
SSCL-576

te Superconducting Super Collidler Laboratory
It)

I
.....J
U
rJ:J
rJ:J

Fully Pipelined and Pr()grammable
Level 1 Trigg;er

D. Crosetto and L. lLove

July 1992

SSCL-576

Fully Pipelined and Programmable L~evel 1 Trigger

D. Crosetto and L. Love

Superconducting Super Collider Laboratory·
2550 Beckleymeade Ave.

Dallas, TX 75237

July 1992

·Operated by the Universities Research Association, Inc., for the U.S. Dc~partrnent of Energy under
Contract No. DE-AC35-89ER40486.

CONTENTS

ABSTRACT ... 1

1.0 INTRODUCTION. .. 2
2.0 PURPOSE OF THE SIMULATION .. 3

3.0 TRIGGER AND DATA ACQUISITION SYSTEM OVERVIEW 4

4.0 PHYSICS REQUIREMENTS 6

4.1 Level 1 Trigger 6

4.2 Calorimeter Trigger Information at the Level 1 Trigger 6

4.2.1 Electronic Channel Information 6

4.2.1.1 Single Value Derived from Analog Filter 7

4.2.1.2 Digital Filter Upon Receiving Several Sampling
Values from the Input .. 7

4.2.2 Total Energy .. 7

4.2.3 Transverse Energy ... 7

4.2.4 Local Maximum Identification in a 3 x 3 Matrix 8

4.2.5 "Em" Cluster Finding in a 4 x 4 Matrix .. 8

4.2.6 Jet Finding. .. 9

5.0 PROCESSOR ARRAY VERSUS CALORIMETER ARRAY 10

5.1 Present Calorimeter Segmentation for SDC and GEM Experiments 10
5.2 Flexibility in Defining the Trigger Tower using a Programmable Chip such

as DataWave or FEP .. , 12

5.2.1 Trigger Analog Sums and Digital Sums. .. 12

5.2.2 Example of Other Trigger Tower Segmentation. 12

6.0 DATAWAVE ARCHITECTURE DESCRIPTION 14

6.1 DataWave Instructions ... 15

6.1.1 Multiple Operations per Instruction 15

6.1.2 Waiting for an Input from a Port. .. 15

6.1.3. Branching ... 15

6.1.4 MAC/ALU .. 16

6.2 Optimization Techniques for Program Execution Speed in
Real-time Computations .. 16
6.2.1 Threshold Comparison and Ratio Calculation 16

6.2.2 Precalculated Constants 17

6.3 The Davis Simulation Package .. 17

7.0 DIGITAL FILTER EXAMPLES .. 20

7.1 Example of a Transverse Filter , 20

7.2 Example of Recursive Filter .. 20

7.3 Example of a Digital Filter Applied to Calorimeter Signals 21

8.0 ELECTRON IDENTIFICATION IN A 3 x 3 MATRIX (I-CELL PER CHIP) 22

8.1 Loading "Em" Data into I-cell Per Chip Assembly .. 22

8.1.1 Receiving Data from the Calorimeter 22

8.1.2 Receiving and Routing of Data. .. 23

8.1.3 Finding Local Maximum in a 3 x 3 Matrix 24

8.2 Data Wave Assembler Code and Detailed Timing Description 24

8.3 Result of Analysis on Electron Identification in a 3 x 3 Matrix
(l-cell Per Chip Assembly) ... 26

9.0 ELECTRON IDENTIFICATION IN A 3 x 3 MATRIX (16-CELLS PER CHIP) 27

9.1 DataWave Chip Assembly .. 27

9.2 Loading "Em" Data into 16-cells Per Chip Assembly 28

9.2.1 Receiving Data from the Calorimeter .. 29

9.2.2 Receiving and Routing of Data for Cell 0,1,1 29

9.3 Data Wave Assembler Code and Detailed Timing Description 30

9.4 Code Differences Between the Cells within a Chip 32

9.5 Result of Analysis on Electron Identification in a 3 x 3 Matrix
(l6-cells Per Chip Assembly) 33

10.0 "EM" CLUSTER FINDING (TWO "EM" SUMS + FRONT-TO-BACK) 34

10.1 Real-time Algorithm Description for Two "Em" Sums + Front-to-back Veto ... 34

10.2 Loading "Em" and "Had" Data to Check "Em" Sums + Front-to-back 34

10.3 DataWave Assembler Code and Detailed Description , 36

10.4 Result of Analysis on Two "Em" Sums + Front-to-back in I-cell Per Chip
Assembly (not Pipelinable) .. 37

10.5 Result of Analysis on Two "Em" Sums + Front-to-back in I-cell Per Chip
Array (Pipelinable) ... , 38

11.0 "EM" CLUSTER FINDING (ISOLATION) IN A 4 x 4 MATRIX
(I-CELL PER CHIP) .. , 41

11.1 Real-time Algorithm Description for "Em" Cluster Isolation 41

11.2 Loading "Em" and "Had" Data and Routing Criteria to Check Isolation 41

11.3 Data Wave Assembler Code and Detailed Timing Description 44

11.4 Result of Analysis on 4 x 4 Matrix Isolation in I-cell Per Chip Assembly 46

12.0 JET FINDING .. 46

12.1 Real-time Algorithm Description for Jet Finding. .. 46
12.2 DataWave Assembler Code and Detailed Description for the 4 x 4 Jet

Finding Algorithm .. 46

12.3 DataWave Assembler Code and Detailed Description for the 8 x 8 Jet
Finding Algorithm .. 47

12.4 Result of Analysis on the 4 x 4 and 8 x 8 Jet Finding in I-cell Per Chip Array . 49

13.0 "EM" CLUSTER FINDING (ISOLATION) AND JET FINDING. 50

13.1 DataWave Assembler Code and Detailed Timing Description 50

13.2 Result of Analysis on "Em" Cluster Finding (Isolation) and Jet Finding 50

14.0 PROGRAMMABLE LEVEL 1 TRIGGER SUSTAINING 16 NS RATE 51

14.1 Suggested Modifications of the DataWave to Front-end-processor (FEP) 51

14.2 Differences on the Real-time Algorithm and Data Loading with Respect
to the Earlier Algorithms .. 53

14.2.1 Assembler Code of the FEP (Modified Data 'Nave) for the
Section 10.0 Algorithm. .. 55

14.2.2 New FEP Assembler Code to Realize Trigge:r Tower Segmentation ... 56

14.2.3 New FEP Assembler Code of a Digital Filter Applied to
Calorimeter Signals .. 57

14.2.4 New FEP Assembly Code of the Two "Em" Sum + Front-to-back + Jet
Finding Algorithm .. 58

15.0 CONCLUSIONS. .. 62

ACKNOWLEDGEMENTS ... , 63

REFERENCES ... 65

FIGURES

1. Conceptual View of a Calorimeter .. 2

2. Technology versus Requirements/Performance, versus Programmability 5

3. Local Maximum, a Tower Value Greater Than or Equal to its Neighbors 8

4. Front-to-back Algorithm in Cluster Finding ".................... 8

5. Isolation Algorithm in Cluster Finding ".................... 9

6. Jet Finding in a 4 x 4 and an 8 x 8 Region 9

7. Processor Array Versus Calorimeter Array 11

8. Examples of Different Trigger Tower Segmentation. .. 13

9. DataWave Cell Architecture .. 14

10. Example of a Data Flow between DataWave Cells in a Step··by-step Simulation. . .. 18

11. Registers, ALU, MAC and Ports Content of a Data Wave Cell in a
Step-by-step Simulation. .. 18

12. Registers, ALU, MAC and Ports Content of a DataWave in the
Next Step Simulation .. 19

13. Registers, ALU, MAC and Ports Content of a DataWave Cell in the
Next Step Simulation .. 19

14. Flow Chart of a Digital Filter Applied to Calorimeter Signals 21

15. Sampling the Calorimeter Signal for Digital Filter Computation 21

16. Routing of Data to One Cell in a 3 x 3 Matrix (I-cell Per Chip Assembly) 22

17. Routing of Data from One Cell in a 3 x 3 Matrix (I-cell Per Chip Assembly) 23

18. DataWave Chip Assembly with 16-cells Per Chip 27

19. Inter-chip Data Flow in a 3 x 3 Matrix (16-Cells Per Chip) 28

20. Routing of Data to One Cell in a 3 x 3 Matrix (I6-Cells Per Chip Assembly) 29

21. Routing of Data from One Cell in a 3 x 3 Matrix (l6-Cells Per Chip Assembly) ... 30

22. Electromagnetic Cluster Algorithm in a 1 x 2,2 x 1 Region (Front-to-back) 34

23. Routing Data to Two "Em" Cells in a 1 x 2, 2 x 1 Region 35

24. Isolation Cluster Algorithm in a 4 x 4 Matrix 41

25. Routing Data to One Cell for Isolation Check in a 4 x 4 Matrix 42

26. Routing Data from One Cell for Isolation Check in a 4 x 4 Matrix 43

27. Routing Data for Jet Finding in a 8 X 8 Matrix 47

28. Flow Diagram Of The "Em" Cluster and Jet Finding on DataWave 50

29. Front-End-Processor (FEP) Cell Architecture 51

30. General Scheme of the Pipelined Parallel Processing Architecture using the FEP . .. 52

31. One Board of the Programmable Level 1 Trigger with FEP Pipelined Array 54

32. Timing Diagram of Four FEP Stages of a Pipelined Programmable
Level 1 Trigger. .. 55

33. Flow Chart of the Two "Em" Sum + Front-to-back + Isolation + Jet Finding
(FEP Pipelinable Version) .. 58

34. Routing 4 x 4 Sum for Electron Isolation and 4 x 4 Jet Finding (FEP) 60

35. Routing 2 x 2 "Em" for Electron Isolation and 4 x 4 Jet Finding (FEP) 60

TABLES

1. Present Trigger Tower Segmentation for GEM and SDC Experiments 10

2. Examples of Different Trigger Tower Segmentation .. 12

3. Program Example of Optimizing "Branches" 16

4. Program Example of Using "Branch" to Pass a Parameter. 16

5. DataWave Assembler Code Example of a Non-Recursive Filter " 20

6. Data Wave Assembler Code Example of a Recursive Filter 20

7. Data Wave Assembler Code Example of a Digital Filter Applied to
Calorimeter Signals ... 21

8. Data Wave Assembler Code for One Cell in a 3 x 3 Matrix Algorithm
(I-Cell Per Chip Assembly) ; 24

9. Total 3 x 3 Matrix Algorithm Execution Time on DataWav(~
(l-Cell Per Chip Assembly) ... 26

10. Data Wave Assembler Code for One Cell in a 3 x 3 Matrix
(16-Cells Per Chip Assembly) " ... '.' " 31

11. Total 3 x 3 Matrix Algorithm Execution Time on DataWavc~
(l6-Cell Per Chip Assembly) .. " 33

12. DataWave Algorithm for "Em" Cluster Finding
(Two "Em" Sums + Front-to-back) 36

13. Total DataWave Algorithm Execution Time for "Em" Clustering
(Two "Em" Sums + Front-to-back) 37

14. DataWave Assembler Code for Two "Em" Sums + Front-to-back in
I-Cell Per Chip Array (Pipelinable) 38

15. DataWave Assembler Code for 4 x 4 Matrix Isolation 44

16. Total 4 x 4 Matrix Analysis for Isolation Algorithm on Data Wave 46

17. Differences Between the 4 x 4 Electron Isolation and 4 x 4 Jet Finding
(Datawave Code) : ".................... 46

18. Routing Code for the DataWave 8 x 8 Jet Finding Algorithm 48

19. Total 4 x 4 and 8 x 8 Matrix Algorithm Execution Time for
Jet Finding on DataWave ... " 49

20. Total Data Wave Algorithm Execution Time for Two "Em" Sums +
Front-to-back + Isolation + 4 x 4 Jet Finding 50

21. FEP Instruction Set Suitable for Trigger Algorithms 53

22. New FEP Assembler Code of the Four Pipelined Stage Algorithms of
Section 10.0 ... 56

23. New FEP Assembler Code for Realizing Trigger Tower Segmentation
in One Stage .. 56

24. New FEP Assembler Code for the Cell of the First Stage of the
Tower Segmentation .. 57

25. New FEP Assembler Code for the Cell of the Second Stage of the
Tower Segmentation .. 57

26. New FEP Assembler Code for the Cell of the First Stage of the Digital Filter 57

27. New FEP Assembler Code for the Cell of the Second Stage of the Digital Filter 57

28. Output Codes for Two "Em" Sum + Front-to-back + Isolation + Jet-Finding
Algorithm on FEP .. 59

29. New FEP Assembler Code of the Pipelined Algorithm to Find Er,
Electrons, Isolation and Jets. .. 61

30. Results of a Fully Programmable Level 1 Trigger Sustaining 16 ns Clocking 62

Fully Pipelined and Programmable Levell Trigger

D. Crosetto and L. Love

Abstract

The types of detectors and the physics involved in present experiments are reaching a level of cost and
complexity so great that it is preferable to implement a programmable trigger solution at all levels rather than
a system realized with cabled logic. Experience demonstrates that the fme tuning on the trigger is often only
achieved after running an experiment and analyzing the first data acquired. Recent advances in technology
made real-time programmable algorithms down to the Level 1 trigger feasible. In this report a number of
algorithms for the first level trigger have been simulated using one of the most advanced chips available. A
fully-pipelined and programmable Levell trigger system sustaining a clock rate of 16 ns has been designed
based on a modified version of the Data Wave chip.

1.0 INTRODUCTION

The Superconducting Super Collider (SSC) is being built to study high-energy physics. Every 16 ns,
proton beams will collide and the particles produced by the collision must be identified and studied.

Many detectors will be used to detect and identify the particles. The calorimeter (shown in Figure 1) is one
of the sub-detectors to be used at the SSC. Two proton beams will collide in the center of the calorimeter
sending particles to the calorimeter towers in the barrel and end caps. The amount of energy released in the
collision is detected and then transferred through channels to digital processors, where the identification of
particles is begun in the Level 1 triggering.

Recent advances in processor technology have made real-time programmable algorithms, down to the
Levell trigger, feasible. This study takes already developed off-line algorithms and modifies them for on-line
use with a suitable chip available today, the Data Wave processing chip. The Data Wave is a data-controlled
RISC processor with high-bandwidth communication capability developed for video signal processing by
International Telephone and Telegraph (ITT). Using a list of physics requirements (described fully in Section
4) and the DataWave architecture (described in Section 6), we have simulated the real-time algorithms of
filters (Section 7), electromagnetic cluster fmding (Sections 8 and 9), isolated electron fmding (Sections 10
and 11), and jet-finding (Section 12) as they relate to the calorimeter.

Readers interested in the flexibility of defming the trigger tower segmentation will find an overview of
examples of possible segmentation in Section 5, and an algorithm implementation using the DataWave (or
Front-end processor, FEP) to sum the digital values coming from the calorimeter in Sub-section 14.2.2.

Readers who are interested in how this state-of-the-art processor technology is suitable for this type of
application can find a brief overview of each algorithm as it pertains to the Data Wave architecture in the first
section of each section. Results of the simulation, complete with detailed timing results, are found in the last
part of each section. A combined test of both isolated electrons and jets is found in Section 13. A suggested
modification of the Data Wave processor to a front-end processor (FEP) for a fully pipelined and
programmable first level trigger sustaining 16 ns clocking is described in Section 14. Examples of
programmable first level trigger algorithms, digital filters, and implementing segmentation in the FEP
system (all sustaining the 16 ns clocking) are also given in Section 14. An evaluation of the overall
performance of the DataWave and FEP processor array as applied to these algorithms is given in Section 15,
Table 30.

Figure 1. Conceptual View of a Calorimeter.

2

2.0 PURPOSE OF THE SIMULATION
The purpose of the simulation is to try and solve the rate requirements of the Level 1 trigger with a

programmable chip, to determine the suitability of an advanced component available for this type of
application, and then to suggest modifications to the chip to better satisfy the requirements of the application.

The types of detectors and physics involved in present experiments are reaching such a high level of cost
and complexity that if the technology could meet the requirements, a programmable trigger solution at all
levels is preferable rather than staying with a fixed algorithm implemented with cabled logic.

Experience demonstrates that the fme tuning of the trigger is often achieved after running an experiment
and analyzing the first data acquired. With a programmable solution, it is possible to use the same electronic
(commonality) chain for several experiments. For this reason, and because all physicists do not accept a
specific type of trigger algorithm, a programmable solution is highly de:sirable.

A market survey has been conducted to identify the component best suited to fulfill the requirements of the
Levell trigger algorithms. Presently, there does not exist a component that meets 100% of the requirements.
Because of its features, the Data Wave processor is considered one of the best. In order to verify its suitability, a
series of typical algorithms for the frrst-Ievel trigger were selected and tested on the Data Wave. The Data Wave
component (or a modified version of it) may be used as a preprocessor of the Level 2 trigger or as pipelined
processors sustaining the rate of the Level 1 trigger.

As an example of programmability, many trigger algorithms have be:en implemented. Among these are
fmding local maximum, calculating cluster and transverse energy, comparing cluster and partial sums to
different thresholds, determining if an electromagnetic cluster is isolated from nearby energy deposition, and
determining if a 4 X 4 or 8 X 8 matrix is a possible jet.

The algorithms proposed and tested in this report are not the only ones or necessarily the best applicable to
the Levell trigger. They are examples of operations and correlation of data that need to be done for a Levell
trigger decision. Is is not necessary to execute all of them, because only O]rle algorithm is needed for each type
of information (identifying electrons, jets, etc.).

Some have been simulated on a platform of a Data Wave array made of Data Wave chips, each containing
one DataWave processor cell. Since the packaging (printed circuit board or Multi-Chip-Module) is also an
important issue in realizing these types of systems, some algorithms have also been simulated on a second
platform of DataWave array processors which assumed to use chips containing 16 DataWave cells each.

The system is scalable to different sizes of parallel processor arrays thus making it possible to apply the
system to different calorimeter sizes and to execute algorithms of different complexities.

The importance of this simulation and study lies in the programmability of the system and the "real-time"
algorithm. The starting point is always the off-line trigger algorithms that require milliseconds (ms) for
execution. The challenge is to fmd a given "processor architecture" and "system architecture" which provide
the best and most suitable (to the component) conversion of the off-line algorithm to a fast and simple
"real-time" algorithm that will still have high particle-identifying efficiency. Ratios, trigonometric functions,
and other time-consuming operations cannot be performed during "real-time." As a result, speed
optimization techniques for real-time computations, such as precalculated look-up tables and mUltiplication,
comparisons are used in place of ratios. Finally, a design based on a modified version of the Data Wave ITI
processor aimed to efficiently execute Levell trigger algorithms on pipl::lined and programmable mode has
been achieved.

3

3.0 TRIGGER AND DATA ACQUISITION SYSTEM OVERVIEW
A complete overview of a typical trigger and data acquisition (DAQ) system is shown in Figure 2. The

figure shows the relationship between the requirements (top part), the hardwired or programmable principles
to realize it (middle), and the technology and communication techniques suitable to build each part (bottom).
The figure points out the advantages, disadvantages, and limits of technology versus the specific
requirements for the best performance and programmability.

At the top of the figure, the layout of a trigger and data acquisition (DAQ) system is shown. Millions of
signals are electronically sent for all subdetectors to the trigger and DAQ system.

For the fast decision required of the Level 1 trigger, only a few subdetectors (calorimeters, shower
maximum detectors, central tracking, and muon systems) send information in a macro-granularity form
(signals are grouped together and the analog sum of the group is sent instead of each individual value). The
input to the Levell trigger occurs at a rate of 16 ns and the Levell decision must be made in few J.1sec. The
Level 1 trigger could be implemented on existing technology consisting of Programmable Array Logic
(PAL), Field Programmable Gate Array (FPGA or XILINX), Application Specific Integrated Circuit (ASIC),
DataWave-ITI or Front-End-Processor (FEP). The type of communication at this level is very simple.
Signals are transported in point-to-point connections assembled on Printed Circuit Board (PCB) boards,
Multi-Chip Module (MCM), etc.

The Levell trigger has been realized with cabled logic or with a very limited capability of programmability
in past experiments. With the rapid advance in technology today, it is feasible to have a Levell trigger device
with rather wide programmability features such as Data Wave or something similar (PEP).

The top middle part of the figure illustrates the flow of the data from the detectors to the Level 2 trigger and
DAQ. The full granularity information is transferred from only a subset of the subdetectors to the Level 2
triggers, while the full information from all detectors is sent to the DAQ system. The timing involved in this
stage ranges from tens to hundreds of J.1sec. Parallel processing systems with an instruction set that gives full
programmability for the Level 2 trigger decision have been used in recent experiments. The connectivity of
the Level 2 trigger, which is an important and challenging issue, should be more flexible than the one used in
the Level 1 trigger but less general purpose than the Scalable Coherent Interface (SCI), High Performance
Parallel Interface (HIPPI), or Fiber Distributed Data Interface (FODI) used in the Level 3 trigger. The
challenge comes from the need to make specific transfers efficiently and to allow easy access to each
processing node.

The top right part of the figure shows the Level 3 trigger. Since the timing in this level (1 J.1s to 0.1 sec) is not
as important as the timings in the Levell and Level 2 triggers; commercially available workstations can be
used. The Level 3 trigger is meant to be a FARM of workstations connected by a standard hardware link and
software protocol (SCI, HIPPI, FODI, ETHERNET, etc.). The purpose of the FARM workstations is to fully,
or partially, reconstruct the event in order to make the decision to store the event on tape.

4

Trigger goal • +
DAQ zero supp.

Timing

Trigger Type
•

Technology •

62.5 MHz

16ns

-PAL, FPGAs
- ASIC, XILINX
- DAVIS-ITT, FEP

Communication Connections
-on ASIC,

technique. _ Programmable array logic, etc.

DETECTOR

OAQ Data reduction/compression (on/off)

10KHz
I

l00~

III Level TRIGGER
Event reconstruction --. Decision

1 KHz
I

1 ms

Computer farm

Computer (RISC)
FARM

SCI
HIPPI
FOOl
Ethernet

or
or
or
etc.

10Hz

.1 sec

TlP-00064

Figure 2. Technology versus RequlrementsIPerformance, versus Programmability.

4.0 PHYSICS REQUIREMENTS
Experiments at the SSC will have on the average of 1.6 interactions during a beam crossing which occurs

every 16 ns. The triggering mechanism must be able to rapidly reduce the amount of data by discarding
unimportant data. Every 16 ns, the sub-detectors (including the calorimeter) send data to the Levell trigger,
which then must be able to distinguish between events of interest and background events.

4.1 Levell Trigger

The Level I trigger will consider single objects (muons, photons and electrons) and combined objects
(dileptons, and jets). Any of the above may be combined with other trigger informations (minimum bias and
Et sums). Only a few subdetectors (calorimeter, shower maximum detector, central tracking and muon
system) send information to the Level I trigger. The calorimeter will provide Level I trigger information
regarding electrons, photons, jets, and missing Et (such as neutrino).

4.2 Calorimeter Trigger Information at the Level 1 Trigger

There are many conditions to test when making the Level I decision. To distinguishing electrons and
photons, the electromagnetic ("em") trigger tower energy must be greater than a threshold, the hadronic
("had") to "em" ratio must be very small, and if isolation is to be achieved in Levell, the surrounding towers
must contain only small amounts of energy. For jet identification, the sum of a tower matrix must be tested
against a threshold. To distinguish neutrinos, the Et sum must be compared with a threshold.

There exist several methods to verify the existence of such conditions. As an example of a programmable
system, a few methods that verify these conditions have been implemented using the Data Wave and FEP
parallel processing system array.

We have implemented two methods for cluster finding based on these algorithms. The first method
requires a cluster be distinguished by a "hit" in a single tower with all of the energy of the cluster deposited in
the surrounding 3 x 3 tower matrix. The "center" of the cluster is found by determining the tower in the cluster
which contains most of the energy, which is called the local maximum. Further investigation will help to
identify the type of cluster (jet, electron, etc.)I. 2. 3

The second method not only recognizes clusters, but also tries to distinguish between an isolated electron
and a jet. An isolated electron is recognized by a large amount of energy deposited in a small area (about
I tower wide), whereas a jet's energy is spread throughout a large matrix of calorimeter towers.

This method of electron fmding also takes into consideration the possibility of a "hit" occurring between
two towers. In that case, the energy of the electron would be divided between the two towers. Therefore, an
electron is distinguished from other particles by a I x 2 or 2 x I region containing most of the energy, while the
surrounding towers receive almost none. 2.3.4 Because this algorithm must be run in "real time," there is not
enough time to decide whether the region is 1 x 2 or 2 x 1, and then sum the ten surrounding tower energies;
this operation must be done in parallel. Therefore, an electron is considered to be isolated if the 2 x 2 "em"
matrix contains most of the energy while the surrounding twelve "em" towers (in a 4 x 4 matrix) and the
16 "had" towers contain little energy.

There exist several jet-finding algorithms. A Monte-Carlo simulation executed at the Solenoidal Detector
Collaboration (SOC) showed that for high energy particles, the 8 x 8 matrix was more efficient, while for
lower energy particles, the 4 x 4 matrix was more reliable.s For this reason, both techniques are included in
our algorithms.

Other information regarding the Level I trigger rate requirements have been learned from additional
references. 6.7.8.9. and 10

4.2.1 Electronic Channel Information

The electronic channel information can be a single value preprocessed in analog form or a series of samples
at high rate converted into digital form to which a digital filter will be applied.

6

Regardless of how the basic information generated from the calorimeter element is treated (by analog
circuit or with digital filter algorithms applied upon several digitized samples per signals), the information
obtained will be a value proportional to the energy deposited by the particle in that particular element.

4.2.1.1 Single Value Derived from Analog Filter

As has been done in the previous experiments, analog filters, charge pr,eamplifiers, shapers, etc., were used
to analyze the signal produced by particle interactions in calorimeter elements and generate a digitized single
value proportional to the energy deposited in the calorimeter element.

All the algorithms simulated in the Data Wave or FEP parallel processing array in this report assume to
receive a single digitized value of this type from the calorimeter.

In past experiments, the digitized single value from each calorimeter element was sent to a look-up table
that was exploiting the function of linearization (from 8-bit logarithmic to 12-bit linear value), pedestal
subtraction and calibration constant. By using the DataWave or FEF' parallel processing array system,
(besides the on-line pattern recognition to identify the particles), one c~m decide to have that look-up table
inside the processor cell. This allows the use of the same electronics as those used to store the program in the
processor cell, to store also the precalculated values in the memory look-up table in the processor cell, thus
saving the cost of building new electronics. The feasibility of using the processor cell calculation capability
(multiplication by calibration constants and pedestal substractions) combined with a smaller look-up table
(for operations that are time consuming in real time) for conversion algorithms (from calorimeter channel raw
data to corrected values) should be studied. If this conversion is feasible by reducing the lookup table size and
substituting with mathematical calculations, the cost will be reduced.

4.2.1.2 Digital Filter Upon Receiving Several Sampling Values from the Input

In the case that several digitized samples per signal are received from the calorimeter element, a digital
ftlter program (Table 7, Table 26, Table 27) can be executed in front of the Data Wave or FEP parallel
processing pipelined array. A graphical representation of this is shown in Figure 3, (Section 4.2).

Furthermore, the analysis of the signal with a digital ftlter can be usc~d to compute shape variables.

4.2.2 Total Energy

The total energy ("em" + "had") is defmed as:

n

ErOT = Ie;· E;
i-I

(1)

where: £j is the energy of the calorimeter tower i and Cj is the calibration constant for calorimeter tower i and
n = number of trigger towers. This is the case when the information is provided by an analog filter. In the case
where a basic information is obtained by a series of digitized sampling at high rate, for each calorimeter
signal, there will be an output result from the digital ftlter (e.g., as reported in Sub-section 7.3). See
Sub-section 14.2.4 and Table 30 for real-time calculation performance.

4.2.3 Transverse Energy

Transverse energy is calculated by converting the 8-bit logarithmic "em" and "had" values to a linear 12-bit
scale and multiplying by the sine of the tower angle of incidence found in the lookup table. Where ~ is the
angle of incidence for the calorimeter tower i and n is the number of trigger towers. See Table 30 for the
real-time calculation performance.

7

Er = ! c;Ej sin 8 j (2)
i-I

4.2.4 Local Maximum Identification in a 3 x 3 Matrix

A local maximum is found when a cell's total energy is greater than or equal to all eight of its surrounding
neighbor's total energy in a 3 x 3 matrix (see Figure 3).

I I I

I C I

I I I

TIP·03I03

Figure 3. Local Maximum, a Tower Value Greater Than or Equal to Its Neighbors.

e > I j for i = 1, ... , 8. (3)

The sum of the energy of a tower and its eight neighbors (in a 3 x 3 matrix) must be greater than a threshold
in order to be considered as a possible physics interaction.

8

Threshold < IIj + C.
i-I

See Sections 8 and 9 for real-time calculations.

4.2.5 ''Em'' Cluster Finding in a 4 x 4 Matrix

(4)

This algorithm, aimed at identifying electrons, compares the sum of two adjacent towers (1 x 2 or 2 x
1 region) with a threshold. See Figure 4.

"E
I ~

M"
~ C

I-'

'" "
~ "HAD"
~ ...

TIP-03104

Figure 4. Front-to-back Algorithm In Cluster Finding.

Threshold < e.m + I.m . (5)

Options to this method include vetoing the candidate electromagnetic clusters if there is measurable energy
in the hadron trigger channels behind the electromagnetic section of the calorimeter.

See Section 10 for real-time calculations.

8

Another option is vetoing the candidate if the electromagnetic cluster is not isolated from nearby energy
channels (Figure 5). See Section 11 for real-time calculations.

0 0 0 0 ~

0 I I 0 ~

0 C I 0 ~

0 0 0 0 ~

"'''J'''''J''
Tlp·03105

Figure 5. Isolation Algorithm in Cluster Finding.

(6)

3 12 12

Threshold < CH + LIn + L On + L OEM (7)
i-I i-I ;-1

4.2.6 Jet Finding

The basic granularity used to fmd jets is four times greater than that for the electromagnetic clusters. Thus it
will be 0.64 ~T\ x 0.64 ~q, for Gammas Electrons and Muons (GEM) experiment and 0.4 ~T\ x 0.4 ~q, for
Solenoidal Detector Collaboration (SOC). The SOC experiment is stilll investigating the basic granularity
with 0.2 ~T\ x 0.2 ~q" 0.4 ~T\ x 0.4 ~q, and 0.8 ~T\ x 0.8 ~q,. For the purpose of this simulation, granularities of
0.4 ~T\ x 0.4 ~q, and 0.8 ~T\ x 0.8 ~q, are assumed. See Figure 6.

TtP~'DI

Figure 6. Jet Finding in a 4 x 4 and an 8 x 8 Region.

Threshold < IEem + IEH (8)
i-I i-I

Where n in the 4 X 4 algorithm is 16, while in the 8 x 8 algorithm is equal to 64. See Section 12 for real-time
calculations.

9

5.0 PROCESSOR ARRAY VERSUS CALORIMETER ARRAY
5.1 Present Calorimeter Segmentation for SDC and GEM Experiments

A length-wise cross section and a side view of the end caps of the calorimeter (illustrated in Figure 1), is
shown in Figure 7. In the experiments within GEM and SOC at the SSC, there is a varying calorimeter type,
segmentation, and granularity of the digitized information for the Level 1 trigger. While GEM is
experimenting with a 0.1611 x 0.16 W calorimeter, SDC is developing a 0.111 x 0.1 W calorimeter. Although,
in the SOC, each individual tower of the calorimeter is divided into either four (barrel) or eight (end cap) "em"
sections and two "had" sections (see center right of Figure 7), for the purpose of the Levell trigger, the "em"
sections are combined into one value and also the "had" sections are combined (see below).

The geographical representation of the calorimeter can be related to a processor array. Each calorimeter
tower (consisting of an "em" part and a "had" part) has a one-to-one correspondence with a processor cell in
the processor array (see bottom left of Figure 7). A description of both GEM and SOC towers as they relate to
the simplified towers is shown on the right of Figure 7. The size of the processor array depends on the
segmentation and granularity of the calorimeter (see Table 1).

In bold on the tower matrix array of Figure 7 is shown the types of possible investigations that can be done
on such a processor array in order to identify particles and obtain the relevant information. A listing to the
right of the matrix is provided.

TABLE 1. PRESENT TRIGGER TOWER SEGMENTATION FOR GEM AND SOC EXPERIMENTS.

Total number of Macro-granularity for Level 1 total
Experiment Subsystem LJn x LJcP channels at full number of towers = total number of

granularity processors

SOC Em 0.05 x 0.05 21504 3584
Had 0.1 x 0.1 7168

GEM Em 0.032 x 0.032 30000x2 1250
Had 0.8xO.8 5000x4

10

CALORIMETER CROSS-SECTION
END CAP

END CAP BARREL / ,/ I / ...;.1~ END CAP

x 644>

::::::111111111111111111111111111111111111111:111:::::::

,Tower
in Q 3x3 matrix " I

I " "-
- l-by-2 "EM" sums} .,

OR + fRONT ,d.==::::"'Ti;"';
- 2-by-l "EM" sums TO-BACK El M
- ISOLATION ~-

- JI~TS in a 4x. matrix

• - Jl~TS in Q 8x8 matrix

Simplified Tower for
I level trigger calcul.

" " " " "
// "

Tower)'GEM) ~~,,-
" " " EM2~ ~~~

EMfl~~I
.1S

Unrolled "Barrel" + unfolded END CAP = Towers processor array I level trigger granularity examples

Experiment IlTJ M Number of
processors

GEM .16 x .16 1250

SOC .1 x .1 3584
(ONE TOWER ONE PROCESSOR

Figure 7. Processor Array Versus Calorimeter Array.

11

5.2 Flexibility in Defining the Trigger Tower with a Programmable Chip as Data Wave or FEP

5.2.1 Trigger Analog Sums and Digital Sums

Since it may be convenient to have the possibility of flexibly defming the number of analog sums and also
the trigger tower segmentation, a few examples aimed at showing the flexibility of the Data Wave (or FEP) to
handle various sums and segmentation are shown in Sub-section 5.2.2. As the number of analog sums
increases so does the noise, which limits the reliability of the analog sum. If this noise increases to a point
where the analog sum is not reliable, digital processors may be used to add the digitalized partial sums from
the calorimeter, thus allowing for digital error correction.

5.2.2 Example of Other Trigger Tower Segmentation

Although present segmentation (SDC) is the one reported in Figure 7, other examples of segmentation
exist. Table 2 and Figure 8 show and describe five segmentation examples.

From an electronic viewpoint, towers having the "em" and "had" section aligned are much simpler and
easier to handle. Therefore, the examples that are listed show the possibility of a 9: 1 or a 4: 1 alignment
between the "em" and "had," as well as different depths of "had" (either 2 or 4 levels).

The first three examples (0.2 dll X 0.2 ~4> and 0.16 dll X 0.16 ~4» can be simplified into the trigger
tower (see top right Figure 8) by 12 to 26 analog sums. The other 0.1 dll X 0.1 ~4>andO.08 dll X 0.08 ~4>
can be simplified by 10-20 analog sums resulting in the trigger tower on the bottom right of Figure 8.

The resulting trigger tower values (4 "em" + 2 "had" or 1 "em" + 1 "had") can then be sent to a digital
processor (by signals over optical fibers) which can add the values together digitally without summing the
error as in analog sums.

TABLE 2. EXAMPLES OF DIFFERENT TRIGGER TOWER SEGMENTATION.

Number of trlg-
Calorimeter Element. gertowers=

.11] x .14> per trigger tower at full Signal. Digital number of
grsnularlty Analog Sum. Per Tower Sum. proce •• orsat

each plpelined
stage

0.16 x 0.16 36 "em1" + 36 "em2" + 18 "em" = 1 "em" 4 "tern" 6 1250
4 "had1" + 4 "had2" + 8 "had" = 1 "had" 2 "thad"
4 "had3" + 4 "had4"

0.16 x 0.16 16 "em1" + 16 "em2" + 8 "em" = 1 "em" 4 "tern" 6 1250
4 "had1" + 4 "had2" + 8 "had" = 1 "had" 2 "thad"
4 "had3" + 4 "had4"

0.2 x 0.2 16 "em1" + 16 "em2" + 8 "em" = 1 "em" 4 "tern" 6 896
4 "had1" + 4 "had2" + 4 "had" = 1 "had" 2 "thad"

0.08 x 0.08 8 -eml" + 8 "em2" + 16 -em" = 1 -em" 1 "tern" 2 5000
1 "had1" + 1 "had2" + 4 "had" = 1 "had" 1 "thad"
1 "had3" + 1 "had4"

0.1 x 0.1 4 "em1" + 4 "em2" + 8 "em" = 1 "em" 1 "tern" 2 3584
1 "had1" + 1 "had2" + 2 "had" = 1 "had" 2 "thad"

12

.16

.16

~~--:::>rY.i H H
H! H H '--H--------------

-·H······--H--.. -

H
H ,H H

H i--H---------------
e e --H-------H-----

~~~~~-=";-<=-:-- -----~---.--
e 

iH H 
__ J::!..-- _--.tJ----- 1.------- -----------

"' "' "' "' "' "' "' "' "' "' "' "' "' 
----- ------

", 
", 

", 

"" ", 

~n;plified Trigger Tower for 
",'" I level trigger calcul. 

"" 

"' "' "' "' "' "' "' "' "' "' "' -.",..""' .. ."",.. 

_ - - Simplified Trigger Tower for 
I level trigger calcul. 

Figure 8. Examples of Different Trigger Tower Segmentation. 

13 



6.0 DATAWAVE ARCmTECTURE DESCRIPTION 
The architecture of a DataWave cell is shown in Figure 9 (courtesy oflIT). The feature that differentiates 

the Data Wavell chip from other processors used in filtering or image processing is the high bandwidth 
communication. Its three-ring bus makes it possible to receive from two ports and send to all four ports during 
the same clock cycle. This architecture should be taken advantage of whenever high parallelism is necessary. 

The processor cell is based on a data-driven principle. The name "Data Wave" was given to this processor 
(originally the DAVIS processor) due to data flows controlling the parallelism instead of a non-local clock 
timing. 

A clock running at a frequency of 125 MHz synchronizes the operation of the cells. Each cell consists of a 
multiplier accumulating cell (MAC), arithmetic and logic unit (ALU), shift unit, register block, and program 
storage surrounded by a system of three-ring buses. The program can store up to 64 instructions of 48 bits 
each. A "deep" pipeline structure allows new instructions to be started at every clock cycle, and internal 
operations allow values in the MAC and ALU to be used in the next clock cycle. An example of the use of the 
DataWave in a parallel processing system for calorimeter triggers is described in Reference 12., 

North 

.--__ ---,b bb 

Program 
6". 48 bll 
static RAM 

South 
Figure 9. DataWave Cell Architecture. 

14 



6.1 Data Wave Instructions 

Although new instructions can be started at every clock cycle, not all instructions require the same amount 
of clock cycles to complete. Some instructions (involving storing a MAC operation in a register, or sending a 
result to another cell) require more clock cycles than simple instructiollls (register transfer, MAC or ALU 
internal operations). The difference in completion steps does not affect the pipelining of the operations. 

The DataWave instruction set relevant to the cluster algorithms is as follows: 

MAC operations, 6 clock cycles before result may be used 
r5 = n * r15 
rIO = acc + r5 

Register Load, 2 clock cycles before result may be used 
r6=w 
rO = 256 

Port Operations, 12 clock cycles before result may be used 
n=w 
w=n * rI5 

MAC/ALU internal operations, result may be used at the next clock cycle 
acc = acc + r2 

Branch on ALU, 6 clock cycles before the result may be used 
alu = r5 - rI, bmi notamax* 

*NOTE: Due to the pipeline structure of the cell, the cell will execute the three consecutive operations after a branch whether the cell 
branches or not. 

6.1.1 Multiple Operations per Instruction 

The 48-bit instruction word allows for multiple instructions per clock cycle. Although the Data Wave 
processor is capable of many types of multiple operations in one clock cycle, only a few of its capabilities are 
relevant to this algorithm. The Data Wave architecture allows each cell to receive a value from one cell and 
store it in a register while sending the value to all four neighboring processors. The architecture also allows 
the cell to use the ALU and the MAC simultaneously. For example, the c~~ll can send a value from a register to 
a port and at the same time store a value into the MAC. The multiple op~~rations per instruction also result in 
being able to send or load and at the same time branch (conditionally or unconditionally). 

6.1.2 Waiting for an Input from a Port 

If an instruction is not allowed to proceed due to lack of input at a port, the whole pipeline is stopped. If two 
neighboring cells send values to each other and both issue the instruction to receive the value from the other 
cell before the send instruction finishes the pipeline, deadlock can occur. Therefore, it is necessary to finish 
sending values before issuing an instruction to receive from the same cl~ll. This results in many "nops" in a 
program that primarily sends and receives from all four of its neighbors. A hardware optimization to remove 
the pipeline between adjoining cells will increase the efficiency and timing of this algorithm. 

6.1.3 Branching 

Due to the pipeline structure, the next three lines after a branch will always be executed. However, instead 
of wasting program code and clock cycles, in some cases the branch c:an be placed three instruction lines 
before the branch needs to take place. 

15 



TABLE 3. PROGRAM EXAMPLE OF OPTIMIZING "BRANCHES". 

60 sendn: bra loop 
61 n=1 
62 n=23 
63 n = r10 

The sample program in Table 3 sends the three values and executes the "branch" even though the branch is 
written before the send statements. 

Another method of using the branching delay to an advantage is by using the delay to "pass a parameter". In 
Table 4 the code needs to set a flag according to the reading in the ALU and then branch. 

TABLE 4. PROGRAM EXAMPLE OF USING "BRANCH" TO PASS A PARAMETER. 

60 rO= 0 
61 alu = r10 - r11 
62 nop 
63 nop 
64 nop 
65 nop 
66 bpi check 
67 bmi check 
68 nop 
69 nop 
70 rO = 1 

The ALU is set and at the appropriate time the result is checked. If the ALU is greater than zero, the 
program branches to "check" executing all shown lines except for line 70; hence, rO remains O. If the ALU is 
less than zero, the program executes statement 70 before branching to "check" and sets rO to 1. 

6.1.4 MAC/ALU 

Most of the statements using the MAC or ALU can be written using the other unit. The notable exceptions 
(to this set of algorithms) are the multiplication of two registers (acc = r5 * rl) which must use the MAC and 
the summing of two registers (alu = r5 + rl) which must use the ALU. Though the other instructions may 
interchange the ALU and MAC, the number of clock cycles before a MAC result may be used is greater than 
the clock cycles for the same ALU instruction. However, the MAC has greater precision. 

6.2 Optimization Techniques for Program Execution Speed in ReaI·time Computations 

Due to the time factor in a Level 1 trigger, algorithms used in the Level 3 trigger must be modified to 
achieve reasonable throughput. 

6.2.1 Threshold Comparison and Ratio Calculation 

Although threshold comparisons and ratio calculation use division off-line, division is too time consuming 
for "real-time" calculations. The following is the substitution for those equations. 

(9) 

16 



6.2.2 Precalculated Constants 

Trigonometric functions cannot be calculated in "real-time". Due to all cells always having the same <l> 
and l'\, the result of a trigonometric function can be calculated outside the: algorithm and the result stored in a 
cell's register to be used as a constant. The following is an example of this substitution. 

E, = h; X E; x sinO; => Er = C; x E; (10) 

where Cj is the calibration constant mUltiplied by sin ~ 

6.3 The Davis Simulation Package 

ITT has provided the Davis (original name of what is called today "Dalta Wave") simulation package that is 
not only easy to use, but is also very helpful in tracing through the differl~nt algorithms. The package allows 
for "looking" at the data flow between cells and also at "looking" into the I::ontents of the memory of each cell. 

Figures 10 through 13 show an example of a Davis simulator data f!lJW and a three-step example of the 
contents inside the Davis cell. Both these examples are taken from the code in Table 8 (Sub-section 8.2). The 
timings in the simulation will be different than the timings in the code, bec;ause in the code we assume that the 
line "s = n = e = w = r5 = n * r15" is decoded at time t = 0, although in the simulation it is not decoded until time 
t = 4. The reason behind this was to start all the algorithm timings at t = 0 when the cell fIrst fetches from the 
calorimeter. The code preceding the fetch from the calorimeter is considered an "initialization phase" 
executed only once before the initial Trigger is sent. All other timings in the simulation are exactly 4 clock 
cycles more than the timings in the code. 

The data flow window (FigurelO) shows the dataflow from all cells in the simulation at clock time t = 18 
(shown in the bottom right corner). The line number of code that each cell is executing is at the bottom of each 
cell, with a STOP sign inside the cell if the cell is waiting for data, and a magnifying glass if the cell's memory 
is being displayed. 

Figure 11 shows the contents of cell 0,2,1 at time t = 18. It is currently d1ecoding the instruction, "n = r6 = e", 
and at time t = 17 the instruction "ace = r5, s = r4 = w" was decoded, which implies to store the contents of 
register 5 in the MAC and at the same time store the input from West port into r4 and output the same value to 
the South port. As one can see, the value in the West input (top right) is "$()()a" and the contents of Register 5 is 
"$000". 

17 



Figure 10. Example of a Data Flow between DataWave Cells in a Step-by-step Simulation. 

Figure 11. Registers, ALU, MAC and Ports Content of a DataWave Cell In a Step-by-step Simulation. 

18 



Figure 12 shows the same cells memory a clock cycle later. The input from West port has moved along the 
AX bus and is shown in the BA box (middle of Figure 12). 

Figure 12. Registers, ALU, MAC and Ports Content of a DataWavl! in the Next Step Simulation. 

Figure 13 shows the cell at clock time t = 20, another step later. At this time the contents of Register 5 
"$000" have been stored inside the MAC, while the input from the West has moved along the A bus to the QD 
box. At the next clock cycle (t = 21), the input from the West will be loaded into Register 4. The value from the 

West is not sent out the South port until time (t = 28). 

t of a DataWa1i1e Cell In the Next Step Simulation. 
ALU MAC and Ports Conten 

Figure 13. RegisterS, ' 

19 



7.0 DIGITAL FILTER EXAMPLES 
Several digital filter algorithms can be applied to the trigger tower signal. The analog signal is sampled and 

digitized at the rate of 60 MHz and is sent to the DataWave processor. 

The programmable filter capability of the DataWave processor allows physical information to be 
extracted. 'TYpical filters that should be performed on the digitized samples are of the type: 

" 
output = I (input; x Wi) (11) 

i-I 

where: n can vary from 5 to 8 and Wi are precalculated coefficients stored in lookup tables. 

In order to give an idea of the time required to realize a digital filter with the Data Wave, the following three 
examples are given. 

7.1 Example of a Transverse Filter 

A five-tap Finite Impulse Response (FIR) will input from East a value every 5 clock cycles and will output 
a result to the West with a latency of five clock cycles. (1 clock cycle = 8 ns in the present version and 4 ns in 
the future DataWave version). This 5-tap filter will sustain an input frequency of 12.5 MHz on the present 
version and 25 MHz in the future version. Reference to Table 5. 

TABLE 5. DATAWAVE ASSEMBLER CODE EXAMPLE OF A NON-RECURSIVE FILTER. 

1 
2 
3 

4 
5 

FIR: ace = rI * W, 

ace = ace + r2 * r12, 
ace = ace + r3 * r13, 
ace + ace + r4 • r14 I 
e=acc+r5*r15 

courtesy of lTI 
7.2 Example of Recursive Filter 

In the following code, due to inte '. 

r12=w 
r13 = r12 

r14 = r13 
r15 = r14 

bra FIR 

cycles. Reference to Table 6 mal PIpelines, a new value can be . 
. mput from the West every 7 clock 

TABLE 6. DATAWAVE ASSEMBLER CODE EXAM 
1 /lA' PLE OF A RECURSIVE FILTER . acc=W . 
2 
3 
4 
5 
6 
7 

ace = acc + r2 * r12 
e = r11 = ace + r1 * r11 
r12 = r11 , 
nap 
nap 
nap 

COurtesy of ITT 

20 

bra IIA 



7.3 Example of a Digital Filter Applied to Calorimeter Signals 

ace = 0 

ace = ace + data • coeff + pedestal ] 

no 

Tlp·03107 

Figure 14. Flow Chart of a Digital Filter Applied to Calorimeter Signals. 

An implementation with the DataWave of the filter flow-chart described in Figure 14 will imply the 
following code (Table 7): 

TABLE 7. DATAWAVE ASSEMBLER CODE EXAMPLE OF A DIGITAL FILTER APPLIED TO 
CALORIMETER SIGNALS. 

1 CIR: ace = aee + w .. r11 
2 aee = aee + r1 
3 aee = aee + w .. r12 
4 ace = aee + r2 
5 aee = aee + w .. r13 
6 aee = aee + r3 
7 aee = aee + w .. r14, 
8 aee = aee + r4 
9 aee = aee + w .. r15 
10 e=aee+r5 

rll, rI2,rI3,rI4,rI5 are different coefficients and rl,r2,r3,r4,r5 are pedl~stal values. 

Volt t 
i 5 samples 

per colorimeter 

signal 

~~-L~ __ ~~~~ ___ ,~_~ 

/,.J Time 

braCIR 

Figure 15. Sampling the Calorimeter Signal for Digital Filter Computation. 

21 



8.0 ELECTRON IDENTIFICATION IN A 3 x 3 MATRIX (I·CELL PER cmp) 

8.1 Loading "Em" Data into I-cell Per Chip Assembly 

The purpose of this algorithm is to determine whether or not the calorimeter trigger tower corresponding to 
a cell is a local maximum of a cluster. 

Each cell on the Data Wave array corresponds directly with a "tower" in the calorimeter array. It is not only 
necessary for each cell to receive the energy of its corresponding trigger tower, but also the energies relating to 
the surrounding trigger towers (see Figure 16) while routing these values to other cells needing the data (see 
Figure 17). Once each cell contains all eight energies of the surrounding cells, the cell begins to determine 
whether or not it is a local maximum. Because of the I-cell per chip packaging, all cells are loaded with the 
same code for routing data and fmding the local maximum. 

8.1.1 Receiving Data from the Calorimeter 

Before the cell receives Trigger 1, the cell is connected to the calorimeter by its North port. Once the trigger 
is sent, the cell receives from the calorimeter the energy of the calorimeter tower corresponding to this cell. 
The cell then disconnects from the calorimeter and connects to its North neighbor. 

Cell 0,1,0 Cell 0,1,1 Cell 0,1,2 

010 t=O -.... -
011 t=O 
010 t=13 

021 t=-1 
from Calorimeter 

\11 012 1=0 -----------, 
\i,' 

Cell 0,2,1 \ / 
(010)->rl t=26 * 

~ t=o Cell 0,2,0 (011)->r2 t=lS· Cell 0,2,2 
(012)->r3 t=2S* ~t=15 
(020)->r4 t= 13· 

020 t=.!!..... (021 )->rS t=O· 

030 t==1"6 
(022)- >r6 t= 14 * 
(030)->r7 t=29 * 

/ 1\ 
(031 )->rS t= 16 * 
(032)->r9 t=27* 

030 t=O /~ 
031 1=0 
032 1=14 

Cell 0,3,0 Cell 0,3,1 -'. 032 t=o Cell 0,3,2 -.... 

"*" = fetching time from program in Cell 0,2,1 

all other timing is related to time sent 

Figure 16. Routing of Data to One Cell In a 3 x 3 Matrix (1-cell Per Chip Assembly). 

22 



8.1.2 Receiving and Routing of Data 

At the time the cell (cell 0,2,1) receives the value from the calorimeter (t = 0), the cell multiplies the value 
by the calibration constant for that calorimeter tower, sending the calibrated value to the cell's four immediate 
neighbors (cells 0,1,1; 0,2,0; 0,2,2; 0,3,1). At the same time, all four ofthe cell's neighbors send the value of 
their calorimetertower to the cell (cell 0,2,1) (see Figure 16). A delay of twelve cycles is required between the 
communication ports of two neighboring cells; hence, a cell that is sent a value from its neighbor at time t = ° 
will receive the value at time t = 13. 

At time t = 13 through time t = 16 the cell receives a value from its immediate neighbor and routes the value 
to the neighbor counterclockwise from the sending neighbor; hence, the value received from cell 0,2,2 is sent 
to cell 0,1,1 (see Figure 17). Since the cell's neighboring cells are executing the same algorithm, after twelve 
delay cycles (t = 26 through t = 29) the cell receives the values relating to its four comer neighbors' 
(cells 0,1,0; 0,1,2; 0,3,0; 0,3,2) calorimeter trigger towers. At time t = 33 (four clock cycles for the register 
load) the cell is finished routing data between cells. 

Cell 0,1,0 Cell 0,1 ,1 Cell 0,1,2 

/ 1\ 
021 1=0 

022 1=14 

Cell 0,2,1 

Cell 0,2,0 
021 1=0 ...-
Oil 1=15 

Cell 0,2,2 

021 1=.0...... 

031 1=16 

021 t=o 

020 1=13 

\ / 
Cell 0,3,0 Cell 0,3,1 Cell 0,3,2 

Figure 17. Routing of Data from One Cell in a 3 x 3 Matrix (1-cell Per Chip Assembly). 

23 



8.1.3 Finding Local Maximum in a 3 x 3 Matrix 

At time t = 32, each cell begins comparing itself with all eight surrounding cells and also compares the total 
energy in the 3 x 3 matrix with the threshold energy for an electron. If the value of the cell is greater than all of 
these values and the tota13 x 3 matrix energy is greater than the threshold, the cell sends its id number and the 
value of its energy to the North. Otherwise the cell is not a local maximum and it sends null values to the 
North. All programs in all cells are fmished by time t = 61. 

8.2 Data Wave Assembler Code and Detailed Timing Description 

Each process,?r is loaded with the same program code for receiving, routing, and determining if the cell is a 
local maximum (see Table 8). In the case of routing the result of the local maximum finding, the result should 
be routed to a common exit point, and therefore, in order to implement this additional feature, the code should 
be changed. Due to the limitations of the program storage of the processor, the routing of the results of the 
local maximum search could not be implemented in this program. Increasing the program storage area will 
allow the addition of this feature. 

The program shown in Table 8 has been verified by the simulator as to the correct flow of the data and to the 
correct timing of the instructions. All timings are shown in the program code. A "d" refers to the time that the 
instruction was decoded. The ''u'' refers to the time that the result of the operation can be used by another 
instruction. The "f' refers to the time that the operation is fully completed. 

Register 15 is used as the threshold constant for determining whether or not the cell contains enough energy 
to be an electron. Register 11 is used as a calibration constant for the individual calorimeter trigger tower. 

Line 4 of the program initializes rOo Since the processor cannot use a constant and a branch statement in the 
same instruction, the null value 0, meaning the cell is not a local maximum, is loaded into a register during a 
"nop" cycle. This allows line 59 to be executed as one clock cycle instead of two. 

1 
2 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
21 
22 

TABLE 8. DATAWAVE ASSEMBLER CODE FOR ONE CELL IN A 3 x 3 MATRIX ALGORITHM 
(1·CELL PER CHIP ASSEMBLy) • 

. eell 0,2,1 
r15 = 1024 
R11 = 1 

THRESHOLD 
Calibration Constant for Cell 

;RECEIVE FROM CALORIMETER/INITIAL SEND 
loop: s=n=e=w=r5=n*r15; d=O u=7 

rO = 0 ; d=1 u=3 
nop ; d=2 
oop ;~3 

nop ; d=4 
nop ; d=5 
nop ; d=6 
nop ; d=7 
nop ; d=8 
nop ; d=9 
nop ; d=10 
nop ;d=11 
nop ; d=12 

; RECEIVING/ROUTING DATA 
s = r4 = w, ace = r5 
n=r6=e 
W = r2 = n, ace = ace + r4; 
e = r8 = s, ace = ace + r6; 
nop 
nop 
nop 

24 

; d=13 u=15 
;d=14 u=16 
d=15 u=17 
d=16 u=18 
; d=17 
; d=18 
; d=19 

f=9,11 
f=5 uses "nop" to initialize rO 

f=17,24 
f=18,25 
f=19,26 
f=20,27 



23 nop ; d=20 
24 nop ; d=21 
25 nop ; d=22 
26 nop ; d=23 
27 nop ;d=24 
28 nop ; d=25 
29 r1 = n, acc = acc + r2 ; d=26 u=28 f=30 
30 r9 = s, acc = acc + r8 ; d=27 u=29 f=31 
31 r3 = e, acc = acc + r1 ; d=28 u=30 f=32 
32 r7 = W, acc = acc + r9 ; d=29 u=31 f=33 
33 acc = acc + r3 ; d=30 

;Sum of Cell + Surrounding Cells 
34 r10 = acc + r7 ; d=31 f=34,40 

; DETERMINING IF THE CELL IS A LOCAL MAXIMUM 
35 alu = r5 - r1 ;d=32 f=37 
36 alu = r5- r2 ; d=33 f=38 
37 alu = r5- r3 ; d=34 f=39 
38 alu = r5 - r4 ; d=35 f=40 
39 alu = r5 - r6 ; d=36 f=41 
40 alu = r5 - r7,bmi notamax ; d=37 f=42 
41 alu = r5 - r8,bmi notamax ;d=38 f=43 
42 alu = r5 - r9,bmi notamax ; d=39 f=44 
43 alu = r10 - r11 ,bmi notamax ; d=40 f=45 
44 bmi notamax ; d=41 
45 bmi notamax ; d=42 
46 bmi notamax ;d=43 
47 bmi notamax ; d=44 
48 bmi notamax ; d=45 
49 nop ; d=46 
50 nop ; d=47 neCCE!Sary for the bmi 
51 nop ; d=48 

; CELL IS A LOCAL MAX 
; send cell id to north 

52 max: n = 021 ; d=49 f=60 
; send cell energy to north 

53 n = r10, bra loop ; d=50 f=61 
54 nop ; d=51 
55 nop ; d=52 necessary for the bra 
56 nop ; d=53 

; CELL IS NOT A LOCAL MAX 
57 notamax:nop necessary for the bmi 

; send no cell id to north 
58 n = rO 

; send no cell energy to north 
59 n = rO, bra loop send no id or energy 
60 nop 
61 nop necessary for the bra 
62 nop 

end 

25 



8.3 Result of Analysis on Electron Identification in a 3 x 3 Matrix (I-cell Per Chip Assembly) 

The total time required in all the arrays (considering also the dependency of data that must be exchanged 
between processors) in "T" cycles (1 cycle = 8 ns in the present DataWave version and 4 ns in the future 
version), is shown below (See Table 9). 

TABLE 9. TOTAL 3 x 3 MATRIX ALGORITHM EXECUTION TIME ON DATAWAVE 
(1-CELL PER CHIP ASSEMBLY). 

OPERATION LINE NO. TIME (CLOCK TIME (NS) 
CYCLE) 

Finished routing data 32 33 132 
Finished summing energies* 34 34 136 
Finished finding local maximum 43 45 180 
Send tower id and energy 52;53 60;61 240; 244 

Hardware optimizations (i.e., to improve the pipelining between adjacent cells and increase the storage 
area) might improve the timing of each processor. 

26 



9.0 ELECTRON IDENTIFICATION IN A 3 X 3 MATRIX (16-CELLS PER CHIP) 
9.1 DataWave Chip Assembly 

The purpose of this algorithm is to detennine whether or not a cell corresponding to a calorimeter trigger 
tower is a local maximum of a cluster. The algorithm is implemented IOn Data Wave chips assembled with 
16-cells per chip (see Figure 18). A Data Wave inter-chip bus provides the parallel I/O ports of the Data Wave 
chip with access to the calorimeter-and adjacent DataWave cells. Two bits allow each cell to connect to the 
inter-chip bus. The algorithm assumes that only one cell will be linked to a given bus switch during a clock 
cycle and allows for one cycle to disconnect a cell from the bus switch and connect another cell. 

North 

West East 

South 
Figure 18. DataWave Chip Assembly with 16-cEllis Per Chip. 

27 



9.2 Loading ''Em'' Data into 16-cells Per Chip Assembly 

The purpose of the algorithm is to fmd the local maxima in an array of calorimeter towers. In order to 
receive the values of the surrounding towers, data must be transferred between chips on an inter-chip bus. (see 
Figure 19). Because only one chip may be hooked up to specific bus switch at a time, this algorithm tries to use 
the inter-chip bus as infrequently as possible while taking advantage of the ease of communication between 
cells on the same chip. Due to the differences in each cell's location in relation to the four inter-chip buses, 
each cell in a chip is loaded with a different code. 

~ ~ 

L L 
v u 
I I 
~ ~ . ~ 

=12<>13 1: t=12<>1....~.·.: .. , ... : ..... : .. ,.·.:> =12<>1...3 1: t;=I2<>~ ... : .... 
'000 ~ ~ _ :,... ;; 'Opt ;0.0:2 ~O.f):~ :O.<?4 r:: ' __ ~ ,. :005 

.... ....,j-. .... _ ..... _.,./j\fi"'oI ~I ~ ~/j\ ~I\ I j\ .,~~J\ .... - ... ....,j,-.. 
_ 1\ 1\ 1\ 110 '1 " 
N v V V N E v 
l!. ~ ~ ~ l!. 'q ~ 
_V t=-1<.>2 Jtl/ J!.\II J!.\I \1 0 l!.~/~ ____ ..., 

Ir------...,I from CalorJm.~~ 1 N o1 1 1 
Inter-chip BUS • - - - - - -~ Inter-chip BUS 1\ U 1 Inter-chip BUS 

1 \ ~ ~ !elr- ~I\ I ~ EI ~ \ 
110 OAI\ II GO 0 " 
N V V V ~ I Lol v 
l!. , ~ on 110 J!. J!. -I ~ 

\11 .!!Vil 2..11 h:\I \11 , , ~1I .. l\",/ .... _ .... _ ........ 
... -'P"--I .... -I1"I;-~ .... :~.: ... ~>10 ..- t=8<>1~ ,!r-l <>~ ~ .!,.=8<>1~:.:: .. 
t-_+---1I----1f'-o0,....~+.~ ... : ...... ....;g...... .... 011 01 2 01 3 014 t=8<> 10 ;g.... , •. 0.,..· ...... 1~ ..... :+-' _-1-_-+-_-11 

~b2Q : 021 022 023 024 : .o~ti 
.-__ ~~~~~.~.~ .. ~. L ~ ~~~--~--~~ 

~O.~ r 031 032 033 034 r 
c ~ 

.'; .. ' ~12<>p C t~12<>t. ~12<>t.3 .E .!:'12<>,t ... " 
:O.~· i' ... :W:'P-:-l<>'f 041 042 043 044 i' ... __ ~ .... '0.45 . 

.... ....,j-. .... _ ...... /\.. ~ I' ~I ~ ::!I r- ~/ \ 1 ~ ~~P!i/l!il\---.... ---... 
110 NEI 1\ 1\ 1\ CD V " 
N 1\., Y..'1. ~ N'I - Y. 
l!. vol N;.!:::: - 1, N 

... ------\.z, -- II , 11\1/ 11.\1 \ ~ t=-1 <>2 l!.-,o':-.-____ --. 

1 1 181 -I - - J...# from Calorim. 1'- 1 
Inter-chip BUS .ll I Inter-chip BUS ~- - - - - - - Inter-chip BUS 

L.------/T E ,,!, \ 10 J 1\ 0. J \ I .... ~""\'---------' 
00 e 1 ~. i\' I' i\' 110 " 

N_II -I ~ ~ ~ 'It ~ 
N - - - N _\IL 11.\1 I~\II 11.\1 \11 11.\1 

... -'P"--I .... -I"' .. ~ ... ,II,o. ".!.=8<> 1 0 _ t=8<>1~ .• ,.,: .. , ..•. ,: ....•. ,: ........ ,.: . .!,.=8<>10.-- t=e<>I~ •.. iio ... ~, ......... -.--'P"-"" 
~O.!)Q ~ , Ill"" , ~OS1 ~O.52 '0.5:] 0.54' ..... .... Ill.... ,. ~O.55 

1--+---1I---r-""'..... ~ .; .; ~ ~--i.O-+---'-t--+--I 

~ Q. 
~ ~ 
u U 
I I 
~ ~ c ~ i: .E 

- "'-

Figure 19. Inter-chip Data Flow In a 3 x 3 Matrix (16-Cells Per Chip). 

28 



9.2.1 Receiving Data from the Calorimeter 

The 16 cells on the chip are divided into four groups of four cells (see Figure 19). Each group contains a 
"loader" (cells 0,1,1; 01,4; 0,4,1; and 0,4,4) which receives from the calorimeter all the values relating to the 
four cells in the group. Before Trigger 1 is sent, the "loader" cells are connected to the inter-chip bus which is 
connected to the calorimeter. Once the trigger is sent, all four cells receive the values of their group of four 
cells. For example cell 0,1,1 receives values for cell 0,1,1; 0,1,2; 0,2,1; and 0,2,2. Immediately following, the 
inter-chip bus disconnects from the calorimeter and connects to the adjacent DataWave chip. 

9.2.2 Receiving and Routing of Data for Cell 0,1,1 

Each group of four cells behaves similarly except for time fluctuations due to waiting for a connection to 
the inter-chip bus. At time t = ° through t = 3, cell 0,1,1 receives the data from the calorimeter and routes the 
data to its South and East neighbors where the values will continue to be routed to the internal neighbors (see 
Figures 20 and 21). 

At time t = 7, cell 0,1,1 connects to the West bus switch and passes the values of cell 0,1,1 and cell 0,2,1 
through the inter-chip bus to the cell 0,1,0. At the same time, cell 0,1,0 connects to its East bus switch and 
passes the values of cell 0,1,0 and 0,2,0 through the inter-chip bus to celll O,I,I(see Figure 20). At time t = 13, 
cell 0,0,0 sends its value through the inter-chip bus to cell 0,0,1 which routes the value to cell 0,1,1 at time 
t =26. 

After cell 0,0, 1 loads the values from the calorimeter, it sends the values of cell 0,0,1 and 0,0,2 to cell 0,0,2 
(at time t = 2 through t = 3) which then routes the values through the inte:r-chip bus to cell 0,1,2. Cell 0,1,2 (at 
time t = 29 through t = 30) then sends the two values to cell 0,1,1. Cell 0,1,1 fmishes routing data between cells 
at time t = 41 (see Figure 20). 

(/) I 
~ .§I 

... 1002 t=:2 
Q. ~N~I 001 t=:3 

~ .!!..!!.UI 'I l= I N~EI , 
~ gg~ 

o 00 t----~ c: L""'t---t---1-
0
-
0
-
2 _____ ..,... ... 000 t=13 000 t=13 

000 t=2 
from Calorimeter I --------' 

Inter-chip BUS 

010 

020 

000- >rl t=39 
001->r2 t=43 
002->r3 t=42 
010- >r4 t=23 
011->r5 t=3 
012->r6 t=2 
020->r7 t=21 
021->r8 t=l 
022->r9 t=O 

(/) -, => 
~ c;t ... 1 CD 

--(I) Q. 

000;1 r. 
N~E u 00·;:1 I 

0 '-"01 .2 
U c: 
EI 
~I 

to 
N 

.!!. " " 

BUS 

021 022 

002 t=29 
001 t=30 

Figure 20. Routing of Data to One Cell in a 3 x 3 Matrix (16-·Cells Per Chip Assembly). 

29 



000 

Inter-ch ip BUS I 

010 

020 

(/) 
::) 
CD 

c.. 
.!: 
0 
I .... 
Q) -c: -

'---

9]1 t=8 _ ~1 

011 t=10 (/) 011 ::) 
CD 

c.. 
.!: 
0 
I 

10.. 
Q) -c: -

"---

t=8 

t=10 

001 002 

1'0 11\ 
N 
II -
0 -0 

I Inter-chip BUS I 
~ /\ 
.l!. 
0 -0 

1 011 Of2 -- '- -
;--.. 

022 t=O 
021 t=l 
012 t=2 
011 t=3 

0~1 
"-

022- ......... 
......... 

022 t=O 
021 t=l 

......... 012 t=2 
011 t=3 
020 t=21 
010 t=23 

Figure 21. Routing of Data from One Cell In a 3 x 3 Matrix (16-Cells Per Chip Assembly). 

9.3 DataWave Assembler Code and Detailed TIming Description 

Each cell in a chip contains a different routing code. However, cells in the same location in different chips 
contain the same code. Therefore, any amount of chips when connected by inter-chip buses can be loaded with 
the same set of 16 programs. 

The total lines of code of eight of the cells (maximum number of lines is 78) cannot fit on the 64-word 
Data Wave processors. The simulator has verified the routing algorithm according to the assumptions made in 
Sub-section 9.1. The determination of the local maximum is identical to the algorithm in the I-cell per chip 
program and was verified during that simulation. 

All symbols used in the program are defmed in Sub-section 8.2. Registers 12 through 15 are used to store 
the calibration constants for each calorimeter tower that is loaded through the cell. All connections to the 
inter-chip bus through a bus switch on the chip are described in the comments of the program and in Figure 19. 

The program example, (See Table 10) cell 0,1, I was chosen because of its location. As shown in Figure 19, 
this cell's eight neighbors are contained on four chips. Cell 0,1,1 must receive information from all of these 
chips through the inter-chip bus. 

30 



1 
2 
3 
4 

5 
6 
7 
8 
9 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

41 

42 
43 
44 

TABLE 10. DATAWAVE ASSEMBLER CODE FOR ONE CELL IN ~~ 3 x 3 MATRIX 
(16-CELLS PER CHIP ASSEMBLy) • 

. cell 0,1,1 

loop: 

r12 = 1 
r13 = 1 
r14 = 1 
r15 = 1 

; RECEIVE FROM CALORIMETER 
e=s=r9=n*r12 
e=s=r8=n*r13 
e = s = r6 = n * r14 
e=s=r5=n*r15 
r11 = 1 
rO = 0 

; RECEIVING/ROUTING DATA 
nop 
nop 
w = r8, acc = r9 
nop 
w = r5, acc = acc + r8 
nop 
nop 
nop 
nop 
nop 
nop 
nop 
nop 
nop 
nop 
s = r7 = W, acc = acc + r6 
nop 
n = s = r4 = W, acc = acc + r5 
nop 
nop 
nop 
nop 
nop 
nop 
nop 
nop 
nop 
nop 
nap 
nop 
;stop 
;stop 
;stop 
r1 = n, acc = acc + r7 
;stop 
;stop 
r3 = e, acc = acc + r4 
r2 = e, acc = acc + r1 
acc = acc + r3 

31 

; d=O 
; d=1 
; d=2 
;d=3 
; d=4 
;d=5 

; d=6 
; d=7 
; d=8 
; d=9 
; d=10 
; d=11 
; d=12 
; d=13 
; d=14 
; d=15 
; d=16 
; d=17 
; d=18 
; d=19 
; d=20 
; d=21 
; d=22 
; d=23 
; d=24 
; d=25 
; d=26 
; d=27 
; d=28 
; d=29 
; d=30 
; d=31 
;d=32 
; d=33 
; d=34 
; d=35 
;d=36 
; d=37 
; d=38 
; d=39 
; d=40 
; d=41 
; d=42 
; d=43 
; d=44 

cal constant for cell 0,2,2 
cal constant for cell 0,2,1 
cal constant for cell 0,1,2 
cal constant for cell 01,1 

u=7 
u=8 
u=9 
u=10 
u=6 
u=7 

f=9,11 
f=10,12 
f=11,13 
f=12,14 
f=8 THRESHOLD 
f=9 uses "nop" to initialize 

COnnE!ct to West Chip BUS 
f=19 

f=21 
disconnect from West Chip BUS 

u=23 f=25,32 
COnnE!ct to North Chip BUS 
u=25 f=27,34 

disconnect from North Chip BUS 

u=41 f=43 

u=43 f=45 
u=44 f=46 



45 

46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

63 

64 

65 
66 
67 

68 

69 

70 
71 
72 
73 

r10 = acc + r2 ; d=45 1=48,54 

; DETERMINING IF THE CELL IS A LOCAL MAXIMUM 
alu = r5 - r1 
alu = r5 - r2 
alu = r5 - r3 
alu = r5- r4 
alu = r5- r6 
alu = r5 - r7,bmi notamax 
alu = r5 - rB,bmi notamax 
alu = r5 - r9,bmi notamax 
alu = r1 o-r11 ,bmi notamax 
bmi notamax 
bmi notamax 
bmi notamax 
bmi notamax 
bmi notamax 
nop 
nop 
nop 

;CELL IS A LOCAL MAX 
; send cell id to north 

max: n = 011 
; send cell energy to north 
n = r10,bra loop 

;limits of existing chip 

nop 
nop 
nop 

;CELL IS NOT A LOCAL MAX 
notamax:nop 

.end 

; send no cell id to north 
n = rO 
; send no cell energy to north 
n = rO, bra loop 
nop 
nop 
nop 

; d=46 
; d=47 
; d=48 
; d=49 
; d=50 
; d=51 
; d=52' 
; d=53 
; d=54 
; d=55 
; d=56 
; d=57 
; d=58 
; d=59 
; d=60 
; d=61 
; d=62 

; d=63 

; d=64 

;d=65 

1=51 
1=52 
1=53 
1=54 
f-55 
f=56 
f=57 
1=58 
1=59 

; d=66 necessary for bra 
; d=67 

necessary for bmi 

necessary for bra 

9.4 Code Differences Between the Cells Within a Chip 
All "loader" cells (cells 0,1,1; 0,1,4; 0,4,1; and 0,4,4) contain roughly the same code except for the lines 

relating to the scheduling of the inter-chip bus. The "loader" cells route data to their immediate neighbors on 
the same chip as well as to their immediate neighbors on adjacent chips (see Figure 19). 

The cells to the left or right of the "loader" cells (cells 0,1,2; 0,1,3; 0,4,2; 0,4,3) receive data from the 
"loader" cells at time t = 13 <> 16 and are responsible for sending the loaded data to their North or South 
neighbors (cells 0,2,2; 0,2,3; 0,3,2; and 0,3,3) and for sending information needed by the adjacent chip 
through the inter-chip bus (see Figure 19). 

The cells North or South of the "loader" cells (cells 0,2,1; 0,2,4; 0,3,1; and 0,3,4) also receive data from the 
"loader" cells at time t = 13 <> 16. They then send the information needed by the adjacent cells to their North 
or South. Hence, cell 0,2,1 sends data to cell 0,3,1 and cell 0,3,1 sends information to cell 0,2,1. 

32 



The inner four cells (cells 0,2,2; 0,2,3; 0,3,2; and 0,3,3) contain almost identical code except for the 
direction from which a value is sent or received. Primarily the inner cells only receive information. This is due 
to the fact that the cells do not begin receiving data until time t = 26. (Information sent from the "loader" cell 
0,1,1 at time t = ° will arrive at cell 0,1,2 at time t = 13 and will be sent to cell 0,2,2, arriving at time t = 26.) The 
only sending required of the inner cells is the exchange of data with one of its adjacent inner cells. 

9.S Result of Analysis on Electron Identification in a 3 x 3 MSltrix 
(16-cells Per Chip Assembly) 

The total time required in all the arrays (considering also the dependency of data that must be exchanged 
between processors) in "T' cycles (1 cycle = 4 ns), is shown in Table 11. 

CELLID 

Lines of code 

Routingdala 
(in clock cycles) 

Summing energies 
(in clock cycles) 

Finding local max 
(in clock cycles) 

TABLE 11. TOTAL 3 x 3 MATRIX ALGORITHM EXECUTION TIME ON DATAWAVE 
(16-CELL PER CHIP ASSEMBLY). 

0,1,1 0.1,2 0.1.3 0,1,4 6,2,1 0,2,2 0,2,3 0,2,4 0,3,1 0,3,2 0,3,3 0,3,4 0,4,1 0,4,2 

73 61 60 78 66 57 57 66 65 57 57 65 75 61 

47 48 46 49 55 56 56 55 56 56 47 47 47 48 

48 49 47 50 56 57 57 56 57 57 48 48 48 49 

59 60 58 61 67 68 68 67 68 68 59 59 59 60 

Sending id & energy 75 76 74 77 83 84 84 83 84 84 75 75 75 76 
(in clock cycles) 

0.4,3 0,4,4 

61 78 

46 49 

47 50 

58 61 

74 77 

The maximum time for a cell to fmish routing the data is time t = 56 (which corresponds to all four inner 
cells). Due to the fact that all cells use the same algorithm for fmding the: local maximum and sending out the 
result, all cells fmish their algorithms 28 clock cycles after finishing routing the data. 

Due to the time that it takes for a cell to send a value to an adjacent cell and for that cell to receive it (13 
cycles), with the existing chip the algorithm cannot increase in speed. The value for cell 0,2,2 is loaded from 
the calorimeter to cell 0,1,1 at time t = 0. This cell immediately sends the value to cell 0,1,2, which receives the 
value at time t = 13 and promptly sends the value to cell 0,2,2 which receives it at time t = 26. Immediately cell 
0,2,2 sends the value to 0,2,3, which in return sends the value to 0,3,3 at time t = 39. Cell 0,3,3 receives the 
value at time t = 52 and uses four clock cycles to load the value into a register, which ends its routing algorithm 
at time t = 56. Since the value of 0,2,2 must be sent to cell 0,3,3 and there is no faster path between cell 0,1,1 
(where the value is loaded) and cell 0,3,3 (where the value must be sent), the timing of the algorithm will not 
decrease, unless the number of clock cycles necessary to send information between two adjacent cells is 
decreased. 

33 



10.0 "EM" CLUSTER FINDING (TWO "EM" SUMS + FRONT-TO-BACK) 
10.1 Real-time Algorithm Description for Two ''Em'' Sums + Front-to-back Veto 

The purpose of this algorithm is to fmd possible electrons by searching 1 x 2 and 2 x 1 regions. Every cell 
checks the 1 x 2 region to the North and the 2 x 1 region to the East (see Figure 22). If the sum of the "em" 
energy of one of the regions is greater than a threshold, the ratio of the "had" to the "em" energy is compared. 
Although the ratio equation is 

(:~) < THRESHOW 

since the program is in "real-time" the equation was rearranged into 

(EM x THRESHOW) - HAD> O. 

If the comparison is greater than zero the cell is classified as a possible electron. 

!F OR 

EM ~ > ,"",hold 

I C I 

then 

check 

EM ~ 

FRONT - TO-BACK 

HAD :!> 

Figure 22. Electromagnetic Cluster Algorithm In a 1 x 2, 2 x 1 Region (Front-to-back). 

10.2 Loading ''Em'' and ''Had'' Data to Check ''Em'' Sums + Front-to-back 

(12) 

(13) 

After loading the two values ("em" and "had") from the calorimeter tower, each cell multiplies the values 
by the calibration constant for the individual tower and distributes the adjusted values to its South and West 
neighbors. Each cell then disconnects with the calorimeter and connects to its North neighbor. 

The "em" value of the North cell arrives at a cell at time t = 13 (see Figure 23). The value is added in the 
Arithmetic Logic Unit (ALU) to the cell's "em" value. Due to the internal operations in the ALU, the result of 
the addition can be used by the ALU in the next clock cycle, even though the result will not yet be in the 
register. At time t = 14, the "em" 1 x 2 sum in the ALU is compared with the threshold. Because the result of 
this comparison cannot be used until time t = 19, the cell uses the next four instruction cycles for other 
calculations. 

34 



At time t = 15, the cell receives the "had" value from the North, adds it to its own "had" value, and stores the 
sum in a register. At time t = 17 the "em" value from the East is received and added to the cell's "em" value. 
Like the 1 x 2 sum, this 2 x 1 sum is compared with the threshold at time t = 18. 

At time t = 19, the result from the ALU can be tested. If the "em" sum is greater than the threshold, the 
program branches to check the ratio of "had" to "em". In the three lines of code after the "branch" to the North, 
the program sets the value of the ACC to be equal to the ("em" * threshold - "had") value. Although the ACC 
will be set regardless of whether or not the 1 x 2 North region is a possibk~ electron, if the North region is not a 
possible electron, but the 2 x 1 East region is a possible electron, the code will store the East ("em" * threshold 
- "had") value in the ACC before the ACC is tested. 

'em"(OOI) 1=-1 
"hocl'"(OOI) 1=0 
from Calorimet.r ----------, 

~' 

"em"(OII) 1=-1 
"hocl'"(OII) 1=0 

Cell 0,0,1 

"em"(OOI) 1=0 

" hocl'"(OO 1 ) 1=1 

from Colorlmet.r \ I 
----------~I 

~--a-~--------~ 
Cell 0,1 ,1 

"'em"'(Oll)->rl t=O· 

"'had"(Oll)->r2 t=l • 

"'em"'(OOl)+rl->r7 t=13· 

"'had"'(OOl)+r2->r8 t=15 • 

"'em"(012)+rl->r9 t=17· 

"'had"'(012)+r2->rl0 t=20 

-~"(012) t=o 

"~(012) 1=1 

"em"(012) 1=-1 
"hocl'"(012) 1=0 
from Colorimet.r 

.~----------
.-----""'---, 
Celli 0,1,2 

"*" = fetching time from program in Cell 0,2,1 

all other timing is related to time sent 

Figure 23. Routing Data to Two "Em" Cells In a 1 x 2, 2 x 1 Region. 

At time t = 19, the "had" value from the East cell is received, it is added to the cell's "had" value, and the 
sum is stored in a register. The cell then waits until the result from the comparison of the 2 x 1 "em" value is 
ready to be tested. At time t= 23, the result is tested; if the East "em" is grl~aterthan the threshold, the program 
branches to check the "had" to "em" ratio, while issuing statements to place the East "had" to "em" "ratio" in 
the ACC. 

If the 1 x 2 (North) "em" region was greater than the threshold, at time t = 31, the ACC result is compared 
with zero. If it is greater than zero (hence, the ratio of "had" to "em" is small) the cell is identified as a possible 
electron and the program branches to the code that sends the tower id, the: "em" sum, and the "had" sum to the 
North (time t = 36<>38). Otherwise the program branches to code that sends null values to the North. 

35 



10.3 Data Wave Assembler Code and Detailed Description 

Each processor is loaded with the same source code that performs the operations of receiving the "em" and 
"had" values from the calorimeter tower, receiving the "em" and "had" values of the neighboring cells, and 
comparing both the 1 x 2 and 2 x 1 regions with the thresholds. The ratio of "em" to "had" is only checked if 
the "em" values are greater than the threshold. Each cell connects to the calorimeter through its North port 
before the program begins. After it finishes loading from the calorimeter the values of the "em" and "had", the 
cell disconnects from the calorimeter and connects to the cell to the North. 

Registers 14 and 15 are used for the "em" and "had" calibration constants for the corresponding tower. 
Registers 5 and 6 contain the thresholds for the "em" and ("em" + threshold - "had") results. For a code listing 
of one cell see Table 12. 

TABLE 12. DATAWAVE ALGORITHM FOR "EM" CLUSTER FINDING (TWO "EM" SUMS + FRONT-TO-BACK) • 

. cell 0,1,1 
connect the North port to the calorimeter 

1 r14 = 1 calorimeter constant for "em" 
2 r15 = 1 calorimeter constant for "had" 
3 r5 = 16 "em" threshold for 1 x 2 cell region 
4 r6 = 16 ("em - "had") threshold for 1 x 2 cell region 
5 loop: r1 = s = w = n * r14 ;d=O load "em" value from the calorimeter, 

multiply it by the calorimeter constant 
and send it to West and South neighbors 

6 r2 = s = w = n * r15 ;d=1 load "had" value from the calorimeter, 
multiply it by the calorimeter constant 
and send it to West and South neighbors 

disconnect the North port from the calorimeter 
7 oop ;~2 

8 nap ;d=3 
9 nap ;d=4 
10 nap ;d=5 
11 nap ;d=6 
12 nap ;d=7 
13 oop ~~ 
14 nap ;d=9 
15 nap ;d=10 
16 nap ;d=11 
17 nap ;d=12 
18 r7=r1 +n ;d=13 r7 = "em" sum of cells 0,1 and 1,1 
19 alu = alu - r5 ;d=14 compare "em" sum with threshold 
20 r8 = r2 + n ;d=15 r8 = "had" sum of cells 0.1 and 1.1 
21 nap ;d=16 required for 3-"nops" after "branch" in Iine24 
22 r9 = r1 + e ;d=17 r9 = "em" sum of cells 1.1 and 1.2 
23 alu = alu - r5 ;d=18 compare "em" sum with threshold 
24 r10 = r2 + e. bpi north ;d=19 if "em" sum (cells 0.1 & 1.1) > thrshld goto north 
25 nap ;d=20 necessary for the 2nd branch instr. 
26 ace = r7 * r5 ;d=21 "em" * "threshold" (1 x 2) 
27 ace = acc - r8 ;d=22 "em" * "threshold" - "had"- tested in line 41.42 
28 bpi east ;d=23 if "em" sum (cells 1.1 & 1.2) > thrshld goto east 
29 bmi nosend ;d=24 if the "em" sum is not> thrshld send null values 
30 acc = r9 * r5 ;d=25 "em" * "threshold" (2 x 1) 
31 acc = ace - r8 ;d=26 "em" * threshold - "had" - tested in line 54,55 
32 nap ;d=27 
33 north: nap ;d=23 
34 nap ;d=24 

36 



34 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

nap 
nap 
nap 
nap 
nap 
nap 
bplsendn 
bmi nosend 
nap 
nap 
nap 

east: nap 
nap 
nap 
nap 
nap 
nap 
nap 
nap 
bplsende 
bmi nosend 
nap 
nap 
nap 

sendn: bra loop 
n = 10 
n = r7 
n = r8 

sende: bra loop 
n = 10 
n = r9 
n = r10 

nosend:bra loop 
n=O 
n=O 
n=O 

;d=25 
;d=26 
;d=27 
;d=28 
;d=29 
;d=30 
;d=31 
;d=32 
;d=33 
;d=34 
;d=35 
;d=27 
;d=28 
;d=29 
;d=30 
;d=31 
;d=32 
;d=33 
;d=34 

if "em" * threshold - "had"goto sendn 
else goto nosEmd 
3-"nops" after a branch 

;d=35 if "em" * thresl10ld - "had" > 0 goto send 
;d=36 else goto nos4~nd 
;d=37 
;d=38 
;d=39 
;d=35 branch to loop but do next 3 lines 
;d=36 f=47 send ,out tower id 
;d=37 f=48 send out "em" energy 
;d=38 f=49 send out "had" energy 
;d=39 branch to loop but do next 3 lines 
;d=40 f=51 send out tower id 
;d=41 f=52 send out "em" energy 
;d=42 f=53 send out "had" energy 
;d=28,36,or 40 branch to loop but do next 3 lines 
;d=29,37,or 41 f=40,48,or 52 send out null tower id 
;d=30,38,or 42 f=41 ,49,or 53 send out null em" 
;d=31,39,or 43 f=42,50,or 54 send out null "had" 

10.4 Result of Analysis on Two ''Em'' Sums + Front-to-back in I-cell Per Chip Assembly 
(not Pipelinable) 

The total time required in all the arrays (considering also the dependc~ncy of data that must be exchanged 
between processors) in "T"cycles (1 cycle = 8 ns in the present DataWave version and 4 ns in the future 
version), is shown in Table 13: 

TABLE 13. TOTAL DATAWAVE ALGORITHM EXECUTION TIME FOR "EM" CLUSTERING (TWO "EM" 
SUMS + FRONT-TO-BACK). 

Number of lines code 70 

Minimum time for 1 x 2 decision (in clock cycles) sending tower Id :29 
sending "em' value :30 
sending "had' value :31 

Maximum time for 1 x 2 decision (in clock cycles) sending tower Id ·'1 
sending "em" value 42 
sending "had" value ·'3 

37 



If the northern 1 x 2 region is a possible electron, at time t = 36<>38 the values of the trigger tower id, the 
"em" energy 1 x 2 sum, and the "had" energy 1 x 2 sum will be sent out to be received (by the cell at the North) 
at time t = 47 <>49. 

10.5 Result of Analysis on Two ''Em'' Sums + Front-to-back in I-cell Per Chip Array 
(Pipelinable) 

In order to achieve the 16 ns input rate, the Data Wave processors can be arranged in several processor array 
stages connected in pipelined mode. Each processor must not only execute its own trigger algorithm, but also 
pass both input and output values through the array pipelined stages. 

The pipeline begins by the fIrst processor fetching the fIrst two values ("em" and "had") from the 
calorimeter and starting its trigger algorithm on that data set. After 16 ns, the processor belonging to the fIrst 
stage fetches the next values from the calorimeter and immediately sends these values to the processor of the 
second stage array. The processor of the second stage begins its trigger algorithm on the data set, and the rest 
of the data is pipelined in the same fashion. After each processor fmishes its algorithm, it sends its output 
down the pipelined stages which the last processor array stage outputs at a rate of 16 ns (although the time to 
execute the trigger algorithm is much longer than 16 ns). 

Due to the fact that there are only four ports on the existing DataWave processor, two ports must be able to 
connect to more than one cell. In the example in Table 14, every cell's North port connects to both the northern 
cell and the processor that is before the cell in the pipelined processor array stage (or to the calorimeter if the 
cell is the fIrst processor in the pipeline). The South port, likewise, connects to both its southern cell and to the 
processor that is behind the cell in the pipeline processor array stage. 

Table 14 shows the code for two pipelined stages similar to the code in the non-pipelined application 
shown in Table 12. All pipelined code for each stage is shown to the left of the trigger algorithm. The pipeline 
symbol (in parenthesis) is the number of the pipelined stage that will use the inputted value or that has sent the 
output value. Different values are marked by the four symbols: 
a inputted "em" value 
b inputted "had" value 
c outputted cell tower value 
d outputted "em" value 

The line number of code is shown on the left while the timing (clock cycle) is shown at the right of Table 14. 

TABLE 14. DATAWAVE ASSEMBLER CODE FOR TWO "EM" SUMS + FRONT-TQ-BACK IN 1-CELL PER CHIP 
ARRAY (PIPELINABLE). 

Stage 1 Stage 11 
1 loop: r1 = s = w = n * r14 (1a) loop: r1 = s = w = n * r14 (11a) 0 
2 r2 = s = w = n * r15 (1b) r2=s=w=n*r15 (11b) 1 
3 nop nop, s=n(1c) 2 
4 nop nop s = n (1d) 3 
5 nop, s = n (2a) nop 4 
6 nop, s = n (2b) nop 5 
7 nop nop, s = n (2c) 6 
8 nop nop, s = n (2d) 7 
9 nop, s = n (3a) nop 8 
10 nop, s = n (3b) nop 9 
11 nop nop, s = n (3c) 10 
12 nop nop, s = n (3d) 11 
13 nop, s = n (4a) nop 12 
14 nop, s = n (4b) nop 13 
15 r7 = r1 + n r9 = r1 + e, s = n (4c) 14 
16 alu = alu-r5 alu = alu - r5 s = n (4d) 15 
17 r9 = r1 + e, s = n (5a) r7 = r1 + n 16 
18 alu = alu - r5, s = n (5b) alu = alu-r5 17 

38 



19 nop nop, s = n (5c) 1S 
20 rS=r2+n r10 = r2 + e s = n (5d) 19 
21 bpi north, r10 = r2 + e s = n (6a) bpi east, rS = r2 + e 20 
22 acc=r7*r5 s = n (6b) acc = r9 * rS 21 
23 bpi east bpi north, s = n (6c) 22 
24 bmi nosend1, acc = acc - rS bmi nosendl1 ,acc = acc - rS s = n (6d) 23 
25 acc = r9 + r5, s = n (7a) acc = r7 * r!5 24 
26 acc = acc- rS s = n (7b) acc = acc _. rS 25 
27 nop nop, s = n (7c) 26 
2S north: nop, s = n (7a) east: nop 24 
29 nop, s = n (7b) nop 25 
30 nop nop, s = n (7c) 26 
31 nop nop, s = n (7d) 27 
32 nop, s = n (Sa) nop 2S 
33 nop, s = n (Sb) nop 29 
34 nop nop, s = n (Sc) 30 
35 nop nop, s = n (Sd) 31 
36 bmpl sendn s = n (9a) bmpl sendEI 32 
37 bmmi nosend2 s = n (9b) bmmi nosend2 33 
3S nop nop, s = n (9c) 34 
39 nop nop, s = n (9d) 35 
40 nop s=n(10a) nop 36 
41 east: nop north: nop, s = n (7c) 26 
42 nop nop, s = n (7d) 27 
43 nop, s = n (Sa) nop 2S 
44 nop, s = n (Sb) nop 29 
45 nop nop, s = n (Sc) 30 
46 nop nop, s = n (8d) 31 
47 nop, s = n (9a) nop 32 
48 nop s = n (9b) nop 33 
49 bmpl sende bmpl sendn, s = n (9c) 34 
50 bmmi nosend3 bmmi nosend3 s = n (9d) 35 
51 nop s=n(10a) nop 36 
52 nop s=n(10b) nop 37 
53 nop nop, s=n(10c) 38 
54 sndn: nop, s=n(10a) sende: nop 36 
55 nop, s=n(10b) nop 37 
56 nop nop, s = n (10c) 38 
57 nop nop, s=n(10d) 39 
48 bra loop, s=n(11a) bra loop 40 
49 nop, s=n(11b) nop 41 
50 s=23 s=23 (11c) 42 
51 s = r7 s = r79 (11d) 43 
52 sende: nop sendn: nop, s=n(10c) 38 
53 nop nop, s=n(10d) 39 
54 bra loop, s=n(11a) bra loop 40 
55 nop, s = n (11b) nop (11c) 41 
56 s=23, s=23 (11d) 42 
57 s = r9 s = r7 43 
5S nosend1: nop nosend1: nop ,s = n (7d) 27 
59 nop, s = n (8a) nop 28 
60 nop, s = n (8b) nop 29 
61 nop nop, s = n (8c) 30 
62 nop nop, s = n (8d) 31 
63 nop, s = n (9a) nop 32 
64 nop, s = n (9b) nop 33 
65 nop nop, s = n (9c) 34 
66 nop nop, s = n (9d) 35 
67 nop, s=n(10a) nop 36 

39 



68 nosend2: nop, s = n (10b)noesend2:nop 37 
69 nop nop, s=n(10c) 38 
70 nosend1: nop norsend3: nop, s=n(10d) 39 
71 bra loop, s=n(11a) bra loop 40 
72 nop, s=n(11b) nop 41 
73 s=O (1c) s=O (11c) 42 
74 s=O (1d) s=O (11d) 43 

Due to the fact that input values are pipelined at different times than output values, the pipeline code will be 
different for all stages in the pipeline. Since the North and South ports can only be used for either connecting 
to the North/South neighbors or connecting to the pipeline stages, all lines of the trigger algorithm code 
involving these ports must be placed at different clock times than the pipelined stage code. (See the difference 
between stage 1 code and stage 11 code in lines 15-18 in Table 14). Although this limitation did not make the 
pipeline two "em" sum + front-to-back algorithm longer than the non-pipelined (both send the last output 
value at time t = 43), it is feasible that inserting algorithms with more interaction with neighboring cells into a 
pipeline stage structure will cause the need for more lines of code to account for this limitation. 

40 



11.0 "EM" CLUSTER FINDING (ISOLATION) IN A 4 x 4 MATRIX 
(I-CELL PER CIDP) 

11.1 Real-time Algorithm Description for ''Em'' Cluster Isolation 

The purpose of this algorithm is to further enhance the electron-fmding algorithm by requiring a possible 
electron to be isolated from surrounding energy. To accomplish this goal a.4 x 4 matrix is used (see Figure 24). 
The inner 2 x 2 "em" matrix containing energy above threshold is considered to be a possible electron. The 
outer twelve towers of the 4 x 4 matrix must contain small amounts of energy in order to confIrm the trigger 
tower in a 2 x 2 matrix as a possible electron. Our isolation algorithm consists of summing the 4 x 4 matrix 
energy (both "em" and "had") and except for the 2 x 2 "em" energy. 

11.2 Loading ''Em'' and "Had" Data and Routing Criteria to Check Isolation 

In order to fmd the (4 x 4) matrix "em" + (4 x 4) matrix "had" - (2 x 2) "em" sum, each cell must receive the 
"em" and "had" values of the 4 x 4 matrix (see Figure 25). The received values are added to the ALU unless the 
value is a part of the 2 x 2 "em" matrix; in which case the value is routed to a neighboring cell. While each cell 
is being sent the values of the 4 x 4 matrix, its own "em" and "had" values are being sent to each cell in the 4 x 4 
matrix that requires its value (see Figure 26). 

The main criterion used to develop this algorithm on the DataWave chip is to always pass the value that is 
farthest away as soon as possible. As seen in Figure 18, the cell 0,0,5 is the farthest away from cell 0,2,3. 
Therefore, the data from that chip (as it flows from cell 0,0,5 to cell 0,2,3) is always sent out at the time that a 
cell receives it, while other values might need to wait a few cycles if more than one value arrives during a clock 
cycle. 

HAD~ 

EM ~ 

4 x 4 simplified trigger tower 

EM 

--

Figure 24. Isolation Cluster Algorithm In a 4 >( 4 Matrix. 

41 



.. 

.!!. .!!. 
." ." D 

~ " ,.c 

.!!. ,;.; 
0 

Cell 0,0,2 '", Cell 0,0,3 
_ 032 1=0 

.!!. Cell 0,0,4 - .!! Cell 0,0,5 
D -- 'e -,&. e .. 0 

0 l- I-
!! - on on 

~ 0 

'e .- e 
.. 

;.... (003)"om" 1=0: "had" 1=1 N (004)" em" 1=0: "had" 1=1 0 (002,.em" 1=17: "had" 1=18 e (OOS)"om" 1=26: "had" 1=27 .... 
ii ii -- .!!. 

.!!. \I 
."", 

\II ." o 0 
&..c D 

." 
, , .c , 

a ,ii.n 
0 

Cell 0,1,2 
,.c 

Cell 0,1,3 - ii 11 Cell 0,1,4 - .!!. Cell 0,1,5 
0 -- .~ 'I -- 'e .!!. .. 
'e 1-1- I-- on" .. .. _0 e .- 00 
N ~~ 

c; 
(01J"om~I=O: "had" 1=1 

(oar om" 1=0: "had" 1=1 (OO3,.om" 1=15: "had" 1=16 (004)" om" 1=30: "had" 1=31 
(012)"om" 1-17; "had" 1.18 (OO2)"om" 1=32; "had" 1=33 

from Calorimeter 
(005)" om" 1=39; "had" 1=40 N 

(023r;,;:: .. ;;:I;-:;;,;t=O----~1 \V .!! .!!. 

'", 
." 

W 0 

N 
a .c .c , 

.!!. .!!. __ 0 
o N 

Cell 0,2,2 .,,'g - Cell 0,2,4 - !! II Cell 0,2,5 
a &. Cell 0,2,3. - .... -... - 'e 'e .c , __ N'" 
... 0 !.!!..!.!J! 0 .. 
o N 

! 
hh 

.!! .!! - .,,"'''''''''' 
on on 
N .., - DOD CI ~e 

E 'E o.c.c.c~ ..c. I' I .. .. 
hI- . .. .ntiicu; 

/\ N N 
O __ N"" 

/1\ /1\ N .., .!L!!.!!! ee 
I~ 

'E'E 'E'E 'E 
••••• ,,",,-5-,....,..... 

(012)" om" 1=17; "had" 1=18 
..... ..., ... ." N_N"''''' 00000 -......---

(012)" om" 1= : "had" 1=18 {034)"om" 1=7: "nod" 1=8 (035)" om" 1=7: "nod" 1=8 

Cell 0,3,2 Cell 0,3,3 Cell 0,3,4 Cell 0,3,5 

" " (023,.om 1=0: had" 1=1 
(024)"om" 1=13; "had" 1=14 
(013)"om" 1=15; "had" 1",6 
(022)"om" 1=17; "nod" 1 .. ,8 
(033)"om" 1=20: "nod" 1=21 
(025rom" 1=26; "had" 1=27 
(OO3Y' om" 1=28: "had" 1 .. 29 
(Oar om" 1=30; "had" 1=31 
(012Y' om" 1=32: "had" 1=33 
(032)" om" 1=34: "had" 1=35 
(034)" om" 1=36: "had" 1=37 
(015)"om" 1=39: "had" 1=40 
(OO4)"om" 1=43; "had" 1=4" 
(002)"em" 1=45: "had" 1=46 
(035)" om" 1=49; "had" 1=50 
(005)"om" 1=52; "had" 1=53 

Fetching time from program in Cell 0,2,3 

<:: all other timing is related to time sent 

Figure 25, Routing Data to One Cell for Isolation Check in a 4 x 4 Matrix. 

42 



The routing of the data is not unique, many other routes can be taken between two cells. However, since the 
last data arrives at time t = 52, which is the first possible time for it to arrive (assuming 13 cycles to transfer 
data between cells), no other routing procedure would take less time. 

Each cell connects to the calorimeter through its North port before the program begins. After it finishes 
loading the "em" and "had" values from the calorimeter, the cell disl~onnects from the calorimeter and 
connects to the cell to the North. 

After receiving the values from the calorimeter, each cell multiplies the values by the calibration constant 
for the individual tower and stores the "had" value in the ALU (which will be used to sum the energy of the 
4 x 4 matrix). Then the cell distributes the adjusted values to the East, West, and South. Once the cell 
disconnects from the calorimeter and connects to its northern neighbor, the cell sends the values North. 

N 
II .... 

r-- N 
""0 

0 ,..., II £ 
II : .... 

-" 0 

" 0 N 
0 £ II 

Cell 0,1,1 /£ Cell 0,1,2 ..... : Cell 0,1,3 .... ...... Cell 0,1,4 
"' ...... 

0 : -10 N E ,..., II' CI) 

II .... :;-.. .... ,..., 
~ : N : - E 0 E II - CI) 1\ '-' 

CI) .... II :;-.. .... ;:.-.. ,..., ,..., '0 -" N (023)" em t=7; "had" t=8 N 0 0 
0 £ 0 '-' -'-' : £ 

: II .... ,..., - 0 ""0 II -.!! Cell 0,2,1 ..... .... Cell 0,2,2 0 Cell 0,2,4 
Cell 0,2,3 £ -

"' : -: : 

E E 
CI) CI) 0 

:;-.. 5-... .!! ........ ,..., ,..., 
N N 

: -0 0 E '-' '-' 
CI) 

:;-.. ,..., 

(023) 
(023)" em" t=O; "had" t=l N 

"em' "had" 0 t=26; t=27 '-' 

\V (023)" em" t-17 V"had" t= 
\I 10 

- \ 18 

-
Q.3

J 
Cell 0,3,1 Cell 0,3,2 ./ II Cell Cell 0,3,4 

"' '0 
0 

£ 
: 

L() -" "had" em t=39; t=40 II (023)" em" t=32; "had" t= .... (023)" 33 

(023)" em" t=3C "had" t=31 
: 

E (023 "em" t=lS; "had" t=16 CI) 

\I \1 
5-... 

\1 \V ,..., 
N 

Q.4

J 
0 

Cell 0,4,1 Cell 0,4,2 '-' Cell Cell 0,4,4 

Figure 26. Routing Data from One Cell for Isolation Check in a 4 x 4 Matrix. 

43 



At time t = 17 each cell begins receiving the "em" and "had" values from its neighboring cells and adding 
the value to the ALU. If the values are needed by other cells, the cell sends them out. Figure 26 shows the 
routing of all cells in relation to cell 0,2,3. 

At time t = 56, all distribution is fmished and the ALU contains the sum of the 4 x 4 "em" and "had" matrix 
except for the 2 x 2 "em" matrix. This sum is then compared with a threshold. If the sum is less than the 
threshold, then the energy is isolated and the tower id and sum are sent to the North, otherwise null values are 
sent. 

11.3 Data Wave Assembler Code and Detailed Timing Description 

Each cell is loaded with the same program that accomplishes the task of distributing the "em" and "had" 
values and comparing the 4 x 4 matrix sum with the threshold. Because the code cannot fit in a 64-word space, 
the code was tested in segments: one test for the distribution algorithm and one test for the comparison 
algorithm. A combined listing is shown in Table 15. 

Registers 14 and 15 are used as the calibration constants for the "em" and "had" portions of the trigger 
tower relating to each cell. Register 11 is used as the threshold constant. 

All values that are received and added to the ALU are marked in the comments. If a value is received, but 
not added to the ALU because it is an "em" value of the 2 x 2 matrix, the line of the receipt is marked with 
"(2 x 2)". 

TABLE 15. DATAWAVE ASSEMBLER CODE FOR 4 x 4 MATRIX ISOLATION • 

. cell 0,2,3 
connect to the calorimeter through the north port 

1 r14 = 1 ; calorimeter constant for cell 2,3 "em" 
2 r15 = 1 ; calorimeter constant for cell 2,3 "had" 
3 r11 = 1 ; threshold constant 
4 loop: e = W = S = r1 = n • r14 ;d=O fetch & send 2,3 "em" value e,w,s 
5 e = W = S = r2 = n· r15 ;d=1 fetch & send 2,3 "had" value e,w,s 

disconnect from the calorimeter and connect to the North neighbor (1,3) 
6 nap ;d=2 
7 nap ;d=3 
8 nap ;d=4 
9 nap ;d=5 
10 nap ;d=6 
11 n = r1 ;d=7 send 2,3 "em" value n 
12 n = r2 ;d=8 send 2,3 "had" value n 
13 alu = r2 ;d=9 set alu to the "had" value of cell 2,3 
14 nap ;d=10 
15 nap ;d=11 
16 nop ;d=12 
17 W = e ;d=13 receive "em" value of cell 2,4 (2x2) 
18 W = e, alu = alu + e ;d=14 receive "had" value of cell 2,4 
19 W = s = n ;d=15 receive "em" value of cell 1,3 (2x2) 
20 w = s = n, alu = alu + n ;d=16 receive "had" value of cell 1,3 
21 s = w, alu = alu + w ;d=17 receive "em" value of cell 2,2 
22 s = w, alu = alu + w ;d=18 receive "had" value of cell 2,2 
23 nap ;d=19 
24 e = w = s, alu = alu + s ;d=20 receive "em" value of cell 3,3 
25 e = w = s, alu = alu + s ;d=21 receive "had" value of cell 3,3 
26 nap ;d=22 
27 nap ;d=23 
28 nap ;d=24 
29 nap ;d=25 

44 



30 s =e, alu = alu + e ;d=26 receive "em" value of cell 2,5 
31 s =e, alu = alu + e ;d=27 receive "had" value of cell 2,5 
32 alu = alu + n ;d=28 receive "em" value of cell 0,3 
33 alu = alu + n ;d=29 receive "had" value of cell 0,3 
34 s=e ;d=30 receive "em" value of cell 1,4 (2x2) 
35 s = e, alu = alu + e ;d=31 receive "had" value of cell 1,4 
36 s = n, alu = alu + n ;d=32 receive "em" value of cell 1,2 
37 s = n, alu = alu + n ;d=33 receive "had" value of cell 1,2 
38 alu = alu + w ;d=34 receive "em" value of cell 3,2 
39 alu = alu + w ;d=35 receive "had" value of cell 3,2 
40 w=e, alu = alu + e ;d=36 receive "em" value of cell 3,4 
41 w=e, alu = alu + e ;d=37 receive "had" value of cell 3,4 
42 nop ;d=38 
43 s = n, alu = alu + n ;d=39 receive "em" value of cell 1,5 
44 s = n, alu = alu + n ;d=40 receive "had" value of cell 1,5 
45 nop ;d=41 
46 nop ;d=42 
47 alu = alu + n ;d=43 receive "em" value of cell 0,4 
48 alu = alu + n ;d=44 receive "had" value of cell 0,4 
49 alu = alu + n ;d=45 receive "em" value of cell 0,2 
50 alu = alu + n ;d=46 receive "had" value of cell 0,2 
51 nop ;d=47 
52 nop ;d=48 
53 alu = alu + e ;d=49 receive "em" value of cell 3,5 
54 alu = alu + e ;d=50 receive "had" value of cell 3,5 
55 nop ;d=51 
56 alu = alu + n ;d=52 receive "em" value of cell 0,5 
57 r10 = alu + n ;d=53 f=56,62 receive "had" value 

of celli 0,5 and place sum of 4x4em + 
4x4h - 2 x 2em in r10 

58 alu = alu - r11 ;d=54 compare the value of the sum with 
the threshold 

59 nop ;d=55 
60 nop ;d=56 
61 nop ;d=57 
62 nop ;d=58 
63 bmi noimp ;d=59 if the thrshld >then goto noimp 
64 nop ;d=60 
65 nop ;d=61 
66 nop ;d=62 
67 imprtntbra loop ;d=63 if the sum> the threshold 
68 n=23 ;d=64 f=75 then send tower id & energy 
69 n = r10 ;d=65 f=76 found to the North 
70 nop ;d=66 
71 notimp:bra loop ;d=63 if the! threshold> value then send null 
72 n=O ;d=64 f=75 values to the North 
73 n=O ;d=65 f=76 
74 nop ;d=66 
.end 

45 



11.4 Result of Analysis on 4 x 4 Matrix Isolation in I-cell Per Chip Assembly 

The total time required in all the arrays (considering also the dependency of data that must be exchanged 
between processors) in "T'cycles (1 cycle = 8 ns in the present DataWave version and 4 ns in the future 
version), is shown in Table 16. 

TABLE 16. TOTAL 4 x 4 MATRIX ANALYSIS FOR ISOLATION ALGORITHM ON DATAWAVE. 

Number of lines 74 

Finished routing "em" and "had" value (in clock cycles 56 

Finished sending tower id and energy (in clock cycles) 76 

Reducing the time to route data between cells as well as the time to test the result of an ALU or ACC result 
will significantly reduce the final timings of this algorithm. 

12.0 JET FINDING 
12.1 Real-time Algorithm Description for Jet Finding 

The purpose of these algorithms is to find possible jets by searching 4 x 4 and 8 x 8 calorimeter trigger 
tower matrixes. Every cell must receive the "em" and "had" values of each cell in its 4 x 4 matrix, while 
sending and routing other "em" and "had" values to its neighboring cells. The values are routed in the same 
way the values are routed in the electron isolation algorithm (See Figures 25 and 26). 

After the 4 x 4 matrix values have been received in the 4 x 4 algorithm, the sum of the values is compared 
with the threshold. In the 8 x 8 algorithm, each cell sends the 4 x 4 energy sum to a center cell (see Figure 27) 
which combines the 4 x 4 sums into the 8 x 8 sum and compares the sum with the threshold. 

12.2 Data Wave Assembler Code and Detailed Description for the 4 x 4 Jet Finding Algorithm 

Both the 4 x 4 and the 8 x 8 algorithms behave similarly to the algorithm for the electron isolation. The 
difference is that in the jet-fmding algorithms all "em" and "had" in the 4 x 4 matrix are added to the sum of the 
energy (see Table 17) 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

TABLE 17. DIFFERENCES BETWEEN THE 4 x 4 ELECTRON ISOLATION AND 4 x 4 JET FINDING 
(DATAWAVE CODE). 

n = r1 
n = r2 
alu = r1 
alu = alu + r2 
nop 
nop 
w=e, alu = alu + e 
w=e, alu = alu + e 
w= s= n, alu = alu + n 
w=s= n, alu = alu + n 
s=w, alu=alu+w 
s=w, alu =alu+w 
nop 
w=s, alu = alu + s 
w=s, alu = alu + s 
nop 
nop 
nop 
nop 

;d=7 
;d=8 
;d=9 
;d=10 
;d=11 
;d=12 
;d=13 
;d=14 
;d=15 
;d=16 
;d=17 
;d=18 
;d=19 
;d=20 
;d=21 
;d=22 
;d=23 
;d=24 
;d=25 

46 

send 2,3 "em" value n 
send 2,3 "had" value n 
set alu to the "had" value of cell 2,3 

receive "em" value of cell 2,4 (2x2) 
receive "had" value of cell 2,4 
receive "em" value of cell 1,3 (2x2) 
receive "had" value of cell 1,3 
receive "em" value of cell 2,2 
receive "had" value of cell 2,2 

receive "em" value of cell 3,3 
receive "had" value of cell 3,3 



30 8=e, alu = alu + e ;d=26 receive "em" value of cell 2,5 
31 8=e, alu = alu + e ;d=27 receive "had" value of cell 2,5 
32 alu = alu + n ;d=28 receive "em" value of cell 0,3 
33 alu = alu + n ;d=29 receive "had" value of cell 0,3 
34 8 = e, alu = alu + e ;d=30 receive "em" value of cell 1,4 (2X2) 
35 8=e, alu = alu + e ;d=31 receive "had" value of cell 1,4 

At time t = 0<> 1 each cell loads the "em" and "had" value from the calorimeter and sends the values to its 
East, West, and South neighbors. After disconnecting from the calorimeter and connecting to its North 
neighbor, the cell sends the value North. 

Each cell receives and routes values from other cells between time t = 17 <> 59. At time t = 56 all cells 
contain the sum of the 4 x 4 "em" and "had" matrix. This value is compared with a threshold. If the value is 
greater the tower id, the total 4 x 4 energy of the possible jet is sent to the North. 

12.3 DataWave Assembler Code and Detailed Description for the 8 x 8 Jet Finding Algorithm 

After the 4 x 4 sum has been totaled, the 8 x 8 algorithm routes the sums to their final destinations, the 
center of the 8 x 8 matrix (see Figure 27). Table 18 shows the fmal8 x 8 routing code, which can be inserted 
between line 56 and line 57 of the 4 x 4 jet finding code. 

Cell 0,2,3 ~"'. ~ C,II 0'2.711'"""1 
(4x4)(027) 1=66 

~ I~" ""'1 
( 4x4)( 0~2~3 rl~=~53:---';' 

N 

C.II 0.3.4 U 
e-

Cell 0.3.2 C.II 0,3,3 ~ 

~ 

1=80 ~ ,........lL. __ -, 
r-L---.II 
Cell 0,4.4 :. Cell 0,4,6 

'" Eo +(061) '='08 .... 
N Eo +(021) '='08 :g 

L--_-''''' E, +(023) '='09 X'----.r-' 
.: Eo +(063) t=110 ~ 
"-' ... (4x 067) 1=79 

I C.II 0.5.31 C.II 0.5.4 

(4x4) 063 1=93"-' :g 
o C.II 0,5.5 ! '-C.-II--0,-5,-'7 ., 
! 
;;;-

~ .... 
'" e -:;- L-_-,,-' 

'" (4x4)(063) 1=6 e-
~ 

.------'--. ~ 
t"') Cell 0.6." -

'" ! 

Cell 0,6,3 

'" L-__ ...J e 

.: (4x4 (067) t=53 

~E 0.6.' 

~ 

~ 1'°"""1 

Figure 27. Routing Data for Jet Finding In a 8xe Matrix. 

47 



TABLE 18. ROUTING CODE FOR THE DATAWAVE 8 x 8 JET FINDING ALGORITHM. 

ROUTING OF 4x4 JET VALUES 
57 n = e = s = W = r10 = alu + n ;d=53 receive "had" value of cell 0,5 

place sum of 4x4em + 4x4h in r10 
and send to all four neighbors 

58 nop ;d=54 
59 nop ;d=55 
60 nop ;d=56 
61 nop ;d=57 
62 nop ;d=68 
63 nop ;d=59 
64 nop ;d=60 
65 nop ;d=61 
66 nop ;d=62 
67 nop ;d=63 
68 nop ;d=64 
69 nop ;d=65 
70 W= s, s = e ;d=66 send "jet 4x4" value of cell 3,2 to w & 

send "jet 4x4" value of cell 2,3 to s 
71 e = n, n = w ;d=67 send "jet 4x4" value of cell 1,2 to e & 

send "jet 4x4" value of cell 2,1 to n 
72 nop ;d=68 
73 nop ;d=69 
74 nop ;d=70 
75 nop ;d=71 
76 nop ;d=72 
77 nop ;d=73 
78 nop ;d=74 
79 nop ;d=75 
80 nop ;d=76 
81 nop ;d=77 
82 nop ;d=78 
83 n = e, W= n ;d=79 send "jet 4x4" value of cell 3,3 to n & 

send "jet 4x4" value of cell 1,3 to w 
84 s=w, e= s ;d=80 send "jet 4x4" value of cell 1,1 to s & 

send "jet 4x4" value of cell 3,1 to e 
85 nop ;d=81 
86 nop ;d=82 
87 nop ;d=83 
88 nop ;d=84 
89 nop ;d=85 
90 nop ;d=86 
91 nop ;d=87 
92 nop ;d=88 
93 nop ;d=89 
94 nop ;d=90 
95 nop ;d=91 
96 w= s, s = e ;d=92 send "jet 4x4" value of cell 3,4 to w & 

send "jet 4x4" value of cell 1,3 to s 
97 e= n, n=w ;d=93 send "jet 4x4" value of cell 1,3 to e & 

send "jet 4x4" value of cell 1,3 to n 
98 nop ;d=94 
99 nop ;d=95 
100 nop ;d=96 

48 



101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 

nop 
nop 
nop 
nop 
nop 
nop 
nop 
nop 
nop 
alu = e + n 
alu = alu + w 
alu = alu + 5 

;d=97 
;d=98 
;d=99 
;d=100 
;d=101 
;d=102 
;d=103 
;d=104 
;d=105 
;d=106 receive "jet 4x4" value of cell 4,4 
;d=107 receive "jet 4x4" value of cell 0,4 
;d=108 receive "jet 4x4" value of cell 0,0 

Between time t = 53 and t = 108 all four 4 x 4 matrix sums are routed to the center cell of the 8 x 8 matrix. 
After all sums are received and the 8 x 8 sum is calculated, the 8 x 8 sum is compared with the threshold. If the 
value is greater than the threshold, it is assumed to be a jet and the trigger tower id and energy are sent to the 
North. 

12.4 Result of Analysis on the 4 X 4 and 8 X 8 Jet Finding in l-cell Per Chip Assembly 

The total time required in all the arrays (considering also the dependlency of data that must be exchanged 
between processors) in "T'cycles (1 cycle = 8 ns in the present DataWave version and 4 ns in the future 
version), is shown in Table 19. 

TABLE 19. TOTAL 4 x 4 AND 8 x 8 MATRIX ALGORITHM EXECUTION TIME FOR JET FINDING ON 
DATAWAVE. 

4x4 8x8 

Number of lines 73 129 

Finish routing "em" and "had" values 56 112 
(in clock cycles) 

Send tower id and energy 76 132 
(in clock cycles) 

The timing of these algorithms can be considerably shortened by dec:reasing the amount of time it takes to 
send and receive from different chips. For the routing of the 4 x 4 sums of the 8 x 8 jet-fmding algorithm 
(Table 18),70% of the lines contain "nops". If the "nops" could be deleted the time of the algorithm would 
dramatically decrease. 

For the information of the transverse and total energy, all the partial1energies from the 8 x 8 trigger towers 
should be sent to an extemallogic unit. In the case of the GEM experiment, the unit will total 20 times the 8 x 8 
partial sums, while in the case of the SDC experiment, the unit will total 56 times the 8 x 8 partial sums. 

49 



13.0 ''EM'' CLUSTER FINDING (ISOLATION) AND JET FINDING 
13.1 Data Wave Assembler Code and Detailed Timing Description 

The purpose of this algorithm is to show how different algorithms can be combined without the total time 
being the sum of the individual algorithms' sum, but only a fraction of it. In this study the two "em" sums + 
front-to-back + electron isolation + 4 x 4 jet fmding have been compiled together. The flow of the resulting 
algorithm is shown in Figure 28. 

As one can see, if a cell does not qualify as an electron in phase 1, the cell does not execute the code for the 
ratio or isolation, but only executes the jet-finding algorithm. However, if the cell passes the "em" threshold 
and front-to-back tests, the electron isolation test and the 4 x 4 jet fmding algorithms are executed in 
parallel. 

Phase 1: no 

Phase 2: no 

no 
Phase 3: 

no 

TII4II'. 

Figure 28. Flow Diagram Of The "Em" Cluster and Jet Finding on DataWave. 

13.2 Result of Analysis on ''Em'' Cluster Finding (Isolation) and Jet Finding 

Due to the length of the code and due to the fact that it is a combination of the ones described in the previous 
sections without repetition of common code, the code for this algorithm is not listed. However, the results of 
the execution time are shown in Table 20. 

TABLE 20. TOTAL DATAWAVE ALGORITHM EXECUTION TIME FOR TWO "EM" SUMS + FRONT-TO-BACK + 
ISOLATION + 4 x 4 JET FINDING. 

Minimum TIme Maximum TIme 
(in cycles) (in cycles) 

lines of code 154 

Finish time for decision to dismissing cell as a possible electron or jet 91 114 
-send out null values** 

Finish time for decision of possible electron 112 114 
-sends out the tower id + "em" value** 

Finish time for decision of possible 4 x 4 jet 94 114 
-send out the tower id + (4 x 4) energy sum 

Finish time for decision of possible electron and possible jet 112 116 
-send out the tower id + (4 x 4) energy 
-sum 

** TImings given are the time that the last value is sent from the cell 

Given that 1 clock cycle = 4 ns in the future version of the Data Wave chip, the longest time to make a 
decision using these algorithms would be 464 ns. Although this timing itself is not acceptable for the Level 2 
Trigger, with a few optimizations to the DataWave chip, the timing becomes feasible, or it can be useful as a 
preprocessor of the Level 2 trigger. 

50 



14.0 PROGRAMMABLE LEVEL 1 TRIGGER SUSTAINING 16 NS RATE 

14.1 Suggested Modifications of the Data Wave to Front-end-processor (FEP) 

From the experience of using the DataWave and from the specific lrequirements of the Levell trigger 
algorithms, we can suggest an architecture that will solve the problem of having a fully pipelined 
programmable Level 1 trigger sustaining the rate of 16 ns more efficiently. 

The 16 ns rate cannot be achieved by a single processor cell executing at a clock speed of 4 ns per clock 
cycle; however, a pipeline of 4 or more processors can allow each cell to execute an algorithm of 64 ns or more 
before outputting its result. It is possible to make use of the existing DataWave with the pipeline stages 
described in the conclusion (Table 30 and in Section 10.5), but the timing for routing data between cells and 
each cell's internal pipeline make the existing DataWave cell less efficient. With modifications to the 
Data Wave, the Data Wave will not only become more efficient, but also bc!come a suitable choice for the Level 
1 trigger. 

Figure 29 shows the suggested modifications of the DataWave to the! Front-end Processor (FEP) for the 
Levell trigger algorithms. 

North 
East 

South 

Bottom 
Figure 29. Front-End-Processor (FEP) Cell Architecture. 

Two new ports are added to the existing DataWave processor, one for the top and one for the bottom (in 
addition to the North, East, South, and West ports). These ports allow for easy data flow between different 
stages (see Figure 30), eliminating the routing of data to the different pipelined stages through more expensive 
and less reliable connectors and multiplexers. 

51 



Stage 4 

Stage 3 

Stage 1 
TIP-03059 

Figure 30. General Scheme of the Plpellned Parallel Processing Architecture using the FEP. 

Since the algorithms only use a small fraction (22%) of the Data Wave instruction set, the modified version 
will simplify the Data Wave instruction set by only allowing for instructions that are foreseen to be used in the 
triggering algorithms (see Table 21). This not only makes the PEP simpler than the Data Wave, but also more 
economical by dropping 78% of the instructions. 

52 



TABLE 21. FEP INSTRUCTION SET SUITABLE FOR TRIGiGER ALGORITHMS. 

nop no operation alu=A-B 

hi= B load hi from B bra branch 

10=B load 10 from B bmmi acc <0 

mid=B load mid from B bmpl acc>=O 

Aacc=+A*B beq alu=O 

"acc = acc + B bne alu <> 0 

Aacc = acc - B bmi alu < 0 

Aacc = acc + A * B bpi alu > = 0 

Aalu = A + B 

1\ NOTE: a port can be used in place of ACC, ALU, A, B except in when the ACC or ALU is used twice in the same instruction, 
which then it can only be used as an output and not as an input. 

In addition to reducing the instruction set, removing the pipeline of instructions (resulting in output that 
can be used after 1 clock cycle) and removing the delay of data between processors (data sent from one cell can 
be received after 1 clock cycle) will eliminate all nops from the algorithms. A modification in the number and 
size of registers is shown in Figure 29. It is foreseen that it might be necessary to receive more values from the 
calorimeter trigger tower, or that it might be necessary to have more calibration constants (for different Ec, 
~OT, Ex, By, etc.) or different thresholds. Therefore, the number of registers should be increased as well as the 
size of the registers (at present 12-bit) to fulfill the precision requirement of the Levell trigger. 

Due to the frequency of use of the 6 ports, a buffer at the receive unit for each port is needed that will allow 
data that is received from a port to be sent to both an internal unit (ALU, register, etc. ) and on the same internal 
bus be sent to another port. At present these operations require two different buses, and with the new ports the 
buses become overloaded. 

14.2 Differences on the Real-time Algorithm and Data Loading with Respect to the Earlier 
Algorithms 

Since the new assembler instruction of the FEP in the pipelined stages implementation is different from the 
original DataWave instruction set, the programmer is not limited by extra. cycles between the time a value is 
received, or between the time an ALUIMAC instruction is executed and the time its flags are set. Also, since 
the "branch" instructions will branch immediately, the three instructions following a "branch" statement are 
no longer executed. 

Due to the staged architecture design, the new algorithm must include pipelining data through the different 
stages of the processors (see Figures 31 and 32). 

At each input port of the FEP processor (as it is also on the present Data Wave design) there is a FIFO that is 
derandomizing the data from the calorimeter to the processor array. This will allow the calorimeter to send 
two data ("em" and "had") every 16 ns, and the processor fetching the values whenever the program executes 
the fetch instructions (at 4 ns clock cycles). The program execution at stage 1 must not only route the new 
incoming data from the calorimeter (one "em" and "had" value every 16 1:1s) to the next stage in the pipeline 
staging (stage 2), but must also execute its trigger algorithm in parallel. Alll processors must likewise pipeline 
data. When the stage 1 processor has finished its algorithm, it then sends its results to the stage 2 processor, 
which passes it on. At this point the stage 1 processor begins to re-execute: its algorithm: receiving the "em" 
and "had" values from the calorimeter and processing those values. 

The output results from all processors flow (like the input data) through the different processor stages. The 
last processor will output the results from all processors at a rate of 16 ns. 

53 



- Et 
- electrons 

~ 
- jets 

Stage 4 Stage 3 Stage 2 Stage 1 

r-t-

r-- • • • • ..-!!! 

• • • • 
.... r-

- t-

• • • • -• • • • 
- I-

• • • • -r l- • • • • 

- t- • • • • .-... 

r..- • • • • 
~ Z/~ 

Digital pipeline stages ~ 
(layers) 

r- r--.... 
n -
~ 

Raw data 

Oneop tical fiber 
ble 2) per 
sed input 

(see ta 
each u 
(.4A~ x .4 A11) total 

eter area 
ard 

calorim 
perbo 

--
'--

-

.... 

-

.... 

r-

" 

h 
'--

f-I 

II 
r-- f-I ......... 

- ] - .... 0 
0 
0 

r-- 0 - 0 n -- f-I 

.... h 
..... 
II 

r-
~ -- L 
-I -.... 

• (1Gbi tlfiber) 

~ .. 
Digital filter or digital sums for 
trigger tower segmentation 

TIP-03061 
Figure 31. One Board of the Programmable Level 1 Trigger with FEP Plpellned Array. 

54 



14.2.1 Assembler Code of the FEP (Modified DataWave) for the Section 10.0 Algorithm 

Table 22 shows the FEP assembler code for the two "em" sum + front-to-back algorithm (previously 
described using the DataWave assembler code in Sub-section 10.1) loaded with the same algorithm for 
finding electrons, but the routing between different stages (the top-to-bottom instruction) depends on its stage 
position. Assembler code for the routing between stages is shown for all stages needed for this algorithm. A 
graphical representation of the input and output data routing between the stages, the algorithm execution time 
at each stage, the latency between input data and output results and the data flow in the pipelined architecture, 
is shown in the timing diagram of Figure 32. 

All pipelining is explained in parenthesis after the "b=t" instruction. The number is the processor stage 
number where the data that is being pipelined will be processed or where the outputted data was originally 
sent from. The codes are as follows: 

a inputted "em" value 
b inputted "had" value 
c outputted tower id 
d outputted "em" sum (either 1 x 2 or 2 xl) 

- E t 
- electrons 
- jets 

< 
I Stage 41 1 Stage 31 I Stage 21 I stag~ ..... Raw d a t a 

I I I I ""IIIIiiii; 
I I I 1 

- - - - - I - - - - -1 - - - - - f- - - - - I..... 1m 0 n s <:: • INPUT 1 had 

I I I I,' 
Aig orith m I ! ....::..... •• T 1m 

1 
I ,;;;;;;;oo',!.... INPUT 2 h d 

execut}on 1 ~iL.-r-_t 0 
1 6 ns 

;'t~ ~~~~I:~:~::f~I:~!Nieu~rJ3jh~~ ns 
I ,S; INPUT ! !I~ 

\

tlm
l 
~e ~I - •• ~j." I' l! 'Ill 32 

1 r· ~ I I ~S !New t m 48 n s 
:_ :.!NPIH t I emmr~ 

144 

160 

176 

ns 

ns 

ns 

ns 

ns 

ns 

Figure 32. Timing Diagram of Four FEP Stages of a Plpellned Programmable Level 1 Trigger. 

55 



TABLE 22. NEW FEP ASSEMBLER CODE OF THE FOUR PIPELINED STAGE ALGORITHMS OF 
SECTION 10.0 • 

. cell 0,1,2 STAGE 4 STAGE 3 STAGE 2 STAGE 1 

1 loop: r1 =s=w=t'r14 (4a) (38) (2a) (1a) ; receive "em" value from calorimeter 
2 r2 = s = w = t' r15 (4b) (3b) (2b) (1b) ; receive "had" value from calorimeter 
3 r7 = r1 + n, b = t (1c) ; north 1 x 2 "em" sum 
4 rS = r2 + n, b=t(1d) ; north 1 x 2 "had" sum 
5 r9=r1+e b =t (4a) b = t (38) b = t (2a) ; east 2 x 1 "em" sum 
6 r10=r2+e b=t(4b) b = t(3b) b=t(2b) ; east 2 x 1 "had" sum 
7 alu = r7 - r5, b = t (2c) b=t(1c) ; compare 1 x 2 "em" sum to Threshold 
8 bpi north, b = t(2d) b=t(1d) 
9 alu = 19- r5, b = t (48) b = t(38) ; compare 2 x 1 "em" sum to Threshold 
10 bpi east , b = t(4b) b = t (3b) 
11 bra nosend, b = t(3c) b = t(2c) b = t (1c) 
12 north: acc = r7 • r5 b = t (48) b=t (3a) ;"em"' Threshold (1x2) 
13 acc = acc - rS, b = t (4b) b=t(3b) "em" • Threshold - "had" 
14 bmplsendn, b = t (3c) b = t (2C) b =t(1c) 
15 bra nosend2, b = t (3d) b = t (2d) b=t(1d) 
16 east: acc = 19' r5, b = t(3c) b = t (2c) b = t (1c) ;"em" • Threshold (2 x 1) 
17 acc = acc - r10, b = t (3d) b =t (2d) b=t(1d) ;"em" • Threshold - "had" 
18 bmpl sende b = t (4a) 
19 bra nosend3, b=t(4b) 
20 sendn:nop, b = t (3d) b=t(2d) b = t(1d) 
21 nop, b = t(48) 
22 nop, b = t(4b) 
23 b=23 (4c) (3c) (2c) (1c) ; send out tower id 
24 b=r7, bra loop (4d) (3d) (2d) (1d) ; send out 1 x 2 "em" energy 
25 sende:nop, b = t (b) 
26 b=23 (4c) (3c) (2c) (1c) ; send out tower id 
27 b = 19, bra loop (4d) (3d) (2d) (1d) ; send out 2 x 1 "em" energy 
28 nosend1 :nop, b = t (1d) 
29 nosend2:nop b = t (4) 
30 nop, b=t 
31 nosend3:b = 0 (4c) (3c) (2c) (1c) ; send out null value 
32 b = 0, bra loop (4d) (3d) (2d) (1d) ; send out null value 
.end 

The tower id + "em" energy is sent out at t = 31 and 32 (56 - 60 ns after the processor fetches the data). 

14.2.2 New FEP Assembler Code to Realize Trigger Tower Segmentation 

In the case that 4 "em" and 2 "had" values must be sent into the PEP pipeline stages, PEP chips that will 
sum these values into an "em" and "had" sum must be added in front of the processor pipeline stages (see 
Figure 31). The code for this chip is shown in Table 23. This code assumes that digitized values from the 
calorimeter have been corrected (linearization, pedestal subtraction and calibration constants in external 
look-up table). 

TABLE 23. NEW FEP ASSEMBLER CODE FOR REAUZING TRIGGER TOWER SEGMENTATION IN ONE 
STAGE. 

1 
2 
3 

4 

r1=w+n 
r2 =W+ n, 
r3=w+ n, 

; fetch two "em" values & sum 
; fetch "em" values & sum, store first sum in acc 
; fetch "had" values & sum, add two "em" sums 
; and send "em" result to the first processor stage 
; send "had" result to the first processor stage 

Since the values are multiplied by a calibration constant in the processor pipeline, there is no need to do that 
in this chip. 

In the case it is desired to realize a flexible trigger tower segmentation with each received digital value from 
the calorimeter corrected by pedestal subtraction, the code for the processor cells in the two stages is shown in 
Table 24 and Table 25. 

56 



TABLE 24. NEW FEP ASSEMBLER CODE FOR THE CELL OF THE FIRST STAGE OF THE TOWER 
SEGMENTATION. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

alu = t" r10 
alu = alu + n 

loop: alu = alu + e 
b = alu + t 
alu = n + r11 , s=t 
b = alu + e, w = n 
s=e 
W= t 
s=n,alu=t+r10 
w = e, alu = alu + n, bra loop 

; "em1" + ped (em) 
; "em2" 
; "em3" 
; "em4", send to "b" thl~ result of "em" sum 
: "had1" + ped (had) {"em1"} 
; "had2" {"em2"}, send to "b" the result of "had" sum 
; {"em3"} 
; {"em4"} 
; {had1} 
; {had2} 

TABLE 25. NEW FEP ASSEMBLER CODE FOR THE CELL OF THE SECOND STAGE OF THE TOWER 
SEGMENTATION. 

1 
2 
3 
4 
5 
6 
7 

loop: b = t 
alu=n+r10 
alu = alu + e, b = t 
alu = alu + n 
b = alu + e 
alu = n + r11 
b = alu + e, bra loop 

; send to "b" the result of "em" sum from 1 st stage 
; "em1" + ped (em) 
; "em2", send to lib" thl~ res. of "had" sum from 1st stage 
; "em3" 
; "em4", send to "b" thl~ res. of "em" sum from 2nd stage 
; "had1" 
; "had2", send to "b" the res of "had" sum from 2nd stage 

14.2.3 New FEP Assembler Code of a Digital Filter Applied to C~nlorimeter Signals 

To sustain the 16 ns rate, the digital filter must be comprised of two PEP processors (see Section 7 for more 
information on digital filters). The code for both stages are listed in Tables 26 and 27. 

TABLE 26. NEW FEP ASSEMBLER CODE FOR THE CELL OF THE FIRST STAGE OF THE DIGITAL FILTER. 

1 acc = t .. r11 fetch a value and multiply it by a coefficient -> acc 
2 loop: acc = acc + n .. r12 ; add a value" a coefficient to the acc 
3 acc = acc + e .. r13 
4 acc = acc + t .. r14 
5 b = acc + n * r15, s = t 

6 
7 
8 
9 

w=n 
s=e 
w=t 
acc = t * r11, s = n, bra loop 

; send the result of the filter south, send the first value 
; received from the next group to the bottom 
;. NOTE: both south and bottom are connected to the 
; second chip of the dilgital filter 
; routing all of the next group of values to bottom 

; begin filtering values in this cell, send the last value 
; of the last group to bl:>ttom, and repeat the filtering 
; algorithm 

TABLE 27. NEW FEP ASSEMBLER CODE FOR THE CELL OF THE SECOIND STAGE OF THE DIGITAL FILTER. 

1 

2 
3 
4 
5 

loop: acc = n .. r11 ,b = t 

acc = acc + e * r12 
acc = acc + n" r13 
acc = acc + e * r14 
b = acc + n * r15, bra loop 

; fetch a value from thl~ first chip and multiply it by a 
; coefficient -> acc, send the result of the first chip to 
; the first stage of the processor pipeline 
; add a value * a coefficient to the acc 

; send the result of the! filter south, and branch to the 
; beginning of the pro~,ram to wait for data from the top 

The first chip received the tower's five inputs from the calorimeter into ports: Top, North and East. After 
the values are filtered through the algorithm, the result is sent to the next stage through the Bottom port. 

57 



at this time the chip needs to fetch another set of data. Since the first chip can not process this set of values until 
the next clock cycle, the values are passed to the second chip, which filters the values and sends its result and 
the result of the first chip through its Bottom port to the first stage of processors. 

As one can see from Table 27, an output from the second chip occurs every four clock cycles (1 clock cycle 
= 4 ns) and thus sustains the 16 ns rate. 

14.2.4 New FEP Assembler Code of the Two "Em" Sum + Front-to-back + Jet Finding 
Algorithm 

This code uses the code in Table 22 (Sub-section 14.2.1) for the two "em" sum + front-to-back, but 
changes the algorithm for isolation and jet-finding from the one described in Section 13. The flow of the 
program is modified from the previous algorithm and is shown in Figure 33. 

Phase 1: no 

Phase 2: no 

Phase 3: no 

Figure 33. Flow Chart of the Two "Em" Sum + Front-ta-back + Isolation + Jet Finding 
(FEP Plpellnable Version). 

58 

no 

TIP·03109 



The earlier code was limited by cells waiting for input from their neighboring cells for both the isolation 
and jet-finding algorithms. Because of this wait, it was more efficient to send data one-by-one to each cell, 
only adding the values that needed to be added (all values except the 2 x 2 "em" values). Because of this flow 
of data, the algorithm did not have to calculate the 2 x 2 "em" sum and subtract it from 4 x 4 sum; once the cell 
added the last data set, the sum was already the (4 x 4) - (2 x 2 "em"). 

Since this limitation does not apply to the FEP processor, a new algorithm (see Figures 34 and 35) was 
developed to take advantage of the PEP speed. 

Each cell begins the isolation algorithm by first summing the "em" and "had" in its own tower and sends 
the resulting sum to the South (t = 13). On the next cycle each cell receiv(:s the energy sum of its northern cell 
and calculates the I x 2 sum, which it sends East. At time t = 15, each cell receives the I x 2 sum from the East 
and adds its own 1 x 2 sum creating the 2 x 2 sum for that cell. After the 2 x 2 sums are calculated, the sums are 
sent to the middle cell, which adds them together to form the 4 x 4 sum, see Figure 34. 

The cell now needs to subtract the 2 x 2 "em" sum. It begins by sending its own "em" value South (see 
Figure 35). After a cycle it receives from the North, its northern cell's "em" value, which it adds to its own to 
form a 1 x 2 "em" value and sends it East. At the next cycle the cell receives the I x 2 "em" sum from the West 
and adds it to its own, creating the 2 x 2 "em" sum, which is then subtractl~d from the 4 x 4 sum. At time t = 24, 
the (4 x 4) - (2 x 2 "em") is compared with the threshold. 

Since each cell already has the 4 x 4 value, for the jet algorithm it only needs to compare the 4 x 4 sum with 
the threshold and test the result. 

The new code for the two "em" sum + front-to-back + isolation + jet finding is listed in Table 29. Since the 
code must check for all these criteria, at the end of its algorithm, each cell outputs a code that has encoded the 
result of its test. The output codes are listed in Table 28. 

TABLE 28. OUTPUT CODES FOR TWO "EM" SUM + FRONT-TO-BACK + ISOLATION + JET-FINDING 
ALGORITHM ON FEP. 

I two "em" sum (north 1 x 2) > threshold 
2 two "em" sum (east 2 x I) > threshold 
4 "had"f'em" (north I x 2) < threshold 
8 "had"f'em" (east 2 x 1) < threshold 
16 isolation achieved 
32 possible jet found 

Combinations of these codes are allowed. For example, a cell may return a code of 37 (1 + 4 + 32) stating 
that the possible electron was found, but it was not isolated from surrounding energy and that the cell may be 
part of a 4 x 4 jet. 

Each cell also outputs the 4 x 4 sum which will be used to calculate the E, (78 values should be added 
externally in the case of GEM calorimeter and 224 values in the case of SDC experiment) 

The assembly code for finding E" electrons, isolation and jets is shown in Table 29. Due to lack of space, 
only the code for the stage 1 processor is shown. The numbers on the left of the algorithm are the instruction 
line numbers, while the right-most number is the clock cycle the instruction is executed (assuming the first 
instruction is executed at time t = 0). 

All lines that refer to the outputted codes (defmed in Table 28) are mstrked with a "A". All stage pipelining 
code is explained to the right of the comments in parenthesis (using the symbols as explained above, in Table 
22, Sub-section 14.2.1). 

59 



r-----------------------------~ r-----------------------------, .............. 
Cell 0,0,2 Cell 0,0,3 Cell 0,0,4 Cell 0,0,5 

\11 \11 \11 \1 
Cell 0,' ,2 ..;... 1 x2 sum Cell 0,' ,3 ";'~X2 s4ni Cell 0,' ,4 ..;... 1 x2 sum ,....C--'e .... "-0,-'-,5-. 

""> -:-- ; ;. -;-
: I I . 

2x2 sum _...... . I I 2x2 sum 

: 2x2 sum: : : : : 
• •. : I I : . .............. . ... i'~""" I I .............. . ............ . 

L _____________________ ~~_~~~ __ ~ L _____________________________ ~ 

2x2 sum 
r---------------~~~~~,r.~~~~~~~~~, . . 

r-----------------------------~ 
Cell 0,2,2 

\11 

Cell 0,2,3 

4x4 sum 

\I 

I '2x2 su~ 
2x2 sum 

Cell 0,2,4 Cell 0,2,5 

\1/ 
Cell 0,3,2 ,.;.. 1 x2 :sum Cell 0,3,3 .- 2k Is4ni Cell 0,3,4 ;.. 1 x2 sum Cell 0,3,5 

-;- - :ii: ~ 
I I ........... ___ -"""'~ . : I: 2x2 sum 

: 2x2 ~ul'Ti'"'" : I I : 

2x2 sum 

. . I I . . 
.............. • .................... I I· ............ · ............. . 

L ________________________________ ~ L _____________________________ ~ 

Figure 34. Routing 4 x 4 Sum for Electron 180latlon and 4 x 4 Jet Finding (FEP). 

Cell 0,1,3 Cell 0,1,4 

W 
\!/ 

Cell 0,2,3 -- Cell 0,2,4 ..... 

2x2 sum 

Figure 35. Routing 2 x 2 "Em" for Electron Isolation and 4 x 4 Jet Finding (FEP). 

60 



TABLE 29. NEW FEP ASSEMBLER CODE OF THE PIPELINED ALGORITHM TO FIND ET, ELECTRONS, 
ISOLATION AND JETS • 

. cell 0,1,2 

1 lOOp: r1 = s = w = t * r14 ; receive "em" value from calorimeter 
2 r2=s=w=t*r15 ; receive "had" value from calorimeter 
3 r7 = r1 + n ; north 1 x 2 "em" sum 
4 r8=r2+n ; north 1 x 2 "had" sum 
5 r9 = r1 + e, b=t ; north 2 x 1 "em" sum (2a) 
6 r10 = r2 + e, b = t ; north 2 x 1 "had" sum (2b) 
7 alu=r7-r5 ; compare 1 x 2 "em" sum to Threshold 
8 bpi north, alu = r9 - r5 ; compare 2x1 "hlld" sum to Threshold 
9 bpi east ,b=t (3a) 
10 bra nosend1, rO = 0, b=t (3b) 
11 north: acc = r7 * r5, rO = 1 b=t ;""em" • Threshold (1 x 2) (3a) 
12 acc = acc- r8 b=t ; "em" * Thresholcl - "had" (3b) 
13 bmplsendn 
14 bra nosend2 
15 east: acc = r9 * r5, rO = 2 b=t ;""em" • Threshold (2 x 1) (3b) 
16 ace = acc - r10 ; "em" * Threshold - "had" 
17 bmplsende 
18 acc = r1, bra iso, b=t ; set ace="em" for iso algrthm (4a) 
19 sendn: rO = rO + 4 ·11 , 
20 acc = r1, bra iso, b=t ;set ace="em" for iso algrthm (4a) 
21 sende:rO = rO + 8, acc = r1, bra iso, b = t ;"5et ace="em" for iso algrthm (4a) 
22 nosend1 :nop 
23 nop 
24 nosend2:rO = 0, acc = r1, b = t ; set ace="em" fos iso algrthm (4a) 
25 iso: s=acc=acc+r2 b=t ; add "had" and selnd s (4b) 
26 w=acc+n ; add n tower for 1 x 2 sum, send w 
27 n=s=acc+e ; add e 1 x 2 for 2 x 2 sum, send n 
28 w=e=s b=t ; routing 2 x 2 sums (5a) 
29 w=e = n, b=t ; routing 2 x 2s, stc)re nw 2 x 2 sum (5b) 
30 alu=e+w ; add sw2x2 sum to acc 
31 alu = alu +w ; add ne 2 x 2 sum to acc 
32 r5 = alu = alu + e, s =acc = r1, b=t ; add nw 2 x 2 to a.cc, "em"->alu (68) 
33 s=acc=acc+n b=t ; add n "em" -> alll (6b) 
34 rS=acc+e ; add e 1 x 2 "em" -> alu 
35 alu=r5-rS ; (4x4)-(2x2) 
36 alu = alu- r3 b = t ; (4 x 4) - (2 x 2) - Threshold (7a) 
37 bmisendiso b=t (7b) 
38 bra cont 
39 sendiso:rO = rO + 16 ;" 
40 cont: alu = r5-r4 ; compare 4 x 4 with jet value 
41 bpi jet, b=t (8a) 
42 bra send, b=t (8b) 
43 jet: rO=rO+32 b = t ;" (8b) 
44 send: b = r ;"5end out code 
45 b= r5 ; send out 4 x 4 energy value 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
8 
9 

10 
11 
9 

10 
11 
12 
11 
12 
12 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
26 
27 
28 
29 
29 
30 
31 

The result of the algorithm is a fully programmable 8-processor-stage design for the Levell trigger which 
identifies possible electrons and jets as well as outputs 4 x 4 values for (~alculating the Er. 

61 



15.0 CONCLUSIONS 
The simulation of trigger algorithms on the Data Wave chip has demonstrated that a processor even simpler 

than the Data Wave (implementing only 20% of the instructions, making it both more economical and easier to 
program) can offer the possibility of a flexible programmable Levell trigger (sustaining 16 ns clocking). 

The new discovery, as a result of this study, was that the combination of very few instructions, a number of 
simple algorithms, and specific hardware can meet the needs of the Level 1 trigger. Since modifying the 
existing Data Wave can be shown to allow for all three of these conditions, the most natural way to implement 
the fully-programmable Levell trigger would be a modification of the existing DataWave chip. 

TABLE 30. RESULTS OF A FULLY PROGRAMMABLE LEVEL 1 TRIGGER SUSTAINING 16 NS CLOCKING. 

PRESENT DATAWAVE MODIFIED DATAWAVE 

Algorithm Algorithm time (In Number of Algorithm time (In Number of 
clock cycles) processor stages clock cycles) processor stages 

Flexible trigger tow- - - 4 1 
er segmentation 7 2 

Filter 10 1-2 6 2 

3 x3 cluster 50 13- 22 6-
Identification 
(1-cell per Chip) 

3 x 3 cluster 72 18- 26 7-
Identification 
(16-cells per chip) 

"em" < threshold 43 11 15 4 
+ front-ta-back 

electron Isolation 6S 11* 17 S-

jet-finding (4 x 4) 6S 17- 14 4-

Jet-finding (8 x 8) 120 30- 20 8-

Ell ETOlI Ex. Ey SS 16- 11 3-

"em" < threshold 116 29- 31 8 
+ front-to-back 
+ Isolation 
+ jet-finding (4 x 4) 

*Note: Estimated number of stages. 

With a FEP processor running at 250 MHz, an algorithm for two "em" sum + front-to-back could be 
implemented in 4 stages (sustaining the rate of 16 ns) resulting in a total of 5000 processors for the GEM 
experiment and 14,336 for the SDC (for the "em" + front-ta-back + isolation + jet-fmding algorithm the 
number of processors will double). The design of this processor is not more expensive than a standard ASIC; 
thus this solution is not only flexible, but can be affordable. 

The flexibility of this solution can be demonstrated by the ease of programming on a Data Wave or FEP 
cell. Any physicist can change the algorithms of the FEP by coding a simple program, consisting of less than 
64 operations and using an instruction set of 17 instructions. Due to this simplified instruction set, the effort to 
learn to program the FEP is minimal. 

Experience shows that trigger algorithm tuning usually begins after acquiring a few full events. The 
possibility of a flexible, programmable system at an affordable cost (compared with cabled logic), makes 
exploring this solution not only to be beneficial to the GEM and SDC experiments, but also to other 
experiments as well. 

62 



ACKNOWLEDGEMENTS 

We would like to acknowledge Jim Siegrist, Craig Blocker, Pal Trivan, and Ed Wang for their 
encouragement, suggestions, constructive criticism, and helpful proofmading. 

63 



REFERENCES 

1. D. Crosetto, "A Fast Cluster Finding System for Future HEP Experiments," Nuclear Instruments and 
Methods in Physics Research, A311, (1992),49-56. 

2. N. Bains et al., "The U A 1 Upgrade Calorimeter Trigger Processor," Nuclear Instrument and Methods in 
Physics Research, A292 (1990) 401-423. 

3. N. Ellis, "Eagle TriggerlDAQIFE Group." CERN DAQ-TR-109 20/2/92. 

4. B. Aubert et aI., "Liquid Argon Calorimeter with LHC-Performance Specifications, 
CERNIDRDC/90--31. 

5. Solenoidal Detector Collaboration. Technical Design Report, SDC-92-201, 1 April 1992. 

6. D. Marlow, Private Communications. 

7. Gamma (photons), Electron and Muon Letter of Intent. SSCL-SR-1184. GEM TN-92-49. 
30 November 1991. 

8. G. JarlskogandD. Rein. "Large Hadron ColliderWorkshop," CERN 90--1O,ECFA 90--133. Vol. I, II, III 
Aachen, 4-9 October 1990. 

9. W. H. Smith et al., "Isolated Electron Pattern Logic Design and Performance at SSC," Solenoidal 
Detector Notes, SDC-91-OOO87. November 11,1991. 

10. A. J. Lankford, "Issues for Trigger Processing at High Luminosity Colliders," ECFA Study Week on 
Instrumentation Technology for High-Luminosity Hadron Colliders, Barcelona 14-21 
September 1989. 

11. K. Caesar, U. Schmidt, S. Mehrgardt and T. Himmel, Elektronik Magazine 12 (June 8,1990). 

12. D. Crosetto. "Levelland 2 Trigger Architecture, Data Acquisition/Compaction System," 
North-Holland Physics Publishing. Proceedings of the 3rd International Conference on Advanced 
Technology and Particle Physics. Como, Italy, 22-26 June, 1992. JliruPH-B. Ed. E. Borchi et al. 




