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Abstract 

In many cases the precision with which an experiment can measure a physical quantity 
depends on the value of that quantity. Not having access to the true value, experimental groups are 
forced to assign their errors based on their own measured value. Procedures which attempt to 
derive an improved estimate of the true value by a suitable average of such measurements usually 
weight each experiment's measurement according to the reported variance. However, one is in a 
position to derive improved error estimates for each experiment from the average itself, provided 
an approximate idea of the functional dependence of the error on the central value is known. 
Failing to do so can lead to substantial biases. Techniques which avoid these biases without loss of 
precision are proposed and their performance is analyzed with examples. These techniques are 
quite general and can bring about an improvement even when the behavior of the errors is not well 
understood. Perhaps the most important application of the technique is in fitting curves to 
histograms. 
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I. Introduction 

Assume that we have n experiments which have measured values Vi which are estimates of 
some physical quantity which has the true value Vt. We wish to combine these measurements into a 
best estimate of Vt. For a given technique, an experiment will obtain its value subject to random 
fluctuations. Neglecting systematic errors, fluctuations may come from two sources: experimental 
error in measurement, and random variations in the quantity being measured. An important 
example of the latter is found in measurements of the lifetime of a decaying particle. Each 
observed decay is a sample from an exponential distribution, in the absence of measurement error. 
We wish to combine a number of such measurements and estimate the average lifetime. This 
estimate will be the result '1 of the ilh experiment In the presence of experimental error on each 
measurement, the distribution from which any given measurement is sampled in this example is a 
convolution of the exponential and the error distribution. 

Unless otherwise stated, the experimental error is not the same for each measurement, even 
within the same experiment. We will denote the estimated error on the final result Vi by O'i. In 
many processes, such as the exponential process, O'i will depend on Vt. The experimenters will 
substitute their value Vi in the calculation of O'i. This may result in a bias when the results of 
different experiments are combined. This occurs because those values of Vi which result in smaller 
O'i will appear to have more precision and exert undue influence on a weighted average. 

We propose an averaging technique with superior perfonnance compared with an ordinary 
weighted average. We shall use three figures of merit: 

Bias 
(1) 

where v is the improved estimate resulting from combining two or more experiments, and E 
denotes the expectation operation. We shall always use the W\" to denote a statistic used as an 
estimator. 

Variance 
V(v) = E ([v- E(V)] 2} 

= E (V2) - [E(v)] 2 

Variance denotes the expected square of the spread of vwhich would be found if n 
independent experiments were combined. 

Mean Squared Error (MSE) 

MSE = E [(v- Vv2] = V (V) + b2. 

(2) 

(3) 

MSE measures the expected square of the spread of varound the true value. MSE allows us 
to evaluate the merits of cases in which we have decided (or are forced) to accept a certain bias. 
This has the virtue that it summarizes in one number the other two figures of merit However, it is 
often useful to know the breakdown into the bias and variance contributions, and therefore we 
usually also give this breakdown. 



First, assume that the ai's do not vary withv. That is, no matter what Vi a given experiment 
gets, its ai is always the same, a characteristic of the experiment Also assume no bias. Then we 
can construct a X2: 

(4) 

We shall refer to this as X2 even though for non-Gaussian errors it is not distributed as X2. 

If we select the minimum of this X2, we fmd 

(5) 

All summations are over experiment index i unless otherwise indicated. This is the ordinary 
weighted-average result. Since the weight depends on the square of the precision, less precise 
results, which will tend to be found further from Vb quicldy fade away in importance. 

This vis at X2minimum only if ai is independent of v. If each experiment has Gaussian 
errors and is itself unbiased, we have a true X2 which can be used to test goodness-of-fit. It also 
gives an unbiased result for v since 

= Vt 

2 

(6) 



Finally, the variance in v is 

(7) 

where independence has been used to derive 

E(Vi ~) = ~ 
if i :# j. The measurement with the smallest error is the most influential on both the estimator v and 
its variance. It can also be shown [1] that this v has the least possible variance of any unbiased 
estimator. Therefore we have satisfied our criteria as well as possible and we don't need to look 
any further. 

Then 

We can compare this with a simple average of the same data: 

1 
VA =- ~ V· n 1 • 

E(v) = Vt 

V(V) = ~2l: a? . 

(8) 

(9) 

This estimator is also unbiased, but the error is dominated by the largest ai instead of the smallest. 
The variance in eq. (9) is larger than that in eq. (7) unless all the ai's are equal. 

II. The Problem 

In many cases, the precision of any particular experiment will depend on Vt. For example, 
assume we have observed in the i1I! experiment a number n of decays and we want to estimate the 
true mean lifetime of the particle. Assume the experiment observes decay times with uniform 
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efficiency out to effectively infinite times. In the simplest case the enurs in the individual 
measurements ~ are negligible (and the background is, also), and the times ~ are sampled from 
an exponential. We obtain an unbiased estimator with minimum error by taking the average: 

A 1 ~ 
Vi=nLlVj (10) 

Then 

v(h) = V;ln (11) 

Notice in eq. (11) that as Vt increases, so does the error. This reflects the fact that the observations 
are more spread out in time for larger Vt ; therefore, localizing the mean is harder. 

Since no experimenters know Vb they have to insert Vi for Vt in eq. (11) to estimate their 
error. Hence measurements with a low V will award themselves a smaller error than those with a 
high v, even though the true error may be the same in magnitude. If we take a weighted average of 
such experimental results as in eq. (5) [using Oi2 = V(~)]we can expect to get a bias favoring 
measurements which have fluctuated downward. 

Consider another common case, a Poisson process. For example, in measuring the decay 
rate of a particular type of particle into a particular final state, we count the number observed in that 
decay mode and divide by the total of all decay modes. This frequently will involve corrections for 
experimental acceptance, so neither numerator nor denominator may be integral. Denote the result 
for the ilh experiment by Vi = n;l Ai. Assuming the error in Vi is dominated by statistical 
fluctuations in ni, then we have approximately 

(12) 

The factor ~i incorporates the acceptance corrections in an average sense, as well as the 

factor l/~: 0i = {Dji Ai =...J V-JAi if the acceptance corrections are unity. Once again, the 
experimenter has no choice but to insert his own best value for Vi in eq. (12), resulting in a biased 
estimate for his error unless Vi = Vt. 

III. Two Approaches 

We wish to construct an estimator for Vt by combining two or more experiments. An optimal 
estimator will have simultaneously the smallest possible bias and variance, and therefore MSE. 
Therefore we wish to assign more precise results greater weight If the experiments have error 
estimates which depend on their measured values Vi , we need to find a way to compensate for this 
in determining precision. Finally, any technique we use should converge smoothly to eq. (5) in 
the limit that 0i is not a function of Vi • 
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The X2 is given by eq. (4). Assume 

(13) 

where the function fi is, for the moment, assumed known. Then we calculate 

(14) 

In the fast approach we will consider, Method I, we assume that v is the value of v which 
minimizes X2: 

(15a) 

and 

(15b) 

The zero of eq. (15a) may be found numerically if necessary. 

Method I has appeal in that it formally parallels the standard approach, which looks for the 
minimum X2. However, eq. (14) is only an approximation to the true X2 since the denominator is 
only estimated. Since we vary v, X2 is reduced by choosing Vto overestimate fi (v). We will 
demonstrate this effect below. It results in a bias opposite to the one discussed earlier. However, 
the bias is considerably reduced and Method I is a significant improvement over the method which 
neglects the dependence of (Ji on v. 

Method II may be derived either from the exponential or the Poisson example discussed in 
n· 

the previous section. For the exponential, Vi = ~ vjlni [eq. (10)] and fi = <Xi Vi. If ntot events are 
J 

observed with uniform efficiency (over an unrestricted range) in all experiments combined, the 
most efficient (smallest variance) unbiased estimator is what would have been obtained if all events 

" nJQt 
had been observed in a single experiment. Thus, V= ~ vjntot, where the sum runs over all 

J 
events from all experiments. 

For the Poisson, Vi = n;l Ai and fi = ~i w.. If again ntot events are observed in all 
experiments, the best estimator is v= ntot / I: Ai, as if all events were observed in a single 
experiment. 

In both cases, it can be shown that the best estimator is obtained by treating all the data as if it 
came from a single experiment This gives the unbiased result with minimum variance. This is 
also the Maximum Likelihood result [1,2]. These estimators can both be obtained if we take the 
single step of dropping the term in eq. (15b) which introduced the dependence of the fitted values 
on the derivative of the errors with respect to those values. Thus, by approximating 
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we simplify the calculation and improve the estimator at the same time. 

To see this in more generality, write 

(16) 

g an arbitrary function. This covers both the exponential and Poisson examples. In the former, 'Yi 

= ai and g (v) = v; in the latter'Yi = 1I-{l\;. = Pi and g (v) =...fl. We now easily derive 

(17) 

Hence, 

(Method IT) (18) 

and 

(Method IT) (19) 

for the exponential and Poisson cases, resp. The form of the function g (v) is irrelevant in the case 
that the experiment dependence can be factored out of the error as a constant multiplier, eq. (16). 
This gives us an approach with considerable generality. Likelihood techniques will arrive at the 
same estimators, but a different calculation is required for each case, since different probability 
density functions apply. Method IT covers a broad spectrum of practical cases with a single 
formula, eq. (17). This offers hope that we can obtain a reasonable result even when the form of 
the errors (and, therefore by implication, of the likelihood function) is only poorly known. We 
address this question in Section V. If acceptance corrections are unity, ai = 1I..JDi and Pi = 1I...fl\i 
in the two examples and Method IT yields 

and 

v = L ni Vi /ntot 
i 

(18a) 

(19a) 

resp., satisfying the desire to have all the data treated as if they came from a single experiment 
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We therefore propose that the solution vfound by solving 

(20) 

be used in the general case. The technique is simple to apply and it works optimally for both the 
unifonn-acceptance exponential and Poisson cases. It also works, of course, for the ordinary 
weighted average when the errors do not depend on the measured value. 

To further motivate eq. (ISc) we note that the error O'i should ideally be adjusted using the 
true value of v, Vt: O'i = fi(Vt). If we substitute vfor Vt ifud: evaluating eq. (ISb), then we arrive at 
eq. (ISc) directly since d fi(Vt>/dv = o. 

IV. Monte Carlo Studies 

We illustrate the problem with a Monte Carlo calculation. For the sake of illustration we 
assume a truncated Gaussian distribution for the errors of each experiment. The results are scale­
invariant, and so without loss of generality we take Vt = 1. Initially, we take O'i = ai Vi, which is 
always estimated by the i1b experiment as ai Vi; ai is for the moment assumed known without 
error. In Section V we will discuss questions of incorrect understanding of the fonn of the errors. 
This fonn of fi( v) corresponds to the exponential case. It has a stronger v dependence than the 
Poisson case, so we will begin there. 

The distribution of SOOOO measurements is shown in Fig. 1. Each measurement is chosen at 
random from a Gaussian distribution with width a, where a is chosen at random from a uniform 
distribution on the range (O.IS, 0.60). This simulates variations among experiments. The 
distribution is truncated close to zero, leaving 49414 measurements. This truncation results in a 
1.6% upward shift in the mean value, but the standard deviation has not changed substantially. 
The truncation removes unrealistic cases, including negative measurements and those extremely 
close to zero. We could have left those in the set without damage to the method, but we attempt to 
focus somewhat more realistically on the measurement of a positive quantity such as a particle 
lifetime or mass. A 1.6% bias is of little consequence in measurements with an average error of 
37.S%, but when measurements are combined we want to be alert to its presence. 

We treat each accepted measurement as the outcome of a single experiment. We test our 
averaging prescriptions by averaging these measurements five at a time. 

If we do a simple average without weighting, we obtain the results histogrammed in Fig. 2. 
The mean is 1.016, so no bias is observed due to the averaging, as expected. The standard 
deviation, equal to the MSE to three significant digits, is 0.170, which approximately equals 
0.37S/ {S, again as expected. 

If we do a weighted average according to the prescription of eq. (S) we obtain the results 
shown in Fig. 3. Here we must take the experimental error estimates at face value, O'i = ai Vi • 
The mean of these weighted average values has an 18% downward bias, due in large part to the tail 
at very low values. As a comparison, this bias is the same size as the standard deviation of the 
ordinary average. The peak (most probable value) is around 0.9, and the standard deviation is 
0.230. The MSE is 0.08S. Clearly, using a weighted average with precision as quoted by the 
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experimenters is worse than ignoring the relative precisions altogether and simply averaging. This 
conclusion, obviously, depends on the assumptions made for the distribution of <Xi and will not 
hold in general unless the range of (Xi is not large, or one censors data with large (Xi (which 
contribute to the spread in the ordinary average but very little to the weighted average). Note that 
one must base any decision to censor data on the value of <Xi, not (Ji = (Xi Vi, 

In Fig. 4 we see the results obtained using Method I. As anticipated, we observe a positive 
bias of 5%, exceeding the 1.6% built-in bias from the cut. The standard error is 0.214 and the 
MSE is 0.048. The net result is therefore better than the weighted average but still worse than the 
ordinary average. 

In Fig. 5 we see the results from Method II. The mean is 1.007, consistent with 1.016, and 
the standard deviation is 0.145. The MSE is 0.020, much lower than for the other methods. This 
method obtains the best results of any we have considered. 

For the Poisson case, we use the same error distribution as above. This will suffice to 
illustrate the point The typical error is large, corresponding to a small number of events or to the 
presence of systematic errors. We now assume eq. (12) describes each experiment's error 

estimate. That is, ~ is given the value (Ji rr;::. where (Ji is, as stated earlier, generated uniformly 
on the range (0.15, 0.60). 

The results are summarized as follows. The regular weighted average (Fig. 6) gets an 8-9% 
bias, a width of 17.7%, and an MSE of 0.038. These results are much better than for the previous 
case because the v dependence of the errors is only {V instead of v. 

We shall now proceed directly to Method n, which appears to be superior to Method I. In 
the present example, Method n yields results identical to those of the previous example (Fig. 5). 
This illustrates the fact that the form of g (C? [eq. (16)] is irrelevant to the results of Method n. 
Therefore, Method n again yields an unbiased estimator with the smallest variance. 

Two more examples will help clarify the comparison of these methods. We wish to average 
two measurements of the same quantity. In the first example, the measurements yield 100 ± 20 
and 50 ± 10, and we assume (Ji = (Xi ~. Method I gives ~ = 83.3 ± 12.42 (error estimation will be 
discussed below), with X2 = 5.56. Since (Xi = (Ji / ~ i we have (Xl = (X2, so both measurements 
have the same real precision. Therefore, a simple average gives the best answer, and Method II 
agrees. The regular weighted average gives ~ = 60.0 ± 8.9 with a 1.2 = 11.81. This is more than 
a standard deviation from the optimal answer. 

In the second example, the measurements yield 100 ± 10 and 64 ± 8. We assume now O'i = 

~i -fOso ~l = ~2 = 1. Method I yields ~= 83.95 ± 6.4 with X2 = 7.81. Method II yields ~= 
82.0 ± 6.4 with X2 = 7.90. Here there is not much real difference. Since the Ws are identical, in 
this Poisson case the true precisions are the same, and again a simple average seems most 
reasonable. The regular weighted average gives ~= 78.0 ± 6.2 with a X2 of 8.72. 

Method II is clearly superior to the others, and we shall concentrate our attention there for 
what follows. 
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V. Robustness 

In practical cases we can't be sure how accurately the fonn of f (~) is known. For example, 
there may be systematic errors whose ~dependence is at best poorly understood. We wish to 
understand the perfonnance of Method IT under the circumstances that f(t? is incorrectly 
parametrized. We will adopt certain fonns of f (~) and test the perfonnance using simplified, 
incorrect, assumptions. We will demonstrate that this approach is robust in the sense that one 
obtains an improvement over an ordinary weighted average for a wide class of ~dependencies. 

We assume a ~ dependence which is slower than linear at low measured values and steeper at 
high measured values (Fig. 7). The experimenters measure values on the abcissa of Fig. 7 and 
assign the errors (Ji shown on the ordinate. Two sample linear dependencies are sketched for 
comparison. The value of Vt is 1.0, as before. All experiments have true error (Ji (VV = 0.3, for 
the illustration of Fig. 7. To study Method IT we now inject a further note of realism: we allow the 
true precision of each experiment to vary uniformly on the range (0.15, 0.60), as in the preceding 
section, while maintaining the ~ dependence shown in Fig. 7. The experimental results are 
generated randomly according to a Gaussian of the resultant width with mean 1.0. 

The results of the ordinary weighted average are shown in Fig. 8. There is a 16% bias. The 
width is 17%, and the MSE is 0.052. Fig. 9 shows the result of Method IT. We have deliberately 
assumed fi(~)= ai v, as in the straight-line examples shown in Fig. 7, rather than the correct, 
complex, v- dependence of the errors. The mean is 0.992, revealing a negligible bias. The width 
is 13% and the MSE is 0.016, substantially better. Thus, Method IT is robust (in the sense above) 
for this problem. 

To study the case of an error contribution which is independent of v, we next take 

(21) 

The "flat" component £i is chosen unifonnly from the range (0.,12[Vj - 1]1). Such errors, 
for the example ai = 0.3 for all i, are illustrated in Fig. 10. To study the perfonnance of the 
estimators we choose ai = 0.3 for all i, but multiply the resultant (Ji by a unifonn random number 
chosen from the range (0.15,0.60). Because £i = 0 at Vj = Vt = 1, the true precision of each 
experiment is 0.30 multiplied by this random number. 

This type of error dependence may be encountered in experiments with systematic errors. It 
also resembles lifetime measurement problems where, for a single event, 

(22) 

In this case, 't is the true value of the lifetime (vV and (J is the width of a Gaussian 
representing an error in measuring the individual lifetime. Such an error often appears in impact 
parameter approaches. The lifetime problem has also been considered by Lyons, Martin, and 
Saxon [3]. 

The weighted average result is shown in Fig. 11. The bias is 12%, the width is 16.5%, and 
the MSE is 0.040. The results are better than on Fig. 8 because of the presence of the flat 
component; the regular weighted average would work perfectly if this component were dominant. 
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The Method IT results are shown in Fig. 12. We again assume, incorrectly, fi(V) = ai' v, 
where ai' = (Ji / Vi, The bias is 2.6%. The width is 14% and the MSE = 0.018, a considerable 
improvement over Fig. 11. In fact, this is almost ideal; using the correct fi(V) gives zero bias, the 
same width, and improves the MSE by only 0.0004. 

VI. Estimating Confidence Intervals (Standard Errors) 

In doing least -squares fitting approximate errors can be computed from the values at which 

x2 = X2 . + 1 . mm 
(23) 

This is a well-known technique [4, see also 1,2] which, in a linear least-squares fit gives the same 
variance as the relation 

" /~ V(v) = 2 dV2 v' (24) 

In our case neither relation can be, strictly speaking, applied since the fit is not linear and the 
X2, eq. (14), is not at minimum for the solution for Method IT. 

However, it is reasonable to fix the experimental errors (Ji (v) at their values at solution, 
(J i (v), and proceed to apply either eq. (23) or (24). With the (Ji thus fixed the X2 is at minimum. 
This converges in the appropriate limit to the correct weighted-average answer, eq. (7), because (Ji 
is constant. Thus, we arrive at the point that we can use well-understood least-squares error 
estimation techniques. 

To understand the perfonnance of these errors we will look at "pulls", defined by 

P = (v- vt> / (J(v) . (25) 

Here, (J (v) is the estimated error in the solution v [(J (v) = VV(V) lOne should be aware 

that pulls are often alternately defined as Pi = (v- Vi) / (Ji (v), but in our Monte Carlo calculation 
we can take advantage of our knowledge of vt. since we want to understand the performance of the 
approaches. The pull expresses the actual error in tenns of estimated standard deviations. Ideally, 
the pulls should be Gaussian-distributed with mean zero and width one. 

For the case (Ji = fi(V) = ai V (Figs. 3,4, and 5) the pulls for the regular weighted average 
are shown in Fig. 13. The average is a full 2 a low, where ais that value we estimate for the error 
in V. The problem with the weighted average is clearly seen: one assumes the resolution to 
improve with decreasing Vi, 

The pulls for Method IT are shown in Fig. 14. We have estimated the errors as described 
above. The bias is -0.1 and the width is close to 1.0, although there is still a tail to low values. 
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The probability of exceeding n cr is detennined by integrating the I pull I . The results for 
Method IT are given in Table I for various cases with n = 1,2, and 3. The results are within a few 
percent of the probabilities achieved for perfectly Gaussian errors. This is true even for cases in 
which the incorrect form of Oi (v) has been assumed. One standard deviation estimates are in all 
cases conservative. That is, the interval v± 0i covers the true value somewhat more than the 
68.3% we anticipate for an accurate Gaussian. Thus, adoption of these techniques does not lead to 
a false and sometimes dangerous under-estimation of uncertainties. 

It again is clear that Method IT is a substantial improvement over ordinary weighted 
averaging. The error in the solution as estimated herein is reasonable. The small deviations from 
Gaussian behavior in the pulls must be considered in the context of real experimental 
measurements which will have error contributions from systematic effects, from non-Gaussian 
statistical errors, and so on. 

VII. The SCALE Factor 

The Particle Data Group [5] has adopted a practice of increasing the estimated error in their 
average in the case that the final X2 exceeds n-l. Here n is, of course, the number of 
measurements being averaged. The assumption being made is that the data are partly inconsistent 
A conservative approach protects science from drawing restrictive conclusions which may not be 
justified by the data. The SCALE is a multiplicative factor equal to [X2/ (n-l)]lIl, which causes 
the final X2 to equal exactly (n-l). Again, it is only applied when X2> (n-l). 

Of course, some fraction of the time X2 > (n-l) even in a perfect world: for n = 5, for 
example, this occurs 40% of the time. Therefore, for n = 5 the use of a SCALE factor would 
result in errors which would be too large 40% of the time if all experiments understood their errors 
perfectly, and all errors were Gaussian. Retrospective studies by the Particle Data Group [5] 

suggest, however, that this increase of the errors has been justified. 

For the linear errors case (Oi = (Xi Vi ), the ordinary weighted average gives a SCALE factor 
distribution as shown in Fig. 15. As always in oUr discussions, n = 5 is assumed. Using 
propagation of errors to second order, we expect a mean of about 0.94 and a standard deviation of 

about l/{8 == 0.35. One may also compare with the "chi" distribution, i.e., the distribution of -'-i X2 
(see ref. [1], chapter 5). Based on Fig. 15,42% of the time SCALE> 1.0, compared with 40% 
expected. 

These are the only cases in which SCALE would be used by the Particle Data Group. About 
26% of the time SCALE is> 1.25, compared with 18% expected, ideally. Thus, the SCALE tends 
to be overly conservative in this case. Since the regular weighted average has been shown to have 
numerous problems, this extra conservatism can only be beneficial. 

For Method IT the corresponding SCALE distribution is given in Fig. 16. The fraction above 
1.0 is about 35%, and above 1.25 about 15%. These are not conservative. However, the 
assumption underlying application of the SCALE is that the experiments are partly discrepant The 
Monte Carlo data we have used are not more discrepant than expected from statistics. Therefore, it 
is not clear that one should worry. We are, if anything, not enlarging the errors as often as we 
expect for these non-discrepant examples. 
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The results for other cases we have analyzed are summarized in Table ll. It should be 
emphasized that none of these cases involve discrepant measurements. In all cases shown the 
SCALE factor is not as large as expected from a chi distribution. This does not compromise the 
ability of a SCALE to recognize and compensate for discrepant experiments. Rather, it means that 
the errors are not as prone to be unnecessarily enlarged as for ordinary weighted averaging. 

YIn. Some Real Examples 

The ratio of branching ratios for the A; pi* (892)O/pK-x+ has been measured at (1) 0.42 ± 

0.24 and (2) 0.18 ± 0.10 by two experiments. This gives a weighted average of 0.216 ± 0.092. 
Let us assume this is approximately a Poisson case, with an error in the denominator which is 
negligible compared with the error in the numerator. 

Therefore we assume (Ji = fi (~) = J3i -{5. Substituting Vi in place of v for each 
measurement separately we find 131 = 0.24!V0.42 = 0.37 and In = 0.24. The experiments have 
much more nearly the same precision than the original errors, taken literally, would suggest. Then, 
from eq.(20), 

0= [0.42/0.372 + 0.18/0.242] [VO.372 + 1/0.242]-1 = 0.251± 0.101. 

The error has increased over the weighted average error of 0.092 because the central value 
has increased. We now get a scale factor of 1.1, instead of <1 as before. 

Also for the A;, the ratio of ratios of.1 (1232)++ K-/pK-X+ is measured at (1) 0.40 ± 0.17 

and (2) 0.17 ± 0.07. The ordinary weighted average yields 0.203 ± 0.081, incorporating a scale 
factor of 1.3. Applying Method IT, we fIrst fmd 131 = 0.269 and In = 0.170. Therefore ~= 0.236 
± 0.112, including the scale factor, which is now 1.6. 

Both of these scale factors have gone up, a consequence of the fact that there are only two 
measurements and the smaller measurement had the greater true precision in both cases. If we 
switched the J3's we would have seen a decrease in scale. 

IX. Fitting to Histograms 

The X2 of eq. (4) and therefore, these techniques, can be applied to the fitting of curves to 
histograms. Each bin of a histogram is fllled by a Poisson process with an expectation value ~ 
which depends upon the bin. For n bins we can re-cast eq. (4): 

(26) 

We assume V. is known as a function of a set of fit parameters. After we write (Ji = fi (v.) we can 
proceed to a solution in the same manner as in Method IT. For any parameter ak, 
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(27) 

and therefore the solution satisfies 

(28) 

The solution vector can be found numerically using standard techniques. Assuming fi(~) = f3i ~ 
(where f3i = 1 in the case of equally-weighted events in the histogram bins), eq. (28) simplifies a 
little: 

(29) 

Standard errors may be found as in Section VI. If the fit is highly non-linear or the 
correlations are large, it is probably best to estimate these from the contour defined by eq. (23), 
with fi (v.) fixed at solution. 

x. Conclusions 

Method IT out-performs the regular weighted-average technique currently in widespread use 
in cases where the experimental error varies with the value measured. It also outperforms Method 
I, although by a smaller margin. Method I would doubtless be acceptable most of the time. 
However, since Method IT is simpler to use and gives superior results, it is to be preferred. 

These results can be applied to other problems, including the fitting of curves to histograms, 
which are filled by Poisson processes. Many people use fIXed errors based on the number of 
events observed. This gives a clear bias, since bins fluctuating downward are awarded smaller 
errors. Method I is the usual alternative. What is shown here is that this will give a small bias in the 
other direction. Method IT should be best, although, as we have shown, for the Poisson cases 
these two methods do not seriously differ most of the time. 
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TABLE I 
Probability of being within " a, Method II 

(Percent) 
Case n=l 2 3 

Perfect Gaussian 68.3 95.5 99.7 
Linear errs; correctly used 70.6 92.7 97.0 
Complex errs; assumed linear 75.9 93.8 98.3 
....[i, em; correctly used 69.5 94.9 98.9 
Lin. + flat em; assumed linear 76.1 96.1 99.1 
Lin. + flat em; correctly used 73.2 94.6 98.6 
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TABLE IT 
SCALE factor behavior 

Case mean width 

Ideal world (approx.) 0.94 0.35 

Wtd. Avg. (lin. em) 1.06 0.58 
Linear em; correctly used 0.91 0.35 
Complex em; assumed linear 0.81 0.28 
....[i, em; correctly used 0.91 0.33 
Lin. + flat errs; assumed lin. 0.79 0.28 
Lin. + flat em; correctly used 0.85 0.30 
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35 15 
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Figure Captions 

1. Raw measurements for 50,000 Monte Carlo experiments; lower tail truncated leaving 
49414 events. Mean = 1.016, standard deviation = 0.375. 

2. Results of simple averaging of the Monte Carlo measurements, 5 at a time. Desired mean = 
1.016. Observed mean = 1.016, standard deviation = 0.170. 

3. Results of regular weighted average of same samples as in Fig. 2. Assumes each 
measurement assigned an error proportional toV, the measured value. Observed mean = 
0.822, standard deviation = 0.230. 

4. Results of Method I, minimum X2 averaging of same samples as in Figs. 2 and 3. Assumes 
each measurement assigned an error proportional toV, the measured value. Observed mean 
= 1.046, standard deviation = 0.214. 

5. Results of Method n, approximate minimum X2 averaging of samples in Figs. 2, 3, and 4. 
Assumes each measurement assigned an error proportional toV, the measured value. 
Observed mean = 1.007, standard deviation = 0.145. 

6. Results of regular weighted average of same samples as in Fig. 2. Assumes each 
measurement assigned an error proportional to {V, where v is the measured value. 
Observed mean = 0.913, standard deviation = 0.177. 

7. Spectrum of complex error assignments. Each measurement yields a value from the abcissa 
and assigns error read on ordinate. Subsequent Method n averaging will use linear 
dependence illustrated by straight lines. 

8. Results of regular weighted averaging, assuming error assignments based on Fig. 7 with 
additional uniform "smearing" to simulate varying true precisions. Observed mean = 
0.845, standard deviation = 0.171. 

9. Results of Method n averaging assuming same errors assigned as in Fig. 8. Errors are 
incorrectly taken linear in the course of averaging to test robustness of the technique. 
Observed mean = 0.992, standard deviation = 0.132. 

10. "Flat plus linear" errors assigned by experimenters to values measured as on abcissa. To be 
used in a robustness test for Method n. 

11. Results of regular weighted averaging in the presence of errors assigned as in Fig. 10 with 
an additional uniform "smearing" to simulate varying true precisions. Observed mean = 
0.884, standard deviation = 0.166. 

12. Results of Method n averaging in the presence of errors assigned as in Fig. 11. Errors are 
incorrectly taken linear in the course of averaging to test robustness of the technique. 
Observed mean = 1.026, standard deviation = 0.137. 
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13. "Pulls" for regular weighted averaging technique in the presence of linear error 
assignments. The pull is the number of standard deviations the result is in error, based on 
the calculated standard deviation at the resultant value. Observed mean = -2.191, standard 
deviation = 3.686. 

14. "Pulls" for Method n averaging in the same case as Fig. 13. Observed mean = -0.091, 
standard deviation = 1.053. 

15. Scale factor for the regular weighted averaging technique in the same case as Fig. 13. 
Observed mean = 1.060, standard deviation = 0.579. 

16. Scale factor for Method n averaging in the same case as Fig. 13. Observed mean = 0.914, 
standard deviation = 0.346. 
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