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Longitudinal Beam Dynamics with RF Noise 

H.-J. Shih, J.A. Ellison, B. S. Newberger, and R. Cogburn 

Abstract 

The Dome-Krinsky-Wang (DKW) diffusion-in-action theory for rf-noise-induced emit­

tance dilution is reviewed and related to recent work on the approximation of stochastic 

processes by Markov processes. An accurate and efficient numerical procedure is developed 

to integrate the diffusion equation of the DKW theory. Tracking simulations are under­

taken to check the validity of the theory in the parameter range of the Superconducting 

Super Collider (SSC) and to provide additional information. The study of effects of rf noise 

is applied to two problems of interest at the SSC: (1) determination of noise tolerance levels 

in the rf system, and (2) feasibility of beam extraction using crystal channeling. 
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1.0 INTRODUCTION 

Emittance blowup and beam loss due to intrinsic noise in the rf accelerating system 

has been observed in the Super Proton Synchrotron (SPS)1-3 and in other proton storage 

rings. It is therefore important to understand the effect of rf noise on the longitudinal 

dynamics of particle beams in high-energy accelerators. Dome4 and Krinsky and Wang5 

have independently provided a theoretical basis in which the effect of noise is described 

by a Markov diffusion process in longitudinal action. In Section 2.0 we review the Dome, 

Krinsky, Wang (DKW) diffusion theory and relate it to modern ideas in the theory of 

stochastic processes. We have numerically integrated the diffusion equation that describes 

the evolution of the action distribution in the DKW theory. Using the parameters of 

the Superconducting Super Collider (SSC), we have compared our numerical results with 

tracking simulations and found good agreement; this agreement gives us confidence in using 

the theory. This is discussed in Section 3.0, where we describe our numerical procedures 

and tracking simulations and give a detailed comparison. In Section 4.0 we apply the 

formalism and the associated numerical computations to two problems of interest at the 

SSC: the issue of the longitudinal emittance increase due to noise in components of the 

rf system of the SSC collider ring, and the possibility of extraction of a low-intensity 

proton beam for high-precision B-physics in a fixed-target spectrometer. Some general 

SSC parameters are listed in Table 1. 

Table 1. General sse Parameters. 

h harmonic number 104544 

O'e momentum compaction factor 9.1 x 10-5 

P. synchronous momentum 20 TeV/c 

V peak rf voltage 20 MV 

10 revolution frequency 3441 Hz 

Co circumference 87120 m 

O/21r small oscillation synchrotron frequency 4.23 Hz 

fN normalized emittance 10-6 m·rad 

2.0 REVIEW OF THE DKW THEORY 
The underlying theory is reviewed in this section, and readers are referred to Dome4 for 

more details. For a sinusoidal rf voltage with phase and amplitude noise, the turn-to-turn 

energy and phase variations in a stationary bucket are given by 

(2.1a) 



(2.1b) 

with Pn = 27rhT/(6.pn/Ps), Ko = 27rhT/(eV/psvs), and T/ = Q:c -1/,'? See Table 1 for h, Q:c, 

Ps and V. Here n is the turn number, </> the phase relative to the synchronous phase, "p the 

phase noise, a the amplitude noise, I the ratio of the particle's total energy to its rest 

energy, Vs the velocity of the synchronous particle, and e the electron charge; 6. refers to 

a variation relative to the synchronous particle. If we denote the beam revolution period 

by To, define P = Pn/To, divide Eq. (2.1a) by T6 and Eq. (2.1b) by To, and approximate 

the difference quotients by derivatives, then we obtain the continuous time approximation 

of Eq. (2.1): 

~ = P + ~(t), 
P = -02(1 + aCt)) sin </>. 

(2.2a) 

(2.2b) 

Here we have used 0 = VKo/To. In what follows we take aCt) and "p(t) to have zero mean 

for each t. Eq. (2.2) can be derived from the time-dependent Hamiltonian: 

H(x, t) = Ho(x) + HI (x, t) 

with 

1 2 
Ho(x) = '2X2 + U(xI), 

HI(X, t) = aCt) U(XI) + ~(t)X2. 

Here x = (XI,X2)T with Xl = </> and X2 = P, and U(xI) = 0 2(1 - cos Xl). 

(2.3a) 

(2.3b) 

(2.3c) 

In the unperturbed case (a = tP = 0), the action J = (1/27r) i Pd</> is conserved. In the 

perturbed case, Dome assumes conditions are such that the action evolves by a Markov 

diffusion process and then shows that the coefficients in the Fokker-Planck equation are 

related so that the action density p( J, t) evolves via the diffusion equation 

op 0 ( Op) at = oj D(J) oj . 

The natural auxiliary conditions are 

p(J,O) = po(J), 

P(Jb, t) = 0, 

(2.4) 

(2.5a) 

(2.5b) 

where poe J) is the initial density with J/b poe J)dJ = 1, and the second condition is an 

absorbing boundary condition at J = Jb. It is reasonable to take Jb ~ Js where Js is 
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the action at the separatrix, because once a particle comes close to the separatrix it is 

effectively lost because of, for example, collimators employed to reduce background in the 

detectors. Because D(O) = 0, no boundary condition at J = 0 is needed. 

To give the reader a feel for the connection between the phase space and action descrip­

tions, we derive the diffusion coefficient D( J). The transformation from x to action-angle 

variables (J, 9) is as follows. Given x the energy is 

(2.6) 

and the action 

¢Jm 

J(h) = 2~ 4Y2 J Jh - U(xI) dXI, (2.7) 

o 

where ¢>m is the maximum value of Xl for the orbit defined by (2.6), i.e., 

U(¢>m) = h. (2.8) 

The canonically conjugate angle 9 is given by 

9 = Wa(J)T (2.9) 

where T is the time it takes to go from (¢>m, 0) to (Xl, X2) moving counterclockwise in the 

unperturbed problem and 

Wa(J) = h'(J) (2.10) 

where h(J) is the inverse of J(h) defined in (2.7). If we let x = geT, u) be the general 

solution of the unperturbed problem, i.e., 

ag(T, u) = (0 01) VHO(g(T, u»), 
aT -1 

(2.11a) 

g(O, u) = u, (2.11b) 
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where \1 H 0 (x) = (~~~, ~~~ ) T and u( J) = (<I>m ( J), 0) T, then the transformation from 

(8, J) to x is given by 

(2.12) 

The equations of motion can now be derived from the new Hamiltonian: 

1-£(8, J, t) = h(J) + eH1 (g(W8~J)' u(J)) , t), (2.13) 

where e can be viewed as the size of the noise. The above approach avoids the multi valued­

ness problem in the usual approach using mixed generating functions. This transformation 

procedure works more generally for a symmetric bowl potential U j details will be presented 

in Reference 6. 

If we write the J equation as 

. &H . 
J = -7ii =: e( a(t)Rl(J, 8) + 1/J(t)R2(J, 8)), (2.14) 

then integrating and expanding in e formally gives 

T 

JT - Jo = e f [a(t)Rl (Jo, 80 + w8(Jo)t) + tb(t)R2 (Jo, 80 + w8(Jo)t)] dt + O( e2
), (2.15) 

o 

where JT := J(T) and we have used the fact that J(t) = Jo + O(e) and 8Ct) = 80 + 
w8 (Jo)t + O(e), for T = 0(1). We now assume that particles are uniformly distributed in 

80 so that 80 can be viewed as a uniformly distributed random variable on [0, 27r). This is 

equivalent to a statistical equilibrium assumption of uniformity on thin energy shells and 

should be the case after several synchrotron periods because the nonlinearity gives rise to 

phase randomization (filamentation).7 Also we consider the case where 80, aCt), and tbCt) 
are independent. Squaring and taking the expected value, we obtain 

T T 

E[(JT- Jo)2] 21ff{ / ) T =e T Ca(t-S)\Rl(Jo,80)Rl(Jo,80+w8(Jo)(s-t)) 
o 0 

+C,p(t - S)\R2(Jo,80)R2(Jo,80 +w8(Jo)(s - t)))} dtds + 0(e3
) 

=:.2 ~ 1 (J w(t - S)eft) ds + 0(.3), 

(2.16) 
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where E[ ] denotes the ensemble average, ( ) denotes the average over Bo, and C,(r) = 
E[J(t)J(t + r)] is the auto-covariance of a stationary random process J(t). Note that 

C ,( -r) = C ,( r). In what follows we assume C, has whatever properties are necessary for 

our calculations to make sense. Integrating by parts gives 

T(T ) T T 0 

~ J J wet - s)dt ds = J w(t)dt - ~ J tw(t)dt + ~ J tw(t)dt. 
o 0 -T 0 -T 

(2.17) 

Let te be a measure of the correlation time; then for T ~ te, the last two terms on the 

right-hand side of Eq. (2.17) are very small and the first term is J~oo w(t)dt. Thus 

-00 

+ C~(t)( R2( Jo, Bo) R2 (Jo, Bo + ws ( Jo)t) ) }dt 

=: A(Jo). 

(2.18) 

Note that the function A is independent of T and Bo and thus depends only on Jo, and we 

have dropped the O( €3) term. The derivation here is basically that in Dome.4 A lengthier 

calculation in the same reference shows 

E[JT - Jo] "J ~A'(J, ) 
T - 2 o· (2.19) 

If we subdivide the time axis in intervals l:1t such that te ~ T ~ l:1t < 1/ €2, then 

J(t) does not vary much during l:1t, a time interval during which aCt) and ¢(t) have 

forgotten their past. Thus in the time scale defined by l:1t, the process J(t) is expected 

to be approximately Markovian with infinitesimal mean and variance given by Eqs. (2.19) 

and (2.18), respectively. The latter follows because T ~ te allows the steps from Eq. (2.16) 

to Eq. (2.18) and T ~ tl.t allows Eqs. (2.18) and (2.19) to be viewed as infinitesimal 

moments. The Fokker-Planck equation for the Markov process is thus 

8p 8 [1, ] 1 82 

at = - 8J 2A (J)p + 2 8J2 [A(J)p]. (2.20) 

This reduces to Eq. (2.4) with D(J) = lA(J). Putting this on a rigorous mathematical 

basis is the goal of Reference 6 (see also the last paragraph of this section). 
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In the case where the correlation time is short relative to the synchrotron period, tc ~ 

2Tr/ws(J), Eq. (2.18) becomes 

Dwhite(J) = ~Sa(O)(Rl(J, BO)2) - ~w;(J) S",(O) ( R2(J, Bo) a;~2 (J, Bo)) 

<Pm( J) 

= Tr:1J) J [Sa(0)U'(¢»2 + S",(0)U"(¢»2] .jU(¢>m(J)) - U(¢»d¢> 
o 

_. Dwhite + Dwhite 
-. a ",. (2.21) 

Here Sf(w) and Cf(t) are Fourier transform pairs with Sf(w) - J~oo eiwtCf(t)dt = 

2 Jooo 
cos( wt) C f( t )dt and C f( t) = J~oo e -iwt S f( w ) ~~ = ; Jooo 

cos( wt)S f( w )dw . Note that 

E[J2(t)] = Cf(O) = ; Jooo Sf(w)dw. In going from (2.18) to (2.21) we use the fact that 

Ctb(t) = -C~(t), which follows from 

E [t/J(t + h) - t/J(t) t/J(t + r + h) - t/J(t + r)] = _ C",(r + h) - 2C",(r) + C",(r - h) 
h h h2 

in the limit as h -+ 0, and that J~oo Cf(t) w(t)dt ~ w(O) J~oo Cf(t)dt = w(O)Sf(O) for 

tc ~ 2Tr/ws(J). Because in the latter case Cf behaves like a delta function we will refer to 

this as the white noise case. 
00 . 

Let R,( J, B) = ~ R',m( J)e1m8 , 1 = 1,2; then it is easy to show that 
m=-oo 

D(J) = L {IR1,m(J)12 Sa(mws(J)) + IR2,m(J)12 S.j,(mws(J))} , (2.22) 
m>O 

where we have used the fact that R"O = o. In the pendulum case (sinusoidal RF voltage) 

00 (mw )4 00 (mw )4 
D(J) = 4 L . 2 s Sa(mws) + 4 L 2 s S",(mws) 

m=2,4, ... smh (mv) m=1,3, ... cosh (mv) (2.23) 

=: Da(J) + D",(J). 

The quantities J, ws( J), and v( J) are easily defined through the intermediate vari­

able k, 0 :$ k < 1, by J = (8f2k2 /Tr)B(k), Ws = f2(Tr/2K(k)), and v = 

(Tr/2)K(v'1- k2 )/K(k), where K is the complete elliptic integral of the first kind and 
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B(k) = J07r/2 COS2 xdx/y'l - k2 sin2 x. The variable k is related to the unperturbed en­

ergy h by h = 2k2n2. See Reference 4 for further details. 

In Figure lea) we present Da(J) for white amplitude noise; that is, Sa(w) = constant. 

It is easy to show that D a (J) ex: J2 for small J. Since the equation of motion for small J is 

~ + n2(1 + a(t))¢ = 0, one might, from the theory of the Mathieu equation, expect there 

to be resonant-type behavior due to Fourier components of aCt) near 2n. In Figure l(b), 

we present Da(J) for notched amplitude noise; that is, Sa(w) is a non-zero constant except 

in a region about w = 2n where it is zero. In this case, Da(J) ex: J4 for small J, showing 

that Da(J) at small J does indeed depend quite sensitively on Sa(W) near w = 2n. In 

Figure 2(a), we present D",(J) for white phase noise; that is, S",(w) = constant. Again, it 

is easy to show that D",(J) ex: J for small J. Since the equation of motion for small J is 

~+n2 ¢ = ;Pc t), one might expect a decrease in D", (J) for small J if the Fourier components 

of ¢(t) near w = n are filtered out. This is indeed the case as shown in Figure 2(b), where 

we present D",(J) for notched phase noise; that is, S",(w) is a non-zero constant except in 

a region about w = n where it is zero. In this case, it can be shown that D",( J) behaves 

like J3 for small J. 

The frequency, ws( J), approaches 0 as J approaches Js, so the assumptions used in 

deriving the theory are probably not valid near the separatrix. This is reflected in the 

white noise case in the fact that D(J) approaches 00 like l/ws(J) as J /' Js. Our 

numerical results indicate that D( J) approaches 00 more generally but we have not found 

conditions on Sin (2.23) that guarantee this. To pursue this, we looked at the process in 

energy. Since J(t) is approximately Markovian so is the energy, e(t), 

e( t) = h ( J ( t) ) . (2.24) 

The transformation e = h(J) and Pe(e) = p(J)ws(J) gives the Fokker-Planck equation in 

energy 

(2.25) 

where AI(e) = (D(J)ws(J»'1 . and A2(e) = 2D(J(e»)w;(J(e». There are two other 
J=J(e) 

ways to see this, one is to note that Ito's formula transforms the Ito equationS 

dJ = D' (J)dt + y'2D( J) dW (2.26) 

into 

de = AI(e)dt + J A2(e) dW (2.27) 

7 



(a) 

10-3 

10-4 

Da(J) 

10-6 

(b) 

Da(J) 

10-8 

0.01 

White amplitude noise 
Sa = 10.88 x 10-9 Hz-1 

J/Js 

Notched amplitude noise 
Sa = 10.88 x 10-9 HZ-1 

J/Js 

TIP-02952 

TlP-02953 

Figure 1. Diffusion Coefficient for Amplitude Noise With Sa 
(b) Notched noise. 

= 10.88 X 10-9 Hz-i. (a) White noise. 
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(a). 

10-3 

~(J) 

10-6 

White phase noise 
Sa = 2.324 x 10-9 Rad2 Hz-1 

10-~.01 0.02 0.05 0.10 0.20 0.50 

J/Js 
TIP-02954 

(b) 
10-2 

~(J) 

10-8 
Notched phase noise 
Sw = 2.324 x 10-9 Rad2 HZ-1 

10-10 

0.01 

J/Js 
TIP...(j2955 

Figure 2. Diffusion Coefficient for Phase Noise with S", = 2.324 x 10-9 rad2Hz-l. (a) White noise. 
(b) Notched noise. 
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where Wet) is standard Brownian motion or to note that 

h(JT) - h(Jo) f'V h'(JO)(JT - Jo) + ~hll(JO)(JT - Jo? (2.28) 

gives the corresponding expressions for E [(eTTeo?] and E [eTTep
]. Thus in the white noise 

case the diffusion coefficient A2( e) approaches zero as J / Js further illustrating problems 

at the separatrix. At any rate, we are investigating the possibility of a diffusion theory 

valid across the separatrix. 

The DKW diffusion theory is heuristic in the sense that it is assumed that the stochastic 

process J(t) is approximately Markov on a time scale large with respect to the correlation 

times of aCt) and of ¢(t). Under this assumption and the assumption of uniformity in B, 
the derivation of the diffusion coefficient seems reasonable. The Markov approximation 

will be discussed in detail in Reference 6, where the probabilistic limit theorems developed 

in Reference 9 will be applied to the rf noise problem. These theorems give conditions 

under which the process J(t) is approximately Markovian. Here approximation is in the 

sense of weak convergence, an important idea from modem probability. In Section 3.0 we 

show that the DKW diffusion theory is reasonable at the sse energy by comparing it with 

a simulation study based on Eq. (2.1). 

3.0 NUMERICAL SOLUTIONS AND COMPARISON WITH 
TRACKING SIMULATIONS 

It is straightforward to integrate the diffusion equation (2.4) by the method of lines. 

That is, the action variable J is discretized, the partial derivatives with respect to J are 

calculated by a finite-difference approximation, and an ODE integrator with automatic 

error control is employed to obtain the evolution in time of the action density at each grid 

point of J. Before integrating Eq. (2.4) one must calculate the diffusion coefficient D(J) 
and the initial action density poe J). 

To calculate the diffusion coefficient D(J), we use Eq. (2.21) in the white noise case 

or Eq. (2.23) for a particular noise spectral density. We assume the following spectral 

densities for low pass and notched phase noise: (1) s~w pass = constant for 0 < w < rS1 

and 0 elsewhere, (2) S:otched = 0 for rn < w < S1 and constant elsewhere; and we assume 

the following for low pass and notched amplitude noise: (1) S~ow pass = constant for 0 < 
w < 2rS1 and 0 elsewhere, (2) s:otched = 0 for 2rS1 < w < 2S1 and constant elsewhere. 

Here r is the filtering fraction with 0 < r < 1. For white phase and amplitude noise, the 

following expressions for D can be derived from Eq. (2.21) (they also follow from (2.23)): 

(3.1a) 
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(3.1b) 

where Bl(k) = fo7r
/

2 
sin2 xcos2 xJ1- k2sin2 xdx. For white noise, we assume the spectral 

density extends to /0/2 in frequency (this will later be justified by Eq. (3.11)). Thus, in 

Eq. (3.1) Sf = Tau], where To = }o and O'J = var{/}. For low pass phase and amplitude 

noise, D is computed according to 

nl (2 1)4 
D 10w pass = 4w4 Sf/J L m - , 

'" s m=l cosh2((2m - l)v) 
(3.2a) 

nl-l (2)4 
D10w pass = 4w4S ~ m 

a saL- . h2 (2 )' 
m=l SIn mv 

(3.2b) 

where nl is an integer such that (2nl - l)ws ~ rn < (2nl + l)ws for phase noise or 
2 

2(nl - l)ws ~ 2rO < 2nlws for amplitude noise. In Eq. (3.2) s'" = }o2,.<$.0 and Sa = 

}o 4"~.0' Here Qso is the small oscillation synchrotron tune. For the SSC, Qso = 0.00123. 

For notched phase and amplitude noise, D is computed according to 

(3.3a) 

(3.3b) 

where n2 is an integer such that (2n2 - 1 )ws ~ 0 < (2n2 + 1 )ws for phase noise or 
2 

2(n2 - l)ws ~ 20 < 2n2ws for amplitude noise. In Eq. (3.3) s'" = 101-2(;:!,.jQ.o and 
2 

Sa = * 1-4(t.!!:,.jQ.o' Since we obtain the diffusion coefficient and the action as functions 

of k, we spline fit D(k) versus J(k) in order to obtain D as a function of J. 

In calculating the initial action density we have taken a Gaussian distribution in P and 
if> matched to the small amplitude synchrotron ellipses. Since the longitudinal emittance 

at the SSC is small, the initial action density is to good approximation 

. h A (27rhO'I)
2 

WIt /-t = H. Co (3.4) 

where 0'1 is the rms longitudinal bunch spread. More generally we can start with an arbi­

trary initial density pep, 4» (the nonlinearity of the pendulum will cause a uniformization 
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on thin energy shells7). The calculation for the resultant action density follows where for 

convenience we assume symmetry in both P and ¢>. Let PH(h) be the density in energy; 

then 

h ¢Jm V2(h-U(¢J» 

J PH(x)dx = 4 J d¢> J p(P, ¢»dP' 
o 0 0 

Differentiating, we obtain 

(3.5) 

where Ph(¢» = J2(h - U(¢>)). The action density po(J) is related to PH(h) by p(J)dJ = 
pH(h)dh; thus 

dh 
po(J) = PH(h) dJ = PH(h)ws(J). (3.6) 

We have used this procedure in our calculations. 

In the white amplitude noise case the action density at J = 0 is fixed and the slope 

there steepens exponentially with time (from (2.4) at J = 0, ¥t = 0 and %t ~ = D"(O)~). 
Because of this, we have used a variable grid, with finer mesh near J = 0, for discretizing the 

partial derivatives with respect to J. In the notched noise cases where the filtered spectral 

density results in a discontinuous diffusion coefficient, we have imposed an additional finite­

difference equation at the discontinuity point to preserve conservation of probability at 

that point. We have verified our numerical results by (1) using a Galerkin (finite element) 

approach with piecewise linear basis functions, and (2) comparing with exact solutions that 

are known in the D( J) = J and J2 cases. Our numerical study is detailed in Reference 10. 

We have conducted the tracking simulations using a linear lattice for the sse. In order 

to apply the results to the extraction problem (to be discussed in Section 4.2), tracking 

is done in the full 6-dimensional phase space: x, x', y, y', 1, 6. Here x is the horizontal 

coordinate, x' the horizontal angle, y the vertical coordinate, y' the vertical angle, 1 the 

deviation in path length, and 6 = 6.p/Ps, the fractional deviation in momentum. The 

initial values of each variable are randomly generated according to Gaussian distributions 

with the rms values of x, x', y, and y' determined by the lattice functions, and the rms 

values of 1 and 6 determined by assuming an energy spread of 1 GeV. To carry the protons 

around the ring, the following transfer map from path length 80 to 8 is constructed using 
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the lattice functions: 

with 

Cx Sx 0 0 0 E 
C' x S' x 0 0 0 E' 
0 0 Cy Sy 0 0 

0 0 C' y S' y 0 0 

F G 0 0 1 ac~s - (F1]o + G1]~) 
0 0 0 0 0 

c = ~( cos 27rQ + 0<0 sin 27rQ), 

S = v'f3 130 sin 27rQ, 

1 

c' = y'~f3o ((ao - a)cos27rQ - (1 + aao)sin 27rQ) , 

S' = J1j(COS27rQ - 0< sin 27rQ), 

E = 1] - CxTJO - Sx1]~, 

E' 'C' S" = 1] - x1]o - x1]o, 

(3.7) 

(3.8a) 

(3.8b) 

(3.8c) 

(3.8d) 

(3.8e) 

(3.8f) 

(3.8g) 

(3.8h) 

where ~s = S - So, Q is the tune advance from so to s, a and 13 are the usual Courant­

Snyder parameters evaluated at s, 1] is the dispersion function evaluated at s, and the 

subscript 0 denotes the lattice functions evaluated at So. In general, there is a coupling 

in the map (3.7) between horizontal and longitudinal motions. For comparisons with the 

diffusion-in-action theory, a one-turn map with s = So + Co is sufficient. If the dispersion is 

negligible at the rf cavity, the coupling between horizontal and longitudinal motions in the 

one-turn map evaluated at the rf cavity vanishes. In this case, we obtain In+l = In +acCob'n 
and thus Eq. (2.1a) by using the relationship 

¢n = (27rh)ln/Co + 1/Jn. (3.9) 

For bent crystal extraction, the crystal and rf cavity are at different locations, and two 

maps are needed to carry the bunch once around the ring. Table 2 lists the relevant 
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parameters for constructing transfer maps in the tracking simulations. Table 3 lists the 

standard deviations in x, x', y, y', I, and 6 of the sse beam. 

Table 2. Relevant Parameters for 
Constructing Transfer Maps. 

parameter @bent crystal @rf cavity 

0., 1.773 -2.996 

011 0.734 -0.112 

/3., 1385.09 m 440.25 m 

/311 544.79 m 44.62 m 

'1 -4.m O.m 

'1' O. O. 

Q., 61.269 (I 61.515 6 

QII 60.994(1 61.783 6 

~s 43338.58(1 m 43781.42 6 m 

(lfrom bent crystal to rf cavity 
6from rf cavity to bent crystal 

Table 3. Standard Deviations in :z:, :z:', y, 
y', I, and 6 of the SSC Beam. 

r.m.s. @bent crystal @rf cavity 

0'., 2.549 x 10-4 m 1.437 x 10-4 m 

0'.,' 1.840 X 10-7 rad 1.031 x 10-6 rad 

0'11 1.599 x 10-4 m 4.575 x 10-5 m 

0''11' 2.935 x 10-7 raG 1.032 x 10-6 rad 

0'/ 5.127 x 10-2 m 5.127 x 10-2 m 

0'6 5 x 10-5 5 X 10-5 
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When the protons traverse the rf cavity, the relative momentum difference is changed 

according to 

eV . (271'hln ) On+l = On - --(1 +an)sm -c +tPn . 
PsVs 0 

(3.10) 

Eq. (3.10) is obtained by dividing Eq. (2.1b) by 271'hTJ and using Eq. (3.9). In computer 

simulations, white phase or amplitude noise refers to the case where the tPn or an are 

drawn independently from a Gaussian distribution each time the bunch passes through 

the rf cavity. To compare this with the DKW theory, we need to define f(t) from the {fn}, 

where fn can be tPn or an. If we let 

00 sinfn(t-Ton) 
J(t) = n~oo *(~ -Ton) In, (3.11) 

then J( kTo) = fk and by the sampling theorem of Shannon, 11 f( t) has zero spectral density 

outside [-71' ITo, 71' ITo] and a correlation time on the order of To. This is small compared 

to 271'lws(J), and so the white noise approximation ofEq. (2.21) is valid with S,(O) = To0'1' 
where O'J = var {fl. To obtain low pass and notched phase noise, the following is done 

beforehand: generate a time series of white noise for N turns, {tPI, tP2, ... , tP N }, compute 

the discrete Fourier series {.pl, .p2,·· . ,.p N}, and construct 

2 mo 
~n = FI N L Re( .pme211'i(m-l)(n-I)/N) 

m=2 

(3.12) 

in the case of low pass noise, or 

ml 

~n = F2{ tPn - ~ L Re(.pme211'i(m-l)(n-I)/N)} 
m=mo+l 

(3.13) 

in the case of notched noise. Here rno ~ 2 is the largest integer such that rno :5 QsoNr, 

rnl is the smallest integer such that rnl ~ QsoN, and FI and F2 are normalization factors 

such that tPn and ~n have the same 0'",. With n being the turn number, and the synchrotron 

tune for .pmexp(271'i(rn - l)(n - l)/N) being Qm = (rn - l)/N, Eqs. (3.12) and (3.13) 

say that low pass phase noise contains only the terms whose synchrotron tunes are less 

than rQ so, and notched phase noise contains all the terms except those whose tunes are 

between rQso and Qso. Low pass and notched amplitude noise are also obtained from 

Eqs. (3.12) and (3.13) except that rno is the largest integer that satisfies rno :5 2QsoNr, 

and rnl is the smallest integer that satisfies rnl ~ 2QsoN. 
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To compare the diffusion theory and the tracking simulation, we now present results 

for the white and notched cases. The low pass case will be discussed in the applications 

section. The comparisons of action distribution and longitudinal emittance growth are 

shown in Figures 3( a) and 3(b), respectively, for white amplitude noise with a a = 0.2, and 

in Figures 4(a) and 4(b) for notched amplitude noise with aa = 0.2. Here the longitudinal 

emittance is defined as the average of the action over the surviving particles (recall 27rJ 

is the area in phase space). The comparisons for white and notched phase noise with 

a", = 0.1 are shown in Figures 5 and 6, respectively. The agreement between simulation 

and theory is good in all cases. This gives us confidence in using the DKW diffusion theory 

in place of the more computationally intensive simulations. 

4.0 APPLICATIONS 
An important cause for loss of beam lifetime in the SPS1,2 was shown to be the exis­

tence of phase noise associated with the radial loop, the beam phase measurement, and 

the low-level signal generators in the rf system. Noise in bands containing the small­

amplitude synchrotron frequency was found to be especially dangerous. Because of the 

low synchrotron frequency in the SSC collider ring, this question was raised as a concern 

in the Conceptual Design Report12 (CDR), even for the very high-quality signal synthesis 

systems available today. In Section 4.1, we discuss our results that address this issue. 

The use of channeling in a bent single crystal, of Si for example, has been suggested 13,14 

as one possibility for low-intensity beam extraction, and has recently been studied 

considerably1S-18 for the SSC and for the Large Hadron Collider (LHC). A beam so 

extracted could feed a fixed-target experiment19 or provide, at the SSC, a 20-TeV test 

beam.2o (There is no other provision for a test beam of this energy.) It is outside the scope 

of this paper to discuss the channeling physics by which an incident beam is deflected into 

the beamline by a bent crystal. Several good discussions are readily available.21 Here it 

is sufficient to note that deflection of a beam of high-energy particles in such a crystal 

has been demonstrated,22 as has extraction from an accelerator,23 albeit at low efficiency, 

and new experiments have been planned on the Tevatron at Fermilab24 and on the SPS 

at CERN. 18 To extract continuously, some mechanism must be used to feed protons onto 

the crystal. At sufficiently high luminosity, the natural growth of halo should suffice; this 

is expected to be the case at the LHC. For the SSC, at C = 1033cm-2sec-1, the halo is 

not likely to be sufficient. In Section 4.2 we discuss our results on the application of noise 

injected into the rf system for this purpose. 
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Figure 3. Comparison Between the DKW Diffusion Theory and the Tracking Simulation in the Case of 
White Amplitude Noise with (10 = 0.2. (a) Action density. Histogram: tracking simulation after 
106 turns. Solid curve: theory after 106 turns. Dashed curve: initial density. (b) Longitudinal 
emittance vs. turn number. Curve: theory. Dots: tracking simulation without a bent crystal. 
A particle is regarded as lost when its k value exceeds 0.96, where k is the variable defined 
by h = 2k2n2. Crosses: tracking simulation with a bent crystal at z = 1 mm. A particle is 
intercepted by the crystal and discarded when its :r: value exceeds 1 mm. 
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Figure 4. As in Figure 3 for Notched Amplitude Noise with ITo = 0.2. 
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Figure 5. As in Figure 3 for White Phase Noise with 0"", = 0.1. 
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Figure 6. As in Figure 3 for Notched Phase Noise with (1'", = 0.1. 
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4.1 Noise in the RF System 
The low-level signal generator inevitably has a noise spectrum in the neighborhood of 

the carrier, which typically is falling and, for a high-quality generator, rapidly reaches an 

inconsequential level. Eq. (2.23) shows that for phase noise only the spectral density at 

the odd harmonics of the synchrotron frequency contributes to the diffusion coefficient, 

whereas for amplitude noise only the even harmonics matter. In particular, for particles in 

the longitudinal core, only the spectral density evaluated at the first harmonic contributes 

significantly to the diffusion coefficient for phase noise, and only the second harmonic 

contributes significantly for amplitude noise. Thus, given the same spectrum, amplitude 

noise is less destructive than phase noise because of reduced spectral density at the second 

harmonic of the synchrotron frequency. The small amplitude synchrotron frequency of 

the SSC collider rings, about 4.2 Hz, is such that the first synchrotron sideband is close 

enough to the carrier so that the noise power there could be troublesome. In order to 

provide a basis for establishing design criteria, we have investigated this in some detail. 25 

As an illustration of the DKW theory we present some of those results here. 

When establishing design criteria, one important quantity to consider is the longitudinal 

emittance, which is a measure of longitudinal bunch size. The conventional way to define 

the longitudinal emittance is through the phase space area containing a given fraction of 

the beam bunch. Thus we can define the I-emittance, J,(t), by 

JJ(t) 

J Pc(J, t)dJ = I, (4.1) 

o 

where Pc( J, t) = p( J, t) / J/" p( J, t )dJ and I is the fraction of particles under consideration. 

The emittance-doubling time, td, is then defined by 

(4.2) 

Here we assume that Jf(t) is monotonically increasing with t. Another measure of the 

longitudinal bunch size is the mean of J(t) conditioned on J(t) < Jbj that is, 

Jb 

J(t):= E[J(t)IJ(t) < Jb] = J Jpc(J,t)dJ. (4.3) 

o 

Before we discuss our numerical calculations of emittance-doubling time, we give a first­

principles derivation of a simple approximation to J(t) that was used in the CDR12 to 
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determine noise levels corresponding to a 50-h emittance-doubling time. To our knowledge, 

a comparable treatment has not appeared in the literature. 

Differentiating Eq. (4.3) and using Eqs. (2.4) and (2.5b) yields 

_ Jb 

d~~t) = J D'(J)Pc(J,t)dJ+(Jb-J(t»D(Jb)C;:;(Jb,t). (4.4) 

o 

In the white noise, small oscillation case (U(</» = !02</>2), 

(4.5) 

which gives 

(4.6) 

where Wet, Jb) is the second term on the right-hand side of Eq. (4.4). Eq. (4.5) can be 

derived directly from Eq. (2.21) or in the small k asymptotics for Eq. (3.1). If we ignore 

W and define X = J/O, then Eq. (4.6) is exactly Eq. (4.4-21) of the CDR:12 

dX 1 2 
dt = 20 (St/J + SaX). 

The doubling time of the mean is now easily calculated. For amplitude noise, 

and for phase noise, 

2ln2 
td = 02Sa ; 

2Jo 
td = 03St/J' 

(4.7) 

(4.8) 

(4.9) 

Using Eq. (3.4), Jo ~ J.t = 3.937radsec-1 for the SSC parameters. If we use td = 50 h, 

then St/J = 2.32 X 10-9 rad2Hz-I and Sa = 10.9 X 10-9 Hz-I. With these white noise 

spectral densities we then computed the diffusion coefficients D(J) according to Eq. (3.1) 

and integrated the diffusion equation (2.4) using the method of lines. The numerical results 

of p( J, t) were then used to calculate the mean emittance defined by Eq. (4.3) as a function 

of time. We found an emittance-doubling time of 80 h for white amplitude noise and 59 h 

for white phase noise. Thus the simple approximation gives more conservative results, i. e., 
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lower spectral density for the same emittance-doubling time. This is expected because we 

obtained the simple approximation by neglecting the second term Wet, Jb) in Eq. (4.6), 

which is always negative under the condition that J is less than Jb, the action at the 

absorbing boundary. 

The phase noise for a synthesizer of a type being considered for use in the sse rf system 

is shown in Figure 7. A reasonable fit to the spectrum is given by 

S W _ { 1.3 X 1O-5/w 2
.
65 

W < 628.3 
t/J( ) - 0.5 X 10-12 W ~ 628.3 

rad sec-I, 

rad sec-I. 
(4.10) 

The diffusion coefficient is shown in Figure 8; surprisingly, it is nearly linear, as the dashed 

line indicates. Figure 9 shows p(J, t) vs. J for various t, and Figure 10 shows J(t) and 

Jf(t) for two values of f. The doubling times of the mean, 39% and 95% emittances, are 

"" 55 h, which is on the order of the CDR design criterion. 

Some freedom in the choice of rf frequency makes it of interest to understand the 

dependence of the diffusion on Wrf = 27rh/To. This can be done to some extent in 

the white noise case. Since n 2 = Wrf /7J/eV/psCo, n 2 ex: Wrf for a fixed V. If we let 

P = nP, then from Eq. (2.3b) the (p,¢J) phase space is independent of n (and Wrf), and 

27rJ = fPd¢J = nfPd¢J =: n27ri, where the last equality defines i. Let p(i,t) be the 

i density; then p(i,t) = np(J,t), and Eq. (2.4) becomes 

op = 0_ (D(ni) 01>..) 
m oj n2 oj 

From Eqs. (2.7) and (2.8), ¢Jm = ¢Jm(J,n) is defined by 

tPm 

27r J = 4J2n J ..; cos ¢J - cos ¢Jm d¢J. 

° 

( 4.11) 

(4.12) 

Since J = ni, it is clear from (4.12) that ¢Jm(ni, n) is independent of n, and it follows 

from Eq. (2.21) that for white noise 

(4.13) 

where V( i) is independent of n. Letting T = n2t, we obtain the initial-boundary value 

problem for p(i, t) as 

op = 0_ V(i) 01>.. 
aT oj oJ' (4.14a) 
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Figure 7. Phase Noise Spectral Density Measured on an HP8662 Synthesizer. The straight line is the fit, 
Eq. (4.10), to the spectrum. 
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Figure 8. Diffusion Coefficient for Spectral Density of Figure 7, Using Eq. (4.10). Dashed line is a linear 
approximation. 
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Figure 9. Evolution of Action Density for Case of Figure 8 in Increments of 81/5 h. The initial density is 
given by circles; final density is at 81 h. 
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Figure 10. Longitudinal Emittance Growth for Case of Figure 8. Solid: mean emittance. Dashed: 95% emit­
tance. Dotted: 39% emittance. 
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p( J, 0) = npo(nJ), 

p(Jb, T) = O. 

(4.14b) 

( 4.14c) 

The 0 dependence now enters only in two ways: (1) through the initial density, Eq. (4.14b), 

and (2) through the time scaling. If the initial action density po(J) is given by (3.4), then 

Jo = Jl = W~€L 177I/Pslls where €L = (f6E(f6t and 6E and 6t are the energy and time 

deviations from the synchronous particle, respectively. Thus, if €L is fixed and recalling 

that n2 ex Wrf for a fixed V, we see that increasing Wrf broadens the initial distribution. If 

we assume that a broader initial distribution leads to a faster deterioration of the beam, 

Te2 < Tel when Wrf2 > Wrfl ( 4.15) 

where Te is a critical scaled time for loss of beam quality. Therefore, (4.15) reads n~te2 < 
Ortel and 

Wrfl 
te2 < -tel. 

Wrf2 
( 4.16) 

If frfl = 360 MHz and frf2 = 480 MHz, two of the values which have been consid­

ered at the sse, then we expect te2 < itel because we have a broader initial beam in 

case 2. This is consistent with Figure 11, where we plot the relative emittance as a func­

tion of time for phase noise of St/J = 2.32 X 10-9 rad2Hz-l and an initial emittance of 

€L = 0.233eV-sec. For example, for a relative emittance of 0.15, we find te2 = 23 h and 

tel = 73 h. Our calculations show that the mean emittance-doubling time in case 1 is 86 h, 

and that it increases to 142 h in case 2, in contrast to the expectation in Eq. (4.16) (see 

Figure 12). To understand this we note that the narrower beam has steeper gradients; 

thus the diffusion process works faster, giving a shorter doubling time even though the 

resulting beam is still relatively narrow and could be narrower than the initial beam for 

the larger Wrf. This points out that emittance-doubling times may not be an appropriate 

design criterion. A more appropriate criterion may be the time it takes for the beam to 

reach a certain critical size relative to the bucket area. 
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4.2 Noise in Superslow Extraction 
As described in more detail elsewhere,15,17,19 the presently envisioned extraction geom-

etry at the SSC has a slablike single crystal lying in the midline of the beampipe in the 

periphery of the beam (4-50') and oriented with the channeling crystallographic planes hor­

izontal. Because the crystal is bent vertically, the protons that reach it and are channeled 

will be deflected vertically. The subsequent vertical drift leads them to enter a field-free 

region and get extracted into an external beamline. One possibility for feeding protons 

onto the crystal that has been investigated15,17,19 is to locate the crystal in a region where 

the dispersion is large and then feed particles by manipulating the longitudinal degree­

of-freedom. Several possibilities for manipulating the longitudinal degree-of-freedom have 

been suggested; we discuss below the results obtained by injecting noise into the rf system. 

While we discuss both phase and amplitude noise, the emphasis will be on the latter. Many 

of our results on phase noise have appeared before,15,16 so they will only be summarized 

here. Initially, we had concentrated on phase noise because of some concern with the op­

erating state of the final rf amplifiers in the collider. If the amplifiers were to be operated 

in saturation, control of amplitude noise might be unreliable. However, as this is not to 

be the case,26 amplitude noise is a viable option. 

The first issue that arises is whether the feed rates onto the crystal are adequate to supply 

the beamline at the desired rate. (For the proposed SFT experiment, the desired extraction 

rate is 2 x 108 pps.) This is simple to ascertain, and our Monte Carlo simulations have 

extraction rates that are considerably larger than necessary. Indeed, to obtain adequate 

statistics with the number of tracks (1000) we use, the noise variances in the simulations 

are larger than would be used in the actual physical system. One must extrapolate to find 

the spectral density that would give the desired extraction rate. Relative extraction rates 

are shown as a function of the noise standard deviation in Figures 13( a) and 13(b) for low 

pass amplitude and phase noise, respectively, and in Figure 13( c) for white amplitude noise. 

For the last example, the rms noise amplitude at the SFT extraction rate is approximately 

400 k V in a 20-MV system. In determining the extraction rate, we have disregarded the 

hits from the initial transient, which occur because some of the tracks (~ 30) have initial 

conditions such that, over the first synchrotron period, they are brought onto the crystal. 

Obviously, they hit the crystal even in the absence of noise. We can also use the numerical 

solution of the diffusion equation with realistic values of the diffusion coefficient to estimate 

the flux onto the crystal. In reality, the absorbing boundary is defined by the inner edge of 

the crystal instead of a particular action near the separatrix as has been used in previous 

discussions. Thus one must also consider the betatron motion in determining the flux onto 

the crystal. The effect of the betatron motion on the extraction process will be discussed 
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below. Extension of the DKW diffusion theory, which is strictly longitudinal, to include 

the betatron motion has been made by the authors in Reference 27 and shows excellent 

agreement with tracking simulations. 

Of greater concern than the extraction rate is the issue of the effect of noise on the 

longitudinal core of the beam. It is undesirable to produce a beam with a broad distribu­

tion. Obtaining the extraction rates by uniformly filling the tail at the expense of small­

amplitude particles is to be avoided in order to preserve the beam bunch-to-bucket ratio. 

It is immediately clear from Figure 5( a) that white phase noise is not suitable. This is also 

seen in Figure 14( a), the scatter plot of initial conditions of those particles that eventually 

strike the crystal. However, by filtering the phase noise to eliminate the frequency compo­

nents near the small-amplitude synchrotron frequency, the situation changes dramatically. 

This is shown in the scatter plot in Figure 14(b) for the low pass case. A similar result is 

obtained in the notched case. The hole in the phase space for core particles is obvious and 

consistent with the behavior of the diffusion coefficient discussed in Section 2.0. Amplitude 

noise is already at an advantage in this regard-even in the case of white noise-because, as 

discussed in Section 2.0, the diffusion coefficient for white amplitude noise is proportional 

to J2 for small J. The scatter plot for this case is shown in Figure 15(a). Recall from 

the discussion in Section 2.0 that filtering a small band of frequencies around 20 reduces 

the diffusion coefficient for small J even further. The scatter plot for this case is shown in 

Figure 15(b). In the case of amplitude noise the longitudinal emittance growth is small. 

This is seen in Figure 4(b) (upper curve), where the fluxes are considerably larger than 

SFT requires. Including the effect of the betatron motion, discussed further below, we 

see in Figure 4(b) (lower curve) that the emittance is remarkably constant. These results 

demonstrate that we can protect the beam core from excessive degradation by simple ma­

nipulation of the noise spectrum from the generator. In principle, an arbitrary degree of 

reduction can be achieved by filtering higher and higher harmonics of O. Indeed, filtering 

the noise with a low pass filter gives a diffusion coefficient that vanishes below a value of 
action at which the amplitude-dependent synchrotron frequency, w s ( J), equals the cutoff 

frequency of the filter. 

The issue of how the halo particles that strike the crystal are distributed in the edge of 

the crystal is also of some concern. For any given particle that is about to be extracted, 

the extraction process is discrete. As it passes by the crystal on each turn around the 

machine, the particle is simultaneously moving around its betatron ellipses while its closed 

orbit is moving horizontally, carried by the longitudinal motion on the synchrotron ellipse. 

(Recall that the crystal is located at a point of high dispersion in the lattice.) On this time 

scale, the diffusion is negligible; in fact, such a description does not apply. Even though 
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Figure 14. Initial Distribution in Longitudinal Phase Space of the Protons that Strike the Bent Crystal in 
106 turns as a Result of Injecting Phase Noise. (a) White phase noise with U't/J = 0.1. (b) Low 
pass phase noise with U't/J = 0.01. The number of hits is 187 in case (a) and 193 in case (b). The 
circle is the orbit whose synchrotron frequency is 0.950. 
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Figure 15. As in Figure 14 for Amplitude Noise. (a) White noise with U a = 0.2 and 182 hits. (b) Low pass 
noise with U a = 0.02 and 120 hits. 
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the superposition of the betatron amplitude and the closed orbit position may extend past 

the crystal edge, the time of extraction depends on the betatron phase of the particle 

when it arrives in the vicinity of the crystal. On a long time scale, diffusion gives rise to 

an increase in the closed orbit amplitude; this is the process by which the particle reaches 

the vicinity of the crystal in the first place. The first two effects, the superposition of the 

closed orbit and betatron motion, can be seen in Figure 16. This is for a particle whose 

initial conditions, drawn from distributions of h and xp, already bring it to the crystal in 

a synchrotron period or less. Here the particle has struck the crystal in about 800 turns, 

when the superposition of its closed orbit position and betatron envelope has reached the 

crystal edge. For a particle for which the closed orbit diffusion is meaningful, the three 

effects together continuously feed particles onto the crystal. Together these give rise to a 

distribution of strikes on the crystal within a layer of thickness ~ 10 Jlm. The thickness 

of the layer depends on the betatron tune, and the detailed distribution also depends on 

the value of f3x at the crystal. IS We show such distributions in Figures 17(a) and 17(b). 

While polishing and etching techniques are available that provide good crystal at the edge, 

the distribution of the extracted particles could have implications for local heating and 

radiation damage of the crystal. Such potential damage must be considered in the design 

of the extraction apparatus. Having as uniform a distribution as possible is obviously 

desirable. Some ideas by which some control over this distribution may be obtained have 

been suggested.28 This particular issue is still in a preliminary state of investigation and 

is in the realm of future work. 

x (mm) 

o 200 400 600 
Turn number 

T1P-029n 

Figure 16. Coordinate x of a Particle as a Function of Turn Number at the Location of Bent Crystal. The 
initial condition of the particle is such that it strikes the bent crystal in less than one synchrotron 
period. The curve is the closed orbit defined by the synchrotron motion. 
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Figure 17. Distribution of Hits Across the Bent Crystal as a Result of Injecting Amplitude Noise. (a) White 
noise with (Fa = 0.2. (b) Low pass noise with (Fa = 0.02. 
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5.0 CONCLUSIONS 

In this paper, we have considered the diffusion of particles in longitudinal phase space 

in a proton synchrotron due to noise in the rf system. The theory, which was reviewed 

in Section 2.0, is essentially that of Dome and Krinsky and Wang; however, we have ex­

tended it and discussed it in a way that enables it to serve as a prelude to our detailed 

investigation in terms of stochastic limit theorems.6 We have developed an accurate and 

efficient algorithm for numerically integrating the diffusion equation Eq. (2.4) for general 

diffusion coefficients and general initial densities, and thus we have confidence in our nu­

merical results. We have made extensive comparisons between the DKW diffusion theory 

and tracking simulations. The agreement is good, and thus we have confidence that the 

theory is valid in the parameter region of the sse; furthermore, the calculations based on 

the theory are much faster than the tracking simulation. The theory has been applied to 

two problems: (1) the growth of longitudinal emittance due to intrinsic sources of noise 

in the synchrotron rf system (herein specifically pertaining to the SSe); and (2) the con­

trolled diffusion of particles to the edge of the rf bucket in order to extract them from the 

machine to feed a fixed-target physics experiment or to provide test beams. 

We have considered several sources of noise in the rf system of the collider rings at the 

sse and have estimated their effect on the longitudinal emittance of the beam. Methods 

to mitigate against noise-feedback loops, for example-have not been investigated here, 

although it would be straightforward to do so. The low synchrotron frequency of the 

collider has caused the issue of noise in the rf to be of some concern. Looking only at noise 

in the low-level rf signal source, we have found that emittance growth rates are comparable 

with design specifications. Of course, as other sources of noise are identified, they should 

be investigated as well. From the theory of diffusion in action in Section 2.0, we have 

derived a simple approximation for the time evolution of the longitudinal emittance. This 

approximation, essentially arising from scaling arguments, has been in rather general use in 

the accelerator physics community for several years. Our derivation shows the conditions 

that must be satisfied for it to be valid. Roughly, the flux across the bucket boundary 

must be small. Lastly, we have explored the effect of changing the frequency of the collider 

rf system on the growth of the longitudinal emittance for given conditions of the injected 

beam. 

In contrast to the undesirable but unavoidable slow increase of the longitudinal emit­

tance from intrinsic noise sources is the deliberate injection of noise into the rf system to 

feed an extraction line. In order to operate a beamline in tandem with collider opera­

tions, it is crucial to show that this can be done without significantly making the bunches 

too long. In Section 4.2 we have shown that by appropriate manipulation of the noise 
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spectrum, adequate extraction rates can be obtained without significantly increasing the 

longitudinal emittance. Indeed, in some cases, when the effect of the betatron oscilla­

tions is accounted for in the extraction process, the longitudinal emittance has been found 

to be essentially constant. There seems to be no fundamental difficulty in applying this 

technique to ultraslow extraction at the SSC. Certain details of the extraction process, 

especially pertaining to the bent crystal extraction septum, are the subject of ongoing 

research. An experiment (E853) is now being carried out on the Tevatron to test this 

extraction scheme. 
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