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The Degeneracy of the Free Dirac Equation 

V. Gupta, B. J. McKellar, and D. D. Wu 

Abstract 

SSCL-498 
UM-P-91/49 

Parity-mixed solutions of the free Dirac equation with the same 4-momentum are 

considered. The first-order EM energy has an electric dipole moment term whose value 

depends on the mixing angle. Further implications of this degeneracy to perturbative 

calculations are discussed. It is argued that the properties of the Dirac equation with the 

Coulomb potential can be used to decide the mixing angle, which should be zero. 
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1.0 INTRODUCTION 

The electric dipole moment (EDM) of a fermion, either charged (e.g., the electron) or 

neutral (e.g., the neutron), if found, is a special signal of T-violation. The magnitudes 

or limits of the EDM of fermions discovered may put strong constraints on the viable 

theoretical models. The problem is that the present theoretical understanding of EDM 

seems very controversial.1 We feel that the controversies may be traced back to quantum 

electrodynamics (QED). It is commonly believed that EDM does not appear in QED, and 

there are different explanations about why this is so. Actually, fake EDM may appear in 

QED. The same fake EDM may also appear in complicated theories such as the standard 

SU(3) x SU(2) x U(I) model of interactions, but in a disguised way. It might be useful to 

restudy QED within this context to see how fake EDM appears and how it is eliminated. 

We shall see that the degeneracy between the parity-even and -odd solutions of the free 

Dirac equation plays a special role in this respect. Though typical textbooks on quantum 

field theories take only the parity-even solutions to start perturbative calculations, it is 

impossible to understand EDM well without the study of parity-odd solutions as well. 

Since there are degenerate parity-even and -odd solutions, the results of a perturbative 

calculation depend on the mixing angle, if one takes the parity-mixed solutions to be the 

lowest-order wave functions. 

A brief comparison of perturbation with degenerate lowest-order wave functions in 

quantum mechanics (the calculation of the Stark effect? will be useful. The n = 2 free 

H-atom has four degenerate wave functions, two of which are of interest: 11) = 128, Lz = 0) 
and 12) = 12p, L z = 0). Linear combinations of the two are also H-atom with the same 

energy: 

I~(a)) = cos alI) + sina I2). (1) 

All these states are related by 0(4) transformations, where 0(4) is the degenerate group 

of H-atom. When the atom is put in an external electric field E = Ezzo, a perturbative 

Hamiltonian H' = -r· E is produced, which is P- and CP-even. The corresponding 

first-order EM energy is 

E'(a) = (~(a)l- er· EI~(a)), (2) 

and one finds an a-dependence of E' ( a) because H' is not 0(4 )-invariant. Of course, the 

energy of H-atom in external fields should still be two-valued instead of being a continuous 

function of a. Something is clearly wrong. Using the diagonalization method to get things 

straight, one finds the eigenvalues of H' to be E~ = =r=3eaEz (a = e2 /47rp" and I-" is the 



reduced mass), and the corresponding wave functions: 

\1/'±) = IjJ2(\l) ± \2)). (3) 

(The other two n = 2 wave functions are not affected, nor are their energies.) These states 

can also be found by taking variation, i.e., taking the solutions of the following equation: 

~E'(o;) = O. 
Go; 

In this example, the two states in Eq. (3) are neither eigenstates of orbital angular mo

mentum nor those of parity. The perturbative energy, however, is still P-even. 

In more general cases, the original symmetry of the Lagrangian may not be realized 

in the physical results. When the fermion masses are allowed to have chiral phases (as in 

the standard model of the electro-weak interactions), the parity-odd solutions often creep 

in undetected and seem reasonable as the mass term breaks standard P- and T-symmetry. 

Therefore, the study of the degeneracy is very appealing. 

The related problem does not exist if one does not start dynamical calculations with 

solutions of the free Dirac equation, such as in obtaining the spectrum of the Dirac equation 

with the Coulomb potential (DECP). For this reason it is possible to solve the problem of 

how to choose the lowest-order wave functions by taking a hint from the DECP solutions. 

We shall do so and explain why. As a by-product of this study, we obtain some interesting 

sum rules for pure Coulomb-potential wave functions. 

Since the degeneracy is very similar for the masses with and without a chiral phase, 

we shall first study the standard QED in which fermion mass is real. We shall then study 

the QED theory in which fermion mass has a chiral phase, or is complex, as we say. 

2.0 DIRAC EQUATION WITH REAL FERMION MASS 

For convenience, we use the Bjorken-Drell convention3 of the Dirac matrix and space

time metric. The free Dirac equation is 

llJu = (E~- r:: -8· p) ('P) = O. 
(J'.p E+m X 

(4) 

One obtains a naive solution: 

~( cp ) u+= V~ (f.p , E+m'P 
(5) 
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where Cop is a two-component Pauli spinor. With the same Cop, 

(6) 

is another solution of the free Dirac equation. Under space reflection 'ljJ(ji) ~ 'Yo'ljJ( -ji), 

u+ and u_ are, respectively, parity-even and -odd, if Cop is parity-even (and we shall assume 

so). Any linear combinations of u+ and u_ are also the solutions of the Dirac equation with 

the same energy and momentum. It is convenient to parametrize part of these degenerate 

solutions in the following way. (For the ,general expression, see Appendix A.) Let 

U(f3) = [cos 13 + i~· psinf3/(E + m)]/vE + m cos 213 , (7) 

where ~ = (
a 0) o a and 13 is an arbitrary real parameter. Then 

u(f3) = U(f3)u+ 

~1 ~ [(E;:;+.p~) cosf3 + (Ea
_. Pm) iSin f3] 

V2E( E + m cos 2(3) v 

(8) 

is also the solution of the Dirac equation with the same 4-momentum. This can be un

derstood in a different way. U(f3) is a unitary transformation which produces one solution 

from another, since U(f3) commutes with the Dirac operator, 

1/>U(f3) = U(f3) 1/>. (9) 

The set U(f3) is a degenerate group of the Dirac equation. Since ~ is a block diagonalized 

matrix, u(f3) describes a pure electron (without the component of the positron) as u+ does. 

Of course, all these wave functions are equally good in describing a free electron. Now, 

an immediate question is whether perturbative calculations with these different solutions 

as lowest-order wave functions give the same result when interactions are imposed. The 

problem is of the type of perturbative theory with degenerate wave functions, and the 

answer is obviously not. 

When perturbative external fields are added to the Dirac equation, the Hamilto

nian operator will have an extra part iI' in addition to the free Dirac Hamiltonian 
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iIo = a. . P + 10m. In general, 

[U(,8), iI'] # o. (10) 

Therefore, 

(11) 

will be ,8-dependent, where u(,8) is the identified wave function of the free electron, as all 

the wave functions have an equal right to be considered. The ,8-dependence of the first

order energy in Eq. (11) is quite embarrassing. It seems that the two methods to solve the 

problem of the H-atom are not practically useful here. To see the gravity of the problem 

raised, let us calculate the first-order electromagnetic energy of the electron in external 

EM fields explicitly. Suppose scientist A chooses u+ of Eq. (5) as the free wave function 

of the electron; he obtains 

E' - t [ q> _ eA· p _ eii· B _ eii· Ex p ieE· P ] 
A - cp e E 2E 2E(E + m) + 2E(E + m) cpo (12) 

This two-component form is better than Eq. (11) in the sense that physical contents such 

as the EM potential, the magnetic moment, and the spin-orbit interaction (the 4th term) 

are explicitly seen. He also obtains the EM energy of the positron with the corresponding 

wave function J E21:m 
( _cpt ;~!n cpt) of exactly - EA. But scientist B may choose a different 

solution-u(,8), for example-to start with. Not knowing what A is doing, B finds that 

I t [ eA . p eii . jj eii . E x p ieE . P em2fi . E ] 
EB = cp eq> - ~ - 2E - 2E(E + ml) + 2E(E + ml) - 2E(E + ml) cp, (13) 

with ml = m cos 2,8 and m2 = m sin 2,8. His positron wave function will be 

~1 ==== [( -ii· p) cos,8 + (E ~ r:) iSin,8] , 
.J2E(E + m cos 2,8) E + m -0-. P 

with the energy - EB. Similar differences appear in second- and higher-order calculations. 

The main characteristic of EB is that there is an EDM term in it, with an EDM equal to 

e tan,8 12m in the non-relativistic limit. (There are also other differences between EA and 

EB.) Scientist A may argue that since the original Lagrangian is parity-conserved, there 

should be no parity-violating effect such as EDM in the result. However, B may contra

dict A by saying that sometimes the symmetry of the Lagrangian may not be preserved 

in dynamical calculations-for example, when dynamical symmetry breakdown occurs. 

Therefore, further arguments should be given before any conclusions are reached. 
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A lesson from the above exercise is that people working in different representations of 

the I-matrices tend to obtain different perturbative results if special" care is not taken. This 

is simply because they may get different results even if they work in the same representation 

by accidentally taking different lowest-order solutions (see Appendix A). It is interesting to 

note that if one somehow succeeds in rejecting EDM in Eq. (13), one will obtain sin 2,8 = 0, 

which allows 

cos 2,8 = ±1. (14) 

The second solution (cos 2,8 = -1) leads to a divergent Ek in the non-relativistic limit, 

making it an unfavorable one. We shall give the necessary argument to reject EDM later. 

It seems to us that these uncertainties cannot be eliminated unless a hint from the non

perturbative solutions of an interacting Dirac equation is applied. Actually, the solutions 

of the Dirac equation with the Coulomb potential are good enough to be compared with, 

because they are exact and can be made into an orthogonal series. The corresponding 

equation is 

(p. a + 10m - ze2 /r)1.f; = E1.f;. (15) 

The exact solutions of this equation are known. 4 They are characterized by the quantum 

numbers (n,j ,1, j z) which are, respectively, the principal, total angular momentum, orbital 

angular momentum, and magnetic quantum numbers. In addition to the degeneracy of 

degree 2j + 1, one more degeneracy appears between states with the same nand j but 

different 1, unless 1 = 0 or j = n - 1/2. These degenerate states have different parities. 

There are no parity-violating terms in the energy even if we consider a parity-mixed state, 

because the Coulomb potential is spherically symmetric. We expect the value of (J. E in 

the pure Coulomb wave functions to vanish anyway. So to see whether the electron has an 

EDM, we must add an external electric field H' = -E· r as a perturbation to the Coulomb 

potential solutions. This perturbation will certainly split the degeneracy between states 

with different parities as previously discussed. Had the electron had an EDM, we would 

also expect a splitting among states with different j z but with the same other quantum 

numbers, in particular for states with I = 0 and jz = Sz. However, it is easy to see that 

this kind of splitting does not appear, leading to the conclusion that the electron does not 

have any EDM. Therefore, we must take the free solution u+ as the wave function of a 

free electron to start perturbation calculations in the real mass situation, if we believe that 

EDM should not be produced only because the electron goes from the Coulomb potential 

to some other arbitrary potentials and perturbation based on free Dirac equation solutions 
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must apply. The problem of which free solution should be taken for perturbation for the 

real mass case is thus resolved. 

3.0 DIRAC EQUATION WITH COMPLEX FERMION MASS 

Similar problems appear in the perturbative QED with a complex fermion mass (in 

other words, the fermion mass with a chiral phase). The complex fermion mass in is defined 

as in = me-i-rstP = m cos ¢Y - i-ysm sin ¢Y = ml - i,sm2. The Lagrangian is 

£, = -1/4Fp.v Fp.v + i'lj;(~ + ie J)'Ij; - 'lj;in'lj;. (16) 

It seems that the Lagrangian of Eq. (16) breaks P and CP, but leaves C conserved. Re

searchers sometimes make chiral rotation to shift this phase of the mass into the EM part 

using the anomaly relations,S then throw it away. We shall instead work on Eq. (16) di

rectly. At the very least, everybody knows that chiral rotation is not the symmetry of the 

Lagrangian. A double check will not cause any harm. 

The perturbation theory based on £, in Eq. (16) is as good as that in the standard 

QED.6 The question again is which solution of the "free" Dirac equation 

(p- m)'Ij; = 0 (17) 

should be taken as the lowest-order solution to start perturbation. The general solutions 

of Eq. (17) may be written as 

(18) 

where u(f3) with an arbitrary f3 is the solution of the real-mass equation in Eq. (8). One 

possible method to choose a specific solution is to think about the ¢Y-goes-to-zero limit to 

establish a relation between the chosen real-mass solution and the complex-mass solution. 

For example, if u+ in Eq. (5) is chosen for the real-mass equation, then uc(f3) with f3 = ¢Y/2 

or 0 only should be chosen for the complex-mass equation, 

(19) 

and 

u c(2) = uc(f3 = ¢Y/2) ex: (0'.i+~m2 ). 
E+ml <P 

(20) 

Both of these solutions approach the real-mass solution u+ at the limit ¢Y ---+ 0, and we 

are still in an uncertain position. Obviously, the lowest-order EM energy will be of the 

type in Eq. (12) if u c(l) is chosen, and of the type in Eq. (13) if u c(2) is chosen. 

6 



Appealing to the corresponding Coulomb potential solutions, we find that 

(21) 

If 'ljJ~ = ei-rs<p/2'ljJc, we find that 'ljJ~ satisfies exactly the same equation with the same energy 

E = E as 'ljJ in Eq. (15) does. Therefore, we have 

'ljJ~ = a mixture of 'ljJ(1) and 'ljJ(2) , (22) 

where 'ljJ(1) and 'ljJ(2) are degenerate solutions of Eq. (15) with the same total energy E 

and angular momentum (j,jz), but different parity as I = j ± 1. So the energy of 'ljJc 

is the same as 'ljJ~, or 'ljJ(1) and 'Ij;(2), and it has no P-odd pieces even though it is the 

solution of the Dirac equation with a complex fermion mass. This means that we must 

take the perturbative energy of the electron in Eq. (12) instead of Eq. (13), and we must 

take the corresponding ftee-electron wave function in Eq. (19) instead of Eq. (20) to do 

perturbation in QED with a complex fermion mass. 

4.0 CONCLUSION 

In conclusion, we must take the parity-even solution in Eq. (5) to start perturbation 

calculation if the mass of the fermion is real. When the mass of the fermion is complex, we 

must take the solution in Eq. (19) to start perturbation, so the phase of the complex fermion 

mass becomes a completely redundant parameter without any physical. consequence in 

QED. The non-observability of the phase of the complex mass in QED can be used to find 

some interesting sum rules for wave functions (Appendix B). Implications of the results 

of this paper to the EDM of the neutron should be discussed separately, as dynamical 

symmetry breakdown due to the strong interaction should be taken into account.7 
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Appendix A 

A Comparison of the Bjorken-Drell Representation 
and the Chiral Representation 

The chiral representation is defined as 

Ii = ( 
a o"i) , 

-O"i a 10 = (A.l) 

The unitary matrix V = 1/J'i (1 1) transforms it back into the B-D representation: 
-1 1 

V-ynV- 1 =,n, n=O,I,2,3,5. (A.2) 

The "naive" solution of the free Dirac equation (j) - m)u = a is 

m
2 (7]) 

U - V2E(E + hp) E~,p7] , 
(A.3) 

where h is the helicity of the two-component spinor 7]. Probably the author working in the 

chiral representation will identify 7] as a momentum-independent spinor. It is obvious that 

(A.4) 

where u is the naive solution in the B-D representation. So with u and e ..1, and using 

Eq. (11), this author obtains his first-order EM energy: 

E' _ . t· ,1.:....- t q, _ eA· p _ eii . B ieii· E [ - - -J 
- U ,oe"p-u - 7] e E 2E + 2E 7]. (A.5) 

The same result is obtained by the use of u' and e 4. Note that this energy is not even 

one of those in Eq. (13), because Eq. (8) does not represent all possible degenerate wave 

functions. The most general expression for the solutions of the free Dirac equation in the 

B-D representation is 

(A.6) 

with complex numbers A and B constrained by utu = 1. 
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Appendix B 

The Sum Rules Obtained From "No Effect" of the Complex Fermion Mass 

When the phase <p is small, we can write 

- -, m=m+m, (B.1) 

where the small quantity in' is 

in' = -m(l- cos<p) - im, 5 sin<p. (B.2) 

The Dirac equation with a complex fermion mass becomes 

[ei· P + 10m - e2 jr + in']1jJ = (Eo + bE)1jJ, (B.3) 

where Eo is the energy corresponding to Ho (when in' = 0), and bE is the energy due to 

in'. Since all lowest order wave functions are chosen to be eigenfunctions of parity, 15 must 

appear twice to give non-zero contribution. Therefore, bE can only be an even function 

of <p. From the text we expect that we must have bE = O. This is not true for each order 

of perturbative calculations, but it must somehow be satisfied. Actually we can require 

the coefficient of the <p2n term to vanish, where n is a positive integer. This requirement 

supplies an infinite number of sum rules for Coulomb potential solutions. As an example, 

the <p2 terms come from the first- and second-order perturbations, and in order to have 

these terms cancel each other, we must have 

(BA) 

where 1jJo has its energy Eo, and the sum must skip the intermediate state In} with energy 

Eo. This sum rule is directly proved if one notices that 

(B.5) 
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