smearing in the particle position in phase space, but it is less than that observed for
the small-amplitude particle. The peaks in S(v) are at v = £0.2832031. The difference
from vp is 1.7969 x 10~3. The error in this measurement is also v = 7.8125 x 10~%. The
tune shift, Av, for the large-amplitude particle is smaller than the one measured for the

small-amplitude particle, since Av drops off with large z for the beam-beam interaction.

Moments of one beam are shown in Figures 7.14 and 7.15. At the top of Figure 7.14
the oscillation of the average beam center < z > is apparent. The beam oscillates
with a maximum beam amplitude of é§z/o, ~ +8 x 10™%. The average < z > and
< (z— < z >)? >, the odd moments, are both increasing in oscillation amplitude with
rotation number. The increase is more obvious for < (z— < z >)® > at the bottom of
Figure 7.14. At the top of Figure 7.15 the oscillation of the beam width can be seen. The
beam is oscillating about the initial beam width o2 with a maximum amplitude of approx-
imately +0.0402. Oscillations are also apparent for < (z— < z >)* > at the bottom of the
figure. The amplitudes of the even moments < (z— < z >)? > and < (z— < z >)* > are
both decreasing with the number of rotations. Note that the variation in the second mo-
ment < (z— < z >)? > closely corresponds with the variation of the tune shift measured
from all beam particles in Figure 7.11. Both Av and < (z— < z >)? > give a measure of
the width of the kicking beam and the kicked beam, respectively. Since both beams are
oscillating in width in the same manner, the agreement is expected.

Figures 7.16 and 7.17 show the moments and their associated power spectrum. The
power spectrum of the average of z, < z >, is shown at the bottom of Figure 7.16.
There is a peak in S(v) at v =~ 0. This peak corresponds to oscillations seen in < z >
with periods between 500 and 1000 rotations. The smaller peaks at v ~ +(v9 — Avp)
correspond to the betatron motion. In Figure 7.17 the peaks in the power spectra S(v) at

v & £(1 — 2(vo — Awp)) also correspond to the betatron motion of the beam.
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The emittance € of each beam for 10,240 rotations is shown in Figure 7.18. The emittance
for one beam is at the top of the figure, and the other is at the bottom. Until about
6000 rotations the beams show similar behavior. They oscillate about the initial emittance
0 = 9.586A. After this the beams begin to deviate from one another. One beam is
decreasing in phase space area, and the other beam is increasing. This phenomenon is
similar to the “flip-flop” effect observed experimentally with equal-strength beams.” One
beam blows up and the other decreases in size. The difference in ¢ is small between the
two beams; by the end of the run it is fe/ep = 4.4 x 1073. This variation in € is very
sensitive to the initial conditions. Figure 7.19 shows the emittance for both beams when
the distribution is initialized with different random offsets in 8 for the nonuniform charge
distribution. The increments in r/o are the same. The beams begin to deviate from one
another at about 9000 rotations. The deviation is much smaller than the previous case.
By the end of the run it is de/eg = 5 x 1074,

Runs with the uniform charge and nonuniform position initialization show different
behavior than the runs with nonuniform charge and uniform position. Figure 7.20 shows
the distribution of 10* particles in (z /04, ps/0p) phase space for one beam after 10,240 ro-
tations. The particles were initialized using the uniform charge distribution (Figure 6.7).
After 10,240 rotations the particle distribution shows spiral arms in (z/0s,pz/0p) space.
However, no dominant mode such as m = 2 (football shape) or m = 4 (square shape) has
appeared that is distorting the shape of the whole beam. A profile in z of the distribution
of particles in Figure 7.21 shows the deviation of the distribution from the initial Gaussian
profile. The center of the beam is at ¢ = 64A. The profile is much smoother than the
profile from the nonuniform charge distribution run (Figure 7.10).

Results from the least-squares-fit method for one beam are shown in Figure 7.22. The
fit is done for small-amplitude particles z < 0.10;. Av oscillates around the unperturbed
tune-shift values of Ayy = 2.1 x 1073 for small-amplitude particles. It is found that
Av = 1.55 x 1073 for all the particles. The discrepancy is due to the drop-off of Av at
large values of z. When all particles are included in the least-squares-fit, the measured
Av is lowered by the particles with large z. The amplitude of the variation in Av for
small-amplitude particles is approximately +3% of Avg near the end of the run, which is
about a factor of 6 smaller than the deviations observed in the nonuniform charge run.
The tune shift Av obtained from all particles decreases in amplitude with the number of
rotations. The maximum variation of Av is approximately +3% of its average value and
occurs within the first 500 rotations. The oscillations in Av indicate that the expansion

and contraction of the beam that is kicking the particles is smaller than the nonuniform

charge runs.
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Figure 7.18. The Emittance ¢ of Both Beams for 10,240 Rotations. One beam is at the top and the other
beam is at the bottom of the figure.
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One beam is at the top and the other beam is at the bottom of the figure.
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The emittance € of each beam for 10,240 rotations is shown in Figure 7.23. The emittance
for one beam is at the top of the figure, and the other is at the bottom. In this case
the beams are oscillating in e. The amplitude of the oscillations is largest for the first
1000 rotations. The magnitude of these oscillations is de/ep ~ 1073, where ¢ is the initial

emittance. By the end of the run the oscillations are §e/ep = 104,
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Figure 7.22. Tune Shift Ay Measured from a Least-Squares-Fit to Small-Amplitude Particles # < 0.1, for
M = 10,240 Rotations.
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Figure 7.23. The Emittance € of Both Beams for 10,240 Rotations. One beam is at the top and the other
beam is at the bottom of the figure.
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§f Simulation Results. A series of § f simulations has been performed to determine long
time characteristics. We use 10% particles in the runs. The fluctuation level § expected
for the actual SSC beam is 6§ ~ 10~° for 10!° particles. Figure 7.24 shows the variation
with particle number of the minimum and maximum perturbations §f/fo for runs with
10,240 rotations. We see that the maximum perturbation is nearly independent of particle
number. The minimum fluctuation value decreases exponentially with increasing particle
number. It can be seen that the minimum perturbation drops below 10~5 for simulations
with 10% particles and larger. Because 103 particles could be used, larger rotations of 10°
could be run. The initial distribution of particles is shown in Figure 6.9. In this run
10 particles are used in each beam with variable charge per particle initially to maintain
a Gaussian distribution. The tune vy = 0.285 and the tune shift Ayg = 2.1 x 1073, The
simulation box size is 1284, where A 1is the cell size. The beam width w is 30A and the
particle size a is A. The particle size a is small enough in relation to the beam width w

so that from Eq. (6.57):
A .
Elpoint _ 10022, (7.9)
Avggy
where Avpoint is the tune shift for a point particle and Avy,, is the tune shift for a finite-size
particle. Thus, finite-size particle effects on the kicks that the simulation particles receive
are minimal. By normalizing the code to a plasma with density lower than the beam, where
wg is the normalization plasma frequency and wj is the beam plasma frequency, only four
simulation time steps are needed to cover the interaction region. Thus, woAt = 0.25, where

At is the simulation time-step size.

Figure 7.25 shows the distribution of 103 particles in (x/0;,pz/0p) phase space for
one beam after 10° rotations. After 10° rotations the particles are no longer uniformly
distributed in (z/0z,pz/0p) space. Some clumping of particles has occurred, and small
regions contain no particles. The clumping is not significant enough to affect the validity
of the constant phase space density assumption as a good approximation. A profile in z
of a Gaussian distribution of particles in Figure 7.26 is shown. Figure 7.27 shows the
perturbations from the §f code to the Gaussian profile after 10° rotations. The center of
the beam is at £ = 64A. The maximum perturbations are only 0.1% of the maximum in
the Gaussian profile. Thus, the §f code is still a valid approximation. Notice that the
perturbed distribution makes sense physically. There is a depletion of particles from the
center of the beam and an increase in particles at about +20,. The beam is expanding
slightly.
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Results from the least-squares-fit method for one beam are shown in Figure 7.28. The fit
is done for small-amplitude particles z < 0.10; at the top of the figure and for the entire
beam at the bottom of the figure. The tune shift Av oscillates around the unperturbed
values of Ayy = 2.1 x 1073 for small-amplitude particles and Ayg =~ 1.52 x 103 for
all the particles. The discrepancy is due to the drop-off of Av at large values of z. The
amplitude of the variation in Av for small-amplitude particles is approximately +3% of Ay
throughout the run. The tune shift obtained from all particles increases in amplitude with
the number of rotations until approximately 15,000 rotations; it then remains somewhat
constant until the end of the run. The maximum variation of Av is approximately +4%.
The oscillations in Av indicate expansion and contraction of the beam that is kicking the
particles. Notice that the beam that is kicking the particles is expanding and contracting
differently at different particle positions. The small-amplitude portion of the beam is at
constant oscillation amplitude, while the entire beam is increasing in oscillation amplitude

for the first 15,000 rotations.

The other method by which the tune shift Av is measured is by obtaining power spectra
of the z positions of sample particles that are sampled once every complete rotation.
Figure 7.29 shows the shift in the power spectral peak from 100 particle positions in phase
space. The tune shift Av is measured from the shift in the power spectral peak from the
unperturbed tune vy. Notice that Av decreases with increasing r/o of the sample particle,
where r/o = \/xz/ag + pi/a2.

Moments of one beam and their associated power spectra S(v) are shown in Figures 7.30,
7.31, 7.32, and 7.33. At the top of Figure 7.30 the oscillation of the average beam center
< z > is apparent. The beam oscillates with a maximum beam amplitude of éz/o, =~
£+1.6x107% The average < z > and < (z— < z >)® > (Figure 7.32), the odd moments, are

both increasing in oscillation amplitude with rotation number. At the top of Figure 7.31
the oscillation of the beam width can be seen. The beam is oscillating about the initial
beam width o2 with a maximum amplitude of approximately +0.003¢2. Oscillations are
also apparent for < (z— < z >)* > at the top of Figure 7.33. These oscillations are
induced spontaneously. This is in spite of the initial lack of offset and initial lack of noise
due to the finite number of particles. The latter is due to our adoption of the § f algorithm.

The particle weights w; were taken to be zero at t = 0.
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The bottoms of Figures 7.30, 7.31, 7.32, and 7.33 show the moments and their associated
power spectra. The power spectrum of the average of z, < z >, is shown at the bottom
of Figure 7.30. There are peaks in S(v) in descending power at v ~ +v' and £(5v' — 1),
where v/ = vy — Avg. These peaks correspond to harmonics of the betatron motion.
In Figure 7.31 the peaks in the power spectrum S(v) at v = £(1 — 2(vy — Aw)) also
correspond to the betatron motion of the beam. The peak near v =~ 0 corresponds to
low-frequency oscillations with periods longer than 10* rotations. Figure 7.32 shows S(v)
for < (z— < ¢ >)® >. The peaks in S(v) in descending power are at +(50' — 1), v =~ +//,
+(1 — 3/'), and £(2 — 7v'), where v/ = vy — Avy. Similarly, in Figure 7.33, S(v) for
< (z— < z >)* > has peaks in descending power at +(1 — 2v') and (1 — 4'), where
V' = 1y — Avgp. As in the case with < (z— < z >)? >, there is a low-frequency peak with
oscillations having time scales longer than 10 rotations. It appears from these results that
the even beam moments contain more power in the low-frequency components of S(v) than
do the odd beam moments.

The discrepancy between the odd and even moments is also indicative in the mode
expansions of the beam distributions. Figures 7.34 and 7.35 show the variations of the
odd and even modes, respectively, with rotation number. The modes are calculated from
Eq. (6.159) in Section 6.5.3 for m = 1 to m = 6. As in the calculation of moments, the
odd modes m = 1,3,5 are increasing with rotation number (Figure 7.34). The intensity
f(m) of the odd modes also increases with mode number m. The even modes m = 2,4,6
oscillate about an average throughout the entire run. The oscillation amplitude decreases
with mode number m. The overall intensity f(m) of the even modes is about a factor of 10
higher than that of the odd modes.

The emittance € of each beam for 10° rotations is shown in Figure 7.36. The emittance
for one beam is at the top of the figure, and the other is at the bottom. The beams show
similar behavior through the 10° rotations. They expand and contract in phase space
simultaneously. The maximum expansion is about §e/ep ~ 2 x 1073,
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Figure 7.36. The Emittance ¢ of Both Beams for 10° Rotations. One beam is at the top and the other beam
is at the bottom of the figure.

7.2.2 yy— Ay Stability

In this section we examine the variation of beam stability with tune vy and tune shift Avyp.
The strong-strong PIC simulation code is employed exclusively here. Although the é f code
is quieter, it is not well-suited for studying beam blowup phenomena that distort the
original distribution by a significant amount.

Figure 7.37 shows a stability diagram of Avyg versus vy. The dotted lines are obtained
from a linear theory developed by Chao and Ruth.!® The lines demarcate regions of linear
stability and instability for equal charge beams. The stable regions are those regions
contained by the dotted lines. The lines plotted are for up to eight beam modes. As is the
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general case with any linear theory, the theory can predict the initial growth rates of the
instability, but not the saturation levels. The points in Figure 7.37 represent strong-strong
simulation code results, in which the unperturbed Avp and v are varied. The unperturbed
tune shift Ay is scanned between the SSC reference value of 2.1 x 10~2 and a maximum
value of 0.04. In each of the simulations 10* simulation particles are used. The codes are
run for 10* rotations, with the exception of one run that is run for 3 x 10* rotations. All the
runs are initialized with variable charge and uniform distribution. All other parameters
are the same as previous strong-strong simulation runs. Beam stability for various values
of Ayy and g is determined from emittance growth. If the emittance of the beams €
increases by 50%, then the run is designated unstable. The marginally stable case noted
in Figure 7.37 is determined from the emittance growth after 30,000 rotations.
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Figure 7.37. vo — Avp Stability Diagram.

The results from the simulations show good agreement with the linear theory of Chao
and Ruth.!® The beams are unstable in regions of instability and are stable in regions of
stability.

We examine in more detail the cases where Avyg is small. In this case similarly charged
beams with values of the unperturbed tune vy just above a resonance are kicked towards
the resonance by the beam-beam interaction. In this case the beams are expected to be
unstable. For beams with values of 1 just below a resonance, the beam-beam kick is away
from the resonance and the beams are expected to be stable. Beam blowup due to strong

resonance is observed just above 19 = 1/2 and vy = 1/4 for values of Ayy = 2.1 x 1073.
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Figures 7.38 and 7.39 show the phase space distribution of the simulation particles. In
Figure 7.38 phase space plots show simulation results around the vy = 1/2 resonance.
At the top of Figure 7.38, where vy = 1/2 + Avyg, the beam blows up. At the bottom of
Figure 7.38, where vy = 1/2— Ay, it is seen that mode 2 dominates the shape of the beam
in phase space (football shape). In Figure 7.39 phase space plots show simulation results
around the vg = 1/4 resonance. At the top of Figure 7.39, where vy = 1/4 4+ Auy, the
beam particles are clumping, and the emittance is observed to increase by more than 50%.
At the bottom of Figure 7.39, where vg = 1/4 — Ay, it is mode 4 that dominates (square
shape). The beams in the case of vy = 1/2+4 Ay blow up very quickly. It takes only a few
hundred rotations. The beams blow up more slowly for vy = 1/4 + Avg. This behavior is
expected. Higher-order resonances have lower growth rates of instability. The beams are
stable just below vy = 1/2 and vy = 1/4 for small values of Avy.
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Figure 7.38. (z/B8*,z') Distribution of Particles for vy = 1/2 + Ay (Top) and vo = 1/2 — Ay (Bottom),
Where Avg = 2.1 x 1073, :
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Figure 7.39. (z/B",z') Distribution of Particles for vy = 1/4 + Ayg (Top) and vo = 1/4 — Ay (Bottom),
Where Ayy = 2.1 x 1073,
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A point is scanned just above vg = 1/3 with v = vo + Avg, where Avg =4 x 1072, In
this case the emittance ¢ is slowly growing (Figure 7.40). The beam emittance € keeps
growing until approximately 24,000 rotations, after which it appears to saturate until the
end of the run at 30,000 rotations. The phase space distribution of one beam is shown in
Figure 7.41. It can be seen that mode 6 is beginning to slowly dominate the distribution.
Since two (i.e., an even number of ) beams are colliding, mode 2/6 is expected to dominate

for g = 1/3 + Awyg. Since this is a high-order mode, the slow growth rate is expected.
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Figure 7.40. Emittance as a Function of Rotations for vy Just Above 1/3.
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Figure 7.41. (z/f*,z') Distribution of Particles for v = 1/3 + Avg, Where Ayp = 2.1 x 1073,
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7.3 Particle Diffusion

In this section we examine particle diffusion brought about by the beam-beam interac-
tion. The diffusion is measured from the tracking code, the strong-strong code, and the
6f code. We compare the diffusion coefficients measured for each of these runs. Of the
three codes, the § f code gives the best representation. It is quieter than the PIC code and
allows degrees of freedom of evolution from the initial distribution that are not permit-
ted in the tracking code. We use the two methods described in Section 6.5.4 to measure
particle diffusion.

7.3.1 Tracking Code Results

We first examine particle diffusion for particles tracked using the 1 — D tracking code
describe in Section 6.1.

Reference parameters described in Section 7.2.1 for the SSC are used: the tune vy = 0.285
and the tune shift Avg = 2.1 x 1073, The initial particle positions are shown in Figure 7.42.
The Poincare map of two sample particles is shown after 10° rotations in Figure 7.43. The
particles are sampled once every complete rotation. They show little diffusive motion. The

circles that each particle traces out in phase space are due to the betatron motion of the

particles.
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Figure 7.42. Initial Particle Positions for 100 Tracking Code Particles in (z/o, p-/p) Phase Space.
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Figure 7.43. Poincare Section in (z/0z, pz/0p) Space of Small- and Large-Amplitude Tracking Code Particles
After M = 10° Rotations.

A better grasp of the diffusive motion of the sample particles can be obtained from their
diffusion coefficients. The diffusion coefficients, dfl and df2, calculated after 10,240 rota-
tions, are shown in Figure 7.44, where

~ = %2 + ’;—:2 (7.10)
is the distance in phase space from the center of the beam. The D, means that dfl and df2
are calculated for diffusion in position |z| from Eq. (6.161). The diffusion is normalized
to 02/N,, where N, is the number of rotations. In Figure 7.44 it is apparent from the
fact dfl >> df2 that the motion is largely oscillatory in phase space. The coefficients
calculated over two time scales differ on average by a factor of approximately 100. This is
expected for oscillatory motion, where

a2 (AN?
art S\ AN,
1

X m (7.11)
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Figure 7.44. D, from the Tracking Code with Ay = 2.1 x 1073 and v = 0.285 for M = 10, 240 Rotations.
dfl and df2 have time scales of AN; = 102 and AN, = 1024 rotations, respectively.

Figures 7.45 and 7.46 show the diffusion coefficients calculated for M = 40,960 and
M = 10° rotations, respectively. The average diffusion rate is decreasing with increasing
rotations. The range of coefficients for 40,960 rotations is 10~°~10~14, and for 10° rotations
it is 10719-10~1%. This drop with increasing rotation number is another indication that
the particle motion is still oscillatory and not diffusive. If the particles are diffusive, the
diffusion coefficients would settle down to values independent of the time scale. There are
some points between r/o = 1.5 and r/o = 2 that meet the criteria for diffusivity. That is,
dfl ~ df2. However, most of the coefficients differ by a factor of approximately 100. So, in

tracking code simulations a majority of the particles exhibit oscillatory motion at different
values of position z up to 10° rotations.
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Figure 7.45. D, from the Tracking Code with Avy = 2.1 x 10~3 and v = 0.285 for M = 40, 960 Rotations.
dfl and df2 have time scales of AN; = 409 and A N> = 4096 rotations, respectively.
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Figure 7.46. D, from the Tracking Code of the Beam with Ay = 2.1 x 1073 and » = 0.285 for

M = 10° Rotations. dfl and df2 have time scales of AN; = 1000 and AN, = 10, 000 rotations,
respectively.
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7.3.2 Strong-Strong Simulation Results
In this section results from the strong-strong code on particle diffusion are presented.

The effects of the particle initialization method are examined, and the results are compared
with the tracking code. Again reference parameters described in Section 7.2.1 for the SSC
are used. So the tune vy = 0.285 and the tune shift Ayvy = 2.1 x 1073,

Results from the strong-strong code with variable charge per particle are shown in
Figure 7.47. Each beam in the simulation has 10* simulation particles, with the initial
distribution in (z, p;) phase space shown in Figure 6.5 and the resulting profile shown in
Figure 6.88.

‘The Poincare map of two sample particles after 10,240 rotations is shown in Figure 7.48.
The particles are sampled once every complete rotation. Diffusion is apparent for both
particles, even after only 10,240 rotations. The small-amplitude particle, especially, shows
the smearing out of the ring observed from the tracking-code Poincare map (Figure 7.43).
The diffusion coefficients are calculated for 100 sample particles after 10,240 rotations.
The initial particle positions are the same as the tracking code shown in Figure 7.42. As
in the tracking code results in the previous section, the diffusion coefficients, dfl and df2,
are calculated at various |z| in Eq. (6.161). The diffusion D, is normalized to o2/N,,
where N, is the number of rotations. The diffusion coefficients differ substantially from
those obtained from the tracking code (Figure 7.44). All the particles in this case show
the diffusive nature. D; is uniform across the beam radial position and is nearly an
order of magnitude higher than the tracking code values. Some of this diffusiveness is
from fluctuations due to the finite number of particles of the strong-strong code. This
dependence is shown in Figures 7.49 and 7.50. These figures show the diffusion coeflicients,
dfl and df2, for two different particles after 1000 rotations. One is for a sample particle at
r/o = 0.1 (Figure 7.49), and the other is for a sample particle at r/o = 0.9 (Figure 7.50).
In both figures the solid lines and the dashed lines refer to the diffusion coefficients, dfl
and df2, respectively, calculated from a tracking code. Note that the tracking code values
are independent of the number of particles, since the field is calculated from one Gaussian
particle (“strong beam”). Both plots show a reduction in the diffusion coefficient for the
strong-strong code calculated on the longer time scale (df2). It is more apparent for the
particle at r/o = 0.1 (Figure 7.49). The reduction goes as 1/v/N, where N is the number
of particles. This 1/ VN dependence shows that finite particle fluctuation noise,*%37 which
goes as 1/v/N, is contributing to the diffusion of the sample particles.
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Figure 7.47. D, from the Strong-Strong Code with Aypy = 2.1 x 1073 and v = 0.285 for M = 10,240
Rotations. dfl and df2 have time scales of AN; = 102 and AN, = 1024 rotations, respectively.
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Figure 7.48. Poincare Section in (z/0z,ps/0p) Space of Small- and Large-Amplitude Strong-Strong Code
Particles After M = 10,240 Rotations.
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Figure 7.49. D, Versus Particle Number for a Sample Particle at r/o = 0.1 for M = 1000 Rotations. dfl
and df2 have time scales of AN; = 10 and AN, = 100 rotations, respectively.
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Figure 7.50. D, Versus Particle Number for a Sample Particle at r/oc = 0.9 for M = 1000 Rotations. dfl
and df2 have time scales of AN; = 10 and AN, = 100 rotations, respectively.
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In order to reduce the fluctuation noise, we use the nonuniform particle initialization
method described in Section 6.3.3. The simulation particles are given equal charge and
are nonuniformly distributed in (z, p;) phase space (Figure 6.7). The resulting profile in =
is shown in Figure 6.8 for 10,000 simulation particles. SSC reference parameters are used,
with o = 0.285 and Avp = 2.1 x 1072, The initial positions in (z/o, ps /op) phase space
of the 100 sample particles are shown in Figure 7.51. The nonuniform initialization of
the simulation particles does make a difference in the finite particle fluctuation noise level.
The Poincare map of two sample particles after 10,240 rotations is shown in Figure 7.52,
where the particles are sampled once every complete rotation. Diffusion is apparent for
both sample particles. However, the smearing seen for the small amplitude is much less
than that observed with the nonuniform charge particle initialization (Figure 7.47).

The reduced diffusion is evident in Figure 7.53, where the variable charge and uniform
charge diffusion coefficients are shown for M = 10,240 rotations. The uniform charge ini-
tialization is much quieter. It shows oscillatory particle motion for particles with r/o < 2.
The only particles that exhibit diffusive characteristics are those particles with r/o > 2—
that is, particles in the tails of the distribution. In comparison with the tracking code
the sample particles from the uniform charge initialization show more diffusive behavior
(Figure 7.54). The agreement is good between the tracking code and strong-strong code
for the shorter time scale diffusion coefficient, dfl, for values of r/o < 2. However, the
longer time scale diffusion coefficient for the uniform particle initialization shows higher

values for all values of r/o, especially in the tail of the distribution.

It has been shown that finite particle fluctuation noise plays a role in the diffusion
of particles in the strong-strong simulations. This noise can be somewhat offset by using
quieter particle initialization schemes such as the smooth charge loading scheme. However,
there are still significant differences from the tracking code. Although the strong-strong
code should show differences from the tracking code because of the self-consistent solution
of the fields, it is difficult to determine whether the differences observed are due to particle
fluctuation noise alone. In order to get a better grasp of the effects of this fluctuation
noise, the noisy tracking code described in Section 6.3.4 is used. Figure 7.55 shows the
results for 10,240 rotations where noise added to the tracking code is of the form described
in Section 6.3.4. The noise level § is determined by

1

VN(@)’
where N(z) = Nerf(z/v/20;) and N is the particle number. Notice that the small-
amplitude particles at /o = 0.1 are diffusive for the noisy tracking code and the PIC

6=

(7.12)

code. The larger-amplitude particles at r/o = 0.9 are both oscillatory. The PIC code
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is more diffusive than the noisy tracking code at r/c = 0.1 and is less oscillatory than
the noisy tracking code at r/o = 0.9. These results indicate that some of the diffusion
observed in the PIC code is from finite particle noise. The discrepancy in the diffusion
coefficients between the PIC code and the noisy tracking code may be due to other types

of numerical noise or collective phenomena.
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Figure 7.51. Initial Particle Positions for 100 Strong-Strong Sample Particles in (z/cs, ps/p) Phase Space.
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Particles with Uniform Charge After M = 10, 240 Rotations.
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Figure 7.53. D, from the Strong-Strong Code with the Variable Charge and Uniform Charge Particle
Initialization for M = 10,240 Rotations. dfl and df2 have time scales of AN; = 102 and
AN, = 1024 rotations, respectively.
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Figure 7.55. D, from Noisy Tracking Code and PIC Code for M = 10, 240 Rotations at r/o = 0.1 and 0.9.
dfl and df2 have time scales of AN; = 102 and AN, = 1024 rotations, respectively.

7.3.3 éf Simulation Results

In this section we describe particle diffusion results obtained from the éf simulation
code described in Section 6.4. SSC reference parameters from Section 7.2.1 are used, with
vo = 0.285 and Avg = 2.1x1073. Each beam in the simulation has 10 simulation particles,
with the initial distribution in (z,p;) phase space shown in Figure 6.9. The Poincare
map of two sample particles after 105 rotations is shown in Figure 7.56. The particles
are sampled once every complete rotation. Little diffusion is apparent for both sample

particles. The smearing seen for the small amplitude is much less than that observed with
either strong-strong code.

The diffusion coefficients are calculated for 100 sample particles after 10,240 rotations.
The initial particle positions are shown in Figure 7.57. As in previous sections the diffusion
coefficients, dfl and df2, are calculated using |z| in Eq. (6.161). The diffusion D, is
normalized to o2 /N,, where N, is the number of rotations. Results from the éf code and
tracking code after 10,240 rotations are shown in Figure 7.58. The diffusion coeflicients for
the 6 f and tracking code nearly overlay each other. Both codes show oscillatory motion
for 10,240 rotations. Thus, the noise level of the §f code is less than the strong-strong
code with either the variable or uniform charge distribution.
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Figure 7.56. Poincare Section in (z/0, p-/0p) Space of Small- and Large-Amplitude 6§ f Code Particles After
M = 10,240 Rotations.
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Figure 7.58. D, from the §f Code with 1000 Simulation Particles and the Tracking Code for M = 10,240
Rotations. dfl and df2 have time scales of AN; = 102 and AN, = 1024 rotations, respectively.

Simulations with 100, 1000, and 10,000 particles show little effect on the diffusion of the
particles from particle number for M = 10, 240 rotations (Figure 7.59). For 100 simulation
particles, there is some deviation for sample particles with r/o < 1. The noise level is not

as strong a function of particle number as the strong-strong code.
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Figure 7.59. Variation of the Diffusion Coefficients with Particle Number N for M = 10, 240 Rotations.
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The sample particles begin to show diffusive behavior when the number of rotations is
increased. Figure 7.60 shows the diffusion coefficients, dfl and df2, calculated for 40,960 ro-
tations. Particles with r/o > 2 are diffusive (dfl ~ df2). This same behavior is observed
for 10,240 rotations in the strong-strong code with the uniform charge distribution (Fig-
ure 7.54). The particles with r/o < 2 are still somewhat oscillatory in nature. It appears
that the particles in the tail of the distribution are most sensitive to either noise or collec-
tive motion in the beams. This diffusion in the tails is not due to finite particle noise, as is
evident in Figure 7.61. The figure shows the diffusion coefficients calculated for NV = 1000
and N = 10% simulation particles for 40,960 rotations. The results are nearly identical.

A comparison of the §f and tracking code at 40,960 rotations is shown in Figure 7.62.
The tracking and é f code diffusion coeflicients are nearly equal to the short time scale coef-
ficient dfl, with values of /o < 1.5. For the long time scale coefficient, df2, and r/o > 1.5,
the § f code shows more diffusive behavior. This indicates that the phenomenon that causes
the diffusive motions for large r /o is most evident on time scales of 409 rotations. Diffusive
motion is not evident for particles with r/¢ < 1.5. This indicates that the diffusion occurs
on longer time scales there. This is shown in longer runs. It appears that the diffusion is
largest for large r/o and smallest for small r/o.

In order to determine the source of the diffusion observed in the §f code, noise of the
form described in Section 6.3.4 is added to the tracking code. Figure 7.63 shows the results

for 40,960 rotations, where the noise level é is determined by

1
VN (@)’

where N(z) = Nerf(z/v/20;) and N is the particle number. Notice that the long time
scale coefficient df2 increases for small r/o and, therefore, df2 is more uniform in r/o.
The form of D, as a function of r/o is different from D, calculated from the §f code.

It is apparent that the enhanced diffusion observed in the tails of the distribution for the

6=

(7.13)

Of code is due to the self-consistent treatment of the beams. This enhanced diffusion in
the tails was also observed in the strong-strong code with the uniform charge initialization
and fewer rotations.

When the § f code is run for 10° rotations, all the sample particles show diffusive behavior
(Figure 7.64). The diffusion D, is an approximately exponential function of r/o. The
coeflicients take nearly the same value as the long time scale diffusion coefficient, df2,
calculated for 40,960 rotations (Figure 7.60). The diffusive time scale appears to be in the
range of 400 to 4000 rotations.
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Figure 7.60. D, from the §f Code with 1000 Simulation Particles for M = 40,960 Rotations. dfl and df2
have time scales of ANy = 409 and AN, = 4096 rotations, respectively.
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Figure 7.62. D, from Tracking Code and the éf Code for M = 40,960 Rotations. dfl and df2 have time
scales of AN; = 409 and AN, = 4096 rotations, respectively.
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Figure 7.63. D, from Noisy Tracking Code for M = 40,960 Rotations. dfl and df2 have time scales of
AN, = 409 and AN, = 4096 rotations, respectively.
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Figure 7.64. D, from the §f Code for M = 10° Rotations. dfl and df2 have time scales of AN; = 1000 and
AN, = 10,000 rotations, respectively.

A comparison of the § f and tracking code results at 10° rotations is shown in Figure 7.65.
As in the run with 40,960 rotations, the diffusion coefficients obtained from the tracking and
§f runs are nearly equal for the short time scale coefficient, dfl, with values of r/o < 1.5.
For the long time scale coefficient, df2, and r/o > 1.5, the § f code shows diffusive behavior

and is higher in value than the coefficients from the tracking code.

Figure 7.66 shows the diffusion coefficients calculated for N = 1000 and N = 10*
simulation particles for 10° rotations. The coefficients for both particle numbers overlap,
indicating that the diffusion observed is not strongly dependent on the simulation particle
number.

In order to get an idea of where the stochastic regions are in phase space, the simulation
code is run forward and backward in time. In chaotic regions the particle motion is very
sensitive to initial conditions, and the orbits bifurcate exponentially. Since the numerical
integration of the code has finite accuracy, the particles that have passed through chaotic
regions most likely would not return to their initial conditions when the code is run forward
and then backward. Figure 7.67 shows results from running the §f code forward and
backward 10° rotations with 1000 particles. In the figure contour, surface, and grey-scale
plots of the particle, weights é f; of one of the beams are shown. The reference parameters
vp = 0.285 and Ayg = 2.1 x 1073 are used. It is found that the particle positions return to

their original positions within 8 decimal places. The deviation from the initial conditions
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is found in the weights 6f; for each particle :. Figure 7.67 is the result of a dump of
200 consecutive rotations of particle weights. The weights from the forward time-stepping
are subtracted from the corresponding weights from the backward time-stepping. The
figure shows positive deviations for small-amplitude particles and negative deviations for
large-amplitude particles. It may be interpreted that these particles are in stochastic
regions. The positive and negative deviation regions are separated by a thin ring where
there is no deviation. The lack of deviation does not automatically determine a region
of non-stochasticity. However, we may imagine there lie regions of non-stochasticity in
this ring area. Due to the limited resolution the ring may consist of islands separated by

stochastic regions.

* dft . * df1
Tracking code &fcode

S o di2 +df2
10 rrlllllllIltil]llxnllllllllll
107°
1o~

DX
10713 |2
1015
10_17|1||||°||1I|||ll|11||||||||111
0 0.5 1.0 1.5 2.0 25 3.0

rlc

Figure 7.65. D, from Tracking Code and the §f Code for M = 10° Rotations. dfl and df2 have time scales
of AN; = 1000 and AN, = 10, 000 rotations, respectively.
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Figure 7.66. Variation of the Diffusion Coefficients with Particle Number N for M = 10% Rotations.

5f — 8f,

6; .

Ox
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7.3.4 Beam Offset Effects

In this section we examine the effects of beam offset on particle diffusion. Simulation
results are compared with the theoretical predictions of Stupakov.?? A tracking code and a
§f code are used to compare with Eq. (3.76) described in the previous section. Parameters
from the SSC are used to compare the analytic results with the simulation results. In this
case v = 0.285 and Av = £ = 2.1x1073. These numbers can be used to get an approximate
number for the diffusion from Eq. (3.79). An estimate of 6z can be obtained from plots of
the average = position of the beam versus the number of rotations M (Figure 7.68). The

Az

estimate of 6z = % is 0.0005. From this an approximate value of the diffusion D is

D ~ 107802 fturn. (7.14)

Figure 7.69 shows the total change in the action < (AJp)? > versus the action J for
various values of the beam offset { calculated from Eq. (3.74). The action J is normal-
ized to poZ/B* and the beam offset is normalized to 5. The plot is obtained with the
assumption that the beam offsets are uncorrelated, so that the k = 0 term in Eq. (3.76) is
the only nonzero one. The offsets plotted are for ¢ = 0.0001, 0.001, and 0.01. Note that
< (AJy)? > increases with ¢ as (2, which is expected from Eq. (3.76).

Figure 7.70 shows tracking code and analytic results. The tracking code is run for
M = 10° turns, with vy = 0.285 and Ay = 2.1 x 1073, The total change in the action
< (AJy)? > /2is divided by M, the number of turns, to get the change per turn. The data
points represent 100 uniformly distributed tracking particles that are run for each value
of the beam offset ¢ (Figure 7.71). As is evident in Figure 7.68, the diffusion coefficients
(df1,df2) calculated on different time scales for each particle are close to one another,
indicating that all the particles show diffusive behavior. There is good agreement between
the tracking code results and the analytic predictions based on the random offset model of

Stupakov.?? Both show leveling off in the diffusion with increasing values of the action J.

The 6f code results over 10° turns are shown in Figure 7.72. The éf code is started with
zero offset and is allowed to evolve self-consistently for M = 10° turns. Analytic results for
3 values of the beam offset, { = 0.01 to 0.0001¢, are shown in the background, while the
simulation value of ¢ is in the range of 0.0005 to 0.001c;. As is evident in the figure, the
values of the diffusion in the action variable J cross the range of the analytic prediction.
However, the functional dependence on the action J is very different. The § f results show
an exponential dependence on the action J for large values of J, whereas the Stupakov
theory shows the diffusion leveling off. The approximate value for the diffusion calculated

from the change in the luminosity (Eq. (7.14)) produces a value that is lower than most of
the § f simulation values.
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Figure 7.72. §f Code Results Showing the Change in the Action AJp Per Turn Versus the Action J for
Zero Initial Beam Offset. The time scales over which dfl and df2 are calculated are 103 and
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Several avenues are examined in order to get an idea of the cause of the exponential
dependence in the diffusion. Figure 7.73 shows the effects of adding terms of ¥ = 1 and
k = 2 to Eq. (3.76). The coefficients are chosen from peaks at the appropriate frequency
in the power spectra of < z > from Figure 7.68. The effect of adding the k¥ = 1 and
k = 2 terms to Eq. (3.76) is negligible. The change in the action still levels off for large J.
Figure 7.74 shows the results of using the output < z > from the éf code shown in
Figure 7.68 in the tracking code. Analytical results are also plotted for various values
of the beam offset (. The tracking code and analytic results show the same functional
behavior with respect to J. The corresponding beam offset is in the range ¢ = 0.001
to 0.01. Although the diffusion from the tracking code is in the same range as the §f code
results, the exponential behavior for large J is not seen (Figure 7.75). The exponential
dependence can be reproduced from Eq. (3.76) when the arguments to the modified Bessel
functions Iy and I are replaced with J rather than J/2. The reason for this agreement is
still under investigation (Figure 7.76). The diffusion from Stupakov’s theory?? is dependent
on the < z > offset of the beam. Figure 7.77 shows the dependence of < & > offset on r /0,
where r/¢ is from Eq. (7.10). SZ22 refers to particles in the range 0 < r/o < 1. <222 refers
to particles in the range 1 < r/o < 2. %21 refers to particles in the range 2 < r/o < 3.
The fluctuation levels increase in magnitude with r/o. So large amplitude particles have

< = > motions that are about an order of magnitude higher than those at small amplitudes.
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This difference in < z > with r/o would explain the higher diffusion coefficients in the

tails of the distribution. The reason for this larger beam offset is still under investigation.
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Figure 7.73. A Comparison of k = 0 with Terms k=1 and k = 2.
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Figure 7.77.

The leveling off in the diffusion is produced in the §f code when the beam strength is
inéreased. When the tune shift is increased from Avg = 2.1 x 1073 to Ay = 8.4 x 1073, the
resulting motion of the beam about the original beam center increases by approximately
an order of magnitude (Figure 7.78). The diffusion coefficients D, calculated for Ayy =
2.1x107% and Ay = 8.4 x 103 are shown in Figure 7.79. It is evident from the figure that
the diffusion increases for the small-amplitude particles (r/o < 2) when Ay is increased

to 8.4x1073. The net effect is uniform diffusion across the beam in this case. The resulting
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diffusion is similar to that of beam offset diffusion.2?
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This same behavior is seen in the strong-strong simulations. Figure 7.80 shows the dif-
fusion coefficients calculated for the PIC and the §f codes. The leveling off in the diffusion
is seen for the PIC code and not for the §f code. The §f code for M = 10,240 rotations
still shows oscillatory behavior for all values of r/o.
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Figure 7.80. D, from PIC and éf Codes of the Beam with Ayy = 2.1 x 1073 for M = 10,240 Rotations.
The time scales of dfl and df2 are 102 and 1024 rotations, respectively.

It appears as if the fluctuation level of the simulation determines whether the diffusion
due to the presence of nonvanishing < = > suggested by Stupakov?? dominates the particle
diffusion. In the cases where the fluctuation level is high—either from the strength of
the kick Ayy or from simulation noise—the < z > type of diffusion dominates. This
behavior in the diffusion may be viewed as a process similar to the breakup of KAM
tori.5" For low fluctuation levels where the tune shift is small and the noise level is low,
the phase space may contain many stable regions surrounded by regions of stochasticity.
As the fluctuation level is increased, the stable regions disappear and the whole phase
space becomes stochastic. When this occurs, the diffusion of the particles becomes nearly

uniform across the phase space, as observed in the simulations with high Avy and high
noise levels.

8.0 CONCLUSIONS
In this section we discuss the results of our investigations of the beam-beam interaction
and their relevance to modern circular accelerators. We also suggest future improvements

that can be made to the currently developed numerical tools.
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8.1 Summary of Results
We have examined the effects of collective interactions between counterstreaming proton

beams via various simulation techniques. Two types of code have been developed to study
the effects of the filamentation instability: an electromagnetic PIC code and a Vlasov
code. Three types of code have been developed in increasing sophistication to study the

beam-beam interaction : (1) a tracking code, (2) a strong-strong code, and (3) a §f code.

8.1.1 Filamentation Instability
Fair agreement is found between linear theory of the filamentation instability?® and

the electromagnetic PIC code for beams with width w; greater than A the collisionless
skin depth. The filament sizes correspond approximately to a collisionless skin depth A,
and the measured growth rate is close the maximum growth rate. It is found that the
filamentation instability is not suppressed by having the counterstreaming beams small in

width in comparison with the collisionless skin depth of the beam A..

In the Vlasov code two counterstreaming electron beams are also found unstable to the
filamentation instability. The maximum growth rate I'p,z/wp = 0.4 is close to the theo-
retical maximum filamentation growth rate. As the beam evolves, it begins to spread in z.
The filament sizes are between approximately 0.5\; and Ac. The code is timed for various
problem sizes, and performance is about 2.3 times faster than the Cray YMP. However, the
distribution function becomes negative from truncation error. This an inherent drawback

with the Vlasov simulation technique.

From these results it is apparent that the filamentation instability will have much more
of an effect on electron-electron or electron-positron synchrotrons. The fraction of the
growth time is higher on such machines than it is on hadron machines such as the SSC.

8.1.2 Collective Beam-Beam Effects
Among the codes developed, the strong-strong and § f codes are best suited for studying

beam-beam collective effects. The electromagnetic PIC code requires too many time steps
to cover one interaction time, and the tracking code does not show beam collective motions.
The strong-strong code’s main drawback is the amount of fluctuation noise produced by
the finite number of particles used. This noise may be reduced by initializing the particles
using the quiet start.3® Also, although the §f code is much quieter than the strong-strong
code, it is better suited for studying the beam-beam interaction away from resonances.
Using the reference parameters of the SSC, oscillations in Av are observed in the strong-
strong simulations. The oscillations indicate expansion and contraction of the beams.
The beam expansion and contraction varies with different particle positions. The small-

amplitude portion of the beam is increasing in oscillation amplitude while the entire
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beam is decreasing in oscillation amplitude. The odd moments of the beam, < z >
and < (z— < z >)} >, are increasing in oscillation amplitude with rotation number. The
amplitudes of the even moments, < (z— < ¢ >)? > and < (z— < & >)* >, both decrease
with the number of rotations. The phenomena of the “flip-flop” effect,” where one beam
is decreasing in phase space area and the other beam is increasing, is observed in our

simulations. It is found to be sensitive to the initial conditions.

Differences between the nonuniform charge and uniform charge initializations are found.
The beam distribution from the uniform charge initialization is smoother than the distribu-
tion from the nonuniform charge distribution at the beginning and end of the simulation.
The oscillations in Av indicate that the expansion and contraction of the beam with
uniform charge initialization is smaller than the nonuniform charge initialization. Overall
the fluctuation levels in the uniform charge initialization are smaller than in the nonuniform
charge initialization.

The simulations based on the § f algorithm show the lowest fluctuation levels of all the
codes except the tracking code. However, the tracking code does not include internal
dynamics of the beam. After 10 rotations the two main approximations of the §f code
are still valid. The deviation from the initial Gaussian distribution is still small. The
maximum perturbations to the Gaussian background are only 0.1% of the background
distribution. Also, the constant phase space density assumption remains a good approxi-
mation. After 10° rotations in the § f code the simulation particles are no longer uniformly
distributed in (z /o2, ps /0p) space. However, clumping of particles is not significant. In the
simulations using the reference SSC parameters, the amplitude of the variation in Av for
small-amplitude particles is approximately £3% of Ayg throughout the run. As observed
in the strong-strong simulations, the beams are expanding and contracting differently at
different particle positions. The small-amplitude portion of the beam is constant oscil-
lation amplitude, while the entire beam is increasing in oscillation amplitude. The odd
moments, < z > and < (z— < z >)? >, are both increasing in oscillation amplitude with
rotation number. This increase in the odd moments is also observed in the strong-strong
simulations.

8.1.3 Stability in the Tune Versus Tune Shift Space
Scans in parameters tune and tune shift, v9 and Avy, show regions of stability and

instability against the beam blowup. These regions correspond closely to the regions
predicted by the linear theory of Chao and Ruth.!® For small values of the tune shift Avy,
the beams are unstable just above a resonance. For beams with values of vy just below
a resonance, the beams are stable. Strong resonant beam blowup is observed just above
vo = 1/2 and vp = 1/4 for values of Avg = 2.1 x 1073, Just below these tune values
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the beams are stable, as expected. However, each of the beams shows dominant modes
distorting the beams in (z/0;,p;/0y) space. For vy = 1/2 — Ayy mode 2 dominates, and
for vy = 1/4— Avy mode 4 dominates. It is also found that the rate of beam blowup above
the resonance drops with the order of the resonance. With vy = 1/2 + Ay the beams
blow up very quickly within a few hundred rotations. The beams blow up more slowly
for 19 = 1/4 + Avg. The slowest beam blowup is observed for v = vy + Avp, where in
the case of two beams vy = 2/6 and Avg = 4 x 1073, In this case mode 6 dominates the

distribution.

8.1.4 Particle Diffusion
In studying particle diffusion away from resonances, it is found that the tracking code

shows no diffusion of particles from the beam-beam interaction over 10° rotations. The
strong-strong codes are too noisy to study the process of diffusion of beam particles due to
the beam-beam interaction. With variable charge initialization all particles show diffusive
behavior after 10,240 rotations. The diffusion differs substantially from the tracking code.
The diffusion coefficient D, is uniform across the beam radius and is nearly an order
of magnitude higher. With uniform charge initialization where the fluctuation noise is

lower, only particles with large r/o, where r/o = \/(z/05)? + (pz/0p)?, are diffusive after
10,240 rotations. Results from noisy tracking codes modelling the finite particle fluctuation
noise indicate that some of the diffusion can be attributed to this noise. This noise can be
somewhat offset by using quieter particle initialization schemes such as the uniform charge
scheme. However, there are still significant differences from the tracking code. Although
the strong-strong code should show differences from the tracking code because of the self-
consistent solution of the fields, it is difficult to determine whether the differences observed
are due to particle fluctuation noise alone. However, it is apparent that the enhanced
diffusion observed in the tails of the distribution for the strong-strong code is due to the
self-consistent treatment of the beam dynamics.

The § f code with the lowest fluctuation level shows no particle diffusion up to 10,240 ro-
tations, agreeing with the tracking code. The noise level of the §f code is less than the
strong-strong code with either the variable or uniform charge distribution. However, par-
ticle diffusion is observed after 40,960 rotations for particles with large values of /o > 2.
It appears that the particles in the tail of the distribution are most sensitive to either noise
or collective motion in the beams. Variation of the § f particle number indicates that this
diffusion in the tails is not due to particle noise. All particles are diffusive after 10° rota-
tions. The magnitude of the diffusion is found to increase exponentially with the action J,

where J = (2/02)? + (pz/0p)?. This exponential dependence is found to be independent
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of the number of particles used in the § f simulations. It appears, therefore, that collective
beam effects are responsible.

Stochastic regions in phase space are found using the 6f code by running the code
forward and backward in time. They are found for particles with r/o small and r /o large.
Between the two regions there is a thin ring where the particles may not be chaotic. Due

to limited resolution the ring may consist of islands separated by stochastic regions.

8.1.5 Beam Offset Effects
In examining the effects of beam offset on diffusion, good agreement is found between

analytic theory?? and the tracking code. This is expected, since the tracking code is based
on the “weak-strong” assumption, as is the theory. Results from the é f simulations show
general agreement with the range of values for the diffusion. The éf code is started with
0 offset and is allowed to evolve self-consistently for M = 10° turns. The values of the
diffusion in action are within the range of the analytic prediction. However, the é f results
show an exponential dependence on the action J for large values of J, whereas the theory
shows the diffusion leveling off. The approximate value for the diffusion from the change
in luminosity is lower than the diffusion for most of the sample particles in the §f code.
Tracking code results with < z > input from the § f also do not show the same functional
dependence on J as the §f code. The values for the diffusion, however, are within the
same range. The exponential dependence on the action J is still under investigation.
Analysis of the variation of the beam offset with increasing r/o or equivalently v/J shows
that the offset < z > increases. It is apparent that because of the non-rigid character of
the beam, particles at large J have much larger offsets than particles at small J. This
variation of the offset with J explains the variation of the diffusion coefficients with J.
The behavior is most likely due to the self-consistent effects included in the éf code,
which are still under investigation. The leveling off in the diffusion is observed in the
6f simulation when the beam strength Avg is increased. The increase in Avg leads to
the increased beam offset < £ >. It appears that when this beam offset is large enough,
the resulting diffusion is dominated by beam offset diffusion.?? This leveling-off in the
diffusion is also seen for the strong-strong code. It appears as if the fluctuation level
of the simulation determines whether the diffusion due to the presence of < = > offset
suggested by Stupakov?? dominates the process of particle diffusion. This behavior in the
diffusion is similar to the breakup of KAM tori.5” For low fluctuation levels where the
tune shift is small and the noise level is low, the phase space may contain many stable
regions surrounded by regions of stochasticity. As the fluctuation level is increased, the

stable regions disappear and the whole phase space may become stochastic. When this
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occurs, the diffusion of particles is nearly uniform across the phase space, as observed in

the simulations with high Ay and high noise levels.

8.2 Future Improvements

In this section we discuss possible future improvements that can be made to the codes
and future areas of study.

One obvious improvement to the code is extension to z — y and z — y — 2 dimensions.
This extension is straightforward.

Improvements can be made to the simple storage ring model we employed. Some of the

effects that can be included in the lattice traversal are:2°

betatron damping

synchrotron motion

non-zero chromaticity

longitudinal displacement

e [(3* variation along the length of the interaction point

e energy loss and phase change between interaction points
e quantum excitation.

As shown earlier, the perturbation equation for the §f advance was linear in 4f
(Eq. (6.108)). The term that is neglected is Eq. (6.109):

6F(z, )50, (8.1)

which was assumed to be small. This term, however, can be incorporated in the 6 f advance
by placing it in the stationary Eq. (6.100):

aafo +z 3af0 (K(s) - Fo(s))x-a% =0 (8.2)
in the following manner:
661;0 ’ ~ (K(s) ~ Fo (3)) f0 =< 6F(z ,.s) f (8.3)

where <> refers to time average. The 1ncorporat1on of this term in the stationary
Eq. (6.100) forces the numerical advance now of fo(z,z',s). However, fo(z,z',s) is slowly
varying as long as it is away from resonances, so that the equation would need to be
advanced only every few thousand rotations. The term in Eq. (8.1) is similar to the quasi-
linear term used in plasma physics.%®

Another improvement that can be made includes a higher-order method of integration
of the particle positions. Higher-order integration may be accomplished using the method

of symplectic integration algorithms®® or Lie algebraic techniques.®°
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Also a possibility exists of applying the technique of differential algebra®! to the
§f algorithm. In this technique the §f method could be treated as a mapping function
that could be applied to any points in phase space.

Another approach to the §f method would involve using the Vlasov approach (Eulerian
method). The main problem with the Vlasov technique has been that the distribution
functions go negative due to truncation errors. However, in the § f technique the main part
of the distribution is already determined, and the perturbation can go negative without

causing problems.

One of the topics of future study for the beam-beam interaction would be the determina-
tion of the mechanism for the exponential dependence in action J observed in the diffusion
of the particles. A theory which includes self-consistent treatment of the interaction would
be a next step. Other areas of investigation include investigation of betatron resonance,
applications to other machines such as HERA or LHC, and the effects of collision angle on
beam dynamics.
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