
SSCL-464

Superconducting Super Collider Laboratory

ZLIB: A Numerical Library for Differential
Algebra and Lie Algebraic Treatment

of Beam Dynamics

Y.Yan

May 1991

To be published as a Conference RecordJ IEEE, New York SSCL-464

ZLIB: A Numerical Library for Differential Algebra
and Lie Algebraic Treatment of Beam Dynamics*

Yiton T. Van

Superconducting Super Collider Laboratoryt
2550 Becklevrneade A venue

Dallas,' TX 75237

May 1991

* Presented at the 1991 IEEE Particle Accelerator Conference, San Francisco, CA, May 6-9, 1991.
t Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract

No. DE-AC02-S9ER40486. .

ZLIB:
A NUMERICAL LIBRARY FOR DIFFERENTIAL ALGEBRA AND LIE

ALGEBRAIC TREATMENT OF BEAM DYNAMICS

Yiton T. Van
Superconducting Super Collider Laboratory

2550 Beckleymeade A venue, Dallas, TX 75237

Abstract

A dynamic-memory numerical library, "ZLIB" , has been
developed in an attempt to offer efficient numerical rou­
tines on supercomputers for differential algebra and the rel­
evant Lie algebraic techniques for mapping studies of beam
dynamics. Optimization of ZLIB has been attempted for
vector computing as well as scalar computing. Parallel
computing (multi-tasking) can also be easily employed.
Currently, ZLIB contains more than 200 subroutines.

I. INTRODUCTION

With limited computer memory, and limited computa­
tional speed, differential algebra should be treated as the
algebra of truncated power series. [1] The algebra of low
order truncated power series can be easily accomplished
with a simple data structure. However, in most cases,
high-order truncated power series is desirable. Therefore, a
special data structure is necessary to optimize both the al­
location of the computer memory and the numerical speed.

"ZLIB" [2] has been developed for differential algebra,
mainly for use on supercomputers. The use of "ZLIB"
is similar to the use of the "IMSL" library with an addi­
tional feature that the internal working memories are dy­
namically generated. Routines in "ZLIB" are vectorized
and can be multi-tasked easily for supercomputers. There
are two sub-libraries in "ZLIB", the "TPALIB" and the
"ZPLIB", with unique data structures. The "TPALIB" is
more flexible in dealing with a different number of vari­
ables, and therefore is more suitable for use in extracting
a one-turn (or one-period) map for a storage ring such as
the SSC. Indeed, this sublibrary has been used for a pro­
gram named "Zmap" [3] to extract a one-turn map for the
systematic circular accelerator program Teapot [4]. The
"ZPLIB" is more flexible in dealing with a different number
of orders, and therefore is more suitable for use in analyz­
ing a map. Lie Algebraic routines are mainly developed in
this sublibrary. The two sub-libraries can be used simulta­
neously through a structure-translation routine. Although
"ZLIB" is developed mainly for supercomputers, the au­
thors [2] have simultaneously tried to optimize the routines
for scalar computers and therefore the use of "ZLIB" 10

scalar computers is also recommended.

** Operated by Universities Research Association, Inc., for the
U.S. Department of Energy under the Contract No. DE-AC02-
89ER40486.

II. THE ALGEBRA OF TRUNCATED POWER SERIES

In this section, the author is not trying to be mathemati­
cally rigorous. Once a variable, a function, or an operation
is mentioned, its existence is assumed.

(a) Symbolic convention

Let i be an n-dimensional vector, i.e. its transpose can
be expressed as

where Zj, for i = 1, ... , n, are scalar variables. For exam­
ple, we can consider

as the transpose of a vector representing the 3-dimensional
canononical coordinates and their conjugate momenta for
an accelerator.

Let U be a function of z. This means U is a function of
Zl, Z2, ..• , Zn. Its truncated power series (TPS) expansion
up to an integer n order is expressed as

n
U(i) = E u(k)zk ,

k=O

where

n

k=E kj, for 0 ::; ki ::; n,
;=1

n
E == summation over all k's for k = 0, 1, ... , n.
k=O

Note that U(i) is called an n-variable TPS, of order Q.

The number of monomials for an n-variable TPS, of order
n, is given by

(n + n)!
1] = ,1""\,

n.H.

A unit TPS is defined as

l.e.

1

n
J(i) = E i(k)zk = 1;

i(k) = 1

i(k) = 0

k=O

for k = 0 ,
for k > 0 .

Let U(i') be an m-dimensional vector TPS (VTPS), of
n variables, and of n order. It is expressed as

o
U(i) = L u(k)z* ,

k=O

o
(i.e. Ui(i') = LUi(k)#, for i = 1,2, ... , m) where the

k=O

transpose of u(k) is given by

One can consider U(i) as a map in accelerator physics.
A unit n-dimensional, n-variable VTPS of order n, is

defined as
o

f(i) = Li(k)z* = z.
k=O

Its transpose is given by

Numerically, the coefficients u(k), i(k), u(k), i(k) are used
for representing U(i'), I(Z), U(i), f(i), respectively. Al­
though k is a vector (multi-dimensional) index, due to
memory limitation in computers, one-dimensional arrays
are actually used for storing these coeffiecients

(b) TPS Operations

Addition:

W(i) = U(i) + V(i) -+ w(k) = u(k) + v(k) for each k.

Subtraction:

W(i') = U(i) - V(i') -+ w(k) = u(k) - v(k) for each k.

Multiplication:

W(i') = U(i) * V(i) -+
o

w{]) = L u(k) * v{] - k),
k=O

for each (] - k)i ~ 0, where i = 1,2, ... , n.

Partial derivative:

W(i) = (8/8z i)U(Z) -+ w(}) = (ji + 1) * u(} + id,

where i = 1,2, ... , or n, and Ii is a unit vector in the ith

dimension.

Partial integration:

following basic TPS operations:

Square:
Inversion:
Division:
Power:
Square root:
Exponentiation:
Logarithm:
Trigonometry:

Poisson bracket:

(c) VTPS Operations

W(i) = U2 (i),
W(i) = I/U(i),
W(i) = U(i)/V(i'),
W(i) = uP (i'), p is an integer.
W(i) = sqrt(U(i»,
W(i) = exp(U(i'),
W(i') = In(U(i»,
W(i) = sin(U(i», or
W(i) = cos(U(i'),
W(i) = [U(i), V(i)].

With the fundamental and the basic TPS operations
ready, w(}), the coefficients of W(i), can be obtained for
the following basic VTPS operations.

Concatenation:

where, in the usual case, U is an n-dimensional n-variable
VTPS, V and Ware m-dimensional, n-variable VTPS, m
and n mayor may not be equal.

Inversion:

Given an n-dimensional, n-variable U(i), an n­
dimensional, n-variable U-l(Z) can be obtained such that

U-ICU(i» = O(O-I(Z) = f(i) .

All the above basic TPS or VTPS operations have been
implemented in "ZLIB".

(d) Tracking: Z' = O(Z)

In conjunction with the implementation of the funda­
mental and basic TPS and VTPS operations, substitution
of a numerical vector z into a VTPS (or a map) is imple­
mented in the "ZLIB".

(e) Dragt-Finn factorization:

A closed-orbit truncated power series map can be ex­
pressed as a VTPS given by

o
? = m(Z): z= U(i') = L u(k)#

k=l
o

= Mz + L u(k)z*
k=2

Due to symplecticity, it can be converted into a Dragt­
Finn factorization map given by [5]

zi = m(i): z
= A-1(Z)R(i')m,(Z)A(i'): z,

W(Z) = J U(Z)dz i -+ we]) = (17) * u(j - Ii) for j; > 0, where A(Z) and R(i) are the global forms of the normal­
and, w{]) = 0 for j; = 0., where i = 1,2, ... , or n. ized rotation R and its associated canonical generation ma­

Using the above fundamental operations for the TPS,
w(}), the coefficients of W(i'), can be obtained for the

trix A such that R = A-I M A, [6] and

m,(Z) = exp(: h(Z) :)exp(: f4(Z) :) .. ·exp(: fo(z) :),

2

where terms in each of the kth order TPS, fk(Z), are kth

order of z for k = 3,4"", n.
Dragt-Finn factorization of a truncated power series

map and converting of a Dragt-Finn factorization map into
a power series map together with some relevant Lie alge­
braic analysis of the map have been implemented in the
"ZLIB".

III. THE ZLIB

"ZLIB" is a member of the Z-family programs which
include (other than ZLIB): Zmap (a map extraction pro­
gram), Z track (a vectorized and parallelized post-Teapot
tracking program), Zremc1 and Zremc2 (1 ~ - and 2!- di­
mensional relativistic electromagnetic particle simulation
programs), and Zpcomp (a macro precompiler for fortran).
Similar to the routines in the IMSL library which per­
form linear algebra through matrix operations, routines
in "ZLIB" perform differential algebra through the oper­
ations of expanded power series, truncated at a pre-set
order, to include nonlinear effects. Unlike linear algebra
which has a domain idealized to be unlimited, differen­
tial algebra has a narrow domain where the power series
converge at a reasonable rate, that is, the scope of differen­
tial algebra is restricted to problems for which an interest
region (domain) can be identified to have a reasonable con­
vergent rate for the power series expansion of the governing
equations. Presently "ZLIB" finds its application in accel­
erator physics, since particles in an accelerator can only be
stable in a region where the expanded power series of the
nonlinear equations governing the system converge with a
reasonable rate. Applications of "ZLIB" to other branches
of physics, such as optics, should be possible.

Since "ZLIB" uses dynamic memory and includes most
fundamental operations for differential algebra, a conve­
nient way of using "ZLIB" would be to gather those binary
object files of "ZLIB" subroutines into a library and load it
with those commonly used on-line libraries such as fortlib,
IMSL library, or graphics libraries and then keep this bi­
nary "ZLIB" on line. All that a user need to do is to load
his program with ZLIB. Other libraries are automatically
linked as long as they were loaded with ZLIB when ZLIB
was created.

Before any subroutine using the data structure of the
sublibrary "ZPLIB" is called, the user should include the
following statement (assuming ZLIB 2.0 is used)

"call zpprep(nv,no,nm,npm),"

where "nv' and "no" are the number of variables and the
maximum order the user desires; "nm", is a returned value
for the number of monomials, i.e. nm=(nv+no)!/(nv!no!),
is returned for the user; "npm" is the maximum number of
particles. The user should set a small integer or 0 for npm
if map tracking is not desired. once the statement "call zp­
prep(nv,no,nm,npm)" is executed, Data structure interger
poniters and internal working memories are dynamically
geneated. Occasionally, the user may wish to use routines
in the sub-library "ZPLIB" to perform initialization (read-

ing in a VTPS) and tracking only. In such a case, he may
replace the statement "call zpprep(nv,no,nm,npm)," with
the calling statement "call zptrkp(nv,no,nm,npm)," to save
computer memory since less dynamical memory is gener­
ated in this case.

Once the statement, "call zpprep(nv,no,nm,npm)," is
executed, all the TPS's are assumed to be nv-variable
TPS's of order smaller than or equal to "no", and all the
VTPS's are assumed to be nv-variable VTPS's of order
"no", although operations can be performed up to orders
that are lower than "no".

Similarly, to use the sublibrary "TPALlB", the prepa­
ration statement "call tpaprp(nv ,no,nm,npm)" should be
executed before any subroutine using the data structure
of TPALIB is called. Note that slightly different from the
ZPLIB, "no" is the order (not the maximum order) while
"nv" is the maximum number of variables the user desires.

Once the statement "call tpaprp(nv,no,nm,npm)" is ex­
ecuted, all the TPS's and the VTPS are assumed to be
order of "no," but not necessarily to be of nv variables.
The number of variables can be smaller or equal to nv.

IV. FUTURE EXPECTATION OF ZLIB

Future direction for ZLIB development would be to de­
velop routines that can weight the parameters differently
from the canonical conjugate coordinates and momenta
and analyze the parameterized map. [7] An algorithm for
fully parameterized Dragt-Finn factorization has been ob­
tained. [7] With suitable modification of the existing tech­
nique [8], a parameterized nonlinear normal form of the
map can also be programmed.

V. ACKNOWLEDGMENTS

Continuous support and encouragement for the devel­
opment of this numerical library from Alex Chao is highly
appreciated.

VI. REFERENCES

[1] M.Berz, in Proceedings of the 1989 IEEE Particle Ac­
celerator Conference, 1989,

[2] Y. Van and C. Van, SSC Laboratory Report SSCL-300
(1990).

[3] Y. Van, SSC Laboratory Report SSCL-2~9, 1990.

[4] L. Schachinger and R. Talman, Particle Accelerators,
Vol. 22, 1987.

[5] A. J. Dragt and J. M. Finn, J. Math. Phys. 20,2649
(1979)

[6] D. Edwards and L. Teng, in Proceedings of the 1973
IEEE Particle Accelerator Conference, p. 885 (1973);
L.C. Teng, Fermi National Laboratory Report FN-229,
1971.

[7] Y. Van, SSC Laboratory Report SSCL-460, 1991;
Y. Van SSCL-302, 1990.

[8] E. Forest, M. Berz, and J. Irwin, Particle Accel. 24, 91
(1989).

3

