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An effective Hamiltonian, with non-linear magnetic multipole terms and 

momentum dispersion contributions, is used to obtain the first order tune-shift 

results for transverse betatron motion for protons in the Superconducting 

Super Collider (SSC). This Hamiltonian is represented in terms of action 

angle variables, and analytical results are obtained using symbolic algebra 

methods. Mathematical derivations of the transverse multi pole expansion and 

of the transverse betatron equations, using an invariant action and curvilinear 

coordinates, are given in the appendices. Numerical and graphical tune-space 

results are given that illustrate the dependence of tune-shifts on injection 

amplitude and momentum spread. 
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I. INTRODUCTION 

When protons are injected into the SSC they execute transverse betatron oscil­

lation with betatron numbers (tunes) liz and 111/. In a linear machine, if a proton 

of initial phase tPo is observed at the same fixed point along its path for j rotations 

around a ring of radius R, a transverse position coordinate follows the sinusoidal 

law cos(jllowrTo+tPo). The phase advance for one rotation is 27rIlO, and the betatron 

frequency is Wr = c/ R, where c is the speed of light. The period for one rotation is 

To = 27rR/c. Non-linear multipole contributions to the transverse magnetic field of 

the SSC dipole magnets can produce changes (tune-shifts) in the transverse beta­

tron numbers. These changes can drive the tunes into regions of liz, 111/ tune-space 

where resonance lines are present. This can result in particle loss and degradation 

of the dynamic aperture of the beam. Such effects are seen clearly in computer sim­

ulation studies [1] done using the tracking code SSCTRK [2]. Using Fourier analysis 

methods, one can extract values for the betatron tunes from the data produced by 

SSCTRK. However, it is desirable to have an analytical method which will show 

the pattern in tune-space produced by particles with different injection positions 

(z,y) and with different values of momentum spread 6IPl/Pl, where 61Pl = IPl-liol 
is the difference between the proton scalar momentum IPl and the ideal orbit scalar 

momentum lio I. The corrections to betatron tune-shifts resulting from higher order 

magnetic multipole contributions are calculated in first order perturbation theory 

using a non-linear effective Hamiltonian, represented in terms of action angle vari­

ables. The analytical results are obtained from this Hamiltonian using symbolic 

computational methods, and numerical results are obtained from these expressions. 

The analytical results are obtained from the REDUCE [3] program TSHIFT which 

is described in this paper. The results from this program are used in the numerical 

program TUNESHIFT.FOR to produce graphical results in the Top Drawer [4] file 
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TUNESHIFT.TOP. These methods have been successfully used to study the spread 

in tune-space associated with magnetic peaking [5]. Sample graphs resulting from 

these programs are given in the text, and the method for generating these results 

is described. For the numerical results, multipole contributions through B 10 are 

included; however, the REDUCE code can be used to generate higher order con­

tributions if these are desired. The numerical code TUNESHIFT .FOR is driven by 

and input file which contains data on the operating point (IIOz , 110,) for the nominal 

transverse betatron tunes, values of the multipoles Bl through B 10 , and momentum 

offset 61P1/i1. 

II. THE ACTION ANGLE EFFECTIVE HAMILTONIAN 

The non-linear magnetic field multipole contributions are found from the mul­

tipole expansion for the transverse magnetic fields of the SSC dipole magnets 

Bz(z,y,i) + iB,(z,y,i) = L(Bn(i) + An(i»(z + iy)n, (2.1) 
n=O 

where Bn(i) and An(i) are, respectively, the normal multipole and skew-multipole 

coefficients. As described in Appendix A, these transverse fields are obtained from 

the real part of the scalar function A(z, i) according to 

B,(z,y,i) + iBz(z,y, i) = i5ReA(z, i), (2.2) 

where 

and z = z + iy. The coordinates z, y, and i are defined in Appendix C. 

In terms of the transverse coordinates z and y, the first order perturbed effective 

Hamiltonian, found from (C38), is written as 

H = P! + P: + IPoI Kz(i) 2 _ IPol K,{i) 2 + ReA(z i) + IPol-liI-=-. (2.3) 
2 2 Iii 2 z Iii 2 y , IPI p(i) , 
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with 
_ ~ .80 (i) (bn + ian) ( . )n+1 

Re.A{z, 8) = Re ~ B{i)p{i) (n + 1) Z + 'Y . (2.4) 

In the above, use is made of the notations 

K (-) - _1_ + (e/c).81{i» d K (-) = (e/c).81{i» (2.5) 
z 8 - p2{i) 21iol ,an 11 8 21P'oI' 

and the relations eB(i)p(i) = clil, and e.8o{i)p(i) = cliol. The expression (2.4) 

represents the error coefficients associated with the multi pole components within 

the dipole magnets of mean strength .80 , The error coefficients associated with the 

mean values .80 and .81 are represented by the expressions 

Bo(i) = .8o(i)(l + bo) 

(2.6) 

The other components of the error field are given by 

(2.7) 

where bn and an are, respectively, a measure of the normal multipole and skew­

multipole error fields. In deriving (2.3), terms of order Boz, and B1Z2 have been 

retained. However, terms of order Boz2 / p, B1z' / p, B2Z4 / p ... , and Aozy/ p, 

A1 z2 y / p ••• have been neglected. 

An additional non-linear contribution occurs as a result of having sextupole 

chromatic correctors [6]. This correction is of the form 

with 

IPo I SCi) (3 3 2) Iii -6- z - zy , 

e 
SCi) = -1_1 B2{i). 

Po c 
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Neglecting the error field contribution (2.4) and considering only the effect of the 

sextupole chromatic corrector, the effective Hamiltonian (2.3) becomes 

H = p! + P: + (1 _ 61P1 ) (Kz(i) 2 _ K,(i) 2) 
2 2 IPI 2 z 2 11 

_ 61P1 ~ + (1 _ 61P1 ) SCi) (z' _ 3Z1l2). 
IPI p(i) IPI 6 

(2.10) 

Following the method described in Appendix B, one finds the periodic closed orbit 

solution for an off-momentum particle to be of the form 

61P1 _ 
Zc = IPI D(8,IPI), (2.11) 

where the periodic dispersion function D(i, IpD satisfies 

" _ 61P1 _ _ 61P1 SCI) 2 _ 1 
D (8, Ipl) + (1 - IPI )Kz(8)D(8, IPI) + (1- IPI )-2-D (8, IPI) = p(i)" (2.12) 

At this point it is useful to perform a canonical transformation to eliminate 

certain terms which are linear in 61P1/P1. This is accomplished with the use of the 

generating function 

_ 61P1 , _ 61P1 
F2 (z,pzo) = (z - D(8, IPI) IPI )(Pzo + D (8, IPI) IPI ), (2.13) 

which gives the transformed relations 

_ 61P1 
z = Zo + D(s, IPI) IPI 

'(_ =") 61P1 pz = Pzo + D 8, Ipi IPI 
8F2 

Ho = H + 8i. 

When these are used with (2.10), one finds 

H p! P: Kz(i) 2 K,(i» 2 S(i) ( , 3 2) 
o = 2" + 2" + 2 z - 2 11 + -6- Zo - Z01l 

(2.14) 

_ ~~ [(S(i)D(i, Ipt) + K.(i» Z;2 - (S(i)D(i, IPI) + K,(i»11; + S~) (zo' - 3Z01l2 )] 

(
61P1)2S(i)D(i,IPI)( 2 2) 

+ IPI 2 Zo - 11 . 
(2.15) 
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For the sse K.(s) ..... K.(s), and one can choose the value of 8(s) to eliminate 

the first two c51P11P1 dependent terms in (2.15). The remaining c51P11P1 dependent 

term will not contribute to the first order tune-shifts as a result of the averaging 

process described later in the text. The remaining term coming from the sextupole 

correction is 

_ (c51P1)2 K.(i) ( 2 _ 2) 
1P1 2 Zo y, (2.16) 

and since K.(i) ..... 1.6 x 10-4 for the sse this term will give a contribution which 

is small when compared to the c51P111P1 sextupole correction errors which occur in a 

real machine. 

To obtain the first order tune-shifts, it is convenient to introduce the generating 

function 

(2.17) 

(2.18) 

in terms of action angle variables J.o, t/J.o and J., t/J., which are related to z, y, P.o, 

and p. according to 

_ c51P1 
Z = V2/J.o J.o cos t/J.o + '1(8 ) 1P1 

y = .J2/J. J. cos t/J. 

P.o = - .J2J.o I/J.o (sin t/J.o - /J~; (i) cos t/J.o) 

. I . /J~(i) P. = -V 2J.I/J.(smt/J. - -2- cost/J.), 

(2.19) 

where D(s,IP1) ..... 'I(s) is the momentum independent part of the solution of the 

dispersion equation (2.12) with 8(s) = O. The effective Hamiltonian (2.3) becomes 

HI (J.o , JJI' t/Jzo,t/JJI) = /J~7i) + /J:(i) + ReA(Jzo,JJI,t/Jzo,t/JJI)' (2.20) 
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The first order corrected tunes for transverse betatron motion are obtained from 

(2.21) 
V'll = Vo." + !1V.", 

where the nominal tunes are 

1 1'+00 
dB' 

vOz,." = 27r, Pz,.,,(i') , (2.22) 

and the tune-shifts are 

(2.23) 

where Co - 27rp(i) - 2N L for a ring of N cells each of half-length L. The angular 

averages appearing in this expression are evaluated using 

~ 1211' (cos tP )2. dtP = ~ (2n) . 
27r 0 22• n 

(2.24) 

The integrals involving odd powers of cos tP are zero, and as a result of this no 

terms containing the skew-multi pole coefficients A.(i) appear after performing the 

angular integration. The averaging around the circumference Co of the sse involves 

integrals of the form 

(2.25) 

which are evaluated numerically using the program TUNESHIFT.FOR. The sym­

metry properties and analytical expressions for the lattice functions Pzo(i), P.,,(i), 

and '7(i) are given in Appendix D. In a similar manner, an additional contribution 

to (2.23) is found when the chromatic non-linear term (2.16) is added to (2.20). 
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III. RESULTS AND CONCLUSIONS 

The evaluation of (2.3) is performed using the REDUCE program TSHIFT 

(see Appendix E). The results agree with those found in [7]; however, there are 

some errors found in the expressions given in this reference. The REDUCE code 

has been used to generate FORTRAN code which has been substituted into the 

numerical code TUNESHIFT.FOR, where corrections up to order B 10 have been 

included. The numerical results obtained from TUNESHIFT .FOR are generated 

from an input file INPUTS.DAT which has values for the multipole errors bn , c51P1/P1 

(DELTA), and injection amplitudes ZmGZ mm (AMPX) and YmGZ mm (AMPY), 

which determine the size of the injection grid. In addition, this file contains the 

nominal tunes dnux and dnuy, the phase advance per cell D(degrees), the lattice 

tune q, and XIX and XIY, which represent chromaticity tune-shifts errors linear 

in c51P1/P1. These are errors which remain in (2.15) with imperfect cancellation 

resulting from chromatic correction. For the SSC, these terms are large compared 

to the quadratic correction (2.16). Particles are injected onto a grid from (0,0) 

to (zmGz, YmGz), Typical result for the points in tune-space are shown in Fig. 1 

through Fig. 4, which also show the input file. "In these figures, resonance lines 

up to 7th. order are shown, and the cross indicates the location of the nominal 

SSC tunes JlOl!: = .425 and Jlo, = .410. Fig. 1 and Fig. 2 differ in the values of 

(zmGz,YmGz), which are, respectively, (0.5,0.5) and (0.6,0.6); however, they both 

result from the same value of c51P1/P1 = 5 x 10-4
• Comparing these figures, one can 

see clearly the effect of increased injection amplitude on the location of points in 

tune-space. Fig. 3 and Fig. 4 have the same injection amplitudes, respectively, as 

Fig. 1 and Fig. 2; however, they both result from c51P1/P1 = 10 x 10-4 , and one 

can see the dependence of the betatron tunes on momentum spread. The result 

of having a linear momentum error remaining after chromatic correction is seen in 
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Fig. 5 and Fig. 6, with XIX=XIY =5.0. These are to be compared with Fig. 1 and 

Fig. 2, respectively, where XIX=XIY =0.0. Here, one can see clearly that a linear 

momentum error has a large effect on the tune-spread. 

In conclusion, one can see that reasonable results are found from the first order 

calculation. A comparison of the values of liz and 11'1/ obtained from the :first order 

calculation with the values obtained from the tracking code SSCTRK shows good 

agreement. Results for the injection point (0.8,0.8), with all 6ft' ~ = 0 except 610 = 

0.05, and c51P1/i1 = 5. X 10-4 , are liz = .426 and 11'1/ = .409 from TUNESHIF.FOR, 

and liz = .425 and II, = .409 from SSCTRK. Furthermore, one can see the effect 

of multi pole errors on the location of the betatron tunes in tune-space. In the case 

when the tune-spread crosses lower order resonance lines, one would expect to see 

a decrease of the dynamic aperture of the SSC during the injection phase. This, 

indeed, is in agreement with the results obtained from tracking codes. 
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APPENDIX A: MULTIPOLE EXPANSION 

FOR TRANSVERSE FIELDS 

The transverse magnetic fields are determined easily in the form of complex 

functions of the variable z = z + iyo Defining the operators 

one finds from 

that 

1) = 28f , 

z+z 
z=--

2 ' 
z-z 

y=--
2 

1) = 8z + i871 , 

fJ = 8z - i871 0 

The Laplacian operator is found from (AI) and (A3) as 

Considering the function 

00 

/(z) = B,(z,y) + iBz(z,y) = L(B" + iA,,)z", 
,,=0 

one finds 

1)/(z) = (V x B)s + iV 0 B = 0, 

and 

These equations imply 

and 
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(AI) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(AS) 



These give the result 

v . B = VV . i - V2 i = 0, 

which is satisfied by 

Since 
1 - 1 - -

fez) = 2VA(z) = 2V (A(z) + A(z)), 

with 

one finds 

B,(z,y) + iBz(z,y) = VReA(z). 

This allows the transverse components of the magnetic field to be written as 

with 

BZ(z,y) =8,AS(z,y), 

B'(z, y) = - 8z AS(z, y), 

AS(z,y) = -ReA(z). 
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APPENDIX B: THE INVARIANT ACTION 

The equations of motion for transverse betatron oscillations [8] can be found 

from a Lorentz invariant Hamiltonian [9]. This Hamiltonian, which is equal to the 

rest energy of the proton, is also invariant under general curvilinear coordinate 

transformations [10], and this suggests the introduction of an invariant action. This 

allows one to represent the special relativistic dynamical equations for betatron mo­

tion in the coordinate system related to the curved ideal orbit of a proton in the 

SSC. In addition, this formulation allows one to explicitly see the various approx­

imations which are made to obtain the usual Courant-Snyder equations. For this 

invariant Hamiltonian, the Minkowski space contravariant coordinates are defined 

as the four-vector qi = (qO, ql, q2, q3) = (ci,:I:, y, z), where c is the speed of light. 

The contravariant components of the four-velocity are defined to be 

(B1) 

and those of the four-momentum for a particle of rest mass m are 

(B2) 

where ds is the invariant measure 

(B3) 

where use is made of the Einstein summation convention. The covariant differential 

components of a four-vector are found from 

dq · - g .. dq; ,-" . (B4) 

The non-zero Minkowski space components of the covariant metric tensor gij are 

(BS) 
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The contravariant components of the metric tensor are found from the relation 

(B6) 

to be 

(B7) 

The invariant Hamiltonian is defined as 

H(p',q')/e = PiU' - L(u',q') + me, (BB) 

where the invariant Lagrangian for the motion of a particle of mass m and electric 

charge e in an electromagnetic field with four-potential A( q)i is defined as 

(B9) 

The conjugate four-momentum is 

lJL mcu, 
Pi = ~_.' = ~ + (e/e)A(q)i' 

vu' UiU' 
(BI0) 

and the Lagrangian (B9) becomes 

L( ' i) _ i U ,q - PiU • (BIl) 

For this Lagrangian, the action which is invariant under curvilinear coordinate 

transformations is defined as 

s = / L(ui,qi)d ... (BI2) 

Using the method of stationary action and the approximations described in Ap­

pendix 0, one finds equations (041) and (042), which describe transverse betatron 

motion. 
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As shown in Appendix C, the approximate Hamiltonian for this system may 

be written in terms of the transverse coordinates z and y and the local radius of 

curvature p(i) of the ideal orbit as 

(B13) 

with 

(B14) 

and 

R A( -) - R ,,~(BnCi) + iAn(i» ( +. )n+1 
e z,y,s - e L...J I~ ( ) z Iy , 

n=O CPI n+ 1 
(B1S) 

where An(i), and Bn(i) are, respectively, the normal and skew-multipole coeffi-

cients, and 1P1 is found in (C33). 
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APPENDIX C: THE BETATRON EQUATIONS OF MOTION 

In this appendix it is shown how an invariant action is used to obtain the 

equation for betatron oscillations when these equations of motion are expressed in 

terms of curvilinear coordinates. This approach is motivated by the consideration 

of an invariant Hamiltonian. Considering (BS) and the identity 

d H( i i)1 1 BH(p', gi) dPi 1 BH(pi, gi) dgi 
- P ,g c= - + - . 
dI c BPi dB c Bg' dI 

_.!!( . i) _ BL(u',g') i _ BL(u',g') du' _ 0 
- dI p,u Bg' 1£ Bu' d8 - , (01) 

one can infer for Minkowski space the equations of motion 

dq' BH(p', g') 
c- = , 

dB Bp, 
dp, BH(pi, g') 

c-= . 
dB Bg' 

BL(u',gi) 
Pi = Bui ' 

(02) 

and 

dp, BL( 1£', gi) 
dI = Bgi 

where the invariant Hamiltonian becomes 

H(p" gi) = mc2 = c..j(p - (e/c)A(g»,(p - (e/c)A(g»i. (03) 

Using the above, along with 

d . 
dlA(g), = u'B;A(g)i, (04) 

with B; = 81 Ih:; , one finds the equation of motion 

(05) 

where the electromagnetic field tensor is 

(06) 
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Since 

with the electric field defined as 

.... 8... ... 0 
E = -8 A(q) + VA(q) , 

ct 

and since for the magnetic field B satisfies 

(07) 

(08) 

(09) 

with a,{3 = 1, 2, or 3 and f12l1 = 1 for the completely antisymmetric tensor, it 

follows that 
d 2 d£ -_ 
-",(mc = - = E . 11, 
dt dt 

d - -dt "'(mv = eE + (e/c)v X B. 

(010) 

(011) 

The first equation gives the energy £ gain or loss of the particle of rest mass m and 

velocity V, and the second is the Lorentz equation. In obtaining these results, use 

has been made of 1£0 = "'(,u = "'(Ii, ds = cdt/"'( ,Ii = vic, and "'( = (1 -Ii ·1i)-1/2. 

It is usual to express the equations of motion for betatron dynamics in curvi­

linear coordinates. The curvilinear coordinates used here are z, y, and i, where z 

is the horizontal position of the particle relative to the ideal orbit, y is the vertical 

position coordinate relative to the orbital plane, and i is the arc length along the 

ideal orbit (see Fig. 7). The position vector of the particle, expressed in terms of 

the right-handed orthonormal basis el, e2, and ell, is 

(012) 

The origin of this vector is at the instantaneous center of curvature of the ideal 

orbit. The coordinates relative to the system with origin at ro = P(i)el are z,y, 
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and z, and they are measured, respectively, along the right-handed orthonormal 

basis,. For motion relative to the torsion-free ideal orbit, the differential of the 

position vector is 

(C13) 

where 

di = p(i)d9, (C14) 

with dB the angular increment of ro along the ideal orbit. It follows from (C13) 

that 

The contravariant coordinates in the curvilinear system are 

and it follows from (CI5) that 

dq~ = dql/(1 + z/ p(i». 

The invariant space-time measure is 

and the components of the covariant metric tensor Ii; are 

The curvilinear contravariant components of the {our-momentum are 

(pO ,p1,; ,pi) = (pO ,p1 ,p2 ,pI /(1 + z/ p(i»), 
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(CI6) 

(CI7) 

(CI8) 

(CI9) 

(C20) 



and the covariant components are 

(021) 

Similar relations are obtained for the coordinate differential four-vector dqi and the 

vector-potential A( q) i • 

The betatron equations of motion are found in the curvilinear coordinate system 

using the fact that the action 5 is invariant under Lorentz transformations and 

orthogonal spatial coordinate transformations. The action (B12) is an invariant 

under the coordinate transformation qi -+ qi so that 

(022) 

A variation of this action gives 

(023) 

Using 

~-i d6qi 
01£ = --, 

ds 
(024) 

and 

~_ 8pa ~_ 8pa ~=i 
opa = 8- opo + -8 .oq, 

po q- Q:F 3, (025) 

one finds for 65 

(026) 

In the usual manner, this yields the dynamical equations of motion 

(027) 
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Using the representation of the invariant measure 

(028) 

and the coordinates (if,ql,q2,qa) = (qO,z,y,i), along with 

dq-· dq;;i 
-I 1/ ' 
u = dql dq3' (029) 

one finds, using the notation z' = dz/di etc., the dynamical equations 

(030) 

It is interesting to note in passing that the conventional form of Hamilton's equations 

can be found in the Cartesian coordinate system from (C22), if the coordinate 

qO = ct is used in place of qa, and if one considers the variation 6po in finding the 

variation of the action. This leads to a system of equations similar to (C30) 

dpoc _ 8poc dji __ 8poc d dq _ 8poc 
dt - 8t ' dt - 8q' an dt - 8ji' 

(030a) 

where the Hamiltonian is pOe. These equations lead to (C10) and C(l1). 

The effective Hamiltonian Pa for this system is found from the invariant 

(mc)2 = (p-(e/c)A(q»i(p-(e/c)A(q»i = (p-(e/c)A(q»i(p-(e/c)A(q»i. (031) 

Defining the energy E from 

E/c = pO - (e/c)A(q)O = mtry, (032) 
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and the scalar three-momentum as 

IPI = ...J£/C)2 - (mc)2, (033) 

one can use 

(034) 

and 

(035) 

to obtain 

~ = -(e/c)(1 + ~/p(s»AS(~~y,s) 

1- (pZ - (e/C)Az(~,y'S»)2 _ (p'll - (e/C)A'II(~,y,s»)2 x (1 + ~/p(s». 
IPI IPI 

(036) 

For constant IPI, one can introduce the scaled variables for the four-momentum 

pi IIPI-+ pi in the dynamical equation (C30) and in (C36). These equations simplify 

for the case of a purely transverse magnetic field, where A Z = A'll = 0, and for the 

approximation 

which is valid for large IPI. For this case, one finds that (C36) becomes 

and, neglecting terms of order pZ2/p(s), (C30) gives 

y' = p'll(1 + ~/p(s», 

! (1 + :~p(s») = ! [(e/c)(1 + ~/p(s»AS(~~y,s) + 1 + ~/P(i)] , 
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(039) 



and 

(040) 

Neglecting terms of order (~/ p(i»2, ~,2 / p(i), and skew-multipole errors, one finds 

using eBo(i)p(i) = clio I, 

~" + IPol (_1_ + efJ1(i») ~ = IPl- Ipol '" 0 (041) 
IPl p( i)2 clpo I p( i) IPl ' 

and 

(042) 

where Ipo I is the three-momentum along the ideal orbit. 
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APPENDIX D: LATTICE FUNCTIONS 

In this appendix, the lattice functions used in the numerical calculations are 

derived. They are found for a lattice made up of similar cells of the FODO (focusing, 

drift, defocusing, drift) form. Focusing and defocusing are achieved with thin lens 

quadrupole magnets, and the drifts occur through bending dipole magnets of length 

L and strength Bo. These functions have period 2L, and the functions on the 

interval L < i < 2L are found from those on the interval 0 < i < L using 

(D1) 

The beta functions for a lattice with phase advance p. per cell are found from 

the (1,2) component of the transfer matrix. The function pz(i) is found from 

pz(i)sinp. = (O(i)FO(L)DO(L - i»12, (D2) 

where the focusing and defocusing matrices for lenses of focal length / are, respec­

tively, 

F = ( -if f ~) and D = (1~ f ~). (D3) 

The matrix for a drift of distance i is 

O(i) = (~ ~). (D4) 

The resulting beta function for 0 < i < L is 

(D5) 

where L = 2/ sin(p./2). The expression for Pr(i) on the same interval is found from 

Pr(i) = pz(L - i). 

The dispersion function '7(i) can be found when the differential equation (2.12) 

is approximated by 

"(-) K(-) (-) eBo(i) 1 
'7 8 + 8 '7 8 = I .... 1 = (-) . cpo P 8 

(D6) 
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For the interval 0 < E < L where the dipole bending angle is 8, it is found to be 

'7(E) = '7(0)(1 - E/2/) + 00 82 /8/2
, (D7) 

where '7(0) = 00(I+L/4/) and 0 0 = 48/2/L. Within the dipole magnet, K(E) = 0, 

and Bo(E) - Bo(L/2). H follows from (D6) that 

"( /) 1 8 '7 L 2 = - =-. 
p L 

(D8) 

Within a focusing quadrupole of width E, B(E) = 0, and (D6) gives 

E7J"(0) = -EK(O)'7(O) = -'7(0)/1, (D9) 

where EK(O) = 1/1. This equation represents the change in the slope of '7(E) 

through the focusing quadrupole, and it is equivalent to the condition 

'7'(0) = -'7(0)/2/· (DIO) 

A similar argument for the defocusing quadrupole gives the condition 

'7'(L) = -'7(L)/2j. (Dll) 

From these three conditions, one can determine the quadratic approximation (D7) 

on the interval 0 < E < L. On the interval L < E < 2L, '7(E) is found from (D!). 
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APPENDIX E: THE REDUCE CODE TSHIFT 

The REDUCE program TSHIFT is given in this appendix, and the FORTRAN 

results which it produces for the tune-shifts (2.21) are given also. In the results, the 

notations epsz = 2Jz and epzy = 2J'1/ have been used. These quantities are related 

to the injection amplitudes through 

(E1) 

In addition, the notation DELTA = c5IPl/Pl appears in the results. The angular 

averaging appearing in (2.23) has been performed in obtaining the results; however, 

the averaging of the type (2.25) around the circumference is done numerically in 

the program TUNESHIFT.FOR. 
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comment TSHIFT$ 
comment This programme calculates the multipole tuneshifs$ 
comment deltanux and deltanuy for B1 through B19$ 
comment 20 June 1991$ 
comment Tshift provides input for Tuneshift.for$ 
comment The A's are set to zero because they do not contributeS 
comment as a result of the averaging on phix and phiy.$ 

operator a$ 
a(O):-O$ 
a(1):-0$ 
a(2):-0$ 
a(3):-0$ 
a(4):-0$ 
a(5):-0$ 
a(6):-0$ 
a(7):-0$ 
a(8) :-0$ 
a(9):-0$ 
a(lO):-O$ 
a(l1):-O$ 
a (12) :-0$ 

operator b$ 
b(O):-bO$ 
bel) :-bl$ 
b(2):-b2$ 
b(3) :-b3$ 
b(4):-b4$ 
b(5):-b5$ 
b(6):-b6$ 
b(7) :-b7$ 
b(8):-b8$ 
b(9) :-b9$ 
b (10) : -blO$ 
b (11) : -b11$ 
b(l2):-bl2$ 

operator c$ 

let J**2--1$ 
for all n let c(n)-(x+j*y)**n$ 
factor j$ 
operator potentialS 
comment potential-repot+i*impot$ 
operator impot$ 
operator repot$ 
for all n let potential(n)-(b(n)+j*a(n»*c(n+l)/(n+l)$ 

for all n let impot(n)-df(potential(n),j)$ 

for all n let repot(n)-potential(n)-j*impot(n)S 

factor BO$ 
factor a1,a2,a3,a4,a5,a6,a7a,a8,a9,a10,a11,a12$ 
factor b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,bll,bl2$ 
comment This gives the multipole potential for B3.$ 
repot(3); 

x:-sqrt (2*betax*jx) *cos (phix)+eta*de1ta$ 
y:-sqrt (2*betay*jy)*cos (phiy) $ 
repot(1) $ 
operator ix$ 
operator iy$ 
for all n match cos(phix)**n-ix(n)$ 
for all n match cos (phiy) **n-iy(n) $ 
match cos(phix)-ix(1)$ 
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match cos(phiy)-iy(l)$ 
for i:-1 step 2 until 21 do let ix(i)-O$ 
for i:-1 step 2 until 21 do let iy(i)-O$ 
comment The operator for n!.$ 
operator nfac$ 
for all n let nfac(n)-for i:-1:n product i$ 
comment Evaluate the inteqral(1/2pi)int(0>2pi)of cos**2m(phix)$ 

for i:-O step 2 until 20 do let ix(i)-nfac(i)/(nfac(i/2)*nfac(i/2)*2**i)$ 
for i:-O step 2 until 20 do let iy(i)-nfac(i)/(nfac(i/2)*nfac(i/2)*2**i)$ 

jx:-epsx/2$ 
jy:-epsy/2$ 
comment The tune-shift operators.$ 
operator dnux$ 
operator dnuy$ 
comment Tuneshifts$ 
for all n let dnux(n)-df(repot(n),epsx)*2$ 
for all n let dnuy(n)-df(repot(n),epsy)*2$ 
off allfac$ 
on div$ 
order delta,epsx,epsy,betax,betay,eta$ 
on fortS 
out dnux$ 
for i:-1:10 do writendnux(n,i,"):-",dnux(i)$ 
shut dnux$ 
out dnuy$ 
for i:-1:10 do write"dnuy(",i,"):-",dnuy(i)$ 
shut dnuy$ 
endS 
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for i:-l:10 do write"dnux(",i,") :-",dnux(i)$ 

dnux(l.) :-1./2.*Bl*BETAX 
dnux(2.) :-B2*DELTA*BETAX*ETA 
dnux(3.):-B3*(3./2.*DELTA**2*BETAX*ETA**2+3./8.*EPSX*BETAX 

. **2-3./4.*EPSY*BETAX*BETAY) 
dnux(4.):-B4*(2.*DELTA**3*BETAX*ETA**3+3./2.*DELTA*EPSX* 

· BETAX**2*ETA-3.*DELTA*EPSY*BETAX*BETAY*ETA) 
dnux(S.) :-BS*(S./2.*DELTA**4*BETAX*ETA**4+1S./4.*DELTA**2* 

· EPSX*BETAX**2*ETA**2-1S./2.*DELTA**2*EPSY*BETAX* 
· BETAY*ETA**2+S./16.*EPSX**2*BETAX**3-1S./8.*EPSX* 
· EPSY*BETAX**2*BETAY+1S./16.*EPSY**2*BETAX*BETAY**2) 

dnux(6.) :-B6*(3.*DELTA**S*BETAX*ETA**S+lS./2.*DELTA**3* 
· EPSX*BETAX**2*ETA**3-1S.*DELTA**3*EPSY*BETAX*BETA¥* 
• ETA**3+15./8.*DELTA*EPSX**2*BETAX**3*ETA-4S./4.* 
· DELTA*EPSX*EPSY*BETAX**2*BETAY*ETA+4S./8.*DELTA* 
· EPSY**2*BETAX*BETAY**2*ETA) 

dnux(7.) :-B7*(7./2.*DELTA**6*BETAX*ETA**6+10S./8.*DELTA**4 
• *EPSX*BETAX**2*ETA**4-10S./4.*DELTA**4*EPSY*BETAX* 
· BETAY*ETA**4+10S./16.*DELTA**2*EPSX**2*BETAX**3*ETA 
• **2-31S./8.*DELTA**2*EPSX*EPSY*BETAX**2*BETAY*ETA** 
• 2+31S./16.*DELTA**2*EPSY**2*BETAX*BETAY**2*ETA**2+ 
· 3S./128.*EPSX**3*BETAX**4-10S./32.*EPSX**2*EPSY* 
· BETAX**3*BETAY+31S./64.*EPSX*EPSY**2*BETAX**2*BETAY 
· **2-3S./32.*EPSY**3*BETAX*BETAY**3) 

dnux(8.) :-B8*(4.*DELTA**7*BETAX*ETA**7+21.*DELTA**S*EPSX* 
· BETAX**2*ETA**S-42.*DELTA**5*EPSY*BETAX*BETAY*ETA** 
· S+3S./2.*DELTA**3*EPSX**2*BETAX**3*ETA**3-10S.* 
• DELTA**3*EPSX*EPSY*BETAX**2*BETAY*ETA**3+10S./2.* 
· DELTA**3*EPSY**2*BETAX*BETAY**2*ETA**3+35./16.* 
· DELTA*EPSX**3*BETAX**4*ETA-IOS./4.*DELTA*EPSX**2* 
· EPSY*BETAX**3*BETAY*ETA+31S./8.*DELTA*EPSX*EPSY**2* 
· BETAX**2*BETAY**2*ETA-3S./4.*DELTA*EPSY**3*BETAX* 
• BETAY**3*ETA) 

dnux(9.):-B9*(9./2.*DELTA**8*BETAX*ETA**8+63./2.*DELTA**6* 
• EPSX*BETAX**2*ETA**6-63.*DELTA**6*EPSY*BETAX*BETAY* 
· ETA**6+31S./8.*DELTA**4*EPSX**2*BETAX**3*ETA**4-
· 94S./4.*DELTA**4*EPSX*EPSY*BETAX**2*BETAY*ETA**4+ 
· 94S./8.*DELTA**4*EPSY**2*BETAX*BETAY**2*ETA**4+31S./ 
· 32.*DELTA**2*EPSX**3*BETAX**4*ETA**2-94S./8.*DELTA** 
· 2*EPSX**2*EPSY*BETAX**3*BETAY*ETA**2+283S./16.* 
· DELTA**2*EPSX*EPSY**2*BETAX**2*BETAY**2*ETA**2-31S. 
· /8.*DELTA**2*EPSY**3*BETAX*BETAY**3*ETA**2+63./2S6. 
• *EPSX**4*BETAX**S-31S./64.*EPSX**3*EPSY*BETAX**4* 
• BETAY+94S./64.*EPSX**2*EPSY**2*BETAX**3*BETAY**2-
· 31S./32.*EPSX*EPSY**3*BETAX**2*BETAY**3+315./256.* 
· EPSY**4*BETAX*BETAY**4) 

dnux(10.):-BIO*(5.*DELTA**9*BETAX*ETA**9+45.*DELTA**7*EPSX 
· *BETAX**2*ETA**7-90.*DELTA**7*EPSY*BETAX*BETAY*ETA 
· **7+315./4.*DELTA**5*EPSX**2*BETAX**3*ETA**S-94S./ 
· 2.*DELTA**5*EPSX*EPSY*BETAX**2*BETAY*ETA**S+945./4.* 
• DELTA**5*EPSY**2*BETAX*BETAY**2*ETA**S+52S./16.* 
• DELTA**3*EPSX**3*BETAX**4*ETA**3-1S7S./4.*DELTA**3* 
· EPSx**2*EPSY*BETAX**3*BETAY*ETA**3+4725./8.*DELTA** 
• 3*EPSX*EPSY**2*BETAX**2*BETAY**2*ETA**3-S25./4.* 
· DELTA**3*EPS¥**3*BETAX*BETA¥**3*ETA**3+31S./128.* 
• DELTA*EPSX**4*BETAX**5*ETA-1575./32.*DELTA*EPSX**3* 
· EPSY*BETAX**4*BETAY*ETA+472S./32.*DELTA*EPSX**2* 
• EPSY**2*BETAX**3*BETAY**2*ETA-157S./16.*DELTA*EPSX* 
• EPSY**3*BETAX**2*BETAY**3*ETA+157S./128.*DELTA*EPSY 
• **4 * BETAX* BETAY * *4 *ETA) 

ahut dnux$ 
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for i:-l:l0 do vrit."dnuy(",i,"):-",dnuy(!)$ 

dnuy(1.):--1./2.*Bl*BETAY 
dnuy(2.) :--B2*DELTA*BETAY*ETA 
dnuy(3.) :--B3*(3./2.*DELTA**2*BETAY*ETA**2+3./4.*EPSX* 

· BETAX*BETAY-3./S.*EPSY*BETAY**2) 
dnuy(4.) :--B4*(2.*DELTA**3*BETAY*ETA**3+3.*DELTA*EPSX* 

• BETAX*BETAY*ETA-3./2.*DELTA*EPSY*BETAY**2*ETA) 
dnuy(S.) :--BS*(S./2.*DELTA**4*BETAY*ETA**4+lS./2.*DELTA**2 

· *EPSX*BETAX*BETAY*ETA**2-1S./4.*DELTA**2*EPSY*BETAY 
· **2*ETA**2+1S./16.*EPSX**2*BETAX**2*BETAY-1S./S.* 
· EPSX*EPSY*BETAX*BETAY**2+S./16.*EPSY**2*BETAY**3) 

dnuy(6.):--B6*(3.*DELTA**S*BETAY*ETA**S+lS.*DELTA**3*EPSx* 
• BETAX*BETAY*ETA**3-1S./2.*DELTA**3*EPSY*BETAY**2* 
· ETA**3+4S./S.*DELTA*EPSX**2*BETAX**2*BETAY*ETA-4S./ 
· 4.*DELTA*EPSX*EPSY*BETAX*BETAY**2*ETA+1S./S.*DELTA* 
· EPSY**2*BETAY**3*ETA) 

dnuy(7.):--B7*(7./2.*DELTA**6*BETAY*ETA**6+10S./4.*DELTA** 
· 4*EPSX*BETAX*BETAY*ETA**4-10S./S.*DELTA**4*EPSY* 
· BETAY**2*ETA**4+31S./16.*DELTA**2*EPSX**2*BETAX**2* 
• BETAY*ETA**2-31S./S.*DELTA**2*EPSX*EPSY*BETAX*BETAY 
· **2*ETA**2+10S./16.*DELTA**2*EPSY**2*BETAY**3*ETA** 
· 2+3S./32.*EPSX**3*BETAX**3*BETAY-31S./64.*EPSX**2* 
• EPSY*BETAX**2*BETAY**2+10S./32.*EPSX*EPSY**2*BETAX* 
· BETAY**3-3S./12S.*EPSY**3*BETAY**4) 

dnuy(S.) :--BS*(4.*DELTA**7*BETAY*ETA**7+42.*DELTA**S*EPSX* 
· BETAX*BETAY*ETA**S-21.*DELTA**S*EPSY*BETAY**2*ETA** 
· S+10S./2.*DELTA**3*EPSX**2*BETAX**2*BETAY*ETA**3-
· 10S.*DELTA**3*EPSX*EPSY*BETAX*BETAY**2*ETA**3+3S./2. 
· *DELTA**3*EPSY**2*BETAY**3*ETA**3+3S./4.*DELTA*EPSX 

**3*BETAX**3*BETAY*ETA-31S./S.*DELTA*EPSX**2*EPSY* 
· BETAX**2*BETAY**2*ETA+I0S./4.*DELTA*EPSX*EPSY**2* 
· BETAX*BETAY**3*ETA-3S./16.*DELTA*EPSY**3*BETAY**4* 
• ETA) 

dnuy(9.) :--B9*(9./2.*DELTA**S*BETAY*ETA**S+63.*DELTA**6* 
• EPSX*BETAX*BETAY*ETA**6-63./2.*DELTA**6*EPSY*BETAY 
· **2*ETA**6+94S./8.*DELTA**4*EPSX**2*BETAX**2*BETAY* 
· ETA**4-94S./4.*DELTA**4*EPSX*EPSY*BETAX*BETAY**2* 
• ETA**4+31S./8.*DELTA**4*EPSY**2*BETAY**3*ETA**4+ 
· 315./S.*DELTA**2*EPSX**3*BETAX**3*BETAY*ETA**2-2S3S. 

/16.*DELTA**2*EPSX**2*EPSY*BETAX**2*BETAY**2*ETA**2 
• +94S./S.*DELTA**2*EPSX*EPSY**2*BETAX*BETAY**3*ETA** 
· 2-31S./32.*DELTA**2*EPSY**3*BETAY**4*ETA**2+31S./ 
· 2S6.*EPSX**4*BETAX**4*BETAY-31S./32.*EPSX**3*EPSY* 
· BETAX**3*BETAY**2+94S./64.*EPSX**2*EPSY**2*BETAX**2 
• *BETAY**3-31S./64.*EPSX*EPSY**3*BETAX*BETAY**4+63./ 
• 2S6.*EPSY**4*BETAY**S) 

dnuy(10.):--BI0*(5.*DELTA**9*BETAY*ETA**9+90.*DELTA**7* 
• EPSX*BETAX*BETAY*ETA**7-45.*DELTA**7*EPSY*BETAY**2* 
· ETA**7+945./4.*DELTA**S*EPSX**2*BETAX**2*BETAY*ETA 
• **5-94S./2.*DELTA**S*EPSX*EPSY*BETAX*BETAY**2*ETA** 
• 5+315./4.*DELTA**5*EPSY**2*BETAY**3*ETA**5+S25./4.* 
· DELTA**3*EPSX**3*BETAX**3*BETAY*ETA**3-472S./8.* 
• DELTA**3*EPSX**2*EPSY*BETAX**2*BETAY**2*ETA**3+ 
• lS75./4.*DELTA**3*EPSX*EPSY**2*BETAX*BETAY**3*ETA**3 
• -S2S./16.*DELTA**3*EPSY**3*BETAY**4*ETA**3+1S7S./ 
• 128.*DELTA*EPSX**4*BETAX**4*BETAY*ETA-1575./16.* 
• DELTA*EPSX**3*EPSY*BETAX**3*BETAY**2*ETA+472S./32.* 
• DELTA*EPSX**2*EPSY**2*BETAX**2*BETAY**3*ETA-1575./ 
• 32.*DELTA*EPSX*EPSY**3*BETAX*BETAY**4*ETA+315./128.* 
• DELTA*EPSY**4 *BETAY**5*ETA) 

shut dnuy$ 
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TUNE SHIFT 1 5cm Magnet x=y=O.500cm 

max = 7 

UNPtlTS 

'END 

tun •• hi.ft-Ol, 
_perture-5, 
dnux-.425, 
dnuy-.410, 
0-90., 
q-90. ", 
81-0.0, 
82-0.0, 
83-0.026, 
114-0.08, 
85-0.005, 
86--0.02, 
87-0. 0, 
88-0.005, 
89-0.0, 
810-0.005, 
DELTA-5. OE-4, 
XIX-O.O, 
XU-O.O, 
AMPX-.50, 
AMPY-.50, 

UNPtlTS 
DELTA-.1E-7 

,END 
UNPtlTS 

'END 
DELTA--5. OE-4 

FIG. 1. The tune-spread for 61P1/P1 = 0, and ±5. x 10-4 , with injection amplitude 

grid from (0,0) to (0.5 mm,0.5 mm). 

TUNE SHIFT 2 5cm Magnet x=y=O.600cm 

max = 7 

UNPtlTS 

,END 
UlIPtlTS 

'&lID 
UNPtlTS 

tun •• hift-02, 
aperture-5, 
dnwr-.425, 
emuy-.tl0, 
00-90., 
q-'O.77, 
81-0.0, 
82-0.0, 
83-0.026, 
84-0.01, 
85-0.005, 
8'--0.02, 
87-0.0, 
.'-0.005, 
8'-0.0, 
810-0.005, 
DELTA-5.0E-4, 
XIX-O.O, 
XU-O.O, 
AllPX-.60, 
AMPY-.60, 

DELTA- .1B-7 

DELTA--5. OE-4 

FIG. 2. The tune-spread for 61P\/PI = 0, and ±5. x 10-4 , with injection amplitude 

grid from (0,0) to (0.6 mm,0.6 mm). 



TUNE SHIFT 3 5cm Magnet x=y=O.500cm 

v" 
max = 7 

OINPtrTS 

UND 

t"" •• hift-Ol, 
aperture-S, 
dnux-.t25, 
dnuy-.410, 
0-90., 
'1'"90.77, 
81-0.0, 
82-0.0, 
83-0.026, 
84-0. OS, 
85-0.005, 
.'--0.02, 
87-0.0, 
8S-0.00S, 
89-0.0, 
810-0.005, 
DELTA-IO.OE ... 4, 
XIX-O.O, 
XIY-O. 0, 
AHPX-.SO, 
AHPY-.SO, 

OINPtrTS 
DELTA-.1E-' 

'END 
'INPUTS 

DELTA--10.0E-4 
'END 

FIG. 3. The tune-spread for c51P1/P1 = 0, and ±10. x 10-4 , with injection ampli­

tude grid from (0,0) to (0.5 nun,0.5 nun). 

TUNE SHIFT 4 5cm Magnet x=y=O.600cm 

0.42 

0.40 t----====~~:-------+___1~_i 

0.42 0.44 

v" 
max = 7 

UNPtrTS 

,END 
UNPtrTS 

'IEIID 

tun •• hitt-Ot, 
apertur.-S , 
dr\\aa-.425, 
dnuy·.410, 
0-90., 
'1'"90.77, 
81-0.0, 
82-0.0, 
83-0.026, 
8t-0.0I, 
85-0.005, 
86--0.02, 
8'-0.0, 
8'-0.005, 
89-0.0, 
810-0.005, 
DELTA-10.0E-t, 
XIX-O.O, 
XIY-O.O, 
AHPX-.60, 
AHPY-.60, 

DBLl'A- .11:-' 
'INPUTS 

D&L'I"A--10.OI:-4 
'END 

FIG. 4. The tune-spread for c51P1/P1 = 0, and ±10. x 10-4 , with injection ampli-

tude grid from (0,0) to (0.6 nun,0.6 nun). 



TUNE SHIFT 5 5cm Magnet x=y=O.500cm 

max = 7 

£INPUTS 
tun.shift-OS, 
.. perture-S, 
dnux.-.425, 
clnuy-.410, 
1>-90., 
q-90.71, 
81-0.0, 
82-0.0, 
83-0.026, 
B4-0.08, 
Bs-O.OOs. 
B6--0.02. 
81-0.0, 
88-0.005, 
89-0.0, 
B10-0.005. 
DELTA-5. OE-4, 
XIX-S.O, 
XU-5. O. 
AMPX-.50. 
AMPY-.SO, 

UND 
£INPUTS 

DELTA-.1E-1 
'END 
'INPUTS 

DELTA--5.0E-4 
UND 

FIG. 5. The tune-spread with linear momentum error for 61P1/P1 = 0, and ±5. x 

10-4 , with injection amplitude grid from (0,0) to (0.5 mm,0.5 mm). 

TUNE SHIFT 6 5cm Magnet x=y=O.600cm 

0.42 

0.38 ~...L---L.---J'--..J.L....J....---1.l...-.l...-..u.-..L_I..-...L---Ll~~...Il...--l 
0.38 0.40 0.42 0.44 

max = 7 

'INPUTS 

,END 

tun •• hift-06, 
aperture-5, 
dnux-.425, 
dnuy-.410, 
0-'0 .• 
q-'O.11. 
81-0.0. 
82-0 .0, 
83-0.026. 
B4-0.08, 
85-0.005. 
86--0.02. 
81-0.0. 
88-0.005. 
89-0.0, 
810-0.005, 
DELTA-5. OE-t, 
XIX-5.0. 
XIY-5.0, 
AMPX-.60, 
AMPY-.60, 

£INPUTS 
DELTA-.1E-1 

,END 
'INPUTS 

DELTA--S.OE-4 
,END 

FIG. 6. The tune-spread with linear momentum error for 61P\/PI = 0, and ±5. x 

10-4 , with injection amplitude grid from (0,0) to (0.6 mm,0.6 mm). 
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FIG. 7. The curvilinear geometry and coordinate systems for proton motion 

relative to the ideal orbit. 


