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Abstract 

Sextupole vibration due to ground motions in the sse may resonate with the beam 

causing exponential emittance growth. The growth rate is proportional to the spectral 

density of vibrations at the double sideband betatron frequency. The estimates for the 

SSC show that this effect is much smaller than th~ quadrupole vibrations with the same 

amplitude. 



1.0 INTRODUCTION 
The magnet vibrations in the SSC and their influence on the beam emittance have been 

studied in a number of works. 1- 4 The largest attention has been given the problem of 

quadrupole vibrations in the transverse direction that perturbs the dipole magnetic field 

on the orbit. This paper addresses a similar problem related with sextupole vibrations. A 

displaced sextupole perturbs the quadrupole component of the magnetic field and changes 

the lattice of the ring. The sextupoles in the collider are used to correct chromaticity of 

the machine. 

Preliminary estimations of the effect have previously been done by A. Chao and 

D. Douglas. 5 

In this paper we study in detail random vibrations of a single sextupole in the transverse 

direction and shows that it causes an exponential. growth of the emittance of the beam 

with the growth rate being proportional to the spectral density of vibrations at the double 

betatron frequency. The estimate for the collider parameters shows that, in terms of the 

amplitude of the vibrations, the emittance growth caused by vibrations of the sextupoles 

is much smaller than that of the quadrupoles. 

2.0 SEXTUPOLE VIBRATIONS 

A displacement of a sextupole in the transverse direction perturbs the quadrupole com

ponent of the magnetic field of the closed orbit. The equation that describes how particle 

transverse position evolves with time in the presence of such a perturbation has the fol

lowing form 

y" +K(s)y = -6K(s,t)y, (1) 

where y is the position offset of a particle, K(s) = eB'/Pc and 6K(s) is caused by the 

displacement of a sextupole, 6K(s,t) = h(s)eB"D.(t)/Pc, where D.(t) is the sextupole 

displacement, B" is the second derivative of the magnetic field in the sextupole and h( s) 

denotes the function that is equal to unity insid~ the sextupole and takes zero values 

outside of it. The function h( 8) indicates that the gradient of the magnetic field on the 

orbit is perturbed only inside the sextupole. 

Since the length of the sextupole I is much smaller thaIJ. the betatron period, the func

tion h( s) can be replaced by a delta-function (thin lens approximation) according to 

1 
Th(s) -+ c5(s - so), 

where So designates the sextupole position. Putting Eq. (~!) into Eq. (1) yields 

D.(t)B"le 
y" + K(s)y = - Pc 6(s - so)y. 

(2) 

(3) 



It is convenient to transform from y and s to ne'Y variables .,., and .,p where .,p( s) is the 

betatron phase and.,., = (3-1/2y. From Eq. (3), using the relation d.,plds = 1/{3, one finds· 

~.,., A(t)B"Z{3oe 
d.,p2 +.,., = -.,., Pc 

00 

L 6(.,p - mp. - .,po), 
m=-oo 

(4) 

where (3o and .,po refer to the position of the sextupole and the sum on the right-hand side 

takes into account that due to periodicity of the problem the values of .,p which differ by p. 

correspond to the same position on the orbit. Each delta-function in Eq. (4) represents a 

kick that the particle experiences during successive passes through the displaced sextupole. 

In Eq. (4), the dimensionless parameter 

A(t)B"Z{3oe 
e = ---"~~-

Pc 
(5) 

gives a measure of the effect under consideration. In an analytical approach, the simplest 

way to find the motion governed by Eq. (4) with a random function A(t), is to calculate 

the averaged time derivative 

(6) 

where N is the number of turns and the angular brackets stand for the averaging. Notice 

that the quantity .,.,2 + ~2 is proportional to Courant-Snyder parameter and is conserved 

in the absence of the perturbation. The calculations in Appendix A show that so defined 

'Y does not depend on time and is given by 

(7) 

where 51::!. is the spectral density of the function A(t) and n is the revolution frequency. 

So defined 'Y, however, differs from a standard definition of the emittance growth rate ac
cording to which 'Y should be giveJ:). by din (.,.,2 + ';'2) IdN (the averaging is performed before 

taking the logarithm). Numerical simulations showed that the quantity din (.,.,2 + ~2) IdN 

is approximately two times larger than that given by Eq. (7). To perform numerical esti

mates of the effect, we will use for 'Y Eq. (7) multiplied by a factor of 2. 

For the SSC, according to collider specifications, the product Bill for the sextupoles 

located near the focussing quadrupoles is equal to 2.4 . 103 Tim. These sextupoles make 

a dominant contribution to Eq. (7), because the beta-function at their positions reaches 

its local maximum, {3o = 305 m. Taking the nominal collider parameter Pc = 20 TeV and 
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remembering that there are about 400 sextupoles* ;1ear the focussing quadrupoles in the 

ring we will require that after 10 hours of operation the emittance must not increase by 

more than 10%. This gives the following condition for the spectral density of vibrations 

00 • 2 
'" Sa[(211 - n)O] < 3.10-6 mlcron 
L...t Hz 

(8) 
m=-oo 

Typically the vibration spectrum rapidly falls with the frequency. That means that the 

dominant term in the sum of Eq. (8) is the first one. It corresponds to the vibration 

frequency equal to the sideband of the double betatron frequency (for a fractional part of 

tune 0.28 this frequency is 1.9kHz). The condition of Eq. (8) is much less stringent than 

that of the analogous requirement for the quadrupole vibrations.3.4 

• In the range of 1 kHz each of the sextupoles will vibrate independently so that their contributions have to 
be summed. 
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APPENDIX A 

PARAMETRIC RESONANCE OF A RANDOMLY DRIVEN OSCILLATOR 

Consider first an oscillator whose frequency randomly fluctuates around a given value. 

We assume that the amplitude of the fluctuations is relatively small. The behavior of such 

an oscillator is governed by the following equation. 

(AI) 

where the unperturbed frequency of the oscillator is chosen as unity and c( t/J) is assumed 

to be a stationary random function with given statistical properties, Ic( t/J ) I ~ l. 
It is convenient to transform from 1] to new complex variable z, 

z = 1] - 't1], (A2) 

where the dot stands for the differentiation with respect to t/J. The equation for z takes 

the form 
., I. ( *) z - 'tz = --'tc Z + z 

2 
(A3) 

where z* is the complex conjugate of z. Now, we define the modulus r and phase ¢> of z, 

z = rexp(i¢». The equations for r and ¢> follow from Eq. (A3), 

. I . 2.J.. r = -'2cr Sln '1-', 

. I . 
¢> = I - '2c(I + cos2¢». 

(A4) 

(A5) 

An important observation is that Eq. (A5) does not contain the variable r. That allows 

us to approximately integrate it using the smallness of c. In the lowest approximation we 

neglect c-term to obtain ¢> = t + ¢>o where ¢>o is the initial phase. Putting this into the 

argument of cosine in Eq. (A5) one finds 

. 1 
¢> = 1 - '2c (1 + cos 2( t/J + ¢>o)) . (A6) 

Integrating Eq. (A6), we obtain an expression for ¢> that is valid through the first order, 

1 ftP 
¢> = t/J + ¢>o - 2 10 c( t/J') (1 + cos 2( t/J' + ¢>o» dt/J'. (A7) 

Now, putting Eq. (A 7) into Eq. (A4) and expanding the sine in small parameter cone 

finds 

d~r 1. 1 ftP 
dt/J = -'2c(t/J)sm2(t/J + ¢>o) + '2c(t/J)cos2(t/J + ~o) 10 c(t/J') (1 + cos2(t/J' + ¢>o)) dt/J'. 

(AB) 



Averaging Eq. (AS) with the use of (c) = 0, and ke~ping only terms that do not oscillate 

with time yields 

(
dInr) 1 ftP ~ = 2"cos2(tP + </>0) 10 Kt;(tP - tP') (1 + cos2(tP' + </>0)) dtP', (A9) 

where Kt; is the correlation function, 

Kt;(T) = (c(tP)c(tP - T)). (A10) 

Introducing the new integration variable T = tP - tP' and noting that for large tP the 

integration in Eq. (A9) over T can be extended up to infinity one finds 

(d~r) = ~ cos2(tP + </>0) 100 

Kt;(T) (1 + cos2(tP - T + </>O))dT. (All) 

Now, keeping only the terms in Eq. (All) that do not oscillate with time we have 

(d~r) = ~ 100 

Kt;( T) COS.2TdT = ; St;(2), (A12) 

where St; is the spectral density of c( tP) related to the correlation function Kt; by the 

following equations 

(A13) 

Argument 2 of the spectral density St; in Eq. (A12) appears because the frequency of the 

oscillator in our units is equal to 1. In dimensional units, St; has to be computed at the 

double frequency of the oscillator. This is a simple manifestation of the fact that the 

growth of amplitude of the oscillator (1) occurs as a result of parametric resonance. 

Using the same technique as above, a kinetic equation can be also derived for the evo

lution of the distribution function per, t) over the amplitudes r. It has the following form 

8p 1r 1 8 a8p 
otP = 16 St;(2); Or r or' (A14) 

We do not present here the derivation of Eq. (A14) because it can be obtained as a 

particular limit of a more general theory of synchrotron oscillations in the presence of rf 

noise.6 It is worth noting that a simple transformation of variable, r ~ e = 2t + In r, 

converts Eq. (A14) to the diffusion equation with a constant diffusion coefficient, 

op 1r 02p 
otP = 16St;(2) oe2 ' 

(A15) 

that can be analytically solved for any initial distribution function. 



To proceed to "accelerator" case given by Eq. (A:1), note that it differs from Eq. (AI) 
00 

only in that instead of the random function e(.,p) we now have the product e(.,p) E b(.,p-
m=-oo 

.,po - mp) where c(.,p) is again assumed to be a random function with a given spectrum. 

Performing calculations in the same fashion as above one can reproduce Eqs. (AI2), (AI4) 

and (A15) in which S~(2) should be replaced by a sum, 

00 

S~(2) ~ p-2 L S~(2 - m/l~). (AI6) 
m=-oo 

In dimensional units, the result takes the form 

(A17) 

where N = .,p / p is the number of turns, n is the revolution frequency and S f:l is the spectral 

density of the function ~(t). 
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