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Abstract 

The quantum electrodynamics (QED) with a complex fermion mass-that is, a fermion 

mass with a chiral phase-is restudied, together with its chirally rotated version. We show 

how fake electric dipole moment can be obtained and how to avoid it. 



Complex fermion mass or fermion mass with a chiral phase is allowed in quantum elec­

trodynamics (QED) because the phase has no effects, as people commonly believe. Please 

note that what we talk about is not the effective complex mass of a decaying particle. We 

are talking about the most general fermion mass term in fundamental theories. Complex 

fermion mass in QED has been studied by Fienberg, Kabir, and Weinberg (FKW).l Inter­

est in complex mass has been renewed in the context ofthe strong interaction by Dashen,2 

and in the context of the strong CP by Peccei and Quinn3 and by Baluni and others.4 

Recently some controversial ideas about strong CP have been raised by a few authors.5 

Although the phase of the complex mass is redundant in QED, it may sometimes produce 

a fake electric dipole moment (EDM) and cause confusion. Indeed there are different ex­

planations of why the phase of the fermion mass does not have an effect; according to some 

of these explanations, the same EDM can be identified as a reality if there are interactions 

other than electromagnetism. With this uncomfortable situation we feel it might be use­

ful first to obtain a better understanding of why EDM does not appear in QED, and in 

particular how fake EDM is produced and how to eliminate it. Of course, QED is much 

simpler than QCD (quantum chromo dynamics ) in this context6 because at least people 

believe there is no condensate in QED. This is why we pick up QED; a conclusion in QED 

should be very clean. 

A complex mass is 

(1) 

where </> is an arbitrary phase parameter with the periodicity 27r. The Lagrangian of 

interest is 

(2) 

The only difference between this Lagrangian and the standard QED Lagrangian is the 

appearance of the parameter </>. It seems that Lagrangian Eq. (2) breaks the standard space 

reflection (P) and time reversal (T) invariance while it conserves the charge conjugation (C) 

due to the complex mass. If this phase has any effects, we have the problem of why 

these effects are not seen, because there are no theoretical reasons to restrict </> to vanish. 

However, the question of whether P- and T-violating effects appear in the system is quite 

subtle and sometimes confusing, although the conclusion is clear as FKW claimed. The 

reason for this subtlety will gradually emerge in our later discussions, together with the 

correct treatment. Our basic approach will be to work directly with C in (2). 



One of the approaches is related to the study of the chiral-transformed version of e 
(e'), which has a real fermion mass term. The required chiral transformation is 

(3) 

and e' is 

e' = -1/4F'p.v F~v + 1/46F'p.v p' p.v + i;fi'(fJ + ie $')1j;' - ;fi'm1j;', (4) 

where (a = e2/47r) 

6 = a<p/27r. (5) 

The 6 of interest here satisfies 161 ~ a ~ 1. The 6 term (the second one) is due to the 

triangle anomaly. 7 We have been careful here to allow the possibility that A~ (F~v) after 

chiral rotation will differ from Ap. (Fp.,,) before chiral rotation. Note the difference of e' 
from £: the appearance of the 6 term in addition to the change of the fermion mass 

term. These differences clearly pronounce that chiral rotation is not the symmetry of the 

system. Making chiral rotation is akin to transforming from an inertial frame of system 

to an accelerative one. Some aspects of the physical laws may change, unless special care 

is taken to compensate the change of Lagrangian by corresponding change of the wave 

functions, including the vacuum wave function. Therefore, the property of e' in terms of 

P and T symmetries may not tell us much about Lagrangian e. 

Some previous authors throwaway the 6 term in Eq. (4) by saying that FF is a 

complete divergence of some 4-vector, FF = ap. K",. In this way, these authors conclude 

that e is P- and T-symmetric, as is e', because they believe e and e' describe the same 

system equivalently. This mayor may not also pose questions. Indeed, a term which 

is a complete derivative with respect to time in the Lagrangian will not contribute in 

the Euler-Lagrangian equation, but it may contribute if it be otherwise. The fields in 

the Lagrangian are allowed to be unphysical in general. Therefore, using the arguments 

relating to some supposed physical configuration (e.g., the required property of the fields at 

infinity) to throwaway a term from the Lagrangian is not advised. Besides, F' P' may not 

be a complete divergence of some 4-vector. The suspicion emerges if we carefully compare 

Eqs. (2) and (4). As we know, F and Fin Eq. (2) satisfy the following Maxwell equations: 

a Fp.v - 0 '" -, (6) 

where J" is the electrically charged current, JV = ;fi,v1j;. In order to have the second equa­

tion work (which cannot be obtained directly from the Lagrangian), the normal practice is 
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to assume AI-' to be analytic. On the other hand, directly applying the Euler-Lagrangian 

principle to £' we find the first Maxwell equation for P' to be 

(7) 

In order to find the second equation for P', we must answer the question of whether we 

can also assume the analyticity of A' /-L. If we assume so, we will have ol-'F'I-'V = 0, and P'I-'V 

will satisfy the same equation as pl-'v. However, we may as well assume 

instead. Indeed, if we regard F and F as two orthogonal vectors, then the "dual" rotated 

vectors OP + F and P - OF are also mutually orthogonal. Combining this with Eq. (7) we 

find that the Maxwell equations for p' and F' should be 

(8) 

where JV is the same electrically charged current as in Eqs. (7). Note the differences 

between the Maxwell equations for Lagrangian Eq. (4), which has a O-term, and that for 

Lagrangian Eq. (2), which has no O-term. Both sets of the Maxwell equations can be 

inhomogeneous when the O-term is present. The second equation in Eqs. (8) means that 

ol'ovA~ =J. ovol'A~ at the source, so P~vF' /-LV is not a complete divergence of a 4-vector. 

Furthermore, the Green's function, which is the A~ satisfying Eqs. (8) with a point source, 

is unknown due to the lack of mathematical tools to handle the equations.8 Anyway, we 

suspect that the O-term in QED may not be as simple as previously claimed. Putting all 

these considerations together, it becomes' questionable whether one can do perturbative 

calculation with internal photons using Lagrangian £'. 

In any case, it is worthwhile to check the no-effect theorem of FKW by a direct cal­

culation starting from Eq. (2), even if the equivalence argument mildly criticized above is 

correct. We shall see that this calculation is much more involved conceptually. 

The perturbation based on Lagrangian £ works perfectly well. The free Dirac equation 

of the fermion with a complex mass is (in the momentum representation) 

(ip-m)1/J=O, (9) 
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and the corresponding Klein-Gordon equation is (p2 - m 2)tf; = o. The propagator of the 

electron is 
1 p+m 

p - m + ic - p2 - m 2 + ic . 
(10) 

The positive and negative energy projection operators are, respectively, 

~ - -tp+m_t ~ - -tP-m-t 
LJUhUh = m m LJVhVh = -m m 

2m3 ' 2m3 ' 
(11) 

as umu = -vmv = m and umv = o. The Dirac Eq. (9) is invariant under the following 

O-transformation: 

tf;(P) ---+ tf;'(if) = ntf;(-p), (12) 

where n = IOe-i-r5¢. It seems that this transformation could take the role of the stan­

dard space reflection of the real mass QED. However, the fact that it involves a chiral 

transformation complicates things. The O-transformed Lagrangian will contain an extra 

"8-term." The O-invariance of the fermionic part, if assumed, requires (X, Ao) to go to 

(-X, Ao) under O-transformation, which fixes the O-transformation properties of AI' and 

Fl'v and leaves no room to find a way to cancel the extra 8-term. It is interesting to 

notice, however, that O-invariance breaks only when there are triangle VV A or AAA dia­

grams, and in the standard QED perturbation calculations we never meet axial vertex. So 

O-invariance can be a good perturbative symmetry. The following are the only operators 

which enjoy O-invariance: 

(13) 

Note that two of the three operators appear in .c. 
It is not surprising that in loop calculations only operators in Eq. (13) appear in fermion 

bilinears. Our concrete one-loop calculations show exactly this behavior. Therefore the 

phase parameter ¢ is non-renormalizable-that is, the QED with a complex mass needs 

exactly the same number of renormalization constants as the QED with a real fermion 

mass. The phase ¢ is convergent in loop calculations, although the imaginary part of the 

mass is not. Since 8 is related to ¢ by the chiral rotation (3), it is also convergent. The 

first diagram which contributes the third operator in Eq. (13) is the one-loop proper vertex 

diagram which gives 

. Q .1. - I'Av.l. Z-4 2 'Pmal'vq 'P. 7rm 
(14) 

The diagrams with only fermion loops and outgoing photons turn out always to be P-even. 

For example, the fermion loop with four outgoing photons can in principle have a term 
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aF2 F F which is P-odd. But perturbative calculation gives a = O. The relevant part is 

= p - even. 

The first term is always P-even in any regularization scheme. The second and following 

terms are convergent, so the relation 

can be used, leading to our conclusion. When there are only two outgoing photons in the 

fermion loop diagram, we choose the Pauli-Villars regularization to prove our conclusion. 

When calculating the process "'(. -+ e+ e-, we find no P-violation effects such as longitudinal 

polarization of the electron with a complex mass. This is consistent with the conclusion 

that all fermion loops in QED are P-even, even when the fermion mass is complex. As 

we know, the sum over the final configuration is essentially putting the final fermion in a 

loop. 

Now comes the sensitive problem of whether the electron with a complex mass has 

an electric dipole moment (EDM). The magnetic moment of the electron can be clearly 

identified only when the 4-component spinor wave function is split into two 2-component 

ones. The same is true for EDM. We should take a solution of Eq. (9) and substitute it 

into e-/f t'¢ to look for the lowest order EDM, then substitute it into Eq. (14) for higher 

order corrections. There are at least two possible solutions to choose: 

(15) 

where u+ is the parity-even solution of the free Dirac equation with a real fermion mass; 

the other is the direct solution of Eq. (9): 

(16) 

Since both solutions describe the free electron with the same complex mass, we are in 

general free to choose either of them to do perturbation. If we choose '¢2 as the free 
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electron wave function, we obtain 

em25· E 
2E(E + ml))CP. 

(17) 

The character of this perturbative energy is that it has a P-odd term, the EDM term 

(the last one). In the non-relativistic limit, the EDM in Eq. (17) is 2~ tan(</>/2). We 

can be encouraged about this result by the corresponding result obtained through the 

Foldy-Wouthuysen transformation. We also find higher order corrections to the EDM in 

calculation of the relevant loop diagrams. However, if we take 'lj;l as the free electron wave 

function, we obtain, instead of Eq. (17), 

which has no EDM term. (Note Eqs. (17) and (18) have the first three terms in common.) 

Furthermore, the information of the complex phase </> also disappears in all higher order 

corrections. Indeed, as discussed before, the most general form of the higher order vertex 

corrections in the QED with a complex fermion mass is 

(19) 

where S, VIl , and TIlIl are scalar, vector, and tensor functions, respectively, of All and qll (the 

4-momentum of the photon). When we take 'lj; as 'lj;l in Eq. (15), Eq. (19) becomes 

(20) 

which has no trace of the phase. The most general solutions of the free Dirac equation and 

the problem of which free wave function should be chosen to do perturbation are discussed 

in detail by the authors with Gupta.9 By a comparison with the energy of the relativistic 

electron (with a complex mass) in the Coulomb potential, which is rigorously solvable, we 

conclude that Eq. (15) should be the correct free-wave function to use in perturbation. 

Indeed, the resulting energy of the electron in the Coulomb potential does not know the 

phase of its complex mass, even if weak external electric field is added. It is unreasonable 

to assume that it becomes sensitive to the phase as in Eq. (18) only because the electron is 

moved from the Coulomb potential (plus perturbation) to some other one and perturbation 

based on free Dirac equation solutions must apply. Therefore, the phase of the complex 

fermion mass defined in Eqs. (1) and (2) is not observable in QED, as shown in Eq. (20). 
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In conclusion, the complex mass in Lagrangian Eq. (2) provides exactly the same 

physics as when the phase of the mass vanishes, if perturbation is applied-that is, the 

phase ¢ is a redundant parameter. We would like to make a final remark. Our conclusions 

about nil EDM will not change when m in Eq. (2) is replaced by m(l + cr + i,51["°) with cr 

and 1["0, scalar and pseudoscalar fields, respectively, and the corresponding parity-conserved 

Lagrangian for cr and 1["0 fields is added to Eq. (2). 
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