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Abstract 

We consider the geometric phases arising in the lossless propagation of light pulses through 

a medium composed of near resonant two-level atoms. A reformulation of the coupled Maxwell

Schrodinger equations allows us to construct conservation laws in a general context. There exist 

periodic solutions of these equations which lead to the possibility of cyclical evolution of the state 

vector and the appearance of a geometric phase. We first show that if the ground state is the initial 

state of the system, then it acquires a geometric phase after the passage of the soliton pulses of 

McCall and Hahn. More generally if the initial state is a superposition of the two levels, continuous 

pulse trains can propagate without appreciable loss. We also find in this case that the state vector 

develops a geometric phase provided the parameters take on the particular values required for 

cyclical evolution. In both cases we exhibit the geometric character of the calculated phases by 

showing that they equal half the solid angle subtended by a closed curve traced by the Bloch 

vector on the Bloch sphere. We verify a recent assertion of Anandan and Aharonov that the energy 

uncertainty in the state is directly related to the speed at which the tip of the Bloch vector moves 

along the curve on the Bloch sphere (or in more general terms the energy uncertainty is related to 

the speed in the projective Hilbert space). 



1 Introduction 

The paradigm for Berry's phase [1] has been the system of a spin half particle in a 

magnetic field. If a time varying magnetic field vector traces out a closed loop and its 

evolution is adiabatic (i.e. the time period for the magnetic field is much larger than the 

period of precessional motion of the particle) then the state vector initially chosen to be an 

energy eigenstate remains an eigenstate at all times and furthermore picks up an additional 

phase besides the usual dynamical phase at the end of the cyclical evolution. The additional 

phase is geometric in that this phase equals one half the solid angle subtended by the closed 

loop (traced by the magnetic field) at the origin. It has also been shown by Aharonov and 

Anandan [2] that whenever the state vector undergoes a cyclic evolution (irrespective of 

whether the Hamiltonian varies adiabatically or not) , the state vector picks up a geometric 

phase which depends on the closed loop traced in the projective Hilbert space or equivalently 

the density matrix space. In particular, the state vector for a spin half particle in a constant 

magnetic field undergoes a cyclic evolution and if initially the state vector is not an energy 

eigenstate, the geometric phase equals one half the solid angle subtended by the closed loop 

traced out by the spin vector. Both the Berry phase with an adiabatically varying magnetic 

field and the Aharonov-Anandan phase for the state vector have been measured in nuclear 

magnetic resonance experiments [3, 4]. 

There are close analogies between magnetic resonance and optical resonance. By the 

result of Feynman, Vernon and Hellwarth [5], the interaction of two-level atoms with resonant 

electromagnetic radiation can be mapped onto the problem of a spin half particle in a 

magnetic field. This has been used recently to show that the energy eigenstate of a two-level 

atom develops a Berry's phase when placed in an external, nearly resonant electric field and 

that the phase affects the Rabi frequency of oscillation [6]. It has also been generalised to 

study the Berry's phase arising in a two-level atomic system described by a density matrix 

(either because it is prepared in a mixed state or to include the effects of dissipation) and 

interacting with an external classical laser field [7]. However there is one significant aspect in 

which optical resonance differs from magnetic resonance and that is the emission of radiation 
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by the atomic dipoles at wavelengths close to that of the applied field. Under the influence of 

the resonant field the atoms may emit radiation which then propagates through the medium 

composed of two level atoms. 

In this work we will consider the phenomenon of self-induced transparency (SIT) where 

optical radiation propagates without loss in an absorbing medium and show that the state 

vector for the atom may develop a geometric phase as a consequence of the interaction. 

Note that in contrast to most other work on the geometric phase, the phase in this system 

develops as a consequence of the self consistent interaction between the medium of two-level 

atoms and the electric field and not due to some external parameters. As a consequence of 

this, the state and the electric field vary on the same time scale and the assumptions for the 

appearance of Berry's phase are not met. However, under certain conditions as we will see in 

the main text, the appearance of the Aharonov-Anandan (A-A) phase is possible. Therefore 

in this paper we will concentrate on the study of this A-A phase for SIT. By this study we 

aim to show explicitly the intimate connection between the geometry of the curves traced 

on the projective Hilbert space (here the Bloch sphere) and the dynamics of the system. 

The phenomenon of self-induced transparency has been studied and observed for nearly 

two decades [8,9, 10), but attention has been focussed on the components of the macroscopic 

polarization and the inversion. To study the phase we need to solve the Schrodinger equation 

for the state vector itself. In section 2 we set up the coupled system of Schrodinger and 

Maxwell equations describing the interaction of the two level atoms with the resonant electric 

field. With the slowly varying envelope approximation this can be reduced to a system of six 

first order differential equations. These equations enable us to view this composite system of 

quantum and classical sub-systems as a classical Hamiltonian system. We show that there 

exist three conservation laws, generalizing the forms of the laws usually stated. We solve this 

system in section 3 for two choices of initial conditions, the first corresponding to the usual 

case of self-induced transparency viz. all atoms initially in the ground state which results 

in a single sech pulse propagating through the medium. The second choice corresponds to 

taking the initial state vector to be a coherent superposition of the ground state and the 
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excited state. Here, instead of a single pulse, a continuous pulse train propagates through 

the medium taking the state vector through a cyclical evolution for a certain choice of initial 

parameters. We follow the dynamical evolution of the system by tracing the path of the 

Bloch vector on the Bloch sphere and explore the geometry of this path. At the end of a 

cyclical evolution of the state vector this path closes on itself. To emphasize the point made 

earlier, this loop is determined by the dynamics of our self consistent system and the initial 

conditions. This is in contrast to previous studies of the geometrical phase, where the closed 

loop was determined by the choice of the external magnetic field. In section 4 we propose a 

method by which the phase of the state vector may be measured following the set up used 

to observe the A-A phase in magnetic resonance [4]. We end with a summary in section 5. 

2 Coupled Maxwell-Schrodinger Equations 

The phenomenon of self-induced transparency was first observed nearly two decades ago by 

McCall and Hahn [8] and later followed up by Slusher and Gibbs [11], Matulic and Eberly 

[12] and others. When light at low intensities is incident upon a resonant medium it gets 

absorbed within a characteristic length (known as Beer's length) of the medium. However as 

the intensity is increased beyond a threshold value, the medium behaves as though it were 

transparent to the light pulse which passes through practically unabsorbed. In addition, the 

velocity of the pulse is much slower than the phase velocity in the medium. This behaviour 

is non-linear in nature and cannot be understood as perturbations around the behaviour 

at low intensities. Instead this may be understood by modelling the system as a collection 

of two-level atoms whose dynamics is governed by SchrOdinger's equation in the presence 

of a classical electric field which itself evolves according to Maxwell's equation. Our point 

of departure from previous work is that we focus on both the amplitude and the phase 

developed by the state vector and not just the bilinear combinations of the amplitudes and 

the relative phase occurring in the components of the Bloch vector (although we certainly 

obtain these as a byproduct). Consequently, the system of equations we study are somewhat 
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different from that considered in the earlier literature. 

We consider the interaction of a medium of two-level atoms with an electric field whose 

frequency is nearly resonant with the frequency of transition between the two levels. Let Ig) 

and Ie) be the lower and upper energy eigenstates differing in energy by liwo, in the absence 

of the electric field. The Hamiltonian in the presence of the electric field is 

liwo -H= TC13-p.E (2.1) 

for a single atom whose dipole moment p couples to the electric field. We neglect any dipole

dipole interaction between the atoms so that the atoms interact with one another only via 

the electric field. We assume that all other atomic levels are very distant in energy and hence 

do not couple resonantly to the electric field. We consider the electric field to be a circularly 

polarized plane wave, propagating in the positive z direction, the field vector being 

E = E(z, t)[x cos t(z, t) + y sin t(z, t)] (2.2) 

where E(z, t) is the real envelope of the field, 

t(z, t) = wt - K z + 4>(z, t) 

is the total field phase and w is the frequency of the light pulse in the medium. Circularly 

polarized light couples to a laml = 1 transition between the two levels and the dipole 

moment vector for an individual atom can be written as 

where p = pz = p". In matrix form the Hamiltonian may be written as 

H = (_!;. -pC;;.) (2.3) 

We assume that the electric field amplitude E is sufficiently strong that the field may be 

regarded as classical, yet small enough so that 

IpEI « liwo. 
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This last condition is necessary so that the atom does not get ionized in the presence of the 

electric field and is well satisfied in practice. The wave number of the field is 

K = (WT/)/c + hk 

where T/ is the refractive index of the medium and hk reflects the possible existence of 

dispersion due to the interaction between light and the atoms. The refractive index is 

assumed to be unaffected by the light pulse intensity so that no Kerr like effects are present. 

Note that since we wish to identify w as the carrier frequency, any constant term arising in 

at ¢ must be set to zero. 

It is assumed that the optical resonance line in the medium is inhomogeneously broad

ened, caused by Doppler broadening in a gas and by a distribution of static crystalline 

electric and magnetic fields in solids. We neglect the effect of other linewidth contributions 

due to homogeneous broadening e.g. caused by radiative decay, collisions with other atoms 

etc. This is a valid approximation as long as we consider pulse widths of a few nanoseconds, 

that being somewhat less than the time scale over which homogeneous broadening occurs. 

The distribution of transition frequencies Wo of the atoms in the medium is described by the 

spectral density function g( -y) where -y = We - w. To a good approximation, g( -y) may be 

taken to be symmetrical about a central frequency w. It is normalized as 

I: g(--r)d-y = 1 . 

The applied frequency w of the electric field is tuned to W, i.e the center of g( -y) as closely as 

possible. The macroscopic polarization density of the medium, obtained by summing over 

the microscopic dipole moments of all atoms is 

P = Np I: g(--r)[i(O"I) + Y(0"2)]d-y. (2.4) 

N is the number of atoms per unit volume, (0"1) and (0"2) are the expectation values of the 

Pauli matrices in the atomic states. 

We can write the state vector 1\11) for an individual atom at time t as a superposition of 

the unperturbed eigenstates: 

1\II(t») = a(t)le) + b(t)lg) 
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The state vector obeys Schrodinger's equation 

ih olw) = Hlw) 
ot 

which with the given form of the Hamiltonian (2.3) leads to the coupled equations 

·h
oa hwo E -i·b 1- - -a-p e 
ot 2 

·h
ob .• nwo 

I ot - -pEe' a - Tb. 

The state vector is normalized to unity so that we have the condition 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

Now we perform a transformation to go from the laboratory coordinate system (x, y, z) 

to a rotating coordinate system whose unit vectors et, e2 rotate about e3 = z with angular 

speed Otip. This transformation is effected by the unitary matrix 

The transformed state vector and the Hamiltonian in the rotating frame are 

Iwr ) - Ulw) 

Hr - UHU-1 +ih~~ U-1 

We find that the transformed Hamiltonian has the explicit form 

(2.10) 

while the state vector is 

l\lf r ) = Ale) + Big) (2.11) 

where we have defined 

(2.12) 
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The Schrooinger equation in the rotating coordinate system is 

aA 
at 
aB 
at 

. . 

- -~(wo - at~)A + ': EB 
. . 

_ ': £A + ~(wo - at'P)B 

(2.13) 

(2.14) 

The unit vectors in the lab frame (x,y,z) and those in the rotating frame (e},e2,e3) are 

related as 

cos~ -sin~ 0 

sin ~ cos'P 0 

o o 1 

In terms of the unit vectors in the rotating frame, the electric field simplifies to 

(2.15) 

In this frame the electric field vector has a constant direction and changes slowly in time 

compared to the variation in the lab frame. The polarization vector expressed in the new 

basis is 

(2.16) 

where (Ui)r are the expectation values calculated in the rotating frame. We may define a 

pseudo-spin vector or Bloch vector s whose components are 

u - (Ul)r = AB* + A* B (2.17) 

v - (U2)r ~ i(AB* - A* B) (2.18) 

w - (U3)r = IAI2 - IBI2 (2.19) 

As the name suggests, the pseudo-spin vector has a constant magnitude equal to unity, i.e. 

u and v are the components of the polarization which are in phase and out of phase (by 1r /2) 

respectively with the electric field. w is known as the inversion and measures the difference 
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in population levels. We remark in passing that equations (2.13) and (2.14) lead to the 

following equation of motion for the Bloch vector 

where 

8 - 0- --s= xs 
8t 

_'l2.£ 
11. 

n= 0 

Wo - 8t~ 

(2.20) 

Equation (2.20) has the same form as the equation describing the spinning of a classical top 

driven by a torque vector n. In magnetic resonance this equation is known as the Bloch 

equation (often with damping included). 

The propagation of the electric field in the medium is governed by one of Maxwell's 

equations. The electric field induces a polarization in the medium of tW<rlevel atoms which 

in turn acts as a source for the propagation of the field. Assuming that the field is propagating 

in the z direction, Maxwell's equation for the electric field reduces to 

82 47r0' 8 7]2 82 .. 47r 8 2 ' ... 

[8z2 - -;2 8t - c2 8t2 ]E = -;;; 8t2P (2.21) 

where 0' is the conductivity of the medium and 7] is the refractive index. Here we will assume 

that there are no Ohmic losses of energy so that we can set 0' = O. 

We will now make the slowly varying approximation on the amplitude and phase of the 

complex envelope, viz. 

~~ «w£, :! «K£; ~~ «w¢, :: «K¢ 

i.e. £, ¢ vary slowly on the time and length scale set by the carrier oscillations. We will drop 

all second derivatives and products of first derivatives of £ and ¢. With these approximations 

and also using the condition Wo > > ¥ we obtain the following equations on equating the 

components of el and e2, 
8£ '78£ 27rNp Joo 
-8 + --8 = -- w~v(z, tj "Y)gb)d"Y 

z c t W7]C-oo 
(2.22) 

8¢ '7 8¢ 27rNp Joo 
(~ + --8 - 6k)£ = -- w~u(z, t; "Y)gb)d"Y 
vZ c t W7]C -00 

(2.23) 
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These are two real equations for the two real quantities E and <p. We write down the real 

versions of the complex equations (2.13) and (2.14) for the complex amplitudes A and B by 

introducing the real variables Qo, Qb, <Po, <Pb, defined as 

A = Qo(z, tj i)ei</lo(z,t;'Y) 

B = Qb( z, tj i )ei</lb(Z,t;'Y). 

Then, the complex equations (2.13) and (2.14) split into the four real equations 

aQo 
-iEQb sin( <Pb - <Po) at -

aQb 
iEQo sin(<pb - <Po) 

at -

a<po ~(~ _ a<P) pEQb 
at +2 at - h Qo COS(<pb-<Po) 

a<Pb _ ~(~ _ at/» p EQo ( ) - h Qb cos t/>b - t/>o at 2 at 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

where ~ = Wo - w, and we have omitted the dependences of Qo, Qb, <Po and <Pb on (z, tj i) for 

clarity. Recall that the linear variation in time of ~ is contained in the definition of w. 

Now we look for travelling wave solutions of the system. We are interested in pulses 

which maintain a constant shape as they propagate through the medium. Thus we assume 

that all the quantities to be determined depend on the space-time coordinates through the 

single variable e, defined as 
z e=t-

Vo 

where Vo is the steady velocity of the pulse. With this ansatz, our system of coupled 

Schrodinger-Maxwell equations reduces to a system of six ordinary differential equations, 

:eQo - -iEQbsin(t/>b - <Po) 

:e Qb - i CQo sin( t/>b - <Po) 

9 

(2.30) 

(2.31) 

(2.32) 



(2.33) 

(2.34) 

where we have defined the parameters 

Q = 47rNp(~ _ !)-l j r = c5k(~ _ !)-l. 
W'!C Vo c Vo C 

Using equations (2.33) to (2.35) we can write down an equation for the variable <Pbo. = <Pb - <Po 

as 

(2.36) 

This equation together with the three equations (2.30)-(2.32) form a closed system by them

selves. From these equations we can derive with complete generality the following three 

conservation laws 

(2.37) 

(2.38) 

(2.39) 

where 12,13 are constants. The first law is a statement of the normalization of the state 

vector. In terms of the components of the Bloch vector, the other two conservation laws may 

be written as 

(2.40) 

(2.41) 

where we have renamed the constants as 1~ and 1~. The second conservation law is the 

Manley-Rowe relation, indicating the transfer of energy from the field to the excited state 
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[15]. The third conservation law relates the energy of interaction between the electric field 

and the atoms to the energy stored in the atoms which depends on the inversion. Matulic 

and Eberly [12] do obtain a form of the second conservation law (2.40) but only after making 

the "factorization assumption", viz. that the solution for the second component of the Bloch 

vector v( e, "}') factorizes in the form 

v(e, "}') = F(-y)v(e, 0) (2.42) 

an assumption which is not valid in general. Here, we have shown that (2.42) is not a 

requirement to obtain the conservation laws and (2.37)-(2.39) are valid in a more general 

context. 

Furthermore, assuming the electric field to vanish at the initial instant, the second con

servation law can be used to obtain an expression for the electric field 

C2(e) = 1i
2

0 100 

w~[w(e, "}') - wo(-y)]gb)d"}' 
p -00 

(2.43) 

where we have defined wob) to be the initial value of the inversion. This expression cor-

responds closest to eq. (3.2) of Matulic and Eberly [12]. An alternative form of the third 

conservation law may be written down by using (2.40) and (2.41) to obtain 

(2.44) 

with I: being a combination of I~ and I~. With zero electric field initially, this conservation 

law reduces to 

(2.45) 

Again under the factorization assumption Matulic and Eberly obtain a somewhat different 

form of this conservation law (their equation (3.7)). 

The complete solution of the system of equations (2.30)-(2.35) will give us the amplitudes 

and the phases occurring in the state vector at any arbitrary time as well as the polarization 

and the inversion. In the literature on self-induced transparency the only solutions obtained 

for an arbitrary choice of the spectral density function g( "}') have been by use of th~ "factor

ization assumption" (2.42). This is the case because the system (2.30)-(2.35) corresponds to 
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an infinite set of coupled equations that decouple only for specific choices of g(")'). For these 

choices, analytical solutions have been found. Recently, by assuming g(,) to be a sum of 

delta-functions located at different values of " it was proved that for certain values of the 

parameters the system exhibits the Painleve property and consequently is likely to be inte

grable (for specifics see ref. [13]). Here, however, we avoid the complications of constructing 

a more general solution and consider only the simplest choice for g(,) viz. a single Dirac 

delta function, in what follows. 

3 Sharp Line Self-Induced Transparency 

Here we assume that the effects of inhomogeneous broadening on the width of the optical 

resonance line can also be ignored. All the atoms have the same transition frequency and 

consequently each atom experiences the same detuning from the applied field frequency w. 

The spectral density function g(,) reduces to a Dirac delta function 

where A = Wo - w. In a gas inhomogeneous broadening would be absent if we are dealing 

with atoms either stationary or moving with the same velocity. Sharp line SIT has been 

observed in a beam of atomic rubidium with a few nanoseconds pulse from a 202Hg II laser 

[14]. The Doppler width was about one-fourth the homogeneous width of the pulse. It has 

also been found that the difference between broad-line and sharp-line SIT is not very marked 

physically although the analysis of the latter case is considerably simpler. 

With this assumption the equations for the amplitudes and the relative phase 4>ba -

4>b - 4>a decouple and reduce to 

:e Qa - - ~ EQb sin 4>ba (3.1) 

:eQb - ~ EQa sin 4>ba (3.2) 
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(3.3) 

(3.4) 

where 
_ 2 41rW~Np( 1 7] )-1 0 a, = woa = - - - > . 

w7]c Vo C 

The equations for the individual phases are 

dId p£Qb 
de<Pa + 2(6 - de<p) - i Q a cos <Pba (3.5) 

dId p£Qa 
-<Pb - -(6 - -<p) - i Qb cos <Pba de 2 de 

(3.6) 

d QaQb <P r 
de<P - a, -£- cos ba- (3.7) 

Note that Qa, Qb, <Pa, <Pb, and <Pba depend only on (e,6). 

The solution of this system depends on the choice of initial conditions. We solve it first 

for the usual case of self-induced transparency, viz. all atoms are initially in the ground 

state and second in the more general situation where the initial state vector is a coherent 

superposition of the ground and excited states. We remark in passing, that precisely the 

same form of the equations as above occurs in the description of three-wave interactions in 

plasmas [15]. 

3.1 Seck pulses 

With all the atoms initially in the ground state, the initial amplitudes for the states and 

electric field are 

Q~(-oo)=O; Q~(-oo)=l; £(-00)=0 

respectively. Consequently the conservation laws (2.37)-(2.39) simplify to 

Q~ + Q~ - 1 (3.8) 
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Defining r(ej a) =Q!(ej a), we find that equations (3.1), (3.9) and (3.10) lead to 

dr = -2rVK,(ro - r) 
de 

where 

is the maximum value of r while 

K, = pall = 47rw~Np2 (..!... _ 2 )-1 
Ii. hwTJc Vo C 

(3.9) 

(3.10) 

(3.11) 

is a parameter with the dimension of frequency squared. The equation (3.11) has the solution 

(3.12) 

It follows that the solutions for the amplitudes are 

Qa - .;;0 sech[v'K,roel (3.13) 

Qb - VI - ro sech2[v'K,roeJ (3.14) 

£ 
Ii. 

(3.15) - -v' K,ro sech[ J K,roeJ • 
p 

The secant hyperbolic form of the electric field in (3.15) is the well known "soliton" pulse 

of self-induced transparency, first found by McCall and Hahn. It is also known as a 27r 

pulse since the area under the envelope of the electric field is 27r. This is the only possible 

single pulse which can propagate without appreciable loss through the medium. The phases 

associated with the above amplitudes are 

14 
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The constant Ca occurring in the phase </>a of the excited state at the initial instant has no 

physical significance and for convenience we can choose Ca = Cb = C-oo to be such that 

Earlier we had stated that in order to consistently identify w as the carrier frequency of the 

pulse we must set any constant term in at</> to zero. Doing that for the solution in (3.18) 

yields r = A or equivalently the dispersion relation 

1 TJ c5k = A(- --) 
Vo C 

(3.19) 

From the argument of the sech function in (3.15) we see that y'ltro can be identified with 

the inverse of the pulse width (Tp), i.e. 

(3.20) 

and consequently (3.15) reads 
h e £ = -sech-

prp Tp 
(3.21 ) 

Alternatively we may use (3.20) to express the steady velocity of the secant hyperbolic 

pulse in terms of the other parameters viz. 

(3.22) 

This differs from the expression given by McCall and Hahn by the addition of the term 

involving A 2 • In terms of the two independent parameters A and Tp , we can express ro and 

It as 
2 1 

j It=A +-. 
T2 

p 

1 
ro = -1-+-(~A-T.--:p )~2 

Now that we have obtained the complete solution of the Schrodinger equation, we may 

calculate the dynamic and geometric phases developed by the state vector at the end of the 

cyclic evolution. The dynamic phase is defined as [2] 

(3.23) 
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this being the generalization of the usual dynamic phase - J Edt/Ii to the case where the 

state vector is not an energy eigenstate. Using the expressions for the state vector and the 

Hamiltonian we find 

('l1rIHrl'l1r) - ~(wo - at~)[Q~ - Q~] - 2pCQaQ6 cos 4>1H1 

Ii 
- -2'il[2r + 1] 

(3.24) 

(3.25) 

We note here that for atoms on resonance the dynamical phase vanishes at all times. At 

the end of the cyclical evolution, the dynamical phase for any group of atoms is found, by 

integrating the above expression, to be 

2ilTp il. IT 
8 = 1 ( A )2 + -2 bm e -T • + ~Tp T-oo 

(3.26) 

To find the geometric phase we need to calculate the total phase change undergone by 

the state vector. The state vector is 

(3.27) 

We have l'l1r(-oo)) = Ig}, our choice of the initial phase being 4>6(-00) = 0 which corre

sponds to setting the integration constant C-oo in 4>6 to 

C-oo = -2
1 

lim ile + arctan( A 

1 
). 

e-oo ~Tp 

After the pulse has left, the atom returns to the ground state times a phase. We find 

w here the total phase change in the state vector is (using equation (3.17)) 

4>6 ( 00) = lim ile + 2 arctan ( / ). e-co ~Tp 

Hence the geometric phase at the end of the cyclical evolution is 
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(3.30) 

(3.31) 
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Fig. 1 shows the variation of f3 with the dimensionless quantity ATp. Exactly at resonance 

where A = 0, 

(3.33) 

and this is the entire phase change undergone by the ground state since the dynamical phase 

is zero for these atoms. This phase change encodes the history of the atom which makes it 

differ from an atom that has not been excited and de-excited by a pulse. 

Now we will show that f3 is indeed a geometrical quantity. It is straightforward to show 

that the density matrix can be parametrized by the three components (u,v,w) of the Bloch 

vector. Consequently, a closed loop in the projective space corresponds to the loop traced 

by the Bloch vector on the unit sphere (recall that u2 + v2 + w2 = 1 due to conservation of 

probability). The components of the Bloch vector are 

2ATp e 
(3.34) u - 2QGQb cos ¢>bG = 1 (A )2sech-+ Tp Tp 

v 2QGQb sin ¢>bG = 1 (~ )2tanh1.sech1. (3.35) - + Tp Tp Tp 

W Q2 Q2 2 h2 e 1 (3.36) - G - b = 1 (A )2sec --+ Tp Tp 

If we label the polar and azimuthal angles on the sphere by J.l and v respectively, then we 

find 

2 e 
J.l - arccos w = arccos( (A)2 sech2 - - 1) 

1 + Tp Tp 

V = ¢>bG = arctan[ / tanh 1.] 
~Tp Tp 

The solid angle sub tended by the closed loop is 

1-110 r(lI) 
n - 110 dv lw sin J.l dJ.l 

- - i,-IIO dv[cos J.l(v) + 1] 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

where the equation of the loop defines the polar angle J.l to be a function of the azimuthal 

angle v and 
1 

Vo = - arctan[-] 
tup 
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is the initial azimuthal angle determined by our choice of the initial phase ¢>b( -00). This 

is a mathematical value picked by continuity of the function II defined in (3.38), the actual 

physical value of the initial azimuthal angle being undefined since the initial Bloch vector is 

along the negative e3 axis. 

Integration yields the solid angle to be 

1 4ATp 
n = -4arctan[~] + (A )2 L.J.Tp 1 + Tp 

(3.41 ) 

Hence on comparing (3.32) and (3.41) we find that the geometric phase is related to the 

solid angle as 

(3.42) 

At resonance (A = 0), the tip of the pseudcrspin vector traces a great circle on the Bloch 

sphere. As the detuning increases, the size of the loop traced by this vector (and the solid 

angle subtended by this loop) shrinks correspondingly. The extent of the excursion on the 

Bloch sphere is a measure of the maximum value of the inversion W m4%'. Since 

1 - {ATp)2 
wm4

%' = 1 + {ATp)2 

we can relate the geometric phase f3 to W m4Z as 

[ 1 + wm4%,] V f3 = 2 arctan - 1- W~4Z • 
1 - wm4%, 

(3.43) 

This expression relates the geometric phase developed by the ground state at the end of the 

cyclical evolution to the maximum excitation, due to energy absorption from the electric 

field, from the ground state into the excited state during the course of the evolution. Fig. 

2 shows that f3 is a monotonically increasing function of wm4%,. We point out however that 

the above relation between f3 and the maximum value of the inversion is true only in this 

particular frame rotating with the field, since the value of the geometric phase depends on 

the particular frame while the inversion is invariant under unitary transformations. 

We explore the geometry of the curves on the Bloch sphere a little further in order to 

make the connection with recent work of Anandan and Aharonov [16]. They have shown 
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that the time integral of the uncertainty in energy for any quantum evolution is the same 

for all systems whose motion on the projective Hilbert space is identical. To be specific they 

show that the speed on the projective space is related to the energy uncertainty as 

ds = !.~E 
dt h 

(3.44) 

where 

is the Fubini-Study metric on the projective Hilbert space and the energy uncertainty is 

defined as usual as 

We can provide an explicit test of this claim by calculating both sides of equation (3.44) 

independently. The projective space for our two-level system is the unit Bloch sphere for 

which the Fubini-Study metric reduces to the natural metric (see e.g [17]) 

(3.45) 

Using our results above for the polar and azimuthal angles, we obtain the speed along the 

curve traced by the Bloch vector on the Bloch sphere to be 

ds 
(3.46) 

d{ 

We can also calculate the energy uncertainty. We have already found the expectation value 

of the Hamiltonian to be 
h~ 

(Hr ) = TW - p£u (3.47) 

while the expectation value of H~ turns out to be 

(3.48) 

With the calculated values for u, wand £ it is straightforward to show that (2/h )~Er 

agrees exactly with the speed ds/d{ calculated above. This system thus provides a non

trivial verification of the claim made in [16]. 
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We can also use the above expression for the speed along the curve to calculate the 

circumference C of the closed loop traced by the Bloch vector at the end of a cyclical 

evolution. We obtain 

C = f ds = 4 E( ~Tp ) Jl + (~Tp)2 Jl + (~Tp)2 
(3.49) 

where E is the complete elliptic integral of the second kind. At resonance with ~ = 0, the 

circumference reduces to 21r, i.e the Bloch vector traces out a great circle on the sphere. 

Figure 3 shows that the circumference C decreases as the parameter ~T" increases. Figures 

of the closed loops traced by the Bloch vector for various values of ~Tp can be found in the 

original paper of McCall and Hahn [8). 

Thus from the calculations above, we see that the geometry of the curve on the Bloch 

sphere - namely the path length and the solid angle sub tended by it (for a closed curve) , con

tains information about the dynamical evolution of the system. The study of the underlying 

geometry is particularly useful in cases where we are able to extract these geometric quan

tities from the symmetries of the system alone and without having to solve the Schrodinger 

equation ([18],[19]). 

3.2 Continuous pulse trains 

Apart from the single pulse solution found in the previous sub-section, infinite pulse trains 

may also propagate through the medium if we choose the initial conditions differently. Here 

we take the initial state vector to be a superposition of the ground state and the excited 

state. Our initial conditions on the amplitudes and the electric field are 

where eo denotes the initial value of the independent variable while the initial state vector is 

l\}1r(eo)} = sin ~ei4>Q«(o)le} + cos ~ei4>,,«(o)lg} (3.50) 

where <pa(eo) and 4>b(eO) are the initial phases of the excited and ground states respectively. 

These phases may be assigned any arbitrary value but their difference may be known by 
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measuring the components of the transverse polarisation at ~o. We will see later that ,X is 

the angle made by the Bloch vector with the negative f3 axis at the initial instant. The 

conservation laws (2.37)-(2.39) reduce to 

("2 ha. (Q2 . 2'x) " - - -sm-p CI 2 

h(f1 + r) (Q2 . 2'x) 
- 2p CI - sm 2' 

Defining the variable 

r(~) = Q:(~) - Q:(~o) = Q: - sin2 ~ 
and using eq. (3.1) together with (3.52)-(3.53) we find that r(~) obeys 

where 

dr Vx0 - = -2 x(r) 
d~ 

(f1 + r)2 1. 
x(r) = I\:r[-r2 + (cos,X - )r + - sm2 'xl , 

41\: 4 

We may factorise x( r) as 

where 

r± - ~[( ± )(2 + sin2 'xl 

( _ cos'x _ (f1 + r)2 
41\: 

(3.51 ) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

Since x( r) has negative slope at both r = r + and r = r _ and positive slope at the origin, it 

follows that x(r) has the shape shown in Figure 4. Furthermore, from (3.55) it follows that 

the region of physical interest is where x(r) ~ O. In addition, from the equality 

p£2 
r=

ha. 

we can exclude the possibility of r being negative since a. is a positive pare>.meter. The 

region of interest is thus restricted to 0 ::; r ::; r + . Integrating the equation for r(~) we 
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obtain the solution 

(3.58) 

where cn is one of the Jacobi elliptic functions and K(l) is the complete elliptic integral of 

the first kind with modulus 

l-~ -VT.;-r- . 
We may obtain the amplitudes for the ground and excited states and for the electric field 

from the expression for r. The solutions for the phases takes a little more work. It is 

straightforward to find the phase in the electric field to be 

(3.59) 

As in the previous section, setting the constant in 8t t/> to zero yields r = ~ or equivalently 

the dispersion relation 

1 " ok = ~(- - -), 
Vo c 

(3.60) 

as it should be, since the dispersion relations do not depend on the initial conditions. The 

equations for the phases in the state vector are 

(3.61) 

(3.62) 

Using the table of integrals in [20], we obtain the following results 

(3.63) 

(3.64) 

where we have defined the variable 
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and the c~nstants 
2 r+ 2 r+ 

qa = . 2 A > 0 ; qb = - 2 A < 0 
r + + sm 2' cos 2' - r + 

which are related by the expression 

cos2 ~ sin2 ~ 
----l. + ::::.......L = 1 

q~ ql . 

II(am U, q2, I) is the elliptic integral of the third kind. From equation (3.54) it follows that 

the amplitudes are 

Q~ - r +cn2(U, I) + sin2 ~ (3.65) 

Q~ 
2 A 2 (3.66) - cos 2"-r+cn (U,/) 

E2 
t,,2 

- "2Kr +cn2( U, I) (3.67) 
p 

We introduce the parameter T as a measure of the pulse width. Writing the electric field as 

T is related to the other parameters as 

1 
T = --;::==== 

VK(r+ -r_) 

and Em is the maximum value of the electric field given by 

Em = : VI - (~T)2 sin2 A + cos AVI - (~T)4 sin2 A . 
v 2PT 

(3.68) 

(3.69) 

(3.70) 

The velocity Vo of the pulse can be expressed in terms of the initial angle A , the detuning 

A and the pulse width T as 

1 1] 411"L.lJ2 N p2 1 r-------
- = - + i: 0 [A2 coSA + 2y1- (AT)4sin2 A t 1 

• 
Vo C "W1]C T 

(3.71) 

We turn our considerations to the possibility of cyclical evolution for this system. Since 

cn2(U, I) is a periodic function with a real period 2K(/) (and a complex period which will 

not concern us) the amplitudes will return to their initial values at 

(3.72) 
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where n is an integer. The atomic inversion w will also be periodic (with period 2K(l)) since 

it depends only on the amplitudes Q~ and Ql. However the transverse components u , v are 

not necessarily periodic at these times because they also depend on the relative phase <Pbo. 

For the Bloch vector to have a cyclical evolution at the end of this period the state vector 

must return to its initial self except for a phase. Now we must determine the state vector at 

e = ep". Let us denote 

The state vector at e = ep" may be written as 

(3.73) 

In order to have a cyclical evolution we must have l\l1r{ep,,)) related to l\l1r (eo)) by a phase. 

That will happen if 

(3.74) 

This condition amounts to requiring that the components of the transverse polarization 

return to their initial values. Using the relation, 

(obtained from equation (110.04) in [20]) where n(q2, I) is the complete elliptic integral of 

the third kind, the above condition for cyclical evolution may be written as 

2n~T[(1 - ql)n(ql, I) + (I - q~)n(q~, I) + K(l)] = 0 mod 271". (3.75) 

This equation expresses the fact that a chosen value of the initial angle ..\ allows only certain 

values of the quantity ~T for which the state vector undergoes a cyclical evolution. We solve 

this equation numerically to find the dimensionless parameter ~T for a given ..\. Figure 5 is 

a plot of these solutions of the cyclical evolution condition as a function of ..\. As we expect, 

these solutions are symmetric about ..\ = 71", the initial populations and the evolution of the 

system both possess this same symmetry. The physical observables of the system depend 
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on the two dimensional parameter space variables (,X, ~T) which must be chosen initially. 

Cyclical evolution in this system comes about not by taking the parameters through a closed 

loop (as is the case for Berry's phase) but by choosing the initial values to lie on the one

dimensional curve shown in Fig. 5. 

We also examine how the relative phase <PbCl(e) evolves with time for a particular choice 

of the parameters (A, ~T) lying on this curve. From (3.63) and (3.64) it follows that 

<PbCl(e) - <pbo(eO) = ~T{[(1 - ql)ll(am U, ql, I) + (1 - q~)ll(am U, q~, I)]~(l) - e - eO}. (3.76) 
T 

Figure 6 shows the variation of <pbo(e) - <PbCl(eO) with the dimensionless scaled variable (e -

eO)/T for the arbitrarily chosen value of A = 1r /10. Plots for other values of A are similar. 

Superimposed on the linear variation (with slope -~T) is the behaviour due to the elliptic 

integrals. This relative phase difference goes through integral multiples of 21r at various times 

and at each of these times the Bloch vector completes a closed loop on the Bloch sphere. 

If A = 0, i.e. we return to the case dealt with in the previous sub-section, the condition 

for cyclical evolution becomes irrelevant since the amplitude for the excited state vanishes at 

the end of the evolution. If this condition is fulfilled for A =F 0 then the total phase change 

after n periods is 

(3.77) 

The dynamical part of this total phase may be evaluated as before, 

(3.78) 

The state vector at any instant being 

(3.79) 

we find 
1;. 

(\lI,./H,./\lI,.) = -2~(2r + cos A) (3.80) 

Integrating the above expression and using the following relation 

1r 1r 
E(n1r + 2' I) = (2n + I)E( 2' I) = (2n + I)E(l) 
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(equation (113.02) in ref. [12]) where E(l) is the complete elliptic integral of the second 

kind, we find the dynamical phase to be 

1 
6(~p,,) = 2n~T[(r + - r _)E(l) + (r - + 2 cos A)K(1)} (3.81 ) 

Hence, the geometrical phase may be obtained as before, i.e. 

fin - c~n) - 6(ePn) 

- -2n~T[(1 - q!)ll(q!, /) + (r+ - r_)E(l) + (r_ - sin2 ~)K(l)] (3.82) 

We list the expressions for the various symbols occurring in the above equation in Appendix 

A in terms of the parameters ~T and A. Figure 7 shows the variation of fi with A. It is 

also symmetric about A = 1r at which value the geometric phase vanishes. This corresponds 

to the state vector remaining constant at all times which is the expected behaviour if all 

the atoms are initially in the excited state. At A = 0 (mod 21r) the considerations of the 

previous sub-section hold with fi varying as a smooth function of ~T. Between the values of 

A = 0 and ~ = 1r the absolute value of fi reaches a maximum at ~ ~ 0.76 which corresponds 

to the maximum inversion that can be achieved during the course of a cyclical evolution with 

Now we will examine the behavior of the Bloch vector s during the course of the cyclical 

evolution and relate the geometric phase to the solid angle subtended by the closed loop 

traversed by s. The initial values of its components are 

u(eo) - sin ~ cos <Pba(eO) 

v (eo) - sin ~ sin <pba(eo) 

w(eo) - - cos ~ 

(3.83) 

(3.84) 

(3.85) 

This shows that at the initial instant the Bloch vector makes an angle of ~ with the negative 

e3 axis. The third conservation law (3.47) may be written as 

(3.86) 
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This can be used to determine the component u at all times except when the electric field £ 

and (Q! - sin2 ),,/2) both vanish as indeed they do at eo . At times after the initial instant 

the components of s are given by 

u - 26. ~cn( U, I) = sin p cos 1I 

V - 2Jr +(r + - r _ )sn(U, I)dn( U, I) = sin p sin 1I 

w - 2r + cn 2 
( U, I) - cos )., = cos p 

(3.87) 

(3.88) 

(3.89) 

where sn(U, I), cn(U, I), dn(U, I) are the Jacobian elliptic functions and p, 1I are the polar 

and azimuthal angles respectively. The explicit expressions for the angles as functions of e 
are 

p(e) - arccos[2r +cn2(U, I) - cos).,] 

lI(e) - <Pbo 

- 6.T[(I - q~)II(am U, q~, I) + (1 - q!)II(am U, q!, I)]~(l) 

(3.90) 

-6.(e - eo) + <Pbo(eO). (3.91) 

Provided the condition (3.74) for cyclical evolution holds, the Bloch vector returns to its 

initial position at the instant e = ep, having traced out a closed loop on the unit sphere. 

The solid angle n subtended by the closed loop at the centre of the unit sphere is found by 

integrating (for n = 1) 

(3.92) 

We obtain 

(3.93) 

Using the explicit form of the condition for cyclical evolution (3.75), this reduces to 

n - 46.T[(I- q~)II(q~,/) + (r+ - r_)E(I) + (r_ - sin2 ~)K(l)] 
- -2f3. (3.94) 
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Hence we have shown by an explicit calculation that the geometric phase is minus one-half 

the solid angle subtended by the closed loop traced on the Bloch sphere. All two-level 

systems which develop a geometric phase must in fact exhibit this relationship. 

In both this and the previous sub-section we have chosen the amplitude of the electric 

field to be zero initially. As a consequence the slowly varying phase tP of the electric field did 

not develop in time. We point out here that the electric field will be chirped if we choose 

non-zero values for the initial amplitude of the electric field. Thus there exist other possible 

solutions for the amplitudes and phases in this two-level system but we do not consider them 

in this work. 

4 Observing the phases 

Here we consider the question of observing the phases associated with the state experimen

tally. The state vector for the two-level system a.t any time may be written as 

(4.1) 

The relative phase difference tPk between the eigenstates can be known by measuring the 

components (u, v) of the polarization vector, since 

V 
tPba = arctan ( -). 

u 

However the overall phase would appear to be unobservable since it disappears in calculating 

the expectation value of any physical quantity. As was pointed out by Bouchiat and Gibbons 

[21], the overall phase after a cyclical evolution may be observable either if the state vector 

above represents only some of the degrees of freedom and is made to interfere with an 

identical system whose corresponding degrees of freedom have evolved unchanged or it may 

be observable by subsuming the system as part of a larger system. Indeed the first experiment 

(by Suter et.al. [4}) to report the observa.tion of the Aharonov-Anandan phase opted for 

the second scheme by considering a two-level system as part of a three level system. They 

studied the NMR transitions of a spin 1 system with three levels 1,2,3 and experimentally 
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observed the geometric phase associated with the cyclic evolution of the subsystem 2-3 by its 

effect on the magnetization of 1-2. We will consider the optical analog of that experiment, 

the crucial difference here being that the cyclical evolution of 2-3 will be governed by its 

own dynamics and not externally controlled. 

When considering three-level atomic systems there are three possible configurations 

known as the cascade, V and lambda configurations, all of which have level 2 in common. 

These are shown in Fig. 8. For definiteness we will consider only the phases arising in 

the cascade configuration by the propagation of sech pulses in what follows. The other two 

configurations and the phases due to continuous pulse trains may also be studied but we do 

not consider them here. 

The basic idea,as enunciated for example by Stoll, Wolff and Mehring [22] is as follows. 

Assuming that our three level system starts in the ground state /1), we prepare a coherent 

superposition of states 11) and /2) by applying a 7r /2 pulse resonant with the 1-2 transition. 

Now if a pulse resonant with the 2-3 transition (we have in mind an SIT pulse) propagates 

through the system, it will create a superposition of states 12) and /3) causing the population 

and phase of /2) to change relative to that of /1). Measuring the 1-2 transverse polariza

tion (or equivalently the off-diagonal elements in the 1-2 block of the 3x3 density matrix) 

will then give us information about the phase change induced in the 2-3 subsystem by the 

propagating soliton pulse. Since we are considering the case of sharp line self-induced trans

parency, all spectral lines are assumed to be only homogeneously broadened. Consequently 

the decoherence of the 1-2 pulse due to inhomogeneous broadening may be neglected. With 

line widths around 10 MHz, the decay time for the 1-2 pulse would be around 30 nanosec

onds. Typical pulse lengths for SIT pulses are'" 5 nanoseconds. Feeding the 1-2 pulse into 

a phase-sensitive detector would allow us to extract the phase of state /2) relative to /1). 

Following the passage of the SIT pulse, we inject another 7r /2 pulse to the 1-2 transition. 

This later pulse creates an echo pulse at a later time, this echo pulse is then measured with 

a phase sensitive detector to extract the total phase change undergone by state 12). The 

sequence of pulses is shown in Figure 9. 

29 



With the initial population all in the lowest energy state, the density matrix at time 

t = 0 is 
000 

p(O) = 0 0 0 

001 

(4.2) 

We now inject a pulse of constant amplitude with area 1r /2 and resonant with the 1-2 

transition. This pulse equalizes the populations of levels 1 and 2 and induces a coherence 

between them. After the passage of this pulse, the state vector at time t1 is 

to which corresponds the density matrix 

o 
1 

p(td = 2" 0 

o 
1 

o 

(4.3) 

(4.4) 

Next this three-level system is subjected to a propagating pulse nearly resonant with the 

2-3 transition. Assuming as in the previous section that this pulse is circularly polarized, 

the electric field with carrier frequency w can be written as 

E = £(z, t)[x cos 4> + Y sin 4>] (4.5) 

where £ and ~ are the amplitude and phase respectively of the field. The Hamiltonian in 

the presence of this field is 

o (4.6) 

where E1, E2,and E3 are the energies of levels 1,2 and 3 respectively in the absence of the field 

and P2 is the dipole moment between states 12) and 13} induced by the field. The resonance 

frequencies associated with the transitions 1-2 and 2-3 are 

E2 - E1 E3 - E2 
WI = Ii j W2 = Ii 
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respectively. We transform to a frame rotating with the field by using the unitary matrix 

U(t) = exp{i 

The transformed state vector is 

l'lf)tr = U(t)I'lf) 

while the transformed Hamiltonian is 

Htr ·= 

where we have defined the detuning parameter 

o 

o 

o 
o } (4.7) 

(4.8) 

(4.9) 

Our aim is to obtain the density matrix after the passage of the pulse. We are assuming 

that the system has been prepared in a pure state. In this case it turns out to be easier to 

calculate the density matrix from the state vector rather than solve the Liouville equation 

of motion for the density matrix. In this frame Schrodinger's equation for the state vector 

(4.10) 

where C l , C2 and C3 are complex coefficients, reduces to the system of equations 

0li aCl 
t --

at - 0 (4.11) 

0li BC2 
t --

at - -]>2£C3 (4.12) 

0",ac3 
t --

at - -]>2£C2 + "'1),.2C3 (4013) 

The evolution of the electric field is given by Maxwell's equations. The dynamics of the 2-3 

transition is independent of level 1 and can be treated exactly as in the previous section. 

Hence the state vector at any time may be written as 

(4.14) 
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where Q2, tP2, Q3, tP3 are obtained by the same procedure as in the previous section. Corre

sponding to this solution, the density matrix is 

Ptr(t l + t) = Q2Q3e-i(tP3-~) 

ClQ3e-itP3 

(4.15) 

After a time T, following the passage of the soliton pulse, the levels 2 and 3 go through a 

cyclical evolution and the amplitudes Q2, Q3 return to their initial values at time t = tt, i.e 

at time t = tl + T 
1 

Q2(tl + T) = v'2 ' Q3(tl + T) = 0 

The state vector in the transformed frame is 

(4.16) 

where tP2( tl + T) is the total phase change undergone by state \2). Correspondingly the 

density matrix is 

o 
1 

Ptr(t1 + T) = 2" 0 

o 
1 

o 
(4.17) 

The components of the transverse polarization of the two-level subsystem 1-2 may be ob

tained from the elements of the density matrix as 

where c is a constant. From (4.18) it follows that 

(pz)1-2 = CCOS(tP2(t1 + T) - tPl(tl)) 

(Pr)1-2 = csin(tP2(t1 + T) - tPl(tt)) 

(4.18) 

(4.19) 

(4.20) 

In principle, by measuring the free induction decay of the 1-2 levels following the passage of 

the soliton pulse, the total phase change <P2(tl + T) - tPl(t l ) of state \2) with respect to the 
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arbitrary initial phase of 11) can be obtained. In practice however, homogeneous broadening 

effects will cause a loss of the 1-2 polarization during the propagation of the 2-3 pulse. 

To counteract this, another 1r /2 pulse may applied to the 1-2 transition to equalize their 

populations and thus enhance the signal. This pulse is represented by the field 

(4.21 ) 

where £0 is a constant amplitude field which lasts for an interval T and we have added a 

phase shift of a to the field. t2 ~ tl + T is the instant at which this pulse is applied. 

Applying the unitary transformation effected by U(t) (given by equation (4.7)) transforms 

the Hamiltonian to 
o 
o 

o 

o Pl£oeia 0 

(4.22) 

where PI is the dipole matrix element between levels 1 and 2. Solving Schrodinger's equation 

for the state vector leads to the following density matrix at the end of the pulse 

o o o 
1 

Ptr(t2+ T ) = 2 0 1 +sin( <P2(tl +T) -<PI(tl)+a) e-ia cos ( <P2(t1 + T) - <PI(tI)+a) (4.23) 

o eio cos( <P2(tl +T) - <PI(tt}+a) I-sin( <P2(t l + T) - <PI(tI)+a) 

We find then that the echo signal following the pulse has the following polarization compo-

nents 

(pz )1-2(t2 + T) - CCOS(<P2(tl + T) - <PI(td + a) cos a 

(p,I )1-2(t2 + T) - csin(<p2(tl + T) - <PI(tt} + a) sin a 

(4.24) 

(4.25) 

In particular with a = 1r /2 the 1-2 polarization pulse is along the y direction. This pulse 

contains the information about the phase change <P2(t l + T) - <PI(tl) undergone by level 2 

during the passage of the sech pulse. 
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5 Summary 

The phenomenon of self-induced transparency is ideally suited for studying various aspects 

of geometric phases. In this paper we have focussed on the abelian quantum geometric phase 

developed in two-level atoms as a consequence of their interaction with a classical electric field 

which is shaped by the atoms while propagating through the optical medium. This system is 

somewhat distinct from other systems considered in the literature on geometric phases in that 

the entire dynamics is self consistently determined and not driven by the variation of external 

parameters. By rewriting the equations of motion in terms of the amplitudes and phases 

(instead of the usual Bloch form) we are able to construct three conservation laws which are 

generally valid under the usual assumptions of SIT. These conservation laws may be useful 

in obtaining solutions with inhomogeneous broadening present but here we have considered 

only the simplest case - sharp line SIT. The well known sech pulse solutions of McCall 

and Hahn take the ground state through a cyclical evolution. As a consequence the ground 

state acquires a geometric phase depending on the detuning and the pulse width. Using the 

relation between the geometric phase and the solid angle subtended on the Bloch sphere we 

are able to relate the geometric phase to the maximum value of the atomic inversion. If the 

initial state is partially excited out of the ground state, continuous pulse trains are obtained 

as the analytical solutions for the propagating electric field. Here cyclical evolution must 

be brought about by choosing the parameters to take values lying on a particular curve in 

the parameter space. In such cases too the geometric phase is equal to half the solid angle 

subtended by the closed loop traced by the Bloch vector on the Bloch sphere. We outlined 

an experimental procedure involving three levels of the atom whereby the total phase change 

undergone by the state vector for a two-level sub-system can be measured. In the particular 

case of the sech electromagnetic pulse exactly on resonance with the atoms the total phase 

change is entirely geometric. 

We mention two ways of extending the present work. The first, analysis of the case when 

the electromagnetic field is also quantized, is in progress and will be the subject of a future 

publication. The second refers to the possibility of associating geometric phases with non-
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cyclic paths - as done for example by Samuel and Bhandari [23]. However, in this direction, 

we have shown that even for open paths the time integral of the energy uncertainty in the 

state is a geometric quantity related to the distance along the path on the Bloch sphere, 

providing independent confirmation of the result proved in [16]. 
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Appendix A 
Here we list the symbols appearing in the expression for the geometric phase (3.82) in 

terms of l:l:r and >. where 

~ = Wo-W 

is the detuning, T-a measure of the pulse width, expressed in terms of the other variables is 

1 

and >. is the initial angle made by the Bloch vector with the negative e3 axis. The various 

quantities are 

Ie -

q~ -

q~ -

I -

~[Vl - (~T)4 sin2 >. + (~T)2 cos >.] 
T 

cos >'VI - (~T)4 sin2 >. - (~T)2 sin2 >. + I 
VI - (~T)4 sin2 >. + 2(~T)2 sin2 >./2 + I 
cos>'Vl - (~T)4sin2 >. - (~T)2sin2 >. + I 
VI - (~T)4 sin2 >. + 2(~T)2 cos2 >./2 - I 

:nVCOS>'VI- (~T)4sin2 >. - (~T)2sin2 >. + 1 

cos>'Vl- (~T)4sin2 >. - (~T)2sin2 >. + 1 

2[Vl - (~T)4 sin2 >. + (~T)2 cos >.] 

cos >'Vl - (~T)4 sin2 >. - (~T)2 sin2 >. - 1 

2[VI- (~T)4sin2 >. + (~T)2COS>'] 
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Figure Captions 

Fig. 1. Variation of the geometric phase {3 with ~T" for the sech pulse. {3(0) = 7r. 

Fig. 2. Variation of the geometric phase {3 with W mar , the maximum value of the atomic 

inversion, for the sech pulse. 

Fig. 3. The circumference C of the closed loop as a function of ~T" for the sech pulse. 

C(O) = 27r. 

Fig. 4. Plot of the cubic polynomial x(r), given by equation (3.57), as a function of r. 

x(r) = 0 at r = r _, 0, r +. 

Fig. 5. Solution of the condition (3.75). This curve picks the value of ~T for a given .A in 

order that the evolution be cyclic. 

Fig. 6. Variation of the relative phase change tPba(e) - tPba (eo) ,given by equation (3.76), with 

the dimensionless "time" variable ~ for .A = 7r /10. 

Fig. 7. Variation of the geometric phase with .A, the initial angle made by the Bloch vector 

with the negative e3 axis. {3 vanishes at .A = 7r. 

Fig. 8. Possible configurations of optical transitions in a three level atom. 

Fig. 9. Sequence of pulses applied to the 1-2 and 2-3 transitions in a cascade configuration. 

Time increases along the horizontal axis to the right. 
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