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1.0 INTRODUCTION 

The sse generic shaft requirements and access spacing are considered elsewhere [1]. 

The shafts connecting the ground surface with the underground accelerator tunnel deliver to 

the surface some portion of the radiation created in the tunnel [2]. The radiation safety 

problem of access shafts consists of two major questions: 

• does the dose equivalent at the ground surface exceed permissible limits? 

• if it exceeds those limits, what additional shielding measures are required? 

A few works deal with this problem for high energy machines [3-6]. This work is an 

attempt to answer these questions for the basic types of shafts specific to the sse magnet 

delivery, utility and personnel shafts using full-scale Monte-Carlo calculations of the entire 

process from hadronic cascades in the lattice elements to panicles scattered in the tunnel, 

niches, alcoves, shafts and surface bunkers and buildings. 

2.0 BEAM LOSS 

Beam loss and the corresponding radiation effects in the sse lattice elements have been 

considered in paper [2] for all the expected sources. In the present paper the beam intensity 

is assumed to be 4 X 1014 in each ring. For design purposes the beam loss in the vicinity of 

shafts is supposed to be lOS protons per meter of the lattice per sec in either ring at 

20 TeV. This number is derived independently from three conditions: 

I) it corresponds to 1/50 of the quench level [2,7] and is the set point for the 

Beam Loss Monitor (BLM) abort trigger (Tevatron experience), i.e. beam 

loss at a rate of a little less than lOS protons per meter per second can occur 

at any particular lattice location. 

2) it corresponds to the SeDR suggestion - accidental loss of a whole beam 

once a year at an arbitrary one-half standard cell of the ring. 

3) beam loss at such a rate can occur in the sse magnet elements according to 

the first full-scale calculations as described in [2]. 

Of course, one can control the beam loss in specific lattice regions, but at the design 

stage, we think that the above assumption is reasonable for radiation safety. 



3.0 MONTE CARLO CALCULATIONS 

Simulation of hadronic and electromagnetic cascades induced by beam loss in the 

standard cell in the vicinity of the shaft mouth, as well as the subsequent low energy 

neutron transport are canied out in this work with the newest version of the MARS Monte 

Carlo system [7-9]-MARSI2 code. One of the extended features of MARS 12 is a new 

efficient algorithm for low energy neutron transport which is based on the multi-group 

neutron cross-section library covering the energy range from thermal up to 14.5 MeV. It 

includes also photoneutron production, which has a non-zero contribution to the result due 

to the important role of electromagnetic showers at 20 TeV. Two major components of the 

radiation fields are mentioned often below: "hadrons," i.e., protons, neutrons and charged 

pions with energy above 14.5 MeV and "neutrons" i.e., neutrons with energy below 

14.5 MeV. The calculational model of the magnet delivery shaft junction is shown in 

Fig. 1. Figures 2 and 3 show the model of a utility shaft, personnel shaft and the niche 

junctions. The z-axis of the drawings coincides with the lower beam line axis and the x­

axis is directed up to the ground surface. Most of the results presented below are 

normalized per one 20 Te V beam lost per 1 meter of the standard cell length. Some final 

results are presented for the beam loss scenario described in Section 2. 
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Figure 1. Schematic of the sse magnet delivery shafL 
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Figure 2. Schematic of the sse service shaft trident (plan). 
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Figure 3. The same, some details in the vertical plane. 
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4.0 TUNNEL 

Figure 4 shows the fluences of hadrons and neutrons as a function of the distance from 

the beam axis in the tunnel cross-section. Low-energy neutron fluence is about one order of 

magnitude higher and falls off much more slowly as compared to hadrons. Particle spectra 

in the high energy and low energy regions are presented in Figs. 5 and 6 at the 

superconducting magnet surface and at 70 em distance from the beam. There is one peak: in 
the charged hadron spectra around 300 Me V and three peaks in the E x F(E) neutron 

spectra around 60 MeV, an outstanding 1 MeV peak, and a thennal neutron peak. 
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Figure 4. Fluence of hadrons and low energy neutrons in the sse tunnel versus distance 
from the TeV beam centerline. 
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Figure 5. Energy spectra of hadrons at the surface of the sse dipoles. 
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Figure 6. Energy spectra of neutrons in the sse ring at two distances from the beam centerline. 
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S.O MAGNET DELIVERY SHAFTS 

From the radiation safety point of view the magnet delivery shaft is the most difficult of 

the sse shafts. Its vertical axis is very close to the beam axis. The proposed 25 foot 

concrete shield underneath the shaft mouth cannot properly attenuate radiation because of 

the wide (8 feet) slot in it. Figure 7 shows the dose attenuation in the slot which is very 

slow compared to the attenuation in solid concrete (at least one order of magnitude per one 

meter). One can propose, therefore to reduce the lower shielding thickness to 

approximately 2 meters. The neutron energy spectra in the shafts are much softer than the 

ones in the tunnel (Fig. 8). To a fIrst approximation they behave as E x F(E) = const below 

a few MeV in the fIrst 10-30 meters of the vertical shaft. At the larger distances the spectra 

become softer. 

Dose attenuation in the shaft itself is presented in Figure 9 as a "universal curve," 

where L is a distance from the shaft mouth and S is the shaft cross-sectional area. It is 

interesting that the results are in good agreement with the "universal curve" given in [4] for 

a linear source. Even for the deepest shaft at E 1 the annual dose at the surface in the 

absence of supplementary shielding reaches 40 Rem. For other delivery shafts it is much 

higher (600 Rem for F3 shaft). The dose can be easily reduced to the required value by 

covering the top of each delivery shaft with a concrete cap. Figure 10 shows the attenuation 

of the high energy hadrons and low energy neutrons in such a shielding. One can notice 

two components in the neutron fluence: primarily, it is due to low energy neutrons coming 

from the shaft (this is 1000 times higher than that due to the hadron fluence) and then there 

is the neutron component generated in the cap by hadrons. The corresponding dose 

attenuation in a top cap made of ordinary concrete is shown in Fig. 11. 

The cap thickness required to reduce annual dose at the surface to 50 mrem is plotted on 

Figure 12 as a function of the shaft depth to the beamline. To reduce the annual dose to 20 

mrem one needs to add another 70 cm of ordinary concrete to the cap. So, caps of 

thickness 1.7 to 3.7 meters, depending on shaft depth, solve the problem completely. 
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6.0 UTILITY SHAFTS 

The utility shafts with their alcoves create classical bi-sectionallabyrinths. In addition 

two shielding walls at the beginning of each alcove create another small labyrinth. The 

attenuation factor of these small labyrinths, i.e., the dose at the shaft mouth related to the 

dose at the shaft mouth in absence of any shielding walls is shown in Fig. 13 as a function 

of wall thickness. Sixty em seems to be the optimum thickness for these walls. The results 

below are presented for just such a case. 

Figure 14 shows the vertical distribution of various energy group fluences in the utility 

shaft. The corresponding dose attenuation is presented in Fig. 15 as "universal curve" 

which is in good agreement again with the curve given in [4] for the second section of a 

labyrinth. 

Figure 16 shows the dependence of the annual dose at the ground surface on the shaft 

depth to the beam axis. As can be seen, the acceptable dose level (20 mrem) is exceeded for 

all of the shafts, and additional shielding measures have to be taken. These additional 

measures are a third wall in the alcove, use of boron-content concrete or boron-content 

sheets at the very top of the shafts, and creation of concrete bunkers above the top of most 

of the utility shafts. 
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7.0 PERSONNEL SHAFTS 

The neutron flux per interacting proton, Fn, in the case of the updated layout of the 

utility and personnel shafts are: 

• utility shaft-Fn = 2 x 10-3 

• personnel shaft-Fn = 2.6 x 10-3• 

The main difference between the two is the absence of holes in shielding walls for the 

personnel shafts. 

There is a question about walls in personnel shafts: 

• if there are no real walls, the attenuation along the shaft can be easily estimated 
using a "universal curve". 

• if there are, new runs are necessary. 

8.0 RADIATION DAMAGE TO ELECTRONICS AND FmER OPTICS 

All the doses above are given for tissue. The contributions of different components to 

the energy deposition have a strong influence on such a dose as well as on the dose to other 

materials at various locations in the region of the shafts. There are two important points of 
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interest: electronics in niches and fiber optics under the floor. To give a tool for dose 

estimation in these elements, general fluence and dose characteristics are presented in 

Table 1. For example, with the results presented in the above sections and the data of the 

Table, the annual dose to the underfloor fiber optics is estimated to be a few kilorads. 

Table 1. Fluence and Dose Characteristics of the Ring Radiation 

Tunnel Niches, Utility 
Value 30 <r<75 cm Shaft Vert. Mouth 

F(len)/F(h) 
(-8 at 30 cm =14 at 75 em) 11 23 
F(ch h)/F(h) 0.12 -0.08 
F(e)/F(ch h) 2.85 <0.06 

Edep(i)/Edep(tot): i 
len 0.05 0.28 
ecp 0.12 -0.30 
ch h 0.31 -0.40 
EMS 0.52 <0.02 

D(Si)/F(h), rad"cm2 2.2 x 10-8 1.9 x 10-9 

D(Si)/F(len). rad"em2 2.0 x 10-9 8.3 x 10-11 

k(Si) h rad"cm2 2.1 x 10-8 1.4 x 10-9 

kJSO len1 rad*cm2 8.3 x 10-8 2.3 x 1011 I 

D(tiss)/D(Si) 2.8 24 

HJtiss)/F(h). rem*cm2 2.1 x10-7 3.0 x 10-7 I 
H(tiss)/F(len) rem"cm2 1.9 x 10-8 1.3 x 10-8 -j 

Q(tiss) h rem"cm2 7.0 x 10-8 7.0 x 10-8 -'. ~1 
g(tiss1len rem"cm2 1.3 x 10-8 1.0 x 10-8 1 

<QF> 3.4 
-1 

6.5 I 

h hadrons with E > 14 MeV 
ch_h charge hadrons with E > 14 MeV 
len neutrons with 0.5 e V < E < 14 MeV 
e electrons and positrons with E > 1 MeV 
ecp evaporated charge particles (p,fragm.) due to hA int 
EMS electromagnetic showers 
D total absorbed dose 
k kerma factor 
H total dose equivalent 
q specific dose equivalent 
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