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ABSTRACT 

It is shown that due to the reversible nature of decoherence one can restore the memory of the beam 
betatr')n oscillations in a hadron accelerator well after they have completely damped out (decohered) due 
to a tune spread. An analytical theory is developed that predicts an echo effect in the case when the beam 
is sequentially exposed to a dipole kick and a quadrupole kick. The echo is represented by a train of 
coherent dipole oscillations of the beam that builds up at a particular moment after the quadrupole kick. 



1.0 INTRODUCTION 
The effect of decoherence-or Landau damping-has many applications in accelerator physics. (For 

examples, see References 1 and 2.) In its simplest form, applied to betatron oscillations, it predicts that 
due to tune spread, coherent betatron oscillations damp to extinction on a time scale that is equal to the 
inverse spread of the betatron frequencies in the beam. However, a nondissipative nature of decoherence 
manifests itself in that even after the oscillations are completely damped out, the system keeps some 
"recollection" about them. This memory, in principle, can be visualized at a later time if one makes a 
quadrupole kick on the beam. A similar effect of memory for Landau damping of plasma oscillations is 
well known in plasma physics, where it bears the name of plasma echo.3 

In this paper, we show how the echo effect can be observed in hadron accelerators, where synchrotron 
damping does not play a role. The experimental arrangement needed for that observation is shown 
schematically in Figure 1. It consists of two kickers, one of which produces a dipole (D) kick and the 
other a quadrupole (Q) kick on the beam. Assume that at time t = 0 the beam is exposed to a dipole kick. 
This kick drives betatron oscillations that will damp due to tune dependence on the amplitude. After these 
oscillations have completely damped out, let us make a quadrupole kick at the time t = 1'. This kick does 
not produce any visible displacement of the beam at that time, but close to the time t = 2 l' one will find 
that the beam experiences betatron oscillations, with the amplitude increasing from zero to some 
maximum value and then decreasing back to zero (see Figure 2). 
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Figure 1. Accelerator ring with kickers needed for observation of the echo effect. 
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Figure 2. Beam deviation as a function of time. The beam is deflected by the dipole kicker at t = 0, 
and the quadrupole kick occurs at t = 1". The signal at t = 21" Is the echo. 

In the next two sections, we will give a fonnal description of this phenomenon and show how the fonn 
and the amplitude of the echo are related to the strengths of the kicks. 

2.0 GENERAL EQUATIONS 
To describe the particle motion in an accelerator, we will use the following variables: 

(1) 

where y stands for the particle deviation with respect to the closed orbit, f3 is the beta function, n is the 
revolution frequency, and V is the tune. A kick is characterized by a change in the particle momentum p 
by an amount ~p: 

p' = p+ t;.p, (2) 

where p' is the new momentum. If the kicks are generated by perturbing the magnetic field on the orbit, 
then the deviations of the particle momentum produced by the dipole and quadrupole kicks are, 
respectively, 

(3) 

(4) 

where 8B is the magnetic field in the dipole kicker, 8B' is the gradient of the magnetic field in the 
quadrupole kicker, f3dip and f3quad are the values of the beta function at the positions of the kickers, ldiP 
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and [quad are their lengths, B is the bending magnetic field, and p is the bending radius. The coefficient q 
introduced in Eq. (4) is equal to the ratio f3qUad/ iquad, where iquad is the focal length of the quadrupole 
kicker. In what follows we assume that the kicks are weak; that is, 

e, q« 1. (5) 

As is seen in Figure 1, between the successive kicks the beam performs free oscillations. They are 
related to the following transformation in the phase space for the time interval, t : 

1J' = 1Jcos vOt + psin vOt, p' = -1Jsin vOt + pcos vOt, (6) 

where p, 1] are the initial phase coordinates and p' , 1J' are the final phase coordinates. 

We will describe the beam dynamics with the use of the distribution function ljI(p, 1J,t), normalized 
so that 

f ljI(p, 1J,t)dpd 1J = 1. (7) 

Initial distribution function is assumed to be Gaussian: 

(8) 

where Jo is a constant. It is convenient to transform from p and 1] to the action-angle variables J and qJ in 
accordance with 

T7 = .fiJ cos ¢J, p = -.fiJ sin ¢J • 

With these variables, the initial distribution function (Eq. (8» takes the form 

1 
'I' = -exp(-JjJo), 

2rc.Jo 

and the transformation (Eq. (6» corresponding to free oscillations conserves the action J: 

J' = J, 4J' = 4J + vOt. 

(9) 

(10) 

(11) 

In what follows, we will assume (an assumption that is crucial for the Landau damping effect) that the 
tune depends on the amplitude of the oscillations: 

v = v(J). (12) 
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Most of our results are not sensitive to the particular fonn of the dependence of v versus J. However, in 
order to simplify further calculations (and to be in good agreement with the real situation), we will 
assume a simple linear dependence: 

1 
V= Vo +..1v- , 

10 
(13) 

where ..1 V has a meaning of the tune spread in the beam. 

Given the distribution function '1', one can calculate the evolution of the averaged displacement 1] 
utilizing a simple integration: 

00 00 00 2n 

1] = J dp J 1] ",(p, 1], t)d1] = -J2 J -JJ dJ J cos( q,) ",(1, q" t)dq,. (14) 
o 0 

The Hamiltonian motion dermes a mapping of canonical variables from the initial values p, 11 (at t = 0) 
to the final values p', 1]' (at the time t): 1], p ~ 1]', p'. The evolution of the distribution function cor
responding to this motion can be found from the Vlasov equation. We adopt here a different approach, 
based on the following principle (one that is, in fact, equivalent to Vlasov equation): in order to obtain the 
distribution function at the time t, one has to express p and 11 in the initial distribution function in tenns of 
p' and 1]'. In other words, Hamiltonian mapping induces the following transfonnation of the distribution 
funct;::,n: 

"'init (p, 1]) ~ "'fin (p', 1]') = "'init (p(p', 1]'), 1](p', 1]'», (15) 

which links the initial distribution function "'init given at t = 0 with the distribution function'" fin at 

time t. Eq. (15) will allow us to follow the evolution of 'I' step by step, starting from its initial value, 

"'0 = 'P(p, 1]). 

3.0 CALCULATION OF THE ECHO 

The first dipole kick induces the following transfonnation of '1': 

(16) 

where "'1 refers to the distribution function after the kick. Taking into account that ..1p dip is small, we 

expand '1', keeping the linear tenn in perturbation: 

(17) 
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where we used Eq. (3) and transformed to J and <1>. The dipole kick is followed by betatron oscillations 

on time interval 'f. According to Eq. (11), they result in the following transformation: 

(18) 

Putting Eq. (17) into Eq. (18) one finds 

lI'2 = '1'(1) + Em sine <I> - v(J)!lr) d'I'~J) . (19) 

Using Eqs. (19), (13), and (14) one can find the averaged displacement as a function of time after the 
dipole kick: 

(20) 

The plot of this function for .6 vi vo = 0.1 is shown in Figure 3. It illustrates the effect of decoherence in 
- -2 our model. Note that, for large 'f, 1] decreases as 1" • 
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Figure 3. Averaged displacement of the beam produced by a dipole kick. 

Now, make a quadrupole kick at t = 'f. In order that initial oscillations be damped at this 
moment, we have to assume that 

.6vO'f» 1. (21) 
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The kick produces the following transfonnation of the distribution function: 

Vl2 (p, 1]) ~ Vl3 (p, 1]) = Vl2(P - L1pquad,1]). (22) 

To perfonn Taylor's expansion in tl.Pquad in Eq. (22), in addition to the inequalities of Eq. (5), we will 
also assume that 

qtl. V{lr« 1. (23) 

This allows us to write down approximately 

Vl2 (p, 1]) :::: Vl2 (p, 1]) - fl.pquad a;2 = (24) 

= \f(J) + e-v2J sin(tP - v(J)Q-c) ~J) + q1] ~[ \f(J) + e-v2J sin(tP - v(J)Q-c) d'P~J) J 
As we can show, the echo effect is contained in the last tenn on the right-hand side ofEq. (21). The other 
three tenns either do not contribute to 1] or they make a contribution that damps in a manner similar to 
that shown in Figure 3. Using the relation 

~ = _(2J)1/2 sin tP ~ - (2J)-1I2 cos tP ~ 
~ ~ ~' 

one can find that the largest tenn that produces echo comes from the differentiation of sine tP - v( J)n-c) 
with respect to J in Eq. (24). Denoting it by VljUho) one finds 

VljeCho) = 2eq1]tl. vn-csin( tP) cos( tP - v( J)Q-c) J d'P( J) . 
Jo dJ 

(25) 

Free oscillations on time interval s transfonn this tenn according to Eq. (11): 

(26) 

Putting VI~/ast) into Eq. (14) and performing the integration, one finds 

1]echo = qetl. vn 2 3 cos von( -c - s) + 2 3 sin voQ( -c - s) , {
A(A2 -3) 3A2 -1 ] 
(1 + A ) (1 + A ) 

(27) 

where A = ..1V.Q(1' - s). Figure 4 illustrates the dependence of 1]ec/r.o versus the difference (1'- s) for 
tl.vjvo = 0.1. 

6 



11 (echo) 

Q£f1vn't 

0.5 

-0.5 

-1.0~~-_~2-0~~~L-_L10-L-L~~~0~~~-~~1~0-L-L~~2~0~~~ 

von('t - S) TIP·02988 

Figure 4. Echo signal of the beam. 

Formally, it follows from Eq. (27) that the echo amplitude grows linearly with q. Note, however, that 
our consideration is restricted by the requirement of Eq. (23), which sets the upper limit on 1] (echo) • A 
more detailed study of the maximum attainable echo is performed elsewhere.4 

4.0 DISCUSSION 
In this note we predicted the existence of the echo effect using a simple model that takes into account 

one degree of freedom of the beam. The physical mechanism of the echo effect is based on a subtle 
phasing of the distribution function that occurs at a particular time during evolution of a beam subjected 
to successive dipole and quadrupole kicks. Our result shows that the amplitude of the echo is related only 
to the strength of the kicks and does not depend on the time gap between them. Typically the echo 
amplitude is smaller than the original oscillations produced by the first (dipole) kick; however, for a 
strong quadrupole kick, their amplitudes can be roughly comparable. * 

In reality, there exist effects that could deteriorate observation of the echo. Any mechanism that 
smoothes out oscillations of the distribution function in the phase space (such as diffusion due to gas 
scattering or particle chaotic motion) would result in echo suppression, especially on a large time scale. 
On the other hand, high sensitivity of the echo to particle diffusion may be used as a diagnostic tool for 
studying stochastic dynamics of the beam. Possible applications of the echo require additional analysis. 

*This case lies beyond the scope of the present theory. 
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