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Echo Effect in Accelerators 

G. V. Stupakov and S. K. Kauffmann 

Abstract 

The echo effect has been known for many years in such diverse branches of physics as nuclear 
magnetic resonance, optics. plasmas, and fluids. It has recently been pointed out that the echo 
phenomenon should also be observable in hadron accelerators. If a beam is injected off-center, and the 
betatron oscillations of its centroid are permitted to damp out by nonlinearity-induced decoherence, a 
subsequent quad kick should, after a delay, transiently restore those betatron oscillations in the form of an 
echo signal. This report presents beam phase space portraits of the evolution of the echo, as well as 
detailed analytical calculations that permit estimation of the maximum echo amplitude attainable for a 
given initial beam offset. One of the analytic results is a numerically useful summation formula that also 
reveals a regular multiple echo train subsequent to the first echo signal. 
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1.0 INTRODUCTION 
The echo effect has been known for many years in different fields of physics. Examples are the spin 

echo in solids,l photon echo in solids and gases,2 plasma wave echo,3 and the echo in a liquid with gas 
bubbles.4 The media that exhibit the echo characteristically consist of (or contain in them) an ensemble of 
oscillators with different eigenfrequencies and negligibly small dissipation. An initial perturbation applied 
to such a medium excites oscillations (or waves) that slowly damp due to dephasing. This kind of 
damping differs essentially from that which would result from a dissipative mechanism; in particular, 
dephasing does not increase the entropy of the medium. It has the remarkable feature that even after the 
oscillations are completely damped out, the system keeps a "recollection" about them, and a special kind 
of a disturbance applied to the medium can transiently restore the oscillations in the form of an echo 
signal. 

As has recently been pointed out in Reference 5, this type of phenomenon should be observable in 
hadron accelerators where the synchrotron radiation is negligible. Note that the echo we are discussing 
here is different from the recoherence due to machine chromaticity and rf-induced synchrotron motion 
studied in Reference 6. 

The echo in an accelerator could be observed in a situation where the beam is injected off-center into 
the ring at time n = O. (n is the time measured in the number of turns), causing its centroid to undergo 
betatron oscillations. After these oscillations have completely damped out due to beam decoherence, the 
beam is excited by a quadrupole kick at time n = n 1. This kick does not produce any visible displacement 
of the beam at that time, but it turns out that close to time n = 2n1 the beam centroid undergoes transient 
betatron oscillations with an amplitude that is a fraction of the initial beam offset. 

The purpose of this paper is twofold. First, we will give a physical picture of the echo effect based on 
the evolution in phase space of a beam whose initial particle distribution is an offset line segment or 
Gaussian. This is done in Section 3.0 after general considerations are presented in Section 2.0. Second, in 
Sections 4.0 and 5.0, analytical results of the echo model are presented that go beyond the limits of the 
perturbation theory of Reference 5 and allow us to estimate the maximum echo attainable for a given 
initial offset. The exact (for the model considered) summation formula of Section 5.0 is less transparent 
than is the approximate result of Section 4.0, but it is useful for numerical computation, and it also reveals 
the phenomenon of multiple subsequent echoes at n = 4n1, 6n 1, etc. 

2.0 GENERAL CONSIDERATIONS 

To describe one-degree-of-freedom transverse motion of a beam particle in an accelerator ring we 
choose to work with the normalized phase space coordinates 

(2.1) 

where X stands for the particle deviation with respect to the closed orbit, f3 is the beta function, and s is 
the path along the orbit. We also define the vector Z, 

Z= (;) (2.2) 

According to Courant-Snyder theory, in a perfectly linear accelerator, particles are simply rotated 
clockwise in this normalized phase space at fixed radius through angle 2n'Von each tum, where v is the 
accelerator tune. Thus, 



(2.3) 

where the sUbscript n indexes the tum number, and R" (v) is represented as the clockwise rotation matrix, 

R (v) = . ( 
cos2mzv sin2mzV) 

n -sin2mzv cos2mzv 
(2.4) 

Offset particle beams decohere if the tune itself depends on the particle amplitude Izl, due to 
systematic non-linearities present in the accelerator. For a monochromatic beam, the presence of 
systematic sextupole or octapole non-linearities generates (in second or first order, respectively) a 
quadratic dependence of tune on amplitude I zl, i.e., 

Izl2 
v(lzl) = Vo + ~v-2 ' 

d 
(2.5) 

where Vo is the nominal tune, ~v has the interpretation of a tune spread, and d is a scale factor that will 
be specified later. In realistic situations, ~ v« Vo' 

As stated previously, the beam is assumed to be injected off-center into the ring at n = O. Let 
l/f(z) == l/f(x, p) denote its initial particle distribution function. After the injection, the beam experiences 

free betatron oscillations, and at n = ~, just before the quadrupole kick, the vector zn=nl _£ can be 
obtained by the linear transformation of the initial Z: 

(2.6) 

where VI = v(lzl) is given by Eq. (2.5), with z given by the initial values of the particle's coordinate and 
momentum. 

The quadrupole kick produces a transformation of z that is characterized by the following matrix: 

(2.7) 

where q is equal to the ratio of the beta function at the quad location to the focal length of the quad. After 
the quadrupole kick, betatron oscillations proceed with a different frequency because the kick changes the 
amplitude Izl and hence the tune. Before writing down the matrix that describes oscillations after the 
kick, we have to express the new value of IZn=1I1 +£1 just after the quad kick in terms of the old one Izl. 
Straightforward calculations yield 

(2.8) 

where fJ is the polar angle in the phase space, fJ = arctan(p/x) , and 

(2.9) 
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Now, free oscillations afterthe quadrupole kick, n > 111' generate a transformation given by Rn - nl (vJ, 

with the tune 

(2.10) 

so that a complete transformation casting the initial z into the fmal zn (n > 11, ) is the product of the three 

matrices: 

where 

( 
cos( lPI + lP2) - q cos lPI sin lP2 sine lPI + lP2) - q sin ¢J sin lP2 )( x) 

- sine lPI + lP2) - q cos lPI cos lP2 cos( lPI + lP2) - q sin lPI cos lP2 p' 

Thus, after n turns (n > 11,), the averaged displacement of the beam is 

Further elaboration of these general formulas will be done in the following three sections. 

(2.11) 

(2.12) 

3.0 PHASE SPACE PORTRAITS OF A QUAD.KICKED DECOHERING BEAM 

A particularly clean phase space portrait of decoherence and echo in our model results from choosing 
the initial particle distribution to be uniform along a line segment of length 28 that lies along the x-axis 
of the normalizei.,Ehase space and is centered at x = a (a ~ 0). Choosing the scale factor d in Eq. (2.5) 
to be equal to -V ao , one concludes that after n turns (n < nl ), this line segment is distorted into the curve 
described by 

(
COS l/J sin l/J )(x) ( xcos l/J ) 

- sin lP cos lP 0 = - x sin lP ' 
(3.1) 

where lP = 21m( Vo + L\ V x2 lao) and a - 0 :::; x:::; a + 0 . The parametric representation of this curve in 

polar coordinates r, (J, (r =lzl), is clearly 

rex) =Ixl, (J(x) = -lP = -21m(vo + L\v x2 lao), a - 0:::; x:::; a + 0, (3.2) 
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from which one obtains the polar representations, 

OCr) = -2mz(vo + !l.vr2 jao), la - ol~ r ~ a + 0, (3.3) 

and 

We see that this "decoherence curve" is just a spiral that always occupies the annular region 
la - ol~ r ~ a + 0, but whose polar angle phase length 8mz!l.v grows linearly with tum number n, even 
as its pitch decreases approximately as the inverse square root of n (see Figure 1). 
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-0.5 

1.0 

TIP-03226 

Figure 1. Spiral Decoherence of Offset Line Segment Particle Distribution: (a) 0 turns, (b) 5 turns, (c) 10 turns, 
(d) 20 turns. 
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The normalized phase space centroid of this spirally-decohering linear particle distribution is 

_ 1 a

J
+8 (COS21t{Vo+!:l.Vx

2/a8») 
Z =- xdx . 

n 28 a-8 -sin2n(vo +!:l.v x2/a8) 
(3.5) 

This integration is readily carried out, and for the amplitude of the centroid one obtains 

Iz 1= aI Sin(41rn!:l.V)I, 
n 41l'1l!:l. V 

(3.6) 

which tends toward zero inversely with turn number n, as pictured in Figure 2. (In Figures 1 and 2, we 

have chosen a/8 = 4, Vo = 0.285, and !:l. V = 0.0186.) 
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Figure 2. Damping of Centroid Amplitude of Offset Line Segment Particle Distribution. 

A feature of the parameterized version of this decoherence spiral is that both the polar angle phase, 
8(x) = -2nn(vo +!:l.v x 2 la8), and the radius, rex) =Ixl, behave monotonically with the parameter x2

, 

as indeed must be the case for a spiral. If, however, after nl turns a single quad kick is administered to this 
decohering spiral to give 

( 1 0)( xcos.p(X») ( cos.p(x) ) 
Zl= _q 1 -xsin.p(x) =x -sin.p(x)-qcos.p(x) ' 

(3.7) 
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we see that the new radius, 

(3.8) 

can be expected to behave non-monotonically in x 2 because of the presence of the sine tenn (at least for 
sufficiently large n\). The above new radius r(x) for the particle that started out at z = (x,O) implies that 
its subsequent phase advance per turn will be 2tr(vo + !1vr2(x)/a8) instead of its previous 
2tr(vo +!1vx2/a8). As r2(x) is not a monotonic function of x2, it can be expected that after a 
sufficient number of turns subsequent to the quad kick, the polar angle phase 9(x) also will behave non­
monotonically in x 2

• Figure 3 shows the elliptical flattening of the decoherence spiral caused by the quad 
kick (q = -0.16). For this elliptically defonned shape, it is clear that radius rex) no longer increases 
monotonically as one travels (generally) outward along the defonned spiral; indeed, there are local 
intervals in x2 where rex) is decreasing rather than increasing. After sufficient turns have elapsed, we 
see in Figure 4 that these local intervals of decreasing radius rex) are now accompanied by decreasing 
polar angle phase 9(x). The points where this phase undergoes its reversals are manifest as sharp tips 
interrupting the smooth shape of the spiral. These regions of phase reversal tend to increase in phase 
length with the rest of the spiral as the number of turns increases, as we see in Figure 5. One may say that 
the phase reversal tips are themselves tending to decohere. 

However, before the phase reversal tips fully decohere, they happen to come into a confluence near 
where our original off-center line segment was launched in the first instance, as we see in Figure 6. This 
tends to occur at approximately 2n\ turns, where we recall that ~ was the number of turns from launch to 
the quad kick. This confluence of the phase reversal tips is what causes the "echo" of the original 
displacement. Figure 7 shows the centroid amplitude IZnl as a function of the number of turns for this 
quad-kicked case. Note the delayed "echo" response to the quad kick, and contrast to Figure 2, without 
the quad kick. 

Of course, our initial line segment phase space is hardly a realistic beam. A more realistic Gaussian 
beam behaves in an essentially similar fashion, however. Figures 8 and 9 are the Gaussian decoherence 
analogs of Figures 1 and 2, with the beam initially displaced by amount a. The centroid amplitude 
decoherence shown in Figure 2 was worked out in Reference 7: 

(3.9) 

where for this ~ation we have redefined the nonnalization constant d in Eq. (2.5) to be equal to G 

rather than ....faO. In Figures 8 and 9, Vo is as previously given, while !1v = 2.18.10-3
, and 

a/-fia = 4.13. 
Figure 10 shows the elliptical flattening of the Gaussian's spiral caused by the quad kick (q as 

previously given), Figures 11 and 12 show the evolution of the phase reversal tips, and Figure 13 shows 
the moment of confluence of the tips at the echo peak. Figure 14 shows the evolution of I zn I for the quad­
kicked case, to be contrasted with the echoless Figure 9, in the absence of the quad kick. 

The major difference between the line segment and Gaussian decoherence spirals is that the latter have 
considerably greater phase length at each stage, with a density structure that tapers away smoothly toward 
the spiral ends. As seen in Figures 9 and 14, this smooth density taper eliminates the "spiral ends"-driven 
decoherence "bumps" that are such a noticeable feature of Figures 2 and 7 for the line segment phase 
space. The lack of "bump" structure for the Gaussian's natural decoherence makes the occurrence of the 
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echo seem all the more startling. Figure 15 shows the echo in IZn I rising from a decohered "dead zero" 
centroid if one waits four times as many turns before administering the quad kick. 

In Section 5.0 we develop an analytic summation formula that is very useful for the numerical 
computation of the Gaussian IZnl centroid amplitude, e.g., Figures 14 and 15. This formula also offers 
insight into the echo effect as a quasi Breit-Wigner resonance phenomenon in turn number, whose 
principal peak occurs at n ::::: 2~ and whose subsidiary multiple subsequent peaks occur at n = 4nl , 6n1, 

etc. 
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Figure 3. Elliptical Flattening of Decoherence Spiral Caused by the Quad Kick, Which Occurred Just After Turn 20. 
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Figure 4. Formation of Phase Reversal Tips. 
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Figure 5. Elongation of the Phase Reversal Tips. 
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Figure 6. Confluence of the Phase Reversal Tips in the Vicinity of the Original Offset Line Segment at the Turn·40 
Echo Peak. 
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Figure 7. Echo Response of the Centroid Amplitude to the Quad Kick, Which Occurred Just After Turn 20. Compare to 
Figure 2, without the quad kick. 
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Figure 8. Spiral Decoherence of Offset Gaussian Particle Distribution: (a) 0 turns, (b) 5 turns, (c) 10 turns, (d) 20 turns. 
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Figure 9. Damping of Centroid Amplitude of Offset Gaussian Particle Distribution. 
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Figure 10. Elliptical Flattening of Gaussian Decoherence Spiral Caused by the Quad Kick, Which Occurred Just After 
Turn 20. 
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Figure 11. Appearance of the Phase Reversal Tips in the Gaussian Case. 
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Figure 12. Elongation of the Phase Reversal Tips in the Gaussian Case. 
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Figure 13. Confluence of the Phase Reversal Tips in the Vicinity of the Original Offset Gaussian at the Turn-40 
Echo Peak. 
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Figure 14. Gaussian Case Echo Response of the Centroid Amplitude to the Post-Turn-20 Quad Kick. Compare to 
Figure 9, without the quad kick. 
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Figure 15. Gaussian Case Echo Response of the Centroid Amplitude to a Post-Turn-SO Quad Kick. 
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4;0 PERTURBATION THEORY FOR A QUAD-KICKED DECOHERING 
GAUSSIAN BEAM 

In this section, we develop a perturbation theory of the echo effect for a Gaussian distribution function: 

1 (IZ-aifJ VI(z) = --2 exp - 2 ' 
27((5 2cr 

(4.1) 

where i = (1,0) is the unit vector in the x-direction, in which the initial Gaussian beam has been offset by 

a. In this section, for v(lzl) we use Eq. (2.5) with d equal to the rms beam width cr. 
Our perturbative approach assumes that the initial beam offset is much smaller than cr: 

a« cr· (4.2) 

This allows us to expand VI( z) in the small parameter a/ cr : 

1 (r2 J ar (r2 J VI(z) = Vlo(z) + VII (z) = --2 exp ---2 + --4 exp ---2 cos e, 
2 ncr 2cr 2 ncr 2cr 

(4.3) 

where r( cos e, sin 8) are the polar coordinates for z = (x, p). Vlo (z) is the distribution function 
corresponding to zero displacement, and VII (z) results from the initial offset of the beam. In addition to 
Eq. (4.3), we will be assuming that 

q« 1. (4.4) 

This turns out not to be a restrictive constraint because, as we will see below, the maximum attainable 
echo corresponds to the values of q that satisfy Eq. (4.4). Finally, we explicitly assume that the number of 
turns It. and n are such that 

(4.5) 

The first inequality means that we make a quadrupole kick after the oscillations driven by the initial offset 
of the beam completely decohere; the second inequality is motivated by our desire to study the vicinity of 
the echo peak at n :;::: 2n1, in which case it follows from the first inequality. 

Now we make use ofEq. (2.13), in which it is convenient to express the products of sines and cosines 
of </>1 and </>2 in terms of cos( </>1 ± </>2) and sine </>1 ± </>2). A part of the echo effect comes directly from 
the terms that are first-order in q and contain the difference of the phases (</>1 -</>2). However, it turns out 
that zero-order terms (which are not multiplied by the small factor q, and formally are much larger than 
the first-order terms) that are sinusoidal with the sum of the phases (</>1 + </>2) can also contribute to the 
echo and need to be kept in the calculations. On the other hand, first-order terms behaving as sine or 
cosine of (</>1 + </>2) can be neglected. With this in mind, one finds from Eq. (2.13) that 
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Zn =< If dxdptf/(x,p) x 

( 
x[ C~s( cf>l + cf>2) + ~ q sine cf>l - cf>2) ] + p[ sine cf>l + cf>2) -1; co~( cf>l - cf>2)] J. 

x[ - sm( cf>l + cf>2) - "2 q cos( cf>l - cf>2) ] + p[ cos( cf>l + cf>2) - "2 q sm( cf>l - cf>2) ] 

In Eq. (4.6), for (cf>l - cf>2) and (cf>l + cf>2)one can use approximate formulas: 

(4.6) 

(4.7) 

which follow directly from Eqs. (2.8)-(2.10) and (2.12), if one neglects in Eq. (2.12) the second-order 
terms in q. 

Transforming Eq. (4.6) to r, 8 variables one fmds that 

(4.8) 

It can be shown that tf/o(z) does not produce the echo effect, so that in order to calculate the part of zn 
associated with the echo it is sufficient to put tf/l (z) instead of tf/(z) into Eq. (4.8): 

- a If 3 ( r2) ( cos( cf>l + cf>2 - 8) + 1qsin( cf>l - cf>2 - 8) ) z = -- drd8r exp --- cos 8 . 
n 2 n(14 2 (12 - sine cf>l + cf>2 - 8) - t q cos( cf>l - cf>2 - 8) 

(4.9) 

The integration over 8 in this equation gives the Bessel functions of first and zero orders, and the 
integration over r can be carried out with the aid of formulas 6.623 from Reference 8. Again, keeping 
only the largest terms in the result, one finds that 

IZnl= a j dxxJl(47rq(n_~)dVx)e-X-411i~V(n-2"I)x + i%j dxxJo(4nq(n_nl)dVx)e-X-411i~V(n-2nl)X 
o 0 

(4.10) 

Figure 16 shows the amplitude of the echo according to Eq. (4.10) for different values of q with 
4ndvnl = 10. As seen in this figure, in order to obtain the maximum echo response one has to choose an 
optimal value of the quadrupole kick. For the parameters of Figure 16 the maximum echo occurs for 
q =< 0.08. Further increasing q results in the splitting of the echo into two peaks with lower amplitudes. 
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We can easily estimate the maximum echo by putting n = 2nl in Eq. (4.10) and finding the maximum of 
the resulting expression as a function of q. This gives IZnl = O.38a for q = O.056(~vnlrl, which is in 
good agreement with Figure 16. As one sees from Figure mt4, for a relatively large initial offset (for which 
the derivation of this section is not applicable), numerical calculations show an even larger echo, which 
can reach about 50% of the initial displacement. 

0.4~~~~~~~~~-,-,-'--r-r-r-'-r-r-~'-1I 
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0.2 

0.1 

-5 o 
47t~v(n - 2n1) 

5 10 

TIP'()3234 

Figure 16. Amplitude of the Echo for Different q: (1) q = 0.02, (2) q = 0.03, (3) q = 0.08, (4) q = 0.20, (5) q = 0.30. 

5.0 CENTROID AMPLITUDE EVOLUTION OF THE QUAD-KICKED 
DECOHERING GAUSSIAN BEAM 

In Eq. (3.9) we presented the analytic result of Reference 7 for the evolution with turn number n of the 
centroid amplitude IZnl in the Gaussian case, before any quad kick is administered (i.e., n < n1). This 
analytic result was obtained from the evaluation of the vector integral, 

(5.1) 

where lJI(z) is the offset Gaussian phase space density, given by Eq. (4.1). In this section, as in the 
previous one, for v(lzl) we use Eq. (2.5) with d equal to the rms beam width a. 

After the quad kick, i.e., for n > nl' we need to evaluate the more complicated vector integral 
Eq. (2.13). Direct numerical evaluation of that integral is straightforward for the line segment phase 
space, where the integration becomes one-dimensional, but proves to be slow for the fully two­
dimensional Gaussian phase space, as the integrand is oscillatory. The analytic summation formula that 
we develop below speeds up the numerical evaluation of zn for the Gaussian case, and its form provides 
insight into the echo effect as a quasi Breit-Wigner resonance phenomenon in turn number n. It also 
reveals multiple subsequent echoes at n = 4n1, 6n1, etc. 
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If one takes the polar coordinate representation r( cos 8, sin 8) for z = (x, p), one can re-express 
Eq. (2.13) as 

where 

and, for the Gaussian case, 

1 (a
2 

+r2 -2arCOS8] 
lJf(r, 8) = 21ta2 exp 2a2 . 

It is clear that ZII may be obtained from the real and imaginary parts of the complex integrals: 

- 2n 

z± = J r2dr J d81Jf(r,8)exp(iarg±(r2, 8») = 
o 0 

2n J d8exp(+i8 + -J2apcos8/ a+ 2ip2 [~+ BSin(2Cp2 - 28 + A»)), 
o 

where p = r/ a-J2 , 

a± =27rvo(n-~ ±~) 

~ = 21t~v[(n -n1 ±~)+ (n _~)q2 /2], 

B = 21tq~v(n -n1)(1 + q2 /4Y'2, 
C=4~~v, and 
A = 4~ Vo + arctan(qJ2). 

(5.2) 

(5.4) 

(5.5) 

(5.6) 

If the quantity B were zero-as, in fact, is the case when there is no quad kick (q = 0) and which was 
treated in Reference 7-then the above double integral could be carried out rather straightforwardly. As 
matters stand, however, the occurrence of 2Bp2 sin(2Cp2 - 28 + A) as an exponentiated phase 
contribution to the integrand is rather daunting. (For the line segment phase space, this complicated phase 
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contribution can be turned to advantage by use of stationary phase asymptotic approximation 
methodology-indeed, the prominent polar angle phase reversals noted in Section 3.0 essentially map out 
the stationary phase points-but for the two-dimensional Gaussian phase space, locating all of the 
significant stationary phase contributions becomes troublesome.) However, an expansion of the integrand 
in powers of E, followed by a binomial expansion of the two-phase contributions to sin (2 C p2 - 2 () + It), 
produces an infinite series of integrands that are individually tractable. Thus, 

(5.7) 

If we put this expansion into our integral expression for Z± ' we obtain 

- 2n 
f dpp2m+2e-yp2 f d(}e ..fiapcos8ICHi(2m-4k=Fl)8, (5.8) 
o 0 

where 

r== r±(m,k) = 1 + 2i[(m - 2k)C -~] = I-47l'i~v[n -n1(l:;:: 1 + m - 4k) + (n -n1)l /2]. 

We may carry out the () integration above by noting that 

1 2n 
- fd(}ef3pcos8+ij8 = 1. (ap ) 
27l' III fJ , 

o 
(5.9) 

where ~jl is the modified Bessel function for any integer j. In our case, we note that f3 = -fia/ (f and 
I jl=12m - 4k :;:: 11, which is always a positive, odd integer that is conveniently denoted as Ijl = 21+ 1, 
where 

1== l±(m,k) = t(ljl-l) = t(12m-4k:;:: 11-1). (5.10) 
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Now we are in a position to carry out the p -integration: 

fOOd 2m+2 _yp2 R _ f321+1(m + I + 1)! ( f32 J-
pp e 121+1(fJP)- 21+2 +1+2 M m+I+2,21+2,- -

o 2 ym (21+1)! 4y 

f321+1 oo (m + 1 + j + 1)!(f32 Jj 
221+2ym+I+2~(21+j+l)!j! 4y , (5.11) 

where M is the confluent hypergeometric function. We have carried out the above integration with the aid 
offormula 6.631(1.) from Reference 8. 

With the above result, we can now write down the summation formula: 

oo m ( l)k 2ikA. ( 2)1 1 Z = aeiat-a2/2a2 ""'(_Be-iA.)m"", - e ~ X 
± ~ ~( -k)'k' 2(J2 ym+l+2 m=O k=o m .. 

i (m+l+ j+l)!(~Jj 
j=o(21+j+l)!j! 2(J2y . 

For completeness, recall from Eqs. (5.2) and (5.5) that 

(5.12) 

(5.13) 

The complex quantities y given above appear only in the denominator of the summation formula for 
Z+. For a "small" quad kick, i.e., Iql « 1, these can be likened to Breit-Wigner resonance denominators 
in -that one might expect the Z± to be particularly large when the dominant (i.e., not proportional to q2 ) 
contribution to the imaginary part of the y's vanishes, namely, when 

n = n1(1 + 1 + 2m -4k), 

which implies that n is an even multiple of ~. Recalling that we must have n > n1 in order that the 
foregoing expression for zn be applicable, we see that the first "resonance," at n = 2~, corresponds 
precisely to the echo effect that is seen. Thus, the echo effect may be viewed as a quasi Breit-Wigner 
resonance in tum number. The subsequent "resonances," at n = 4~, 6~ , ... , can be expected to result in 
corresponding multiple echoes, which are indeed seen in Figure 17 (which has the same parameters as 
Figure 15, except that q has been divided by a factor of eight). As n - ~ grows large, these higher 
"resonances" are progressively damped because of the (n - ~)l /2 non-vanishing contribution to the 
imaginary part of the is. 
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Figure 17. Gaussian Case Multiple Echo Response of the Centroid Amplitude to a Post-Tum-SO Quad Kick of One­
eighth the Strength of That Applied in Figure 15 (as well as in all figures of Section 3.0 illustrating the 
effects of a non-zero quad kick). 
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