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Abstract 

U sing the Heat Conduction Equation in cartesian coordinates, some studies are made 

about the temperature rise due to time dependent energy deposited in materials. Thermal 

conductivity and specific heat are taken as constants. An exact analytical solution for 

an arbitrary distribution of energy can be given which justifies the use of instantaneous 

temperature rise at room temperature for high-frequency energy deposition events. Several 

energy deposition distributions are considered. 
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1.0 INTRODUCTION 

Temperature rise normally influences accelerator component design. This temperature 

rise is a principal concern in determining a safe operating margin of the components (scrap­

ers, lambert son magnets, dump abort system, superconducting magnets, etc.). This tem­

perature may be limited by the melting or cracking point of the materials or some other 

failure limitations (quench limits in superconducting magnets, cryogenic capacity to re­

move the heat generated, or radiation damage). Preliminary estimations are very useful 

and important guides, and may be done through analytical solutions of the heat equation. 

However, a computer simulation final analysis program is advised to determine the peak 

and distribution of the temperature rise. 

The temperature time-dependent solution is of interest here. Some of the most important 

mechanisms which involve energy deposition, like hadronic and electromagnetic showers 

developed in the materials by the interaction of high energy charged or neutral particles, 

are time dependent. Consequently, a time-dependent solution of the heat equation is 

required for an estimation of the temperature rise. 

i:'i.lis report restricts itself to time-dependent solutions of the heat equation at room 

temperature without boundary conditions (specific heat and thermal conductivity are 

constants and the materials are mathematically infinite in extension). Moreover, this 

restriction is not essential for the fundamental result to address. The heat equation is 

given by 

(la) 

where \72 is given by 

2 3 82 

\7 =2:-8 2' x· 
j=l J 

(lb) 

Cp is the specific heat, P IS the density, k is the thermal conductivity of the materials. 

Ei (r) represents the density of energy deposited in the materials at the time ti, i = 1, ... , N. 

b..ti = ti - ti-l is the interval of time of each energy deposition event. Finally, () = 

T - To represents the difference between the new temperature at the position rand 

time t, T(r, t), and the initial uniform temperature, To. 

2.0 SOLUTION WITH ZERO THERMAL CONDUCTIVITY 

Assuming that thermal conductivity is zero, Eq. (1) can be solved, even for a specific heat 

which depends on the temperature, through direct integration. However, a constant cp will 

be assumed to introduce the hasic idea for the more general case. Assume _3" t nat the 



energy density is constant and the same for every i-event which occurs at the same interval 

of time, ilt. Therefore, Eq. (1) can be written as 

(2a) 

where f 0 is defined as 

fo = l/(ilt) . (2b) 

Taking the Fourier transformation of Eq. (2a), defined by Eq. (AI) in Appendix A, it 

follows 

(3) 

Using the inverse Fourier transformation, defined by Eq. (A2) in Appendix A, the following 

solution results 
€fo ~ 

8(t) = -( -) ~H(t - ti), 
pCp . 

1=0 

where H is the Heaviside function, 

{

I if t - ti ~ 0 
H(t - ti) = 0 

if t - ti < 0 

(4) 

(5) 

Assuming that the event time separation is infinitesimally close (frequency of energy depo­

sition, fo, is very high), the summation in Eq. (4) can be approximated by an integration, 

n (" 
LH(t-ti)= io nH(t_T)dT. 
i=O 0 

(6) 

But according to Eq. (5), this integration will be zero for t > T. SO, the result of the 
integration of Eq. (6) is 

{Tn {t io H(t-T)dT= 
o Tn 

if t :::; T 

if t > Tn 

(7) 

The solution to Eq. (6) can be given as 

if t :::; T 

if t > Tn 

(8) 

2 



Figure 1 shows both solutions, Eqs. (5) and (8). For small Tn and very high fre­

quency fo such that foTn -+ 1, the term €/( bcp ) corresponds to the instantaneous tem­

perature rise. 
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Figure 1. Normalized Temperature as a Function of Time for k = O. 

Although restricted herein to considering discrete time energy deposition, the method 

can be extended to an arbitrary time-depended situation as noted in Appendix B. 

3.0 NON-ZERO THERMAL CONDUCTIVITY 

Assume that the energy density distribution is the same in every event, and the events 

are equally temporally spaced, Eq. (1) is rewritten as 

80 n 
(pcp )7) = p;;;r2o + €(f')fo L 8(t - ti) . 

t i=O 
(9) 

Applying the spatial Fourier transformation, defined by Eq. (A4) in Appendix A, and after 

making some rearrangements, it follows 

(10) 

where 0)" and E)" are the Fourier-transformed functions 0: the temperature and energy 

density distribution, and a is defined as 

k).,2 
a--­

- (pcp) , 

3 

(11) 



3 

,\2 = L,\[ . (12) 
j=l 

Using now the time Fourier transformation in Eq. (10) and making some rearrangements, 

the following expression is obtained 

(13) 

Applying the inverse time-Fourier transformation l and using Eq. (11), results in 

(14) 

Applying now the spatial inverse transformation, defined by Eq. (A5) in Appendix A, it 

follows 

(15) 

which can be expressed, using the convolution theorem,2 as 

(16) 

where the convolution, *, between two functions is defined as 

1
+00 1+00 

f(x) * g(x) = -00 f(x - Og(O d~ = -00 f(Og(x - 0 d~ . (17) 

It is not difficult to demonstrate, see Eq. (A6) in Appendix A, the following result 

(18) 

Using this in Eq. (16), the general solution is given by 

(19) 
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This is the general solution of the problem. However, one must show that this solution 

has the right limit wherever the conductivity is zero. This can be accomplished using the 

known relation 
1 2/(32 

lim 1-(3 e -x = 8( x) . 
(3--0 v 7r 

(20) 

Then, the following limit is obtained 

f n 1+00 1+00 1+00 

lim O(r, t) = -( 0) L H(t - ti) €(r - ()8({) d3
{ 

k--O pCp i=O -00 -00 -00 

(21) 

which brings about the expression of Eq. (4). Defining the parameter q as 

(22) 

Eq. (9) can be written as 

f n H(t t·) 3/21+00 1+00 1+00 
.... 2 O(r, t) = _0_ L -3i2 q €(r - Oe-qe de· 

(pcp) i=O 7r -00 -00 -00 

(23) 

Therefore, the limit of Eq. (21) can also be written as 

(24) 

That is, the parameter q characterizes the type of energy deposition events such that the 

use of the instantaneous temperature rise can be justified. For the Superconducting Super 

Collider (SSC), the characteristic separation between events corresponds to the separation 

between bunches, 16.66 nSec. Then, q is of the order of 

q = 1.5 X 107 P~P (25) 

which justifies completely the use of instantaneous temperature rise at room temperature 

since pcp / k is less or of the order of the unit for metals, and it can be four orders of 

magnitude higher for insulators. However, at low temperature the instantaneous temper­

ature rise may be considered slightly overestimated since the specific heat for metals may 

be lower by four orders of magnitude, but its use automatically introduces a small safety 

margin in the calculations. 

The following assumes that the instantaneous temperature rise is not justified. So, the 

thermal conductivity effect is considered. 

5 



4.0 GAUSSIAN DISTRIBUTION OF ENERGY DENSITY 

The solution of Eq. (19) can be used once the distribution of energy is known. Assume 

that the distribution of energy is Gaussian in the three dimensions, 

(26) 

where the normalization has been taken such that the integration all over the volume is 

the total energy, Eo, deposited in the material. The integration brings about the following 

expression, see Eq. (A 7) in Appendix A, 

(27) 

wherf? q is given in Eq. (22). Substituting Eq. (26) in Eq. (19) and making some rearrange­

ments. ; - follows 

.... Eofoy'pC; n 3 e -qx;/(l + q0"2) 
OCr, t) = 8[ k]'/2 L H(t - t;) II J ' 

where p is defined by 

7r '-0 '-I t - t, + p0"2 t- J- t J 

pCp 
p= 4k . 

(28a) 

(28b) 

From Eq. (28a), it is seen that the temperature depends inversely proportional on the 

0"' s, and the hottest point is located at the origin. Defining Oo(t) = O(D, t), the following 

expression is obtained for the hottest point 

o (t) = Eofo.,fPCP t H(t - ti) 
o 8[7rkJ3/2 '-0 n3 Jt - t, + p0"2 

1- J=l I J 

(29) 

The particular case of a 8-like distribution of energy density can be obtained by making 

O"j = 0 in the solutions of Eqs. (28a) and (29). 

4.1 O"x = O"y #- O"z 

In applications of energy deposition of hadronic or electromagnetic showers, the longitu-

dinal energy distribution density is spread in larger extension than the transverse direction. 
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To estimate the hottest temperature rise in this case, assume erx = ery = er for the trans­

verse direction. The expression obtained from Eq. (28) is 

(30) 

and assume that the events happen so close together in time that it is possible to substitute 

the summation for an integration, 

8
o
(t) = EofoJpcp [Tn H(t - T) dT 

8[ 71" k P/2 Jo "7'"( t-_-T-+-p"":er-::2:7)-y'7=t=_=T =+=p=er~; 

Then, making this integration, the following solution results 

8 (t) - Eofo {logG(t,O) -logG(Tn,Tn) 
o - 871"3/2kVer; _ er2 log G(t, 0) -log G(t, Tn) 

where the function G is defined by 

G( ) 
_ Vt + per; - Tn - vp(er; - er2 ) 

t,Tn -
y't + per; - Tn + y'p( er; - er2 ) 

if t ~ Tn 
if t > Tn , 

(3Ia) 

(3Ib) 

(3Ic) 

Figure 2 shows 8o(t) as a function of time. Eq. (3Ia) has a maximum value at t = Tn, and 

after this value, the temperature falls. The maximum temperature is given by 

8;:ax = / Eofo [log G( Tn, 0) -log G( Tn, Tn)] . 
871"3 2 kJ er; - er2 

0.150 
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~ 0.100 
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o 
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O'..L - 5 em 0' z = 150 em 
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(32) 

TlP-02816 

Figure 2a. Normalized Temperature for k =I 0 and Large Time Tn = 1 sec. 
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Figure 2b. Normalized Temperature for k i= 0 and Large Time Tn = 2.9 X 10-4 sec. 

4.2 (Jx = (Jy = (Jz 

For the case of a completely symmetrical distribution of energy density in the material, 

the solution can be obtained by taking the limit (Jz --+ (J in Eq. (31a). This limit IS 

calculated with the help of Eq. (AS) of Appendix A. The resulting solution is given by 

if t ::; Tn 

if t > Tn , 

where p is defined as in Eq. (26), and the maximum temperature can be written as 

Bmax _ Eofovp [ 1 - 1 1 
o - 47r3/ 2 k ..;p;;2 VTn + pf72 ' 

which for the case p(J2 « Tn, a simple expression results, 

Bmax _ Eofo 
o - 47r3/2 kf7 

4.3 Uniform Distribution in the Z-Direction 

(33) 

(34) 

(35) 

For a thin layer of material, the energy density distribution may be uniform across the 

layer. Therefore, the temperature must not depend on the variable associated to this 

direction, says z. Eq. (9) is written as 

of) [ 02 
f} 02 

f} ] n 
(pCp) at = k ox2 + oy2 + €(x, y)fo ~ b(t - ti) . (36) 
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Using the same above procedure, the general solution can be given by 

(37) 

If a Gaussian distribution of energy density is gotten in the transverse direction, 

(38) 

where Eo is the total energy per unit length in the z-direction, the above convolution can 

easily be made, obtaining 

where p and q are given by Eqs. (28b) and (22). The temperature of the hottest point is 

Approximating the summation by an integration, 

8
0
(t) = Eofo (n H(t - T) dT , 

47rk 10 J(t + p(J'~ - T)(t + p(J'~ - T) 

the following solution is obtained 

8
0
(t) = Eofo {logg(t,O) -logg(Tn,Tn) 

27rk logg(t,O)-logg(t,Tn) 

where the function 9 is defined as 

if t :::; Tn 
if t > Tn , 

g(t, Tn) = Jt + p(J'~ - Tn + Jt + p(J'~ - Tn . 

Moreover, the maximum temperature is given by 

8,:ax = ~o!~[logg(t,O) -logg(Tn,Tn)]' 

(40) 

(41) 

(42) 

(43) 

(44) 

For the case where (J' x = (J' y = (J' and Tn > > p(J'2, Eq. (44) is expressed by a simpler 

expreSSlOn. 
Qmax = Eofo 1 1 / k/ 
170 27rk og -;; V 4Tn pCp. (45) 

9 



4.4 Event Dependence of the Gaussian Distribution 
It could happen that every event may produce a Gaussian distribution which could 

change event-from-event even though they are equally time separated. In this case, Eq. (1) 

looks like 

(46) 

and it is clear from Eqs. (19), (22) and (26) that the solution of this equation for a Gaussian 

distribution would be 

( 47) 

where aji is the standard deviation of the energy density deposited in the material in the 

j-direction at the i-event. The peak temperature evolution would be given by 

5.0 MAXWELL-LIKE DISTRIBUTION ON 
THE LONGITUDINAL DIRECTION 

(48) 

As mentioned in Section 4.1, the energy density distribution deposited in the longitudinal 

direction may be different from the transverse direction. Generally, the energy deposited 

starts from zero, reaches a peak value and then falls very rapidly, see Figure 3. Keeping 

a Gaussian distribution in the transverse direction, assume a Maxwell-like energy density 

distribution in the longitudinal direction, 

(49) 

where H(z) is the Heaviside function defined by Eq. (5). €(z) has been normalized such 

that the total energy in the volume would be Eo. a z is related with the point where 

Eq. (49) reaches its maximum value, Zm, in the following way 

(50) 

10 
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Figure 3. Energy Deposited in a Graphite Cylindrical Block for a 20 TeV Proton. 

The convolution needed in Eq. (19) is calculated in Appendix A, Eq. (A9), 

(51) 

Using this expression with Eqs. (39) and (19), the solution of the problem is given by 

(52) 

11 



where q and p are given by Eqs. (24) and (26). Note that the peak temperature in the 

transverse direction still occurs at the point x = 0, y = O. However, in the longitudinal 

direction, for a fixed time, this peak occurs, (see Eq. (A10) in Appendix A, at the point 

(53) 

Note that this value is always higher or equal to Eq. (50), z. > Zm. In addition, the 

following limit is satisfied 

lim z. = Zm . 
q-+oo 

(54) 

The peak value of the temperature is shifted away from the peak value of the longitudinal 

energy deposited by the amount z. - Zm. Furthermore, for very bad thermal conductors 

(insulators), the peak temperature and the peak energy deposition are much closer for 

a longer time than the good thermal conductors (metals), as was expected. The peak 

temperature, 80 (t) = 8(0,0, Z., t), is given by 

1 + V1 + 27rqO'; 

8
0
(t) = EofoVJ5CP ~ H(t - tj)e - 47rqO'; [3 + . /1 + 27rQO';]. (55) 

16[7rkP/2 iSo' (t - tj + p0'2)y"f=ti(1 + qO';) V 

For an approximation, it is possible to substitute the summation for an integration al­

though the integration may not be done analytically but numerically. However, in the 

limit of qO'; ~ 1, Eq. (55) can be written as 

1. LI ( ) '"" Eofo ~ H(t - ti) 
1m Uo t - -/0-=---~ 2 

qui>! 4v27rkO'z i=O t+pO' -ti 

and can be approximated by an integration which can bring about the solution 

E f { log t + P
2
0'2 if t :s: Tn 

8
0 

( t) ~ 0 0 pO' 2 

4V27rb,.z log t+pO' 'ft 
2 1 > Tn . 

t + pO' - Tn 

6.0 LONGITUDINAL EXPONENTIAL DECAY 
ENERGY DISTRIBUTION 

(55a) 

(55b) 

Another type of longitudinal distribution that might be of some interest is that which 

has an exponential decay, for example 

(56) 
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where the same normalization has been taken as before, and the parameter U z is related 

with the peak value of Eq. (56) by 

Zm = U z • (57) 

U sing the result of Eq. (A 11) of Appendix A with Eqs. (39) and (19), the following solution 

is obtained 

(58) 

As before, most of the time the peak temperature does not coincide with the peak energy 

deposition. This peak occurs at 

which has the following limit 

1 1 
Z* = U z + -----

4qu z 2..;:;rq 

lim z* = Zm . 
q--oo 

The peak temperature, Bo(t) = B(O, 0, z*), is given by 

(59) 

(60) 

(61) 

If the same approximations as in Eq. (55a) and (55b) were made, the solution would be 

the same form of Eq. (55b) but multiplied by a factor of l/eV2. 

7.0 LONGITUDINAL DEPENDENCE OF THE 
TRANSVERSAL DISTRIBUTION 

Energy deposition from hadronic or electromagnetic showers has, in addition, other com­

plications. The transverse size of the energy deposited grows with the penetration of the 

shower (see Figure 4), i.e., if a Gaussian distribution in the transverse direction is assumed, 

the standard deviation of the energy deposited will depend on the longitudinal coordinate, 

z. Therefore, using a transverse Gaussian distribution and arbitrary distribution, €( z), in 

the longitudinal direction, it follows from Eqs. (19) and (A 7) 

(62) 
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Figure 4a. Distribution of Energy Deposited for a 20 TeV Proton in Graphite. 

Figure 4b. Specific Energy Surface Distribution in Graphite for a 20 TeV Proton in Graphite. 
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This complicated expression can be solved numerically once 0"( z) is known. The peak 

temperature in the transverse direction still remains at the point x = y = 0, but the 

longitudinal peak depends on O"(z). Defining Boo(z,t) = B(O,O,z,t), the peak temperature 

in the transverse direction is given by 

(63) 

This expression is easier than Eq. (62). However, a numerical integration is required to 

calculate it. For example, using the distribution from Eq. (56), the following result can be 

demonstrated 

B (z t) = Eofo ~ H(t _ t·) e-z/O"zq + 1/(20"zq)2 
00, 4 2 3/2k L..J I 

O"z7r i=O 

(64) 

{+oo [/3/y'q + z -1/20"zq]e-i92 d/3 

x Jo t - ti + p[O"(/3/ y'q + z - 1/20"zq)]2 

8.0 COOLING CONSIDERATION 

Suppose that there is a uniform cooling such that it carries away a certain amount of 

energy deposited in the material. This cooling could be represented as a sink of power 

which is proportional to the difference in temperatures between the material and the batch, 

B. Considering the material and the cooling substance as a homogeneous single material 

with average (pcp), total k, and constant of proportionality h for the cooling factor, the 

heat equation (9) becomes 

(65) 

Following the same procedure as in Section 4, the general solution of this equation is 

where q is given by Eq. (22). Therefore, if the cooling effect (of this type) was taken into 

consideration in the above examples, the solution would contain the factor e-h(t-ti)/(pCp ). 

Before the next energy deposition events, the temperature drops by a factor of e-h/ Jo(pcp ). 

Thus, for the characteristic bunch-to-bunch space frequency in the SSC (fo = 60 MHz) 

and at room temperature, fo(pc p ) '" 2 X 108 W/cm3 K. Therefore, cooling effect is not 

15 



important for this event. Taken the limit q ~ 00 (or k equal to zero), the next expected 

limit is obtained 

(67) 

and wherever h is equal to zero, the solutions of Eqs. (19) or (24) are recovered. For small 

h (more precisely hTn/(Pcp) < 1) and using the approximation of Eq. (6) 

{ 
({;Io t) [1 - ht/2(pcp )] 

B(t) = pCp 
(;fo Tn e-ht/(pcp ) 

(pCp) 

if t ~ T 

(68) 
if t > Tn . 

Thus, there is a decrease in the peak temperature and an exponential fall off of the tem­

perature. The constant h must be determined experimentally. 

9.0 CONCL USION 

The analytical expressions for temperature rise during energy deposition events were 

calculated through the solution of the time dependent heat equation, using the Fourier 

transformation approach. This calculation was made for several energy distributions. The 

solutions depend on the frequency of energy deposition. If this frequency is high, the so­

lutions correspond to the instantaneous temperature rise. At the characteristic frequency 

of the bunch spacing (60 MHz) in the sse, there is a clear justification to use the instan­

taneous temperature rise for energy deposition calculations at room temperature. 
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APPENDIX A 

A.I THE FOURIER TRANSFORMATION 
The time Fourier transformation of a function J(t) is defined by 

1
+00 . 

JOt = F[J(t)] = -00 e-zat J(t) dt , (AI) 

and its inverse transformation is defined by 

(A2) 

If J(a) is a even function, J( -a) = J(a), then it follows 

F-l[J(a)] = 2~ F[J( -a)] . (A3) 

In three dimensions the definition may be given by 

1
+00 1+00 1+00 ......... 

g).. = F[g(r')] = -00 -00 -00 e-
ZA

' r g(r') d
3r:, (A4) 

where the vectors X and r: are X = (AI, A2, A3) and r: = (Xl, X2, X3) = (x, y, z). The 

inverse transformation is written as 

(A5) 



A.2 INVERSE FOURIER TRANSFORMATION 
OF A GAUSSIAN DISTRIBUTION 

A.3 CONVOLUTION WITH A GAUSSIAN DISTRIBUTION 

(A6) 

(A7) 



AA LIMIT VALUE OF THE FUNCTION fr log ~~~ 

, I x-f3 ' d x-f3 
hm "(.i log --a = hm da log --a 
;3-0 tJ X + tJ ;3-0 tJ X + tJ 

, ~log~ 
=hm ~ ;3-0 x-

x+ 

l
' -2x 

= 1m --,:--....". 
;3-0 x2 - f32 

2 

x 

A.5 CONVOLUTION WITH A MAXWELL-LIKE DISTRIBUTION 

A.6 LIMIT VALUE OF z* 

(A8) 

(A9) 

(AIO) 



A.7 CONVOLUTION WITH AN EXPONENTIAL 
DECAY DISTRIBUTION 

If the distribution is given by Eq. (56), it follows 

j +OO 2 E 1/ 3 1+00 -:. - q(Z2 - 2ze + e) 
€3(e)e- q(z - e) de = -;:- ee e de 

-00 a z 0 

2 q 1 2 
E 1/ 3 -qz + 4(2z - azq) 1+00 -q[e _ z + _1_]2 

o e ee 2az q de a; 0 

z 1 
--+--

E~/3 e a z 4qa; J 00 [ P 1 ] _ 2 = 0+ - + z - -- e P dp 
a;yq yq 2azq 

z 1 
--+--

E~/3 e a z 4qa; [1 yIT 1] 
= -+-(z--) 

a;yq 2yq 2 2azq 
z 1 

--+--
E 1/ 3 e a z 4qa; 1 

o 2 2 [1 + 2y'7rq(z - -4 -)] . 
azq qaz 

(All) 



APPENDIX B 

ARBITRARY TIME DEPENDENT ENERGY DEPOSITION EVENTS 

In this case, the heat equation is given by 

(Bl) 

where Ji = l/(tj - tj-l) is the frequency time separation per events that produces an 

energy deposition distribution €i(T) which evolves in time in the form nj(t). The spatial 

Fourier transformation of Eq. (Bl) brings about the equation 

(B2) 

where a is defined by Eq. (11). The time Fourier transformation of Eq. (B2) gives 

(B3) 

Using the time-inverse Fourier transformation and the convolution theorem in Eq. (B3), it 

follows 

(B4) 

Finally, using the spatial inverse Fourier transformation and the convolution theorem in 

Eq. (B4), gives 

n +00 _ pcpe 

O( .... t)= y1JcP ~f·l d H(t-T)ni(T)! .( .... _t) 4k(t-T)d3t 
r, ]3/2 ~ I T [ ]3/2 €I r ." e ." . 

8[7rk i=O -00 t - T 
(B5) 


