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Tune Shift Effect Due to the 
Multipole Longitudinal Periodic Structure 

in the Superconducting Dipole Magnets 

G. Lopez and S. Chen 

Abstract 

SSCL-550 

Neglecting the curvature terms, the magnetic field and the vector potential which 

generate the multi pole longitudinal periodic structure in a superconducting dipole magnet 

are found. Using this field and the standard Hamiltonian perturbation theory, the tune 

shifts due to this periodic pattern in the superconducting dipole magnets are estimated 

for the Superconducting Super Collider (SSC) machine. The results suggest that this tune 

shift is very small for most of the multipoles and could be ignored for the SSC. However, 

for the quadrupole longitudinal oscillation pattern, the tune shift relative to the amplitude 

of this oscillation could be of the order of 10-5 and may not be ignored. 
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1.0 INTRODUCTION 

The discovery of the sextupole, dipole, and quadrupole longitudinal periodic structure 

due to the persistent current field in the HERA superconducting magnets at Deutsches 

Elektronen-Synchrotron1 (DESY) raised many questions about the possible effects of this 

pattern in the dynamic of the beam. Experiments suggest that this periodic pattern is due 

to the strand pitch in the superconducting (sc) cable, and measurements indicate that its 

wavelength is approximately equal to this strand pitch (9.1 ± 0.5 cm for the outer coil of 

the SSC sc dipoles). The sextupole pattern has already been confirmed in a short 50-mm 

R&D dipole magnet;2 the effect on the dynamic of the SSC beam must be confidently 

estimated, even if it is known already that the effect must be small. (At Fermi National 

Accelerator Laboratory, the Tevatron was designed-and works-without any knowledge of 

this matter,3 although small variations have been observed.4 ) Obtaining detailed dynamic 

effects would require a 3D-Tracking Code. Unfortunately, there is no such code at this 

time, nor is one likely in the near future. However, it is possible to see this effect by 

calculating the tune shift through the Hamiltonian formalism. 

To calculate the tune shift, the superconvergent Hamiltonian perturbation methodS is 

used. First, the vector potential is calculated through the expression of the magnetic field, 

which is obtained from the scalar potential approach (the curvature is neglected). Then, 

using the lowest order in the vector potential and the nonrelativistic Hamiltonian, the tune 

shift is calculated by applying the standard canonical transformations and averaging. 6 

2.0 MAGNETIC FIELD AND VECTOR POTENTIAL 

From Maxwell equations, the relation between the vector potential, A, and the mag­

netic field, B, and the relation between the magnetic field and the scalar potential, <1>, are 

given7 by 

B=VxA (1) 

and 

B = -V<I> . (2) 

Because the magnetic field will be calculated in the vacuum beam pipe, the following 

differential equations are satisfied: 

VxB=O (3a) 

and 

V·B=O. (3b) 



Therefore, the scalar potential must satisfy the Laplace equation: 

(4) 

2.1 The Scalar Potential 

Neglecting the curvature effect, the Laplacian in the coordinate system based on a 

closed planar reference curve is similar to a cylindrical coordinate and can be written as 

(5) 

where s is the longitudinal coordinate, and r = vi x 2 + y2 measures the radial displacement 

with respect to the close planar reference curve. Suppose there is a multipole of order m 

which is oscillating along the s-axis with a periodic structure given by v(s). Furthermore, 

assume the next anzat for the scalar potential: 

(6) 

where the functions Vm ( s) are ar bi trary at the moment. The reason to propose this anzat 

is clear: The m-multipole symmetry must be preserved. Substituting Eq. (6) in Eq. (5) 

and rearranging terms, the following expression is obtained: 

(-1 + m 2)vlr-1 + (_22 + m 2)v2 + [(_32 + m 2)v3 - vl]r+ 

+ L {-[(n + 2)2 + m2]Vn+2 - vn } rn+ 
n<m 

+ {[-em + 2)2 + m2]Vm +2 - Vm - v} rm+ 

+ L {[-en + 2)2 + m 2]Vn+2 - Vn } rn = 0 , 
n>m 

(7) 

where { is the second derivation of the variable ~ with respect to s. It is always possible 

to make the following selection: 

Vj = 0 , for j < m (8a) 
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and 

Vm(S)=V(S) , (8b) 

which leads to 

2v 
(9a) 

Vm +2 = [-em + 2)2 + m2] 

and 

Vn 
Vn+2 = [-en + 2)2 + m 2] , for n > m . (9b) 

From Eqs. (9a) and (9b), it follows that 

(10) 

where v(2k) represents the 2k-derivative of v with respect to s, and n represents the product 

of the elements. In this way, the coefficients of Eq. (6) are determined, and the solution is 

given by 

(11) 

2.2 Magnetic Field and Relation with Experiments 

If the scalar potential is known, the magnetic field can be calculated using Eq. (2). 

The components of the magnetic field are given by 

(12a) 

(12b) 

and 

(12c) 
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To know the function v( s), assume that at the radius r = ro the Br component of the 

m-multipole magnetic field is measured, yielding the expression 

Bexp = m-1rm- 1 sinmB[b + a sinKs] rom m , (13) 

where bm is the systematic component of the m-multipole, K is the wave number of the 

longitudinal periodic pattern, and am is its amplitude of oscillation (in Gauss/cmm- 1). If 

the function v( s) is assumed to be of the form 

(14) 

Eq. (12a) is written as 

B ( ) -1 m-1· n{b . rr=ro =m ro Slnmu m+cmslnKs+ 

(15) 

combining this expression with Eq. (13), the coefficients Cm are defined by the experimental 

values: 

(16) 

It is interesting to note that the actual experimental amplitude values, am, are related 

with an infinity series. Eq. (16) brings about the complete solution for the magnetic field. 

2.3 The Vector Potential 

In the above coordinate system, Eq. (1) is written in terms of its components as 

~ oAs _ oAe _ B 
r oB os - r, 

(17a) 

(17b) 

and 

(17c) 
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Assume the following anzat for the vector potential: 

(18a) 
n n 

(18b) 
n n 

and 

(18c) 
n n 

Substituting these expressions in Eqs. (17), using Eqs. (12) in Eqs. (17), and rearranging 

terms, the following algebraic relations are obtained: 

and 

00 

mpo + 2)mPn - 9n_l)rn = 0 , 
n=l 

00 

mpo + I)bn - 1 - (n + m)Pn]rn = 0 , 
n=l 

00 00 

-mqo + I:[an-l - (n + m)qn]rn = mv + I: vm+2kr2k , 
n=l k=l 

(n + m + l)gn - mbn = 0 , 

00 00 

I:[(n + m + l)hn + man]rn = rv + I: Vm+2kr2k+l , 
n=l k=l 

(19a) 

(19b) 

(20a) 

(20b) 

(21a) 

(21b) 

where V m+2k has been defined in Eq. (10). From Eqs. (19a), (20a), and (21a) it is not 

difficult to see that it is always possible to choose 

bn = gn = Pn = 0, for n ~ 0 , (22) 
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and from Eqs. (1gb), (20b), and (21b), the following relations are obtained: 

(23) 

(m+1)h o +mao =O, (24a) 

(m+2)hl+mal =v, (24b) 

a2k-l - (2k + m)q2k = mVm +2kl k ~ 1 , (25a) 

(2k + m + 2)h2k+l + ma2k+l = Vm +2kl k ~ 1 , (25b) 

and 

(25c) 

The above system is self-consistent (see Appendix A), and it is possible to choose the gauge 

of the vector potential such that 

an = 0 , for n ~ 1 , (26) 

obtaining the following coefficients: 

ho = 0, (27a) 

1 Vm+21' 
L?l+l - 1 >_ 0 , 
- - 21 + m + 2 ' 

(27b) 

and 

mVm+2l+2 
q2l+2 = - 21 + m + 2 ' 12:0 , (27c) 

where a new parameter, 1 = k - 1, has been chosen. Therefore, the components of the 

vector potential in these coordinates are given by 

Ar = 0, 

00, 2k+l 
m· () 2: v m +2kr 

Ao = r smm 2k ' +m+2 
k=O 

6 
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and 

{ 

00 2k+2} m mVm+2k+2r 
As = -r cos m{} v + L 2k m 2 . 

k=O + + 
(2Se) 

These relations can be expressed in the coordinates x, y, s, where x and y are related to r 

and {} by 

x = r cos {} 

and 

y = r sin{} , 

through a rotation of the vector (Ar, A9) by an angle {}, 

(29a) 

and 

Ay = cos {} A9 . (29b) 

In addition, using the identities 

(30a) 

and 

(30b) 

where (;) represents the combinatory coefficient: 

(m) m! 
p - p!(m - p)! (30e) 

The components of the vector potential in these coordinates are given by 

A I ~.p m m-p p+l ~ Vm +2k x + y m () 00, (2 2)k 
x=- mL..t z x y L..t ' 

p=o P k=O 2k + m + 2 
(31a) 
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m () 00, (,., 2)k 
A = +1 ~.p m m-p+l p ~ V m +2k x~ + y 

y m ~ t X Y ~ ')k 2' 
P ~ +m+ p=O k=O 

(3Ib) 

and 

As = -Re ~ i P "!1 xm-pyP v + L mVm+2k+2 x + y . m () {oo (2 2)k+l } 

~ P k=O 2k + m + 2 
(31c) 

In particular, the expressions for the dipole (m = 1), quadrupole (m = 2), and sextupole 

(m = 3) at lowest order are given by 

A (l) - _ 2 '/3 x - Y v , (32a) 

AV) = +xyv/3 , (32b) 

A~l) = -xv, (32c) 

(33a) 

(33b) 

(33c) 

(34a) 

(34b) 

and 

(34c) 

In order to simplify the analysis, the systematic multipole component will not be considered 

in the following discussion, and the amplitude of the longitudinal oscillation pattern, em, 

will be denoted by a. 
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3.0 HAMILTONIAN FORMALISM AND TUNE SHIFTS 

The nonrelativistic Hamiltonian for the transverse motion of a synchronous charged 

particle traveling around an accelerator ring can be written asS 

1 
(

. )2 1 ( )2 . e e e 
H = - Px - -Ax + - P - -A - -.4.9 + 2 cp 2 y cp y cp 

I? 21( 1) 2 + 2"11 1(s)y - 2" J{l(S) - p2 X , (35) 

where p is the longitudinal momentum of the particle, Px = Px/p and Py = Py/p are its 

normalized transversal momenta, e is the charge of the particle, c is the speed of light, 

pes) is the curvature of the accelerator ring, Kl(S) describes the linear lattice of the ma­

chine (without longitudinal oscillation pattern), and the vector potential components, A, 

represent the additional electromagnetic field due to other sources (longitudinal multipole 

periodic pattern along the sc dipoles, for example). This Hamiltonian can be written as 

H(x,y,s) = Ho(x,y,s) + V(s,y,s) + U(x,y,s) , (36) 

where H o , V = V(1) + V(2), and U are defined by 

(37a) 

(37b) 

(37c) 

and 

(37d) 

For tune shift calculations, it is more convenient to express the Hamiltonian in the canonical 

variable (J, </», where J and </> are the vectors 
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and 

This can be accomplished through the generating function 

2 

F(s,x,y,<p) = - ~ {3~~)(tan<Pi - /3i/2) , 
1=1 

(38) 

where {3i( s) is the beta function associated with the motion of the particle in the i (x for 

i = 1, Y for i = 2) direction, /3i is its derivative with respect to s, and <Pi( s) is the betatron 

phase related to the beta function through 

s 

J du 
<Pi(S) = <Pi(O) + {3i(U)' (39) 

o 

The action, Ji, the coordinates, and the canonical momenta are given by 

J . - - 8F - _1_ [x2 + ({3'x" - {3' ·X '/2)2] 
1 - 8<Pi - 2{3i ill 1 1 , 

(40) 

xi = J2Ji{3i cos <Pi , ( 41) 

and 

fiji ( . 1 ' ) p; = - - sIn"" - -/3' cos'" . 
1 /3i 'f'1 2 1 'f'1 , 

(42) 

for i = 1,2, i.e., i = x, y. Furthermore, Eq. (37a) becomes 

(43) 

and the other expressions also become functions of the action-angle variables. Their explicit 

expression depends upon their explicit (Px,Py,x,y) dependency. To calculate the tune 
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shift, the average of the Hamiltonian along the whole machine, C, and allover the betatron 

phases must be obtained: 

C 21[' 21[' 

< 1t >= .. 2~ J ds (2~)2 J J d(hd¢>2 1t(s, ¢>, J) . (44) 

o 0 0 

Hence, the partial derivation of this quantity with respect to the action brings about the 

tune of the machine: 

oJi 
Vi = 

o<1t> 
(45) 

which is mainly given by the average of Eq. (43). The other terms in Eqs. (37b) to (37d) 

give the tune shift of this value. 

4.0 FIRST ORDER IN PERTURBATION STRENGTH 

At the first order in perturbation strength, the lowest order in the action variable is 

taken into consideration in Eq. (36). It is clear from Eqs. (37) that U(x, y, s) corresponds 

to a second order. From Eqs. (32), (33), (34), (37), (41), and (42), and from the relation: 

21[' 

1 J d¢> n(¢» 1 n! - cos -- b 27r - 2n (n)2 n,2JV, 
o -I 2· 

(46) 

where N represents any natural number (including zero), the only non-zero term which 

contributes at this order is the quadrupole term (Eq. (33c)). The action-angle variable is 

written as 

(47) 

vVith the help of Eq. (46), the average of this expression is given by 

(1) ( e ) < Vm - 2 > = - a(hg} - hg2) , - cp (48) 

where a is the amplitude of the longitudinal quadrupole oscillation pattern, and the func­

tion numbers 91 and 92 are defined as 

C 

91 = 4~ J sin K,S (31 (s )ds 
o 

11 
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and 

C 

92 = ~JsinKS {32(s)ds . 41T . (49b) 

o 

The tune shift is then given by 

(5Da) 

and 

(5Db) 

where the following identity has been used: 

(51) 

where rp = e2/mc2 = 1.5348 x 10-16 cm is the classical radius of the proton, mc2 

1.6 x 10-3 ergs is its energy at rest, and, = J1 - v 2 / c2 is its relativistic factor. To 

calculate the numbers 91 and 92 along the Collider and High Energy Booster (HEB) of the 

sse machine, the computer program MAD12 was used to print out the beta function in 

three different locations of each magnet (at the beginning, at the center, and at the end). 

The beta function was fit with a second-order polynomial per magnet: 

where the coefficients are calculated from the three known beta values. The wavelength of 

the longitudinal oscillation pattern, 

was chosen as .x = 9 cm. A computer program was developed to make these calculations 

and the integration of Eqs. (49). The results are shown in Table 1; calculations for the 
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Tevatron lattice design are shown for reference. 

TABLE 1. NUMERICAL INTEGRATION OF gl AND g2. 

SSC-Collider SSC-HEB Tevatron 

gl -0.650 x 106 -2.050 X 105 2607.5 

g2 -0.475 x 106 -1.975 X 105 1815.7 

At injection (rCollider = 2000, ,HEB = 200, and ,Tevatron = 150), the calculated tune 

shifts are shown in Table 2. 

TABLE 2. TUNE SHIFTS· AT INJECTION. 

SSC-Collider SSC-HEB Tevatron 

~1I1:!a -1.007 x 10-4 -3.175 X 10-4 +5.3 X 10-6 

~lIy/a +0.735 x 10-4 +3.050 X 10-4 -3.7 X 10-6 

• Amplitude of Oscillations, a, III Gauss/em. 

However, the values calculated in Table 1 are strongly dependent on the wavelength of 

the longitudinal oscillation pattern, as can be seen in Figures 1-3. These figures show that 

the sign and the order of the coefficients (Eqs. (49)) may not be well defined. In addition, 

the SSC-HEB and the Tevatron may actually have the same order of magnitude in the 

relative tune shift (10-4 ). Moreover, since the amplitude of the quadrupole oscillation 

pattern is expected to be random from magnet to magnet, this relative tune shift should 

be divided by the square root of the total number of magnets. So, a tune shift of the 

order of 10-5 is likely for the SSC-HEB and the Tevatron, and probably of one order of 

magnitude lower for the SSC-Collider. 

5.0 SECOND ORDER IN PERTURBATION STRENGTH 

At first sight, it seems unnecessary to study higher orders of perturbation strength 

since, in principle, these would have smaller values than the first order has. However, 

there are three reasons why is not worthless to go to the second order of perturbation 

strength. First, it is useful to check how small they are. Second, if they are not too small 

to ignore, they would be nonlinear, in general, producing tune shift spread in the machine. 

Finally, going to a second order, there is a "legal" way9 to cancel the terms that originally 

were cut out in the averaging process made at the first order of perturbation. 
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To go to a second-order perturbation theory, a new canonical transformation must be 

made (q, ,Ill This canonical transformation is close to the identity (the original action­

angle transformation of Eq. (38)) and is characterized by the generating function 

~ 

Fnew(.5, <p, E) = L Ki</)j + G( 5, <p, E) , (52) 
i=l 

where G is a function to be determined. The relation between the new variables (q" E) 

and the old ones (t/J, J) is given by the expressions 

J . - oFnew , G 
I - o<iJ = J'\ j + 1>., (53a) 

and 

n,. oFnew , G 
'J!j = oKj = <pj + K., (53b) 
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where the subindex means partial differentiation. In addition, the new Hamiltonian, 

H.(s, fP, K), is given by 

(54) 

Doing a Taylor expansion of the two last terms on the right-hand side of Eq. (54), it 

follows that 

2 
~ "" Ki (1) 

?-l = ~ (3.( ) + Vm=2(s,fP,K)+ 
. 1 ,S 
1= 

2 1 fJG fJG 
+ ~ 8i(s) fJ¢i + as + V+ 

2 

+ L [VK;G¢; - V4>;GK;] +U(s,fP,K)+ 
i=l 

+ ... , (55) 

where the quadrupole term of Eq. (47) has been extracted from V to put it together with 

the first-order, zero-average terms (first line in Eq. (55», and the term U has been put 

together with the second-order terms (third line in Eq. (55». In this expression, it is 

possible to make 
') 

~ 1 fJG fJG 
L 8'(s) fJ-I.. + as + V = 0, 
i=l ' 1 0/1 

(56) 

"legally" deleting the term V from the Hamiltonian. The solution of this partial differential 

equation (see Appendix B) brings about the following expression for G: 

s 

G(s,¢,K) = - J V(~,¢ - ~(s) + ~(~),K) d~ , (57) 

o 

where the components of the function ~ are defined by 

(58) 

Using this expression in Eq. (56), the full second-order approximation can be solved, ne­

glecting higher-order terms. Consequently, the second order in perturbation Hamiltonian 
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can be written as 

2 
~ ~ J{i (1) 

?i = t:-; f3i( S) + V m=2( S, ¢>, K) + ?ill + ?i12 + ?i22 , (59) 

where ?ill, ?i12, and ?i22 are given by 

2 

?ill = L [V~:G~~) - V~~)G~n ' (60a) 
i=l 

(60b) 

and 
2 

?i22 = L [V);: G~~) - V~;) G~:] + U , (60c) 
i=l 

where, using Eqs. (37b) and (37c), the discomposition 

(61a) 

has been made, and G(i) for i = 1,2 has been defined as 

s 

G(i) = - J V(i)(e,¢> -1fJ(8) + 1fJ(e),K) de . (61b) 

o 

For a given m-multipole, it is not difficult to see from Eqs. (31) (with k = 0), (37), (41), 

and (42) the following order of dependence in the action for the second-order terms of the 

Hamiltonian: 

(62a) 

(62b) 

and 

(62c) 

So, at first sight, the most important contribution would come from term (62a). The terms 

(62c) and (62b) are expected to be very small, and they will be studied in the next section. 
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5.1 Tune Shift Arising from 1i22 

The easiest term to calculate is U because its average value is different from zero. 

Using Eqs. (31a) and (31b) with k = 0, substituting Eq. (41) in these expressions, and 

rearranging terms in the expression resulting from Eq. (37d), it follows that 

U = -=- 2 Vm ~ ~ (_lY+O' m m ]{m-p-O' 
( )

2 me' )22
p
+1<m20'+1<m ( )( ) 

Cp (m + 2)2 p=O 0'=0 2p + 1 20" + 1 1 

K;-r°+ I { K 2K ,1 fJ';'- p-o-I fJ;-r°+ 2 ( cos 'PI) 2m - 2p-20 ( COS 4>2 )2P+ 20+4 + 

+ fJ';'- p-o fJ;-r°+ I ( COS 4>1) 2m - 2p-20 ( COS 4>2 )2p+20+ 2 } • (63) 

\Vith the help of Eqs. (46) and (14), the following average results: 

)

2 (? 2p+1$m 20'+1$m ) ( ) 

< U >= (:p 2m4m~(:' + 2)2 ~ ~ (_I)'H (2P:' I 2".:' I 

]{m-p-O' K P+O'+l {K K- 1 (2m - 2p - 20" - 2)!(2p + 20" + 4)! m 
1 2 2 1 [em _ p _ 0" _ l)!(p + 0" + 2)!]2 gpO'+ 

(2m - 2p - 20")!(2p + 20" + 2)! hm } 

+ [em - p - O")!(p + 0" + 1)!]2 pO' , 
(64) 

where the numbers g;:" and h;:" are given by 

C 

m 1 J a m -p-O'-l( )ap+0'+2() 2 d gpq = - 1-'1 S 1-'2 S cos I\.S S 27r 
(65a) 

o 

and 
c 

hm 1 J am-p-O'( ) P+O'+l() 2 pO' = 27r 1-'1 S {32 S cos I\.S ds . (65b) 

o 

To estimate these numbers, assume that the accelerator ring contains FODO cells 

where the maximum and minimum values of the beta functions are given by 13M and 13m, 
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respectively. Assume also that variation of the beta function in each half-cell is given by 

(66a) 

and 

(66b) 

where O! is determined in terms of 13M, 13m, and the half-cell length, L, as 

(66c) 

If Nc is the total number of cells in the ring, then C = 2NcL, the maximum values of the 

integrals (Eqs. (65)) are 

m = (_l)m-p-O'-l C(f3M - ,Bm)m+l 
gpO'-max 47r(2m + 3) (67a) 

and 

(67b) 

and the average value (Eq. (64)) is given in this approximation as 

2p+l<m 20'+1<m 
<U>=(-1)m1m t" t" ( m )( m )Km-p-O'K~+O'+l 

p=o 0'=0 2p + 1 2<7 + 1 1 -

{ 

T.~ }~-l (2m - 2p - 2<7 - 2)!(2p + 2<7 + 4)! 
-I~2\ + 

1 [(m-p-<7-1)!(p+<7+2)!]2 

(2m - 2p - 2(7)!(2p + 2<7 + 2)!} 
+ [em - p - (7)!(p + <7 + 1)!]2 , 

(68) 

where the parameter 1m is defined, using Eq. (51), as 

1 _ rp (aK)2C(f3m - ,Bm)m+l 
m - mc2,2 167r2mm2(m + 2)2(2m + 3) . 

(69) 

The action variable is essentially the emittance, €, of a beam of particles circulating in 

the accelerator, which is related to the normalized emittance, €N, by a, factor. So, it is 
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possible to make the following identification: 

J{. - EN 
, - 2, . (70) 

The tune shift is then given by 

(71a) 

and 

I ml I au I Y mENQm2 ~V2 < -- -
- aK2 Ki=(N/2-y (2,)m 

(7Ib) 

where the factors QmI and Qm2 are defined by 

{ 
(p + u + 1)(2m - 2p - 2u)!(2p + 2u + 2)! 

x + 
[( m - p - u )!(p + u + 1 )!F 

_ (p + u + 2)(2m - 2p - 2u - 2)!(2p + 2u + 4)!} (72a) 
[em - p - u - l)!(p + u + 2)!J2 

and 

{ 
(m - p - u)(2m - 2p - 2u)!(2p + 2u + 2)! 

x + 
[( m - p - u )!(p + u + 1 )!)2 

(m - p - u - 1)(2m - 2p - 2u - 2)!(2p + 2u + 4)!} (72b) 
- i [(m-p-u-l)!(p+u+2)!)2 

In order to compare the relative effect of different multipoles, the quantity ~vi / ~vi must 

be estimated. From Eq. (71a), it follows that 

~vi = [(f3M - f3m)EN]m-n ( n
2 + 2n )2 (2n + 3) I QmII ' (73) 

~vi 2, m 2 + 2m 2m + 3 QnI 

which shows the expected behavior. For higher-order multipoles (m - n > 0), the tune 

shift is smaller (due mainly to the, factor). As a result, the dipole longitudinal oscillation 
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pattern would cause the highest value in Eqs. (71). For the nominal values of the Collider 

(EN = 10-4 em, "'/injection = 2000, C = 8712000 em, L = 9000 em, {3 M - (3m = 25000 em), 

the tune shift due to the dipole oscillation is 

(74) 

Because the other term contained in 1i22 will have the same order value in the tune shift, 

it will not be analyzed. Thus, the term 1i22 contributes negligibly to the tune shift. 

5.2 Tune Shift Arising from 1i12 

Detailed calculations of the tune shift are presented in Appendix C. Here, the results 

will be presented, and an approximation will be done to estimate its value. The quadrupole 

part does not appear here because it was extracted from V(1) for the calculation at first 

order. The dipole longitudinal oscillation pattern calculations in Appendix C yield the 

following expression for the averaged Hamiltonian: 

'1...Im=l _(e)2K2Y < fl.1? >- - --3-' - cp 

where Y is given in terms of Eqs. (C6) of Appendix C, as 

Y - W06 W02 w.16 w.12 W 16 W12 r r r - 1 + 1 - 2 - 2 + 4 + 4;1 + 0;1 + 1;2 - 1;4· 

The tune shift is then given by 

and 

If the same approximation in Section 5.1 is used here, the following relations result: 

if the same values for the Collider in Section 4.0 are used, it follows that 

I A II 2 Tp ({3M - (3m)CL -8-2 
~v2 a < 2 2 8), ~ 2.6 x 10 Gauss . mc, 

(75) 

(76) 

(77a) 

(77b) 

(78) 

(79) 

Because the sextupole contribution is expected to be even smaller than this value, it 

will not be calculated. However, the functions V(i) and G(i) necessary to perform these 

calculations are given in Appendix C. 
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As a result, the term fi12 also has a negligible contribution to the tune shift. 

5.3 Tune Shift Arising from fill 

This section will be a little more developed than the previous one because an uncer­

tainty in the tune shift is found when the same approximation of Section 5.1 is used in 

the results (see below). First; as seen in Appendix D, the dipole longitudinal oscillation 

pattern does not contribute to the tune shift since its associated average Hamiltonian 

does not depend on the action variables. The quadrupole part of V(l) was extracted and 

considered in Section 4.0. Therefore, there is no quadrupole contribution. However, the 

sextupole longitudinal oscillation pattern has a quite small contribution which will be 

discussed below. 

From Eqs. (34c), (37b), (41), and (6Ib), it follows that 

and 

where the functions gil and gi~ are defined by 

and 

s 

gfl (s) = J v( ~),B:/\~) cos3
-

p 01 sinP 01 d~ 
o 

s 

(81a) 

gf~(s) = J v(~),B;/2(e),B2(~)cosl-POlsinPOlcos2-P02sinP02 d~, (8Ib) 

o 

and the following identity has been used: 

cosn (rPi - OJ) = t (n) cosn
- p rPi sinP rPi cosn

- p Oi sinP Oi , 
p=O P 

22 
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where 8i is defined as 

(83) 

Doing the derivation of Eqs. (80), the following average values are obtained after making 

some rearrangements: 

< V~!)G~~ > = - (:p)' 23
{ -~Kr t, (:)(5 -pip + 1) qr,;,+ 

1 3 

+ ~ KIK2 L L (~) (3 - pip + 1 )(2 - ,61,6) Qi~;l + 
p=o p=o p 

(84a) 

< vi:)G~~ > = - (:s 23 
{ 18K,K, t. t, G) (2 - pip) x 

x (3 - ,6lp + 1) Qi~;2} , (84b) 

x {~Kf t (3) [-(3 - p)(5 - pip + 1) + p(7 - pip - 1)] qil;l + 
p=o p 

9 1 2 (2) . 
-2"K1K2 ~ f; ,6 [-(1 - p )(3 - pip + 1) + p(5 - pip - 1)](2 - ,61,6) Qi~;l + 

3 

-~KIK2 L (3) [-(3 - p)(3 - pip + 1) + p(5 - pip - 1)](210) qfl;2+ 
p=o p 

+~Ki t. t, C) [-(1 - p)(l - pip + 1) + p(3 - pip -1)[(4 - pip) Q~f;'} , (84c) 
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and 

< vJNG~) > = - Co)' 23
{ 9K,K, tt (~)(2 - plp)x 

p p=o p p 

x [-;(2 - p)(3 - pip + 1) + p(5 - pip - 1)]Qf~;2 } , (84d) 

where the following definitions have been made: 

and 

c 

qfl;l = 2~ j V(S)!3:I\s)gfl(S) ds , 
o 

C 

qfl'2 = ..!...jv(s)!3:12(s)!32(S)gfl(S) ds, , 27r 
o 

c 

Qrg;l = 2~ j v(s)!3:12(s)gft(s) ds , 
o 

c 

Qrg;2 = 2~ j v(s)!3:12(s)!32(S)gft(s) ds , 
o 

211' 

(nlm) = 2~ j COS
n Bsinm B dB . 

o 

The last definition clearly has the following properties: 

1 n' (nIO) - ---'-6 ... &r 
- 2n (!!)2 n,.wv 

and 

(nlm) = 0, wherever nor m is odd. 

Using Eqs. (84), the average value of Eq. (60a) is given by 

m=3 e 2 1 3 
( )

2 { 
<?in >= - ep Kl [27qn;1 - 9qll:l] + 
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(85a) 

(85b) 

(85e) 

(85d) 

(85e) 

(86a) 

(86b) 



and 

+Kl]{2 [-9Q~g;1 + lSQg;l - 9qfl;2 - 9qtl;2 + 10SQn;2] + 

+K~ [27Qig;2 - 9Qg;2] } . 

Thus, the tune shift is giv~n by the partial derivation of this expression: 

where the identity in Eq. (51) has been used, and .AI, .A2 are defined as 

(S7) 

(SSa) 

(SSb) 

(S9a) 

(S9b) 

If the same approximation made in Section 5.0 were done here, the tune shift would have 

quite a large value: 

Hence, this approximation does not produce a confident low value for this case, and nu­

merical integration of Eqs. (S5) must be carried out to obtain a confident value. Using the 

same procedure as in Section 4.0, Table 3 shows the results of these integrations. (The 

same approximation was made for the betatron phases.) 

As can be seen from these numerical values, the term 1-l11 is not important to the tune 

shift of the machine. 

5.4 Symmetry Considerations 

Suppose that the beta function is an even function with respect to the initial reference 

point "0" in an accelerator ring of length C; that is, 

(90) 

In a FOnO cell structure, there are in fact three points where this happens, corresponding 

to the location of the three quadrupoles which make up the FOnO structure. In this case, 
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TABLE 3. NUMERICAL INTEGRATION OF q, Q, AND 
'\, AND CORRESPONDING TUNE SHIFTS. 

N umerieal Integration 

25x SSC-Collider SSC-REB 

1 I -1.546 X 1015 -5.555 X 1012 
ql1;1 

1 
qll;2 -8.926 x 1014 -1.734 X 1012 

3 
qll;1 -8.500 x 1014 +11.477 X 1015 

3 
qll;2 -3.363 X 1014 +8.616 X 1015 

Q10 
12;1 -9.072 x 1014 -1.719 X 1012 

Q12 
12;1 -2.057 X 1011 +2.141 X 1010 

Q10 
12;2 -1.546 X 1015 -5.479 X 1012 

Q12 
12;2 -7.227 X 1010 +1.158 X 1010 

A1 +5.660 X 1017 +1.422 X 1017 

A2 + 1.895 X 1017 +7.805 X 1016 

Tune Shifts· 

t::.vda2 2.7 x 10-11 6.82 X 10-9 

t::.v2/a 2 9.1 x 10-12 3.74 X 10-9 

• Amplitude of Oscillations, a, in Gauss/em:? 

from Eq. (58) it follows that 

(91) 

that is, 1/;i is an odd function. Furthermore, from Eqs. (83) and (91), the function Cj is 

also odd in the following sense: 

(92) 

Therefore, the following symmetry is obtained for Eqs. (81): 

and 
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Using these symmetries in Eqs. (85), it follows that 

and 

QPP - ( l)P+PQPP 12;i - - 12;i . 

Therefore, if the symmetry in Eq. (90) were established in the accelerator ring, the tune 

shift of Eqs. (88) would be exactly zero. But, note that the Collider and the HEB do not 

have this symmetry, even though the contribution of the term ?-ill can be ignored. 

6.0 DISTORTION OF THE INVARIANT CURVES AND ACTION 
BLOW-UP 

The main contribution to the tune shift comes from the quadrupole oscillation pattern; 

this will also cause a distortion in the invariant curves, I<j, given by Eq. (53a). In order 

to compute this distortion, the generating function, G, must be known. vVith the help of 

Eqs. (47) and (57), the generating function is given by 

2 

G = - (ce
) a L (2) {I<lcos2-p</>lsinP</>l glp(S) -]{2cosz-P</>2sinP</>2 9Zp(s)} , (93) 

p p=o p 

where the functions glp and g2p are defined with the help of Eq. (83) as 

and 

s 

glp( s) = J ,81 (0 sin lI:e cos2-
p b1 sinP b1 de 

o 

s 

gZp( s) = J ,82 ( e) sin lI:e cos2-
p 82 sinP 82 de . 

o 

The partial differentiation of Eq. (93) with respect to the betatron phases is 

(94a) 

(94b) 

where (~9)i is the difference g12(S) - 91O(S). Using Eq. (51), the variation in the invariant 

curve can be written as 

(96) 

The functions (Eqs. (94)) have the same period of oscillation as the longitudinal oscillation 

pattern. This fast oscillations are modulated by the betatron oscillation. So, taking the 
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mean value of the beta function, p, the following approximated behavior is obtained: 

(.6.gi)(S) ~ P>' cos 2~s [sin¢i(s) - cos1/'i(S) - 1] 
. 7r /\ 

(97a) 

and 

(97b) 

which have the maximum values 

and 

Assuming that this maximum occurs at S = S., the deformation of the invariant curve at 

this point, for the Collider at injection and using Eq. (70), is given by 

(AJi). = -ae {2sin24>i + ~ COS24>i} , (98) 

where the amplitude of the longitudinal quadrupole oscillations, a, is given in Gauss/em, 

and the parameter e is 

- 2eNP>'~p -15 -I? ~ = 2 --2 ~ 2.79 x 10 Gauss cm~. 
7r, me 

This number shows that this deformation can be completely ignored. The distortion given 

by Eq. (98) is shown in Figure 4. 

6.1 Resonant Structure 

The resonant structure of the Hamiltonian is given in perturbation theory by the 

behavior of the generating function (Eq. (57». If there is a value in the parameter for which 

the function Gq,; is unbounded, the action of the particle (Eq. (53a)) will be unbounded, 

too, and the particle will eventually leave the physical region in the phase space. For the 
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Figure 4. Distortion Caused by the Quadrupole Oscillation Pattern. 

quadrupole oscillation pattern, the expressions of interest are Eqs. (93) and (95). From 

Eqs. (94), it is not difficult to obtain the following expressions: 

and 

(.6.gh(s) = 2Re L Bln{j e,';n(sin~~ d~+ 
n 0 

s 

sin 1J.'I (s) J ei2~n ~ sin K~ cos WI (0 d~ + 
o 

s 

+ cos'PI(s) J e,,;n( sin~(sin¢,(O d(} 
o 

1 ~ {. JS '2"n~ gl1(S) = "iRe ~f31n sm 21/11 (s) e1c sinK~cos2Ih(~)+ 
n 0 

S 

- cos2¢,«() J e,,;n( sin~( sin2¢,(Od( } 

o 
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where C is the circumference of the ring, 131 n are complex numbers, and the Fourier ex­

pansion of the beta function has been used: 

f3I(e) = Re Lf3Inei2~"e . (100) 
n 

Making the change of variable 

considering BC ~ 1, which allows the approximation 

tPI (BC) = 271" VI B , 

and integrating, the following expression results: 

[

e i27r(n-C/).+Vt}8/C _ 1 ei27r(n-C/).-vt}8/C - 1 
+ sin tPI ( s ) C / ).. + C / ).. + n- +VI n- -VI 

ei21r(n+C/),+"d8/C _ 1 ei21r(n+C/).-"d8/C - 1] 
- - + 

n + C / ).. + VI n + C / ).. - VI 

[

e i27r(n-C/).+Vt}8/C _ 1 e i27r(n-C/).-vI)8/C - 1 
+ cos tPI ( s ) C / ).. - C / ).. + n - + VI n - - VI 

_ e i27r(n+C/).+vt}8/C - 1 + ei21r(n+C/).-vt}8/C - 1] } 
n +C/>. + VI n +C/>. - VI 

(lOla) 

and 

ei21r(n+C/).+2vt}s/C _ 1 ei27r(n+C/).-2vt}s/C - 1] 
----------------- + n + C / ).. + 2VI n + C / ).. - 2Vl 
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[

ei27r(n-C/>.+211t}S/C _ 1 ei27r(n-C/>'-211t}s/C - 1 
-COS21h(s) - + 

, n - C / A + 21/1 n - C / A - 21/1 

_ ei27r(n+C/>'+211t}s/C - 1 + ei27r(n+C/>.-2111)S/C - 1] } 
n - C / A + 21/1 n + C / A - 21/1 . 

(lOlb) 

Since, in general, C / A is a very large number (about 106 for the Collider), and the tune of 

the machine is relatively small (about 123 for the Collider), the denominators in Eqs. (101) 

do not cause any problem to the dynamic of the beam. Notice that n + C/ A - 21/1 --+ 0 

does not mean that there is a singularity in these functions, but that the action associated 

with the motion of the particle will start to blow up linearly. To see this fact in more 

detail, assume that the relation n + C / A - 21/1 ~ 0 is satisfied. Thus, extracting the most 

important term of Eqs. (101), the expression in Eq. (95) would be given by 

(102) 

Taken to the limit when n + C / A - 21/1 --+ 0, 

ei27r( n+C/ >.-211t)s/C - 1 
lim = i27rs/C , 

n+C/>.-2111-0 n + C/ A - 21/1 

the following expression arises: 

( e) aKd31 
Gt/JI = - COS2¢>1 [sin 2'l/J1(s)+cos2'l/J1(s)]s, 

cp 4 
(103a) 

where /31 is given by 

/31 = Re L i/31n . (103b) 
n 

The function in Eq. (103a) diverges linearly, which is consistent with the condition in 

Eq. (B6) of Appendix B. So, the phase space of the particle will blow up. This is a 

general feature, within the above approximation, that is not difficult to demonstrate for 

any resonant value. 
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7.0 CONCLUSION AND COMMENTS 

The magnetic field which generates the longitudinal multipole oscillation pattern was 

calculated, as was the vector potential. In these calculations, the curvature was neglected 

to make the estimations much easier. It is not difficult to see that introduction of the 

curvature does not make a si~nificant difference in the results. However, the calculations 

are much more difficult. 

The tune shift analysis was made at a first and a second order in perturbation strength. 

The only longitudinal multipole oscillation pattern which cannot be neglected in the SSC 

machine is the quadrupole. The result of Section 4.0 suggests that the tune shift induced 

in the HEB and Collider machines by the quadrupole oscillation pattern could be at least 

of the order 10-5 and 10-6 , respectively, (assuming random oscillation amplitudes from 

magnet to magnet), at injection energy for a synchronous particle. 

The sextupole oscillation pattern does not affect a synchronous particle, but it has a 

first-order, systematic contribution to an off-momentum particle, in the region where the 

"dispersion" is non-zero. The contribution is about a factor of (6p/p)Dmax the previously 

mentioned quadrupole contribution, where Dmax is the maximum dispersion in the lattice 

(about 280cm for the Collider). So, even for a very large off-momentum particle, 6p/p '" 

10-3 , the induced tune shift is one order of magnitude lower. 

The value obtained in Section 4.0 depends on the quadrupole amplitude of oscillation, 

which is not yet known for the SSC dipole magnets, and on its wavelength. The amplitude 

of the quadrupole oscillations seems to be of the same order of the tolerances. In addition, 

experiments with the HERA dipole magnets indicate that this parameter also depends on 

time. This parameter may be important for a final estimation, and experiments on the 

SSC dipole magnets are required to determine completely the behavior of this parameter. 

Finally, if the long-term effect of the longitudinal periodic pattern in the dynamics 

of the particle were required (dynamics aperture), a 3-D tracking code would be needed. 

This would be important mainly at injection energy in the Collider. 
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APPENDIX A. Consistency of the System (Eqs. (25» 

Defining Eqs. (25) 21 + 1 = 2k - 1, this system can be written as 

tZZI+l - (11 + m + 2)Qzl+Z = mVm+ZI+Z , (Ala) 

(21 + m + 4 )hZI+3 + ma21+3 = Vm+ZI+Z , (Alb) 

and 

mQ21+Z + hZI+1 = -(m + 21 + 2)Vm+ZI+Z . (Ale) 

Taking the derivative of Eq. (Alb) with respect to s, it follows that 

(21 + m + 4)hzl+3 + maZI+3 = Vm+ZI+Z . (A2) 

:Now, using Eqs. (Ala) and (Alc) in Eq. (A2), the next expression is obtained after making 

some rearrangements: 

(A3) 

But, from Eq. (2~), we obtain 

.. 2ZI+4v21+4 

Vm+ZI+Z = nl.+1 [_( 2 ')2 2] = 
J=l m +) + m 

[mZ - (m + 21 + 4)Z]v21+42ZI+4 Z Z 
= /+Z . = [m -(m+21+4) ]Vm+ZI+4' 

nj=d-(m + 2))Z + mZ] 

That is, Eq. (A3) is an identity. Hence, the system (Eqs. (AI)) is self-consistent. 



APPENDIX B. Solution of Equation (56) 

The partial differential equation, Eq. (56): 

2 1 f)G f)G 
L f3i( s) f)¢Ji + as = - V( s, cP}' ¢J2) , 
1=1 : 

(Bl) 

can be solved by the characteristic method,10 by which the equations for the characteristics 

are 

(B2) 

From the first three terms, the following characteristic curves are obtained: 

(B3a) 

and 

C 2 = ¢J2 - '(,&2 ( s) , (B3b) 

where the functions 'l/Ji, i = 1,2, are defined as 

(B4) 

Substituting Eqs. (B3) in the last term of Eq. (B2), and integrating with respect to s, it 

follows that 

s 

G(s, ¢J) = - J V(~, C1 + 'l/Jl(~), Cz + 'l/J2(O) d~ + A(C}, C2) , (B5) 

o 

where the function A is arbitrary. By choosing the condition 

G(O, ¢J) = 0 , (B6) 

and using Eqs. (B3) again, the following unique solution is obtained: 

s 

G(s, ¢J) = - J V(~, ¢Jl - 'l/Jl(S) + 'I/J(O, ¢J2 - 'l/J2(S) + 'l/J2(~») d~ . (B7) 

o 

It is not difficult to see that the known expressionll is equivalent to this one. However, 

there is no real physical reason why the condition of Eq. (B6) must always be required. So, 



in general, the gauge of the generating function, A, will depend on 0, s, and the ignorable 

action-variable. J{: 

A(s,¢,J{) = A(4) - ¢(s),K) . 



APPENDIX C. 1t12 Average Value Calculations 

C.l Dipole Average Value 

The V~~1 and V~~1 components for the dipole oscillation pattern are given from 

Eqs. (32), (37), (41), and (42),by 

(CIa) 

and 

V~~, = - (:p) 2
3
/
2 
V ~ :/2 K, {,92,9;-1/2 [cos2 oP2 sin oPl - ~ cos' oP2 cos oPl]-

- ,9:/2 [cos oP2 sin oP2 cos oPl - ~ cos' oP' cos oPl] } . (C 1 b) 

The functions G(1) and G(2), Eq. (BIb), are then given by 

and 

G~~, = - (:p) 2' /
2 K:/

2 t cos' - p oPl sinP oPlgP(S) 
p=o 

G(2) = (~) 23
/

2 
K 1/ 2 K 

m=1 3 1 2 X cp 

1 2 

X {L( -1)P L (~) sin1- p 4>1 cosP 4>1 cos2-
p 4>2 sinP 4>2 hfP(s)+ 

p=o p=o P 
1 2 

- L L (~) cos1
-

p 4>1 sinp4>1 cos2
-

p 4>2 sinP 4>2 h~P(s)+ 
p=o p=o P 

1 2 

+ L L (~) cos1
-

p 4>1 sinP 4>1 sin2-
p 

24>2 cosP 24>2 h~P(s)+ 
p=o p=o p 

1 2 

+ L L (~) cos
1

-
p 4>1 sinP 4>1 cos2

-
p 4>2 sinP 4>2 h~P(s)} , 

p=o p=o p 

(C2a) 

(C2b) 



where the following functions have been defined: 

and 

s 

gP(s) = J vf3i/2 cosI -
p 

hI sinP hI de , 
o 

s 

hf"(s) = J vf32f3~1/2 cosI
-

p 
hI sinP hI cos2

-" h2ph2 de , 
o 

s , 

h~"(s) = J v~I f32f3;1/2 cosI - p hI sinP hI cos2- p 
h2 sinP h2 de , 

o 

s 

h~P(s) = ~ J vf3i/2 cosI
-

p 
hI sinP hI cos1- p 262 sinP 262 d~ , 

o 

s , 

h:"(s) = J v~ f3i/
2 

cosI
-

p 61 sinP 61 cos2- p 62 sinP 62 d~ . 

o 

(C3) 

(C4a) 

(C4b) 

(C4c) 

(C4d) 

Taking the derivatives of Eqs. (Cl) and (C2), obtaining their products, and taking into 

account Eq. (46), the following average values are obtained: 

(C5a) 

(C5b) 

(2) (1) ( e ) 2 2K2 1 { } < V4>l G Kl >= cp -3-4' rO;l + r I ;2 - r I ;4 , (C5c) 

and 

(C5d) 



where the numbers W and r have been defined as 

and 

c 
, 1 J 1/2 ' WfP = 27r v(s)f31 (s)h~P(s) ds , 

o 

c 

rp;l = 2~ J {;(S)f32(S)f3-;1/2(s)gP(s) ds , 

o 

c , 

r p;2 = :7r J (;(s)f31~S) f32(S)f3-;1/\s)gP(s) ds , 

o 

c , 
1 J' f32(S) 1/2 r p;4 = 27r v(s)-2-f31 (s)gP(s) ds . 

° 
Thus, the average of the Hamiltonian Eq. (60b) is written as 

'l.Im=1 (e)2 K2v < rL12 >= - -- l. , 
cp 3 

where l' is given by 

v WOD W02 w.ID w.12 WID Wl2 r r r 
l. = 1 + 1 - 2 - 2 + 4 + 4;1 + + 0;1 + 1;2 - 1;4' 

C.2 Sextupole Average Value 

(C6a) 

(C6b) 

(C6c) 

(C6d) 

(C7a) 

(C7b) 

The V(1) and V(2) components for the sextupole oscillation pattern are taken from 

Eqs. (34), (37), (41), and (42): 

(G8a) 

V(2) = _ (~) 25
/
2

{; X 
m=3 cp 5 



-J:. (sin 4>2 - ~2 cos 4>2) (3( K 1 (3, )'/2 (K, fh) 1/2 COS· 4>1 cos 4>2+ 

-(K, (3,)'/'(K2fh)'/' cos 4>1 cos'.p, ) }. (CSb) 

The functions G(l) and G(2), Eq. (6Ib), are then given by 

and 

3 

G~~. = - (:p) 2./2 [K:/' ~ (!) cos'-' 4>1 sin' 4>19f, (s )+ 

_3K:/2 K, t t e) cos' -' 4>1 sin' 4>1 cos2-'; 4>, sin' 4>29ft( s ) 1 
p=O p=O P 

(2) _ (~) 25
/

2 

Gm =3 - 5 x cp 

(ega) 

x {3K;/2 K2 t t t( -I)P cos2- p+p ¢>l sinl+p
-

p ¢>l cos2- p ¢>2 sinP ¢>2 g~fp( s)+ 
p=o p p 

-K:/' t t( -We) sin' -' 4>1 cos' 008'-'; 4>2 sin'; 4>2 9~~(S)+ 
p=O P=O P 

-3K:/' K, t t C) 2p COS'-' 4>1 sin' 4>1 cos,-,; 4>, sin' 4>2 9~f( s )+ 
p=O P=O P 

1 4 

+K5
/

2 L L (~) cos1- p ¢>l sinP ¢>l cos4
-

p ¢>2 sinP ¢>2 g~1(s)+ 
p=O p=O P 

311 ) 
-3K:/' K, ~ ~ ~( -l)P (! cos·-, 4>1 sin' 4>1 cos' - .... , 4>2 sin1+P-P .p,9~:P( s)+ 

1 3 1 

+KI/2 Ki L L L( -Ii (~) cos1- p ¢>l sinP ¢>l cos3
-

p+p ¢>2 sin1+p- p ¢>29~:P(S)+ 
p=O p=o p=o P 

-3K;/2 K2 t t (3) (~) cos3
-

p ¢>l sinP ¢>l cos2- p ¢>2 sinP ¢>2 g~¢(s)+ 
p=o p=O P P 



where the 9 functions are defined as 

s 

s 

gil (s) = J v( 0/3;/2 (0 cos3- p 61 sinP 61 de , 
o 

g~rp(s) = J v/3~/2 /32 cos2- p+p 61 sin1+p-p 61 cos2- p 82 sinP 82 de , 
o 

s 

g~1(s) = J v/3-;1/2/3i cos2- p 61 sinP 61 cos4- p 
82 sinP 82 d~ , 

o 

s , 

g~f(s) = J v/3~/2 /32 ~1 cos3
-

p 61 sinP 61 cos2- p 
62 sinP 62 d~ , 

o 

s , 

g~1(s) = J v/3-;1/2/3i~1 cos1- p 81 sinP 81 cos4
-

p 
82 sinP 82 d~ , 

o 

s 

g~:P(s) = J '11/3;/2 cos3- p 61 sinP 61 cos1- p+p 62 sin1+p-p 62 d~ , 

o 

s 

g~:P(s) = J v/3i/2/32cosl-P61sinP61cos3-P+P62sin1+P-P62 d~, 
o 

s , 

g~~(s) = J v/3:/2~ cos3- p 81 sinP 81 cos2-
p 62 sinP 62 de , 

o 

s , 

g~:(s) = J v/3i/2/32~ cosl-P61sinP6Icos4-P62sinP62 d~. 
o 

(CIOa) 

(CIOb) 

(CIOe) 

(ClOd) 

(CIOe) 

(CIO!) 

(ClOg) 

(CIOh) 

( CIOi) 

(CIOj) 



APPENDIX D. Dipole 1{n Average Value Calculations 

From Eqs. (32c), (37b), (41) and (61b), the potential and the generating function are 

given by 

and 

where the function 9 p is given by 

s 

gp(s) = J v(O,B:/\Ocos1-P81sinP81 . 

o 

(D1) 

(D2) 

(D3) 

The function 81 is defined by Eq. (83). Taking the derivatives of Eqs. (D1) and (D2), the 

following average values are obtained: 

< V~:G~~) >= - (;p) 2 t. [-(1 - p)(1 - pip + 1) + p(3 - pip - I)J Qp (D4a) 

and 

< V(1)G(1) >= (~)2 ~ Q , 
tPl Kl cp ~ P 

P=o 
(D4b) 

where the number Qp is given by 

c 
1 J 1/2 Qp = 27r = v(s),B1 (s)gp(s) ds . (D5) 

o 

It is not necessary to do more calculations. Because Eqs. (D4) do not depend on the action 

variables, the tune shift contribution of this term is zero. 


