
.... 
..... 

SSCL-516 ....... 
.... 

............... 

~ Superconducting Super Colli~er Laboratory 
I 
~ 
U 
CJ) 
CJ) 

Emittance Growth Caused by 
Magnet Vibrations in the SSC 

G. v. Stupakov 

March 1992 





SSCL-516 

Emittance Growth Caused by Magnet Vibrations in the SSC 

G. v. Stupakov· 

Superconducting Super Collider Laboratoryt 
2550 Beckleymeade Avenue 

Dallas, Texas 75237 

March 1992 

*Guest scientist visiting from the Institute of Nuclear Physics, Novosibirsk, 630090, Russia. 
tOperated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract 
No. DE-AC35-89ER40486. 





Emittance Growth Caused by Magnet Vibrations in the SSC 

G. v. STUPAKOV 

Abstract 

Magnet vibrations may be caused by ground motions in the collider. The vibrations can be 
characterized as high-frequency (in the range of 1 kHz) or low-frequency (in the range of Hz or tens 
of Hz) noise. High-frequency noise resonates with the betatron oscillations causing fast emittance growth 
of the beam. Analytical results indicate a tolerable vibration level that is not harmful for the beams. 
Estimations for the ambient low-frequency noise show that in typical conditions it is of no danger for the 
collider. 
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1.0 INTRODUCTION 

The effects of ground motion in the SSC have been intensively studied in recent years. 1-4 The main 
concern of these studies has been a low-frequency (tens of Hz and lower) motion of the quadrupole 
magnets. This motion causes a distortion of closed orbits of the beams so that the two beam centers can 
miss each other at the interaction point. In addition, slow motion can gradually increase the emittance of 
the beams.4,5 

This paper addresses two kinds of problems. The first one relates to high-frequency vibrations of the 
quadrupoles (in the range of one kHz) that can resonantly excite coherent betatron oscillations.6 Due to 
nonlinearity of these oscillations, the betatron frequency depends on their amplitude. This dependence 
triggers a phase mixing mechanism 7 which quickly transforms coherent betatron oscillations into 
increased emittance of the beams. * The primary results of this study agree with a recent independent study 
of the Novosibirsk group. 8 

The other problem considered is the emittance growth caused by low-frequency motions of the 
quadrupoles. Using a small parameter Tro, where Tis the particle revolution period in the collider and ro 
is the frequency of the ground motion, one finds an amplitude of the betatron oscillations around a 
displaced closed orbit driven by the slowly-moved quadrupoles. Using the equation for this amplitude one 
can estimate the emittance growth induced by nonlinear phase mixing. Though results differ from the 
previous considerations,4,5 the general conclusion is that the increase of emittance caused by the slow 
motion is typically small and does not deteriorate the beam performance. 

2.0 GENERAL EQUATIONS 

Consider a quadrupole magnet of the length I. Let it be displaced from its original position by the 
distance ..1( t) which is a function of time t The displacement of the quadrupole perturbs the magnetic 
field on a particle orbit by a quantity oB (t) = B '..1( t) where B' stands for the magnetic field gradient. The 
governing equation for particle motion takes the form 

y"+ K(s)y = F(s,t) , (1) 

where y is the position offset of a particle, 

F(s,t) = e~Bh(s) = L1(t~(s) 
cP /ql 

(2) 

fq == cPlelB' is the focal length of the quadrupole, P is the particle longitudinal momentum, and h(s) 

denotes the function that is equal to unity inside the quadrupole and takes zero values outside of it. The 
function h(s) indicates that the magnetic field on the orbit is perturbed only inside the quadrupole. 

Since the length of the quadrupole is much smaller than the betatron period, the function h( s) can be 
replaced by a delta-function (thin-lens approximation) according to 

*The main source of nonlinearity in the sse stems from beam-beam interaction and gives the characteristic time for 
the phase mixing of the order of a second. 



th(s) ~ 8(s - so), (3) 

where So stands for the quadrupole position. Putting Eq. (3) into Eq. (2) yields 

y"+ K(s)y = Ai:) 8(s - so). (4) 

It is convenient to transform from y and s to new variables 11 and t/J: 

{3 -I/2 
1]= y, t/J = v-I VI (s) , (5) 

where lJI(s) is the betatron phase. From Eq. (4), using the relation dtJYds = lIv,6ne fmds 

00 

d 2n 2 _ /3 112 A(t) ~ ~(A. 2 n....) 
-2 +v 1]-v 0 T k v '1'- 1Cm-'f'\J , 

dt/J q m=-
(6) 

where 130 and t/Jo refer to the position of the quadrupole and the sum on the right-hand side indicates that 
due to periodicity, the values of t/J which differ by 2n correspond to the same position on the orbit. Each 
delta-function in Eq. (6) represents a kick that the particle experiences during successive passings through 

the displaced quadrupole. 

Due to the circular motion of the particle, the variable t/J changes with time t so that t/J increases by 2n 
after each period T = 21C1n (n is the rotational frequency). The function t/J(t) has the form 

(7) 

where &P(t) is a small quantity, ap(t) « 1, that describes deviation of t/J(t) from the linear dependence. In 
what follows, neglect ot/J and keep only the linear term in Eq. (7). As a detailed analysis shows, the 
account for &fJ would add only small corrections to the fmal result. Using t as an independent variable 
instead of t/J, t/J = n , from Eq. (6) we obtain 

(8) 

3.0 HIGH-FREQUENCY VIBRATIONS 

Assume now that .1(t) is a random function with a given autocorrelation K(-r), 

K( -r) = (Li(t)A(t - t)) , (9) 
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where the angular brackets stand for the ensemble averaging. An important characteristic of a random 

process is its spectral density S( (0) given by Fourier transform of the autocorrelation function, 

S(m) = !i~ K(t)e'OJ'dt • K(1) = L-S(m) cos mtdOl (10) 

Using the identity 

00 00 

~ 0 (t - mT -to) = j. ~ eimD(t - to) (11) 

m=-oo m=-oo 

one can write down a formal solution to Eq. (8) 

where 110 and 80 are the initial amplitude and phase of 11. Because l1(t) is a random function, an 
appropriate measure of the amplitude of the oscillations is the averaged value (rf2 (t). As will be shown 
below, this quantity grows linearly with time so in the following calculations one can neglect the initial 
value 110 in Eq. (12). Taking the square of Eq. (12) and performing the averaging one finds 

00 

(13) 

m,n=-oo 

Consider a limit of large t, t~. First, transform to new variables of integration, and JL, ,=;' -;": 
JL = (;' + ;,12. For m + n = 0 resonant terms appear in Eq. (13) which linearly grow with time. * Keeping 
only these terms after straightforward calculations one fmds 

(14) 

*Ponnally, reson.tnt tenns also appear for m + n :f: 2v = 0, however this condition never holds for an accelerator 
because it requires v to be equal to a half integer. 
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4.0 LOW·FREQUENCY VffiRATIONS 

To study the low-frequency limit, return to Eq. (8) and defme a complex variable z and dimensionless 
time, , 

~ . dl1 ) !' 1""\ z = -:j{l;l1- Z dt' '=' = tvu. (15) 

With 'chosen as a time variable, the betatron oscillations proceed with a unit frequency. Transforming 

from 11 and t to z and "Eq. (8) takes the form 

00 

dz. - iz = -ie (I;) L, 0 (' - 'rrJ.Un), d' m=-oo 

(16) 

where Jl = 2nv and E = q q is the displacement normalized to the focal length of the quadrupole. 

A general solution to Eq. (16) is the sum of the general solution Zgen' of the homogeneous equation and 

a particular solution Zpart. of the inhomogeneous one: 

z( I;) = Zpart. + Zgen. (17) 

where 

Zgen. (I;) = zoe i , (18) 

and 

N 

-i L, e(j.lm + 'o)e i (, - '0 -pm) (19) 

m=-oo 

where N stands for the integer part of the ratio (' - '0) Jl. N refers to the kick number at the last passing 
through the quadrupole and changes by unity each turn. For the sake of simplicity, assume that there are 
no initial coherent betatron oscillations in the beam and put Zo = 0 in what follows. 

To proceed further, suppose that the beam is injected into the lattice at ,= O. Since the quadrupole 
motion before the injection does not influence the beam dynamics at ,> 0, one can put E{ ') = 0 for 
, < O. Having this in mind one can utilize Laplace transform from E( ') to ~p), 

4 



(20) 

to obtain 

i
s +ioo 

Z (Q = - J-ei(, - '0) d $) e-iNJl(1 + ip) . 
part. 2n . 'P l-e iJl(1 + ip) 

S-IOO 

(21) 

The integration in Eq. (21) is performed along a straight line Re (p) = s, so that the poles of the 

integrand be located in the left part of the complex plane p. 

Now, take into account that L1(t) is a slow function with a characteristic time of change, ~ - rr/ro, much 

larger then the rotational period, 

te» T . (22) 

The analysis performed in Appendix A shows that the integral of Eq. (21) in the limit given by Eq. (22) 

splits into three parts, Zpart = zl + z2 + z3 . The fIrst one is 

_ 1 e i(, - '0 -jJN-nv) 
Zl- -2 e{J.lN). . sm7tV 

(23) 

To gain an insight to the origin of this term, take its real part and return back to dimensional variables: 

L1(NT)1 f3f30 
Yl = 2J. . cos( 11' - 1CV - [11'0 + ,uN]) , qsm 1CV 

(24) 

where 'identifIes with the betatron phase ",(see Eqs. (5) and (7». Equation (24) now represents a well 
known expression for a perturbed closed orbit resulting from a shift of a quadrupole. Note, that according 
to Eq. (24) the closed orbit slowly evolves in time corresponding to the position of the quadrupole at the 
moments of the last kick, t = NT. 

The second term in Zpart is given by the following formula 

(25) 

This term, being proportional to the time derivative of the displacement .£1, describes excitation of the 
betatron oscillations of the beam due to time variation of .£1. A rough estimate of the ratio I 'i IZ2 I gives a 
value of the order of T/~ « 1; that is the amplitude of these oscillations is much smaller than the setoff of 
the closed orbit. 
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Finally, the third term in Zpart is 

k =00 

Z3 = - ~2.1 i(, - '0) L e (Pk) , 
l1rV 

k=-oo 

(26) 

where Pk = i(1 - kJv) and k is an integer. As is shown in Appendix A, this term is related with the 
behavior of E( ') at , = O. It corresponds to the oscillations that the beam acquires at the moment of 
injection to a slightly perturbed closed orbit. If E and its fIrst derivative with respect to time are equal to 
zero at , = 0, 1 ~ 1 appears to be much less that 1 z2 I. Since long-time effects of the quadrupole motion 
are of most interest, one can discard this term in what follows. Note only that this term may be of 
importance in computer simulations of low frequency ground motions; the result of the simulations may 
be influenced by the smoothness of the start at t = O. 

Using Eqs. (17), (18), (23), (24) one is now able to fInd how the beam oscillates around a new closed 
orbit: 

Zoscill. (~ = z( ~ - Zclosed orbit = Z( ~ - Z 1 = 

(27) 

where 

~z(N) = - i1rV e-i('O + J1N)~) • 
2sin2 1rV dt 

(28) 

Equation (27) shows that the beam experiences coherent betatron oscillations whose amplitude and 
phase change in time (remember that N increases by one each turn). 

5.0 DISCUSSION 

As seen from Eq. (14) the largest perturbations of the beam are produced by the lenses with the 
smallest focal length located at high-,8 positions. At the sse, these are the quadrupoles focussing the 
beam to the low-,8 interaction point. Typical values for these lenses are:9 fq ..., 20 m, Po ..., 8000 m. The 
lowest resonant frequency that contributes to Eq. (14) is Drv}, where the braces denote the distance from 
v to the nearest integer. For nominal sse parameters, D =3.44 kHz and rv} = 0.22 this frequency is Drv} 
= 760 Hz. Putting the numbers into Eq. (14) for the low-,8 interaction region (,8 = 0.5 m) and require 
V&2(t»)av to be less than 2 J.1m (that is roughly a half of the beam rms radius at IP) after 10 hours of 
operation one obtains a constraint on a tolerable level of vibrations of the magnets: 

S(760 Hz) < 1O-12Jlm2!Hz. (29) 
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Another estimate can be made if one chooses a typical quadrupole with fq = 60 m, located at /30 = 
200 m and takes into account that there are about 800 quadrupoles in each ring. At this high frequency the 
vibrations of different magnets are uncorrelated, so one has to sum up all the contributions to (y2(t) )av 
from separate quadrupoles. With the same requirements for '/(y2(t»)av ,one fmds 

S(760 Hz) < 0.8· 1Q-12 Jlm2/Hz . (30) 

Up to now, there were no detailed measurements of ground motion performed in this range of 
frequencies at the sse site. To compare the level of vibrations given by Eq. (30) with experimental data, 
use the results of Novosibirsk group who measured ground motion in a wide frequency range in the UNK 
tunnel near Protvino.8 They found that, depending on environmental conditions, S can reach as high as 
lO-9Jlm2IHz for the frequency of a few hundred Hz. This level of vibrations is three orders of magnitude 
larger than is tolerable for the sse. 

The preceding estimates assume that the magnets vibrate with the same amplitude as the ground. 
Strictly speaking, this is not true and the magnet motion will significantly depend on the properties of 
supports and mechanical structures connected to the body of the magnet. An important issue of magnet 
response to the high-frequency ground motion requires further investigations. 
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APPENDIX A 

In this Appendix we calculate the following integral: 

(A.I) 

First, close the contour of integration by a half circle through the left-hand side of the complex plane as 

is shown in Figure A-I. 
Imp 

-t-----+-=---+ Rep 

Figure A·1. Complex Plane p with the Contour of Integration for the Calculation of the Integral (A.1). Shown 
by dots are the poles of the function ~(p) and the crosses show locations of the poles of the 
denominator In (A.1). 

The contribution coming from the half-circle tends to zero when the radius of the circle goes to infmity 

because the integrand exponentially vanishes at infinity at the left-hand side part of the complex plane. 
Now, the integral can be calculated as a sum of the residues of the integrand. There are two different 
types of poles in our problem at which the residues should be computed. First, in general, the function 

~(p) has poles, shown by dots in Figure 1. The location of these poles in the complex plane,p =p[e;, 
i = l, ... ,iuwr., can be roughly related with the characteristic time te of the function Lift) 

~?~ __ l_. 
.Qv't'e 

(A.2) 

Second, there is a set of poles connected with the zeroth of the denominator in Eq. (A.I). These are 

located at 

Pk = i(l-klv) , (A.3) 

where k is an arbitrary integer. 
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When calculating the residues at the points p = p~£) we will take into account that according to 
I . 

Eqs. (A.2) and (22) Jlp « 1. Using this small parameter we expand the factor exp( -j.Lp) in the 
denominator of the integrand: 

_----'1'--_ == ~I!o......
l-eiJl.v(1 +ip) l-e iJl.V 

J.LpeiJl.V 

(1- eiJl.v) 2 
(A.4) 

Putting the fIrst term from Eq. (A.4) back into Eq. (A.I) and performing the integration, one fmds a 
contribution denoted by zl' 

(A.5) 

while the second term from the right-hand side of Eq. (A.4) gives the contribution which we denote by z2' 

(A.6) 

Finally, calculating the contribution of the poles Pk' one fInds the contribution z3' 

(A.?) 

In Eq. (A.?) the modulus of Pic. IPk 1 >kjv, is much larger than the characteristic scale of the function 
~(p) in the complex plane (which is of the order ofEq. (A.2». That means that a good approximation for 
~(Pk) is given by asymptotic expansion of the function "(p) in the limit 1 P 1-+ 00. As is known from the 
theory of Laplace transform, this limit is related with the behavior of the function e( ') and its derivative 

at' =0, 

(A.S) 

where n is the number of the fIrst nonzero derivative· of the functione( ') at , = O. Using Eq. (A.S) one 
fmds that 

(A.9) 

*If E(O) does not vanish, n = O. 
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