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SSCL-578 

Longitudinal Beam Dynamics with RF Noise 

H.-J. Shih, J.A. Ellison, B. S. Newberger, and R. Cogburn 

Abstract 

The D6me-Krinsky-Wang (DKW) diffusion-in-action theory for rf-noise-induced emit

tance dilution is reviewed and related to recent work on the approximation of stochastic 

processes by Markov processes. An accurate and efficient numerical procedure is developed 

to integrate the diffusion equation of the DKW theory. Tracking simulations are under

taken to check the validity of the theory in the parameter range of the Superconducting 

Super Collider (SSC) and to provide additional information. The study of effects of rf noise 

is applied to two problems of interest at the SSC: (1) determination of noise tolerance levels 

in the rf system, and (2) feasibility of beam extraction using crystal channeling. 
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1.0 INTRODUCTION 
Emittance blowup and beam loss due to intrinsic noise in the rf accelerating system 

has been observed in the Super Proton Synchrotron (SPS)1-3 and in other proton storage 

rings. It is therefore important to understand the effect of rf noise on the longitudinal 

dynamics of particle beams in high-energy accelerators. Dome4 and Krinsky and Wang5 

have independently provided a theoretical basis in which the effect of noise is described 

by a Markov diffusion process in longitudinal action. In Section 2.0 we review the Dome, 

Krinsky, Wang (DKW) diffusion theory and relate it to modern ideas in the theory of 

stochastic processes. We have numerically integrated the diffusion equation that describes 

the evolution of the action distribution in the DKW theory. Using the parameters of 

the Superconducting Super Collider (SSC), we have compared our numerical results with 

tracking simulations and found good agreement; this agreement gives us confidence in using 

the theory. This is discussed in Section 3.0, where we describe our numerical procedures 

and tracking simulations and give a detailed comparison. In Section 4.0 we apply the 

formalism and the associated numerical computations to two problems of interest at the 

SSC: the issue of the longitudinal emittance increase due to noise in components of the 

rf system of the SSC collider ring, and the possibility of extraction of a low-intensity 

proton beam for high-precision B-physics in a fixed-target spectrometer. Some general 

SSC parameters are listed in Table 1. 

Table 1. General sse Parameters. 

h harmonic number 

Q c momentum compaction factor 

P. synchronous momentum 

V peak rf voltage 

10 revolution frequency 

Co circumference 

fJ/27r small oscillation synchrotron frequency 

f.N normalized emittance 

2.0 REVIEW OF THE DKW THEORY 

104544 

9.1 x 10- 5 

20 TeV Ic 
20 MV 

3441 Hz 

87120 m 

4.23 Hz 

10- 6 m·rad 

The underlying theory is reviewed in this section, and readers are referred to Dome4 for 

more details. For a sinusoidal rf voltage with phase and amplitude noise, the turn-to-turn 

energy and phase variations in a stationary bucket are given by 

(2.1a) 



(2.1b) 

with Pn = 27rh1](6.pn/Ps), Ko = 27rh1](eV/psvs), and 1] = G c - 1/"(2. Here n is the turn 

number, <p the phase relative to the synchronous phase, 1j; the phase noise, a the amplitude 

noise, "( the ratio of the particle's total energy to its rest energy, Vs the velocity of the 

synchronous particle, and e the electron charge; 6. refers to a variation relative to the 

synchronous particle. If we denote the beam revolution period by To, define P = Pn/To, 

divide Eq. (2.1a) by T5 and Eq. (2.1b) by To, and approximate the difference quotients by 

derivatives, then we obtain the continuous time approximation of Eq. (2.1): 

~ = P + ;Pet), 

p = -n2(1 + aCt)) sin <p. 

(2.2a) 

(2.2b) 

Here we have used n = VKo/To. Also we assume aCt) and 1j;(t) have zero mean for each t. 

Eq. (2.2) can be derived from the time-dependent Hamiltonian: 

H(x, t) = Ho(x) + Hl(X, t) 

with 

1 2 
Ho(x) = 2X2 + U(xI), 

Hl(X, t) = aCt) U(xI) + ;P(t)X2. 

Here Xl = <p, x2 = P, and U(xI) = n2(1 - cos xI). 

(2.3a) 

(2.3b) 

(2.3c) 

In the unperturbed case (a = 1j; = 0), the action J = (1/27r) f Pd<p is conserved. In the 

pert-urbed case, Dome assumes conditions are such that the action evolves by a Markov 

diffusion process and then shows that the coefficients in the Fokker-Planck equation are 

related so that the action density p( J, t) evolves via the diffusion equation 

fJp fJ ( fJp) 
8t = 8J D( J) 8J . 

The natural auxiliary conditions are 

p( J, 0) = poe J), 

P(Jb,t) = 0, 

(2.4a) 

(2.4b) 

(2.4c) 

where poe J) is the initial density, and the second condition is an absorbing boundary 

condition at J = Jb. It is reasonable to take Jb ~ Js where Js is the action at the separatrix, 
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because once a particle comes close to the separatrix it is effectively lost because of, for 

example, collimators employed to reduce background in the detectors. Because D(O) = 0, 

no boundary condition at J = 0 is needed. 

To give the reader a feel for the connection between the phase space and action descrip

tions, we derive the diffusion coefficient D( J). Consider the Hamiltonian in Eq. (2.3); the 

transformation to action-angle variables (J, 8) is given by 

(j 

x = g(ws(J)' u(J)), (2.5) 

where g(t,y) is defined, through the Hamiltonian flow Ho, by 

8 8 
8t 91 (t,y) = 892 Ho(g(t,y)), (2.6a) 

8 8 
at 92(t,y) = - 891 Ho(g(t,y)), (2.6b) 

g(O,y) = y. (2.6c) 

Here 

1 2 
h = "2 Y2 + U(Y1), (2.7) 

4>h 

J(h) = 2~ 4V2 J Jh - U(X1) dX1, (2.8) 

0 

where <Ph is the maximum phase for the orbit defined by Eq. (2.7), i.e., 

(2.9) 

and wa( J) is the angular frequency of the unperturbed synchrotron oscillation given by 

waCJ) = h'CJ). For convenience we take uCJ) = (Ul(J),O) = (cPh(J),O). We use h to 

denote both harmonic number and energy; the meaning will be clear from the context. 

The equations of motion are derived from the new Hamiltonian: 

(2.10) 

where E can be viewed as the size of the noise. This transformation procedure works more 

generally for a symmetric bowl potential U; details will be presented in Reference 6. 
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If we write the J equation as 

. 8H . 
J = - 88 =: €(a(t)Rl(J,8) +t/J(t)R2(J,8)), (2.11) 

then integrating and expanding in € formally gives 

T 

JT - Jo = € J [a(t)Rl (Jo, 80 + ws( Jo)t) + ~(t)R2 (Jo, 60 + ws( Jo)t) ] dt + O( €2), (2.12) 

o 

where JT := J(T). We now assume that particles are uniformly distributed in 80 so that 80 

can be viewed as a uniformly distributed random variable on [0, 27l"). This is equivalent to 

a statistical equilibrium assumption of uniformity on thin energy shells and should be the 

case after several synchrotron periods because the nonlinearity gives rise to filamentation. 7 

Since the right-hand side of Eq. (2.11) is of zero mean in 8 and has zero expected value 

for each t, we might expect that changes of order one in J would not occur until O( 1 / €2) 

times. Also we consider the case where 80 , aCt), and ~(t) are independent. Squaring and 

taking the expected value, we obtain 

2 T T 

E(JT:; Jo) = €2 ~ J J {Ga(t - s)\Rl(Jo,80 )Rl(Jo,80 +ws(Jo)(s - t)))+ 

o 0 

Gtb(t - s)\ R2(Jo,80 )R2(Jo,80 +ws(Jo)(s - t)))} dtds + O(€3) (2.13) 

="'~ 1 (l wet - S)dt) ds + 0(,'), 

where G f( T) = E (I( t )f( t + T)) is the auto-covariance of a stationary random process f( t) 

and ( ) denotes the average over 80 , Integrating by parts gives 

T(T ) T T 0 

~ J J wet - s)dt ds = J w(t)dt - ~ J tw(t)dt + ~ J tw(t)dt. 
o a -T 0 -T 

(2.14) 

Let tc be a measure of the correlation time; then for T :::p tc and reasonable assumptions 

on Ga and G;p, the last two terms on the right-hand side of Eq. (2.14) are essentially zero 

and the first term is J~oo w(t)dt. Thus 
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00 

E( Jr ; JO)2 ~ c2 J { Ca( t)\ Rl ~Jo, (}o) Rl (Jo,()o + ws( Jo)t) ) 

-00 

+ C;p(t)\R2(JO,(}0)R2(JO,(}0 +Ws(Jo)t)) }dt 

=:A(Jo). 

(2.15a) 

Note that the right-hand side is independent of T and (}o, and we have dropped the 

O( c3 ) term. The derivation here is basically that in Dome.4 A lengthier calculation in 

the same reference shows 

E(Jr - Jo) ~ ~A'(Jo). 
T 2 

(2.15b) 

If we subdivide the time axis in intervals b..t such that tc .:g::: T .:g::: b..t < 1/ e2, then J (t) 

does not vary much during b..t, a time interval during which aCt) and "p(t) have forgotten 

their past. Thus in the time scale defined by b..t, the process J ( t) is expected to be 

approximately Markovian with infinitesimal mean and variance given by Eq. (2.15). The 

latter follows because T ~ tc allows the steps from Eq. (2.13) to Eq. (2.15) and T .:g::: b..t 

allows Eq. (2.15) to be viewed as infinitesimal moments. The Fokker-Planck equation for 

the Markov process is thus 

op 1 0, 1 02 

ot = -2" oj A (J)p + 2" oJ2 A(J)p. 

This reduces to Eq. (2.4a) with D( J) = t A( J). Putting this on a rigorous mathematical 

basis is the goal of Reference 6. 

In the case where the correlation time is short relative to the synchrotron period, tc .:g::: 

27r /w s ( J), Eq. (2.15a) becomes 

Dwhite(J) = ~Sa(O)(Rl(J,(}O?) - ~w;(J)Stb(O) \ R2(J'(}O)0;~2(J,(}O)) 
¢ih(J) 

= 7rwV]J) J [Sa(O)U'(4»2 + Stb(0)U"(4»2] JU(4)h(J)) - U(4))d4> 
o 

_. Dwhite + Dwhite 
-. a tb (2.16) 

Here Sf(O) := J~oo Cf(t)dt, and we have used the fact that C;p(t) = -C~(t) and, for the 

integrals in Eq. (2.15a), J~oo Cf(t)w(t)dt ~ w(O) J~oo Cf(t)dt = w(O)Sf(O). We will refer 

to this as the white noise case. 
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Let Ri( J, B) = L: Ri,m( J)e imB , i = 1,2; then it is easy to show that 
m,eO 

D(J) = 2 L {IRl,m(J)1 2 Sa(mws(J)) + IR2,m(J)12 S¢(mws(J))} , 
m>O 

where 
00 

Sf(w) = J Cf(t) cos(w t)dt 
-00 

(2.17) 

(2.18) 

is the spectral density corresponding to an auto-covariance Cf(t). In the pendulum case 

( ) ~ (mws)4 ( ) ~ (mws)4 S ( ) D J = 4 ~ 2 Sa mws + 4 ~ 2 t/J mws 
m=2,4, ... sinh (mv) m=1,3, ... cosh (mv) (2.19) 

=: Da(J) + Dt/J(J). 

The quantities J, ws( J), and v( J) are easily defined through the intermediate varI

able k, 0 ::; k < 1, by J = (8nk2/7r)B(k), Ws = n(7r/2K(k)), and v = 
(7r /2)K( J1 - k2)/ K( k), where K is the complete elliptic integral of the first kind and 

B(k) = J
0
1l"/2 cos2 xdx/V1 - k2 sin2 x. The variable k is related to the unperturbed energy 

h by h = 2k2n2. See Reference 4 for further details. 

In Figure l(a) we present Da(J) for white amplitude noise; that is, Sa(w) = constant. 

It is easy to show that Da(J) ex J2 for small J. Since the equation of motion for small J is 

~ + 0,2(1 + aCt))¢> = 0, one might, from the theory of the Mathieu equation, expect there 

to be resonan~-type behavior due to Fourier components of aCt) near 2ft In Figure l(b), 

we present Da(J) for notched amplitude noise; that is, Sa(w) is a non-zero constant except 

in a region about w = 2f2. In this case, Da(J) ex J4 for small J, showing that Da(J) at 

small J does indeed depend quite sensitively on Sa(w) near w = 20,. In Figure 2(a), we 

present Dt/J( J) for white phase noise; that is, St/J(w) = constant. Again, it is easy to show 

that Dt/J(J) ex J for small J. Since the equation of motion for small J is ~ + n2¢> = ;j;(t), 
one might expect a decrease in Dt/J(J) for small J if the Fourier components of '!/J(t) near 

w = 0, are filtered out. This is indeed the case as shown in Figure 2(b), where we present 

Dt/J(J) for notched phase noise; that is, St/J(w) is a non-zero constant except in a region 

about w = n. In this case, it can be shown that Dt/J( J) behaves like J3 for small J. 

It turns out that D( J) approaches 00 as J approaches Js from below. However, ws( J) 

approaches 0 as J approaches Js , so the assumptions used in deriving the theory are 

probably not valid. Furthermore, the diffusion coefficient in energy goes to zero as J 
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(a) 

Da(J) 

10-3 

10-8 

White amplitude noise 
Sa = 10.88 x 10-9 Hz-1 

10-~0~1----0-.~02--~~-0~.0-5~~0~.1-0----0~.2-0--~~0-.~50~~~1.00 

(b) 

Da(J) 

10-8 

10-10 

0.01 0.02 0.05 

J/Js 

Notched amplitude noise 
Sa = 10.88 x 10-9 Hz-1 

0.10 

J/Js 

0.20 0.50 

TIP~2952 

1.00 

TIP~2953 

Figure 1. Diffusion Coefficient for Amplitude Noise With Sa 
(b) Notched noise. 

10.88 X 10- 9 HZ-I. (a) White noise. 
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(a) 

~(J) 

10-6 
White phase noise 
Sa = 2.324 x 10-9 Rad2 Hz-1 

10-7 
0.01 0.02 0.05 0.10 0.20 0.50 1.00 

J/Js 

(b) 
10-2 

~(J) 

10-8 
Notched phase noise 
~ = 2.324 x 10-9 Rad2 Hr1 

10-10 

0.01 

J/Js 

Figure 2. Diffusion Coefficient for Phase Noise with S1/I 
(b) Notched noise. 
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approaches Js . At any rate, we are investigating the possibility of a diffusion theory valid 

across the separatrix. 

The DKW diffusion theory is heuristic in the sense that it is assumed that the stochastic 

process J(t) is approximately Markov on a time scale large with respect to the correlation 

times of aCt) and of'l/;(t). Under this assumption and the assumption of uniformity in 8, 

the derivation of the diffusion coefficient seems reasonable. The Markov approximation 

will be discussed in detail in Reference 6, where the probabilistic limit theorems developed 

in Reference 8 will be applied to the rf noise problem. These theorems give conditions 

under which the process J(t) is approximately Markovian. Here approximation is in the 

sense of weak convergence, an important idea from modern probability. In Section 3.0 we 

show that the DKW diffusion theory is reasonable at the sse energy by comparing it with 

a simulation study based on Eq. (2.1). 

3.0 NUMERICAL SOLUTIONS AND COMPARISON WITH 
TRACKING SIMULATIONS 

It is straightforward to integrate the diffusion (Eq. (2.4)) by the method oflines. That is, 

the action variable J is discretized, the partial derivatives with respect to J are calculated 

by a finite-difference approximation, and an ODE integrator with automatic error control 

is employed to obtain the evolution in time of the action density at each grid point of 

J. Before integrating Eq. (2.4) one must calculate the diffusion coefficient D( J) and the 

initial action density poe J). 

To calculate the diffusion coefficient D( J), we use Eq. (2.16) in the white noise case 

or Eq. (2.19) for a particular noise spectral density. We assume the following spectral 

densities for low pass and notched phase noise: (1) S~w pass = constant for 0 < w < rO 

and 0 elsewhere, (2) s~otched = 0 for rO < w < 0 and constant elsewhere; and we assume 

the -following for low pass and notched amplitude noise: (1) S~ow pass = constant for 0 < 
w < 2rO and 0 elsewhere, (2) s~otched = 0 for 2rO < w < 20 and constant elsewhere. Here 

r is the filtering fraction. For white phase and amplitude noise, the following expressions 

for D can be derived from Eq. (2.16): 

D;hite = :204 Stjlk2 K(k )(B(k) - 4k2 Bl(k)), 

D:hite = 3;04Sa k4K(k)Bl(k), 
7r 

(3.1a) 

(3.1b) 

where Bl(k) = J;/2sin2 xcos2 xJ1- k2 sin2 xdx. In Eq. (3.1) Sf = focr}, where cr} -

var{fn}. For low pass phase and amplitude noise, D is computed according to 
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nl (2 1)4 
D 10w pass = 4 4S '" m -

1/J Ws 1/J ~ 2 , 
m=l cosh ((2m - l)v) 

(3.2a) 

nl-l (2)4 
D10w pass = 4 4S '" m 

a Ws a ~l sinh2(2mv)' 
(3.2b) 

where nl is an integer such that (2nl - l)ws ::; rfl < (2nl + l)ws for phase noise or 
2 

2(nl - l)ws ::; 2rfl < 2nlws for amplitude noise. In Eq. (3.2) S1/J = 10 2r~.o and Sa = 

~ ~4 0'2 • Here Qso is the small oscillation synchrotron tune. For the sse, Qso = 0.00123. 
)04rf...,!.,o 

For notched phase and amplitude noise, D is computed according to 

n2 (2 1)4 
Dnotched = Dwhite _ 4 4 S '" m -

1/J 1/J Ws 1/J m~+l cosh2((2m - l)v)' 
(3.3a) 

n2-1 ( )4 
Dnotched = Dwhite _ 4w4 S ""' 2m 

a a s a ~ • h2(2 )' 
m=nl SIn mv 

(3.3b) 

where n2 is an integer such that (2n2 - 1 )ws ::; fl < (2n2 + 1 )ws for phase noise or 
2 

2(n2 - l)ws ::; 20 < 2n2ws for amplitude noise. In Eq. (3.3) S1/J = 10 1-2(;!r)Q.o and 
2 

Sa = 10 1-4(1~r)Q.o· Since we obtain the diffusion coefficient and the action as functions of 

k, we spline fit D( k) versus J (k) in order to obtain D as a function of J. 

To calculate the initial action density poe J), we assume that the initial phase space 

density, p, is symmetric in P and <1>. Let PH(h) be the density in energy; then 

h <Ph y'2(h-U(<p)) 

J PH(x)dx = 4 J d<l> J pep, <I»dP. 
a a 0 

Differentiating, we obtain 

(3.4) 

where Ph(<P) = J2(h - U(<p)). The action density po(J) is related to PH(h) by p(J)dJ = 

PH(h)dh; thus 

(3.5) 

We have used a Gaussian distribution in P and <P in calculating poe J). 
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In the white amplitude noise case the action density at J = 0 is fixed and the slope 

there steepens with time. Because of this, we have used a variable grid, with finer mesh 

near J = 0, for discretizing the partial derivatives with respect to J. In the notched noise 

cases where the filtered spectral density results in a discontinuous diffusion coefficient, 

we have imposed an additional finite-difference equation at the discontinuity point to 

preserve conservation of probability at that point. We have verified our numerical results 

by (1) using a Galerkin (finite element) approach with piecewise linear basis functions, and 

(2) comparing with exact solutions that are known in the D( J) = J and J2 cases. Details 

of our numerical study will appear in Reference 9. 

We have conducted the tracking simulations using a linear lattice for the sse. In order 

to apply the results to the extraction problem (to be discussed in Section 4.2), tracking 

is done in the full 6-dimensional phase space: x, x' , y, y' , 1, b. Here x is the horizontal 

coordinate, x' the horizontal angle, y the vertical coordinate, y' the vertical angle, I the 

deviation in path length, and b = flp/ps, the fractional deviation in momentum. The 

initial values of each variable are randomly generated according to Gaussian distributions 

with the rms values of x, x', y, and y' determined by the lattice functions, and the rms 

values of I and 8 determined by assuming an energy spread of 1 GeV. To carry the protons 

around the ring, the following transfer map from path length So to s is constructed using 

the lattice functions: 

with 

Cx 5x 0 0 0 E 
C' x 5' x 0 0 0 E' 
0 0 Cy 5y 0 0 

0 0 C' y 5' y 0 0 

F G 0 0 1 acfls - (FTJo + GTJ~) 
0 0 0 0 0 1 

C( S, so) = If( cos 2"Q + "'0 sin 2"Q), 

5(s, so) = VMo sin 27rQ, 

, 1 ( 
C (.5,so) = Jf3f3o (ao - a) cos 27rQ - (1 + aao)sin27rQ), 

S' (s, so) = ~( cos 2"Q - '" sin 2"Q), 

11 
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(3. 7b) 
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E(s, so) = 1](s) - C(s, sO)1](so) - S(s, sO)1]'(so), 

E'(s, so) = 1]'(s) - C'(s, sO)1](so) - S'(s, sO)1]'(so), 

F(s,so) = C(s,so)1]'(s) - C'(s,so)1](s) -1]'(so), 

G(s, so) = S(s, sO)1]'(s) - S'(s, sO)1](s) + 1](so), 

(3.7e) 

(3.7f) 

(3.7g) 

(3.7h) 

where .6.s = s - So, a(s), and (3(s) are the usual Courant-Snyder parameters, 1](s) the 

dispersion function, and Q the tune advance from So to s. In general, there is a coupling 

in the map (Eq. (3.6)) between horizontal and longitudinal motions. For comparisons 

with the diffusion-in-action theory, a one-turn map with s = So + Co is sufficient. If the 

dispersion is negligible at the rf cavity, the coupling between horizontal and longitudinal 

motions in the one-turn map evaluated at the rf cavity vanishes. In this case, we obtain 

in+l = in + acCODn and, using the relationship <l>n = (27rh)in/Co + 'l/Jn, Eq. (2.1a). For 

bent crystal extraction, the crystal and rf cavity are at different locations, and two maps 

are needed to carry the bunch once around the ring. Table 2 lists the relevant parameters 

for constructing transfer maps in the tracking simulations. Table 3 lists the standard 

deviations in x, x', y, y', i, and D of the SSC beam. 

Table 2. Relevant Parameters for 
Constructing Transfer Maps. 

parameter @bent crystal @rf cavity 

O!r 1.773 -2.996 

O!y 0.734 -0.112 

f3r 1385.09 m 440.25 m 

f3y 544.79 m 44.62 m 

1] -4. O. 

rl' o. o. 
Qr 61.269 a 61.515 b 

Qy 60.994 a 61.783 b 

~s 43338.58 a m 43781.42 6 m 

afrom bent crystal to rf cavity 
bfrom rf cavity to bent crystal 

When the protons traverse the rf cavity, the relative momentum difference is changed 

according to 

(3.8) 
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Table 3. Standard Deviations in x, x', y, 
y', 1, and 0 of the sse Beam. 

r.m.s. @bent crystal @rf cavity 

o"x 2.549 x 10-4 m 1.437 x 10-4 m 

O"x' 1.840 x 10-7 rad 1.031 x 10-6 rad 

O"y 1.599 x 10-4 m 4.575 x 10-5 m 

O"y' 2.935 x 10-7 rad 1.032 x 10-6 rad 

0"/ 5.127 x 10- 2 m 5.127 x 10-2 m 

0"6 5 x 10- 5 5 X 10-5 

Eq. (3.8) is obtained from Eq. (2.1a) by dividing Eq. (2.1b) by 27rh"l. In computer simu

lations, white phase or amplitude noise refers to the case where the 'l/Jn or an are drawn 

independently from a Gaussian distribution each time the bunch passes through the rf cav

ity. To compare this with the DKW theory, we need to define 'l/J(t) from the {'l/Jn}. If we 

let 

(3.9) 

then by the sampling theorem of Shannon,lO 'l/J(t) has zero spectral density outside 

[-7r ITo, 7r ITo] and a correlation time on the order of To. This is small compared to 

27rlws(J), and so the white noise approximation of Eq. (2.16) is valid with S1/I(0) = Toa~, 
where a~ = var {'l/Jn}. To obtain low pass and notched phase noise, the following is done 

beforehand: generate a time series of white noise for N turns, {'l/JI, 'l/J2, ... , 'l/J N }, compute 

the discrete Fourier series {«PI, «P2,"', «P N}, and construct 

~n = H ~ ~ Re( «P me27ri(m-I)(n-I)/N) (3.10) 
m=2 

in the case of low pass noise, or 

~n = F2 { 'l/Jn - ~ ~ Re( «p me27ri(m-I)(n-I)/N) } 

m=mo+l 

(3.ll) 

in the case of notched noise. Here mo ?: 2 is the largest integer such that mo ::; QsoNr, ml 

is the smallest integer such that ml ?: QsoN, and FI and F2 are normalization factors such 

that 'l/Jn and ~n have the same 0'1/1. With n being the turn number, and the synchrotron 
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tune for CPmexp(27ri(rn -l)(n -l)/N) being Qm = (rn -l)/N, Eqs. (3.10) and (3.11) say 

that low pass phase noise contains only the terms whose synchrotron tunes are less than 

rQ so, and notched phase noise contains all the terms except those whose tunes are between 

rQso and Qso. Low pass and notched amplitude noise are also obtained from Eqs. (3.10) 

and (3.11) except that rno is the largest integer that satisfies rno ~ 2QsoNr, and rnl is the 

smallest integer that satisfies rnl ~ 2QsoN. 

To compare the diffusion theory and the tracking simulation, we now present results 

for the white and notched cases. The low pass case will be discussed in the applications 

section. The . comparisons of action distribution and longitudinal emittance growth are 

shown in Figures 3(a) and 3(b), respectively, for white amplitude noise with (7a = 0.2, and 

in Figures 4(a) and 4(b) for notched amplitude noise with (7a = 0.2. Here the longitudinal 

emittance is defined as the average of the action over the surviving particles. The com

parisons for white and notched phase noise with (71/J = 0.1 are shown in Figures 5 and 6, 

respectively. The agreement between simulation and theory is good in all cases. This gives 

us confidence in using the DKW diffusion theory in place of the more computationally 

intensive simulations. 

4.0 APPLICATIONS 
Anomalous loss of beam lifetime in the SPS1,2 was shown to result from the existence 

of phase noise associated with the low-level signal generators in the rf system. Noise in 

bands containing the small-amplitude synchrotron frequency was found to be especially 

dangerous. Because of the low synchrotron frequency in the SSC collider ring, this question 

was raised as a concern in the Conceptual Design Reportll (CDR), even for the very high

quality signal synthesis systems available today. In Section 4.1, we discuss our results that 

address this issue. 

The use of channeling in a bent single crystal, of Si for example, has been suggested12,13 

as one possibility for low-intensity beam extraction, and has recently been studied 

considerably14-17 for the SSC and for the Large Hadron Collider (LHC). A beam so 

extracted could feed a fixed-target experiment 18 or provide, at the SSC, a 20-Te V test 

beam. 19 (There is no other provision for a test beam of this energy.) It is outside the scope 

of this paper to discuss the channeling physics by which an incident beam is deflected into 

the beamline by a bent crystal. Several good discussions are readily available. 2o Here it 

is sufficient to note that deflection of a beam of high-energy particles in such a crystal 

has been demonstrated,21 as has extraction from an accelerator,22 albeit at low efficiency, 

and new experiments have been planned on the Tevatron at Fermilab23 and on the SPS at 

CERN .17 To extract continuously, some mechanism must be used to feed protons onto the 
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Figure 3. Comparison Between the DKW Diffusion Theory and the Tracking Simulation in the Case of 
White Amplitude Noise with IJ'a = 0.2. (a) Action density. Histogram: tracking simulation after 
106 turns. Solid curve: theory after 106 turns. Dashed curve: initial density. (b) Longitudinal 
emittance vs. turn number. Curve: theory. Dots: tracking simulation without a bent crystal. 
A particle is regarded as lost when its k value exceeds 0.96, where k is the variable defined 
by h = 2k2n2. Crosses: tracking simulation with a bent crystal at x = 1 mm. A particle is 
intercepted by the crystal and discarded when its x value exceeds 1 mm. 
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Figure 4. As in Figure 3 for Notched Amplitude Noise with U a = 0.2. 
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Figure 5. As in Figure 3 for White Phase Noise with (TI/J = 0.1. 
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Figure 6. As in Figure 3 for Notched Phase Noise with crt/! = 0.1. 
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crystal. At sufficiently high luminosity, the natural growth of halo should suffice; this is 

expected to be the case at LHC. For the SSC, at £, = 1033cm-2sec-1, the halo is not likely 

to be sufficient. In Section 4.2 we discuss our results on the application of noise injected 

into the rf system for this purpose. 

4.1 Noise in the RF System 
The low-level signal generator inevitably has a noise spectrum in the neighborhood of 

the carrier, which typically is falling and, for a high-quality generator, rapidly reaches an 

inconsequential level. Eq. (2.19) shows that for phase noise only the spectral density at 

the odd harmonics of the synchrotron frequency contributes to the diffusion coefficient, 

whereas for amplitude noise only the even harmonics matter. In particular, for particles in 

the longitudinal core, only the spectral density evaluated at the first harmonic contributes 

significantly to the diffusion coefficient for phase noise, and only the second harmonic 

contributes significantly for amplitude noise. Thus, given the same spectrum, amplitude 

noise is less destructive than phase noise because of reduced spectral density at the second 

harmonic of the synchrotron frequency. The small amplitude synchrotron frequency of 

the sse collider rings, about 4.2 Hz, is such that the first synchrotron sideband is close 

enough to the carrier so that the noise power there could be troublesome. In order to 

provide a basis for establishing design criteria, we have investigated this in some detai1. 24 

As an illustration of the DKW theory we present some of those results here. 

When establishing design criteria, one important quantity to consider is the longitudinal 

emittance, which is a measure of longitudinal bunch size. The conventional way to define 

the longitudinal emittance is through the phase space area containing a given fraction of 

the beam. Thus we can define the i-emittance, JI(t), by 

If(t) 

J p(J, t)dJ = i, ( 4.1) 

o 

where i is the fraction of particles under consideration. The emittance-doubling time, td, 

is then defined by 

(4.2) 

Here we assume that Jf(t) is monotonically increasing with t. Another measure of the 

longitudinal bunch size is the mean of J(t) conditioned on J(t) < Jb; that is, 
lb 

J(t) := E[J(t)\J(t) < Jb] = J J Pe(J, t)dJ, (4.3) 

where Pe(J, t) = p(J, t)j Joh p(J, t)dJ. 
o 
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Before we discuss our numerical calculations of emittance-doubling time, we give a first

principles derivation of a simple approximation to J(t) that was used in the CDRl1 to 

determine noise levels corresponding to a 50-h emittance-doubling time. To our knowledge, 

a comparable treatment has not appeared in the literature. 

Differentiating Eq. (4.3) and using Eq. (2.4a) yields 

( 4.4) 

In the white noise, small oscillation case (U( </» = !n2 </>2), 

(4.5) 

which gives 

( 4.6) 

where Wet, Jb) is the second term on the right-hand side of Eq. (4.4). Eq. (4.5) can be 

derived directly from Eq. (2.16) or in the small k asymptotics for Eq. (2.19). In the small 

oscillation approximation, the action density for a Gaussian beam in P and </> with the rms 

longitudinal bunch spread al is p( J) = ie-JII-', with f.l, = J = Q(27rad }..rf)2. If we ignore 
I-' 

Wand define X = J/n, then Eq. (4.6) is exactly Eq. (4.4-21) of the CDR:l1 

dX 1 2 dt = 2n (Sf/; + SaX). 

The doubling.time of the mean is now easily calculated. For amplitude noise, 

and for phase noise, 

2 ln2 
td = n2s

a
; 

(4.7) 

(4.8) 

( 4.9) 

For the SSC parameters, Xo = 0.1479 and Jo = 3.937 rad sec-I. If we use td = 50 h, 

then Sf/; = 2.32 X 10-9 rad2Hz- 1 and Sa = 10.9 X 10-9 Hz-I. With these white noise 

spectral densities we then computed the diffusion coefficients D( J) according to Eq. (3.1) 

and integrated the diffusion equation (Eq. (2.4)) using the method of lines. The numerical 

results of p( J, t) were then used to calculate the mean emittance defined by Eq. (4.3) as a 

function of time. We found an emittance-doubling time of 80 h for white amplitude noise 
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and 59 h for white phase noise. Thus the simple approximation gives more conservative 

results, i. e., lower spectral density for the same emittance-doubling time. This is expected 

because we obtained the simple approximation by neglecting the second term W(t, Jb) in 

Eq. (4.6), which is always negative under the condition that J is less than Jb, the action 

at the absorbing boundary. 

The phase noise for a synthesizer of a type being considered for use in the sse rf system 

is shown in Figure 7. A reasonable fit to the spectrum is given by 

5t/J(w) = { 
1.3 X 10-5 j w2.65 W < 628.3 

0.5 X 10-12 W 2: 628.3 

rad sec-I, 

rad sec-I. 
( 4.10) 

The diffusion coefficient is shown in Figure 8; surprisingly, it is nearly linear, as the dashed 

line indicates. Figure 9 shows p(J, t) vs. J for various t, and Figure 10 shows J(t) and 

Jf(t) for two values of f. The doubling times of the mean, 39% and 95% emittances, are 

'" 55 h, which is on the order of the CDR design criterion. 

Some freedom in the choice of rf frequency makes it of interest to understand the 

dependence of the diffusion on Wrf = 27rhjTo. This can be done to some extent in the 

w hi te noise case. If we let P = np, then from Eq. (2. 3b) the (P, <p) phase space is inde

pendent of 0. (and Wrf), and 27r J = f Pd<p = 0. f Pd<p =: 0. 27ri, where the last equality 

defines i. Let p(i, t) be the i density; then p(i, t) = 0. p(J, t), and Eq. (2.4a) becomes 

ap a D(ni) ap 
at = ai 0.2 ai' 

From Eqs. (2.8) and (2.9), <PJ is defined by 

I/>J 

27rJ = 4hn J Jcos <p - cos <PJ d<p. 
o 

( 4.11) 

Let <p j := <PJ with J 

Eq. (2.16) that 

in; then clearly <p j is independent of 0., and it follows from 

where D( i) is independent of n. Letting T = n2t, we obtain the initial-boundary value 

problem for p( i, t) as 

ap = ~D(i) a~ 
aT aJ aJ' 
p( i, 0) = npo(ni), 

P(ib' T) = O. 
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Figure 7. Phase Noise Spectral Density Measured on an HP8662 Synthesizer. The straight line is the fit, 
Eq. (4.10), to the spectrum. 
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The n dependence now enters only in two ways: (1) through the initial density, 

(Eq. (4.12b)), and (2) through the time scaling. For a Gaussian beam in P and </>, 

po(J) = tL/O) e-J/tL(O) at small J, where /-L(n) = Jo(n) = n4
11, and 11 is an n-independent 

constant if longitudinal emittance €L = (7E(7t is fixed. Thus, recalling that n 2 ex: Wrf, we 

see that increasing Wrf broadens the initial distribution. If we assume that a broader initial 

distribution leads to a faster deterioration of the beam, 

Tc2 < Tel, ( 4.13) 

where Tc is a critical time for loss of beam quality. Therefore, n~tc2 < nitcl and 

( 4.14) 

If frf! = 360 MHz and frf2 = 480 MHz, two of the values which have been considered at 

the sse, then we expect tc2 < ~tel because we have a broader initial beam in case 2. This 

is consistent with Figure 11, where we plot the relative emittance as a function of time 

for phase noise of S'P = 2.32 x 10-9 rad2Hz- I and an initial emittance of €L = 0.233eV

sec. For example, for a relative emittance of 0.15, we find tc2 = 23 and tcl = 73 h. Our 

calculations show that the mean emittance-doubling time in case 1 is 86 h, and that it 

increases to 142 h in case 2, in contrast to the expectation in Eq. (4.14) (see Figure 12). To 

understand this we note that the narrower beam has steeper gradients; thus the diffusion 

process works faster, giving a shorter doubling time even though the resulting beam is 

still relatively narrow and could be narrower than the initial beam for the larger Wrf. This 

points out that emittance-doubling times may not be an appropriate design criterion. A 

more appropriate criterion may be the time it takes for the beam to reach a certain critical 

size relative to the bucket area. 

4.2 Noise III Superslow Extraction 
As described in more detail elsewhere,14,16,18 the presently envisioned extraction geom

etry at the sse has a slablike single crystal lying in the midline of the beampipe in the 

periphery of the beam (4-5(7) and oriented with the channeling crystallographic planes hor

izontal. Because the crystal is bent vertically, the protons that reach it and are channeled 

will be deflected vertically. The subsequent vertical drift leads them to enter a field-free 

region and get extracted into an external beamline. One possibility for feeding protons 

onto the crystal that has been investigatedI4,16,18 is to locate the crystal in a region where 

the dispersion is large and then feed particles by manipulating the longitudinal degree

of-freedom. Several possibilities for manipulating the longitudinal degree-of-freedom have 

been suggested; we discuss below the results obtained by injecting noise into the rf system. 

While we discuss both phase and amplitude noise, the emphasis will be on the latter. Many 
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of our results on phase noise have appeared before,14,15 so they will only be summarized 

here. Initially, we had concentrated on phase noise because of some concern with the op

erating state of the final rf amplifiers in the collider. If the amplifiers were to be operated 

in saturation, control of amplitude noise might be unreliable. However, as this is not to 

be the case,25 amplitude noise is a viable option. 

The first issue that arises is whether the feed rates onto the crystal are adequate to supply 

the beamline at the desired rate. (For the proposed SFT experiment, the desired extraction 

rate is 2 x 108 pps.) This is simple to ascertain, and our Monte Carlo simulations have 

extraction rates that are considerably larger than necessary. Indeed, to obtain adequate 

statistics with the number of tracks (1000) we use, the noise variances in the simulations 

are larger than would be used in the actual physical system. One must extrapolate to find 

the spectral density that would give the desired extraction rate. Relative extraction rates 

are shown as a function of the noise standard deviation in Figures 13(a) and 13(b) for low 

pass amplitude and phase noise, respectively, and in Figure 13( c) for white amplitude noise. 

For the last example, the rms noise amplitude at the SFT extraction rate is approximately 

400kV in a 20-MV system. In determining the extraction rate, we have disregarded the 

hits from the initial transient, which occur because some of the tracks (~ 30) have initial 

conditions such that, over the first synchrotron period, they are brought onto the crystal. 

Obviously, they hit the crystal even in the absence of noise. We can also use the numerical 

solution of the diffusion equation with realistic values of the diffusion coefficient to estimate 

the flux onto the crystal. 

Of greater concern than the extraction rate is the issue of the effect of noise on the 

longitudinal core of the beam. It is undesirable to produce a beam with a broad distribu

tion. Obtaining the extraction rates by uniformly filling the tail at the expense of small

amplitude patticles is to be avoided in order to preserve the beam bunch-to-bucket ratio. 

It is immediately clear from Figure 5( a) that white phase noise is not suitable. This is also 

seen in Figure 14(a), the scatter plot of initial conditions of those particles that eventually 

strike the crystal. However, by filtering the phase noise to eliminate the frequency compo

nents near the small-amplitude synchrotron frequency, the situation changes dramatically. 

This is shown in the scatter plot in Figure 14(b) for the low pass case. A similar result is 

obtained in the notched case. The hole in the phase space for core particles is obvious and 

consistent with the behavior of the diffusion coefficient discussed in Section 2.0. Amplitude 

noise is already at an advantage in this regard-even in the case of white noise-because, as 

discussed in Section 2.0, the diffusion coefficient for white amplitude noise is proportional 

to J2 for small J. The scatter plot for this case is shown in Figure 15(a). Recall from 

the discussion in Section 2.0 that filtering a small band of frequencies around 2n reduces 
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Figure 13. Normalized Extraction Rate as a Function of Noise Standard Deviation. (a) Low pass amplitude 
noise. (b) Low pass phase noise. (c) White amplitude noise. 
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the diffusion coefficient for small J even further. The scatter plot for this case is shown in 

Figure 15(b). In the case of amplitude noise the longitudinal emittance growth is small. 

This is seen in Figure 4(b) (upper curve), where the fluxes are considerably larger than 

SFT requires. Including the effect of the betatron motion, discussed further below, we 

see in Figure 4(b) (lower curve) that the emittance is remarkably constant. These results 

demonstrate that we can protect the beam core from excessive degradation by simple ma

nipulation of the noise spectrum from the generator. In principle, an arbitrary degree of 

reduction can be achieved by filtering higher and higher harmonics of n. Indeed, filtering 

the noise with a low pass filter gives a diffusion coefficient that vanishes below a value of 

action at which the amplitude-dependent synchrotron frequency, ws ( J), equals the cutoff 

frequency of the filter. 

The issue of how the halo particles that strike the crystal are distributed in the edge of 

the crystal is also of some concern. For any given particle that is about to be extracted, 

the extraction process is discrete. As it passes by the crystal on each turn around the 

machine, the particle is simultaneously moving around its betatron ellipses while its closed 

orbit is moving horizontally, carried by the longitudinal motion on the synchrotron ellipse. 

(Recall that the crystal is located at a point of high dispersion in the lattice.) On this time 

scale, the diffusion is negligible; in fact, such a description does not apply. Even though 

the superposition of the betatron amplitude and the closed orbit position may extend past 

the crystal edge, the time of extraction depends on the betatron phase of the particle 

when it arrives in the vicinity of the crystal. On a long time scale, diffusion gives rise to 

an increase in the closed orbit amplitude; this is the process by which the particle reaches 

the vicinity of the crystal in the first place. The first two effects, the superposition of the 

closed orbit and betatron motion, can be seen in Figure 16. This is for a particle whose 

initIal conditions, drawn from distributions of band x{3, already bring it to the crystal in 

a synchrotron period or less. Here the particle has struck the crystal in about 800 turns, 

when the superposition of its closed orbit position and betatron envelope has reached the 

crystal edge. For a particle for which the closed orbit diffusion is meaningful, the three 

effects together continuously feed particles onto the crystal. Together these give rise to a 

distribution of strikes on the crystal within a layer of thickness ~ 10 p.m. The thickness 

of the layer depends on the betatron tune, and the detailed distribution also depends on 

the value of !3x at the crystal.14 We show such distributions in Figures 17( a) and 17(b). 

While polishing and etching techniques are available that provide good crystal at the edge, 

the distribution of the extracted particles could have implications for local heating and 

radiation damage of the crystal. Such potential damage must be considered in the design 

of the extraction apparatus. Having as uniform a distribution as possible is obviously 
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desirable. Some ideas by which some control over this distribution may be obtained have 

been suggested. 26 This particular issue is still in a preliminary state of investigation and 

is in the realm of future work. 
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Figure 16. Coordinate x of a Particle as a Function of Turn Number at the Location of Bent Crystal. The 
initial condition of the particle is such that it strikes the bent crystal in less than one synchrotron 
period. The curve is the closed orbit defined by the synchrotron motion. 
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Figure 17. Distribution of Hits Across the Bent Crystal as a Result of Injecting Amplitude Noise. (a) White 
noise with l7a = 0.2. (b) Low pass noise with l7a = 0.02. 
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5.0 CONCLUSIONS 

In this paper, we have considered the diffusion of particles in longitudinal phase space 

in a proton synchrotron due to noise in the rf system. The theory, which was reviewed 

in Section 2.0, is essentially that of Dome and Krinsky and Wang; however, we have ex

tended it and discussed it in a way that enables it to serve as a prelude to our detailed 

investigation in terms of stochastic limit theorems. 6 We have developed an accurate and 

efficient algorithm for numerically integrating the diffusion equation (Eq. (2.4)) for general 

diffusion coefficients and general initial densities, and thus we have confidence in our nu

merical results. We have made extensive comparisons between the DKW diffusion theory 

and tracking simulations. The agreement is good, and thus we have confidence that the 

theory is valid in the parameter region of the sse; furthermore, the calculations based on 

the theory are much faster than the tracking simulation. The theory has been applied to 

two problems: (1) the growth of longitudinal emittance due to intrinsic sources of noise 

in the synchrotron rf system (herein specifically pertaining to the SSe); and (2) the con

trolled diffusion of particles to the edge of the rf bucket in order to extract them from the 

machine to feed a fixed-target physics experiment or to provide test beams. 

We have considered several sources of noise in the rf system of the collider rings at the 

sse and have estimated their effect on the longitudinal emittance of the beam. Methods 

to mitigate against noise-feedback loops, for example-have not been investigated here, 

although it would be straightforward to do so. The low synchrotron frequency of the 

collider has caused the issue of noise in the rf to be of some concern. Looking only at noise 

in the low-level rf signal source, we have found that emittance growth rates are comparable 

with design specifications. Of course, as other sources of noise are identified, they should 

be investigated as well. From the theory of diffusion in action in Section 2.0, we have 

deriyed a simple approximation for the time evolution of the longitudinal emittance. This 

approximation, essentially arising from scaling arguments, has been in rather general use in 

the accelerator physics community for several years. Our derivation shows the conditions 

that must be satisfied for it to be valid. Roughly, the flux across the bucket boundary 

must be small. Lastly, we have explored the effect of changing the frequency of the collider 

rf system on the growth of the longitudinal emittance for given conditions of the injected 

beam. 

In contrast to the undesirable but unavoidable slow increase of the longitudinal emittance 

from intrinsic noise sources is the deliberate injection of noise into the rf system to feed 

an extraction line. In order to operate a beamline in tandem with collider operations, it is 

crucial to show that this can be done without significantly making the bunches too long. 

In Section 4.2 we have shown that by appropriate manipulation of the noise spectrum, 
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adequate extraction rates can be obtained without significantly increasing the longitudinal 

emittance. Indeed, in some cases, when the effect of the betatron oscillations is accounted 

for in the extraction process, the longitudinal emittance has been found to be essentially 

constant. There seems to be no fundamental difficulty in applying this technique to ultra

slow extraction at the SSC. Certain details of the extraction process, especially pertaining 

to the bent crystal extraction septum, are the subject of ongoing research. An experiment 

to test this extraction scheme will be carried out on the Tevatron. This experiment, E853, 

is expected to begin in the spring of 1993. 
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