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ZLIB: 
A NUMERICAL LIBRARY FOR DIFFERENTIAL ALGEBRA AND LIE 

ALGEBRAIC TREATMENT OF BEAM DYNAMICS 

Yiton T. Van 
Superconducting Super Collider Laboratory 

2550 Beckleymeade A venue, Dallas, TX 75237 

Abstract 

A dynamic-memory numerical library, "ZLIB" , has been 
developed in an attempt to offer efficient numerical rou­
tines on supercomputers for differential algebra and the rel­
evant Lie algebraic techniques for mapping studies of beam 
dynamics. Optimization of ZLIB has been attempted for 
vector computing as well as scalar computing. Parallel 
computing (multi-tasking) can also be easily employed. 
Currently, ZLIB contains more than 200 subroutines. 

I. INTRODUCTION 

With limited computer memory, and limited computa­
tional speed, differential algebra should be treated as the 
algebra of truncated power series. [1] The algebra of low 
order truncated power series can be easily accomplished 
with a simple data structure. However, in most cases, 
high-order truncated power series is desirable. Therefore, a 
special data structure is necessary to optimize both the al­
location of the computer memory and the numerical speed. 

"ZLIB" [2] has been developed for differential algebra, 
mainly for use on supercomputers. The use of "ZLIB" 
is similar to the use of the "IMSL" library with an addi­
tional feature that the internal working memories are dy­
namically generated. Routines in "ZLIB" are vectorized 
and can be multi-tasked easily for supercomputers. There 
are two sub-libraries in "ZLIB", the "TPALIB" and the 
"ZPLIB", with unique data structures. The "TPALIB" is 
more flexible in dealing with a different number of vari­
ables, and therefore is more suitable for use in extracting 
a one-turn (or one-period) map for a storage ring such as 
the SSC. Indeed, this sublibrary has been used for a pro­
gram named "Zmap" [3] to extract a one-turn map for the 
systematic circular accelerator program Teapot [4]. The 
"ZPLIB" is more flexible in dealing with a different number 
of orders, and therefore is more suitable for use in analyz­
ing a map. Lie Algebraic routines are mainly developed in 
this sublibrary. The two sub-libraries can be used simulta­
neously through a structure-translation routine. Although 
"ZLIB" is developed mainly for supercomputers, the au­
thors [2] have simultaneously tried to optimize the routines 
for scalar computers and therefore the use of "ZLIB" 10 

scalar computers is also recommended. 
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II. THE ALGEBRA OF TRUNCATED POWER SERIES 

In this section, the author is not trying to be mathemati­
cally rigorous. Once a variable, a function, or an operation 
is mentioned, its existence is assumed. 

(a) Symbolic convention 

Let i be an n-dimensional vector, i.e. its transpose can 
be expressed as 

where Zj, for i = 1, ... , n, are scalar variables. For exam­
ple, we can consider 

as the transpose of a vector representing the 3-dimensional 
canononical coordinates and their conjugate momenta for 
an accelerator. 

Let U be a function of z. This means U is a function of 
Zl, Z2, ..• , Zn. Its truncated power series (TPS) expansion 
up to an integer n order is expressed as 

n 
U(i) = E u(k)zk , 

k=O 

where 

n 

k=E kj, for 0 ::; ki ::; n, 
;=1 

n 
E == summation over all k's for k = 0, 1, ... , n. 
k=O 

Note that U(i) is called an n-variable TPS, of order Q. 

The number of monomials for an n-variable TPS, of order 
n, is given by 

(n + n)! 
1] = ,1""\, 

n.H. 

A unit TPS is defined as 

l.e. 

1 

n 
J(i) = E i(k)zk = 1; 

i(k) = 1 

i(k) = 0 

k=O 

for k = 0 , 
for k > 0 . 



Let U(i') be an m-dimensional vector TPS (VTPS), of 
n variables, and of n order. It is expressed as 

o 
U(i) = L u(k)z* , 

k=O 

o 
(i.e. Ui(i') = LUi(k)#, for i = 1,2, ... , m) where the 

k=O 

transpose of u(k) is given by 

One can consider U(i) as a map in accelerator physics. 
A unit n-dimensional, n-variable VTPS of order n, is 

defined as 
o 

f(i) = Li(k)z* = z. 
k=O 

Its transpose is given by 

Numerically, the coefficients u(k), i(k), u(k), i(k) are used 
for representing U(i'), I(Z), U(i), f(i), respectively. Al­
though k is a vector (multi-dimensional) index, due to 
memory limitation in computers, one-dimensional arrays 
are actually used for storing these coeffiecients 

(b) TPS Operations 

Addition: 

W(i) = U(i) + V(i) -+ w(k) = u(k) + v(k) for each k. 

Subtraction: 

W(i') = U(i) - V(i') -+ w(k) = u(k) - v(k) for each k. 

Multiplication: 

W(i') = U(i) * V(i) -+ 
o 

w{]) = L u(k) * v{] - k), 
k=O 

for each (] - k)i ~ 0, where i = 1,2, ... , n. 

Partial derivative: 

W(i) = (8/8z i )U(Z) -+ w(}) = (ji + 1) * u(} + id, 

where i = 1,2, ... , or n, and Ii is a unit vector in the ith 

dimension. 

Partial integration: 

following basic TPS operations: 

Square: 
Inversion: 
Division: 
Power: 
Square root: 
Exponentiation: 
Logarithm: 
Trigonometry: 

Poisson bracket: 

(c) VTPS Operations 

W(i) = U2 (i), 
W(i) = I/U(i), 
W(i) = U(i)/V(i'), 
W(i) = uP (i'), p is an integer. 
W(i) = sqrt(U(i», 
W(i) = exp(U(i'), 
W(i') = In(U(i», 
W(i) = sin(U(i», or 
W(i) = cos(U(i'), 
W(i) = [U(i), V(i)]. 

With the fundamental and the basic TPS operations 
ready, w(}), the coefficients of W(i), can be obtained for 
the following basic VTPS operations. 

Concatenation: 

where, in the usual case, U is an n-dimensional n-variable 
VTPS, V and Ware m-dimensional, n-variable VTPS, m 
and n mayor may not be equal. 

Inversion: 

Given an n-dimensional, n-variable U(i), an n­
dimensional, n-variable U-l(Z) can be obtained such that 

U-ICU(i» = O(O-I(Z) = f(i) . 

All the above basic TPS or VTPS operations have been 
implemented in "ZLIB". 

(d) Tracking: Z' = O(Z) 

In conjunction with the implementation of the funda­
mental and basic TPS and VTPS operations, substitution 
of a numerical vector z into a VTPS (or a map) is imple­
mented in the "ZLIB". 

(e) Dragt-Finn factorization: 

A closed-orbit truncated power series map can be ex­
pressed as a VTPS given by 

o 
? = m(Z): z= U(i') = L u(k)# 

k=l 
o 

= Mz + L u(k)z* 
k=2 

Due to symplecticity, it can be converted into a Dragt­
Finn factorization map given by [5] 

zi = m(i): z 
= A-1(Z)R(i')m,(Z)A(i'): z, 

W(Z) = J U(Z)dz i -+ we]) = (17) * u(j - Ii) for j; > 0, where A(Z) and R(i) are the global forms of the normal­
and, w{]) = 0 for j; = 0., where i = 1,2, ... , or n. ized rotation R and its associated canonical generation ma­

Using the above fundamental operations for the TPS, 
w(}), the coefficients of W(i'), can be obtained for the 

trix A such that R = A-I M A, [6] and 

m,(Z) = exp(: h(Z) :)exp(: f4(Z) :) .. ·exp(: fo(z) :), 
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where terms in each of the kth order TPS, fk(Z), are kth 

order of z for k = 3,4"", n. 
Dragt-Finn factorization of a truncated power series 

map and converting of a Dragt-Finn factorization map into 
a power series map together with some relevant Lie alge­
braic analysis of the map have been implemented in the 
"ZLIB". 

III. THE ZLIB 

"ZLIB" is a member of the Z-family programs which 
include (other than ZLIB): Zmap (a map extraction pro­
gram), Z track (a vectorized and parallelized post-Teapot 
tracking program), Zremc1 and Zremc2 (1 ~ - and 2!- di­
mensional relativistic electromagnetic particle simulation 
programs), and Zpcomp (a macro precompiler for fortran). 
Similar to the routines in the IMSL library which per­
form linear algebra through matrix operations, routines 
in "ZLIB" perform differential algebra through the oper­
ations of expanded power series, truncated at a pre-set 
order, to include nonlinear effects. Unlike linear algebra 
which has a domain idealized to be unlimited, differen­
tial algebra has a narrow domain where the power series 
converge at a reasonable rate, that is, the scope of differen­
tial algebra is restricted to problems for which an interest 
region (domain) can be identified to have a reasonable con­
vergent rate for the power series expansion of the governing 
equations. Presently "ZLIB" finds its application in accel­
erator physics, since particles in an accelerator can only be 
stable in a region where the expanded power series of the 
nonlinear equations governing the system converge with a 
reasonable rate. Applications of "ZLIB" to other branches 
of physics, such as optics, should be possible. 

Since "ZLIB" uses dynamic memory and includes most 
fundamental operations for differential algebra, a conve­
nient way of using "ZLIB" would be to gather those binary 
object files of "ZLIB" subroutines into a library and load it 
with those commonly used on-line libraries such as fortlib, 
IMSL library, or graphics libraries and then keep this bi­
nary "ZLIB" on line. All that a user need to do is to load 
his program with ZLIB. Other libraries are automatically 
linked as long as they were loaded with ZLIB when ZLIB 
was created. 

Before any subroutine using the data structure of the 
sublibrary "ZPLIB" is called, the user should include the 
following statement (assuming ZLIB 2.0 is used) 

"call zpprep(nv,no,nm,npm)," 

where "nv' and "no" are the number of variables and the 
maximum order the user desires; "nm", is a returned value 
for the number of monomials, i.e. nm=(nv+no)!/(nv!no!), 
is returned for the user; "npm" is the maximum number of 
particles. The user should set a small integer or 0 for npm 
if map tracking is not desired. once the statement "call zp­
prep(nv,no,nm,npm)" is executed, Data structure interger 
poniters and internal working memories are dynamically 
geneated. Occasionally, the user may wish to use routines 
in the sub-library "ZPLIB" to perform initialization (read-

ing in a VTPS) and tracking only. In such a case, he may 
replace the statement "call zpprep(nv,no,nm,npm)," with 
the calling statement "call zptrkp(nv,no,nm,npm)," to save 
computer memory since less dynamical memory is gener­
ated in this case. 

Once the statement, "call zpprep(nv,no,nm,npm)," is 
executed, all the TPS's are assumed to be nv-variable 
TPS's of order smaller than or equal to "no", and all the 
VTPS's are assumed to be nv-variable VTPS's of order 
"no", although operations can be performed up to orders 
that are lower than "no". 

Similarly, to use the sublibrary "TPALlB", the prepa­
ration statement "call tpaprp( nv ,no,nm,npm)" should be 
executed before any subroutine using the data structure 
of TPALIB is called. Note that slightly different from the 
ZPLIB, "no" is the order (not the maximum order) while 
"nv" is the maximum number of variables the user desires. 

Once the statement "call tpaprp(nv,no,nm,npm)" is ex­
ecuted, all the TPS's and the VTPS are assumed to be 
order of "no," but not necessarily to be of nv variables. 
The number of variables can be smaller or equal to nv. 

IV. FUTURE EXPECTATION OF ZLIB 

Future direction for ZLIB development would be to de­
velop routines that can weight the parameters differently 
from the canonical conjugate coordinates and momenta 
and analyze the parameterized map. [7] An algorithm for 
fully parameterized Dragt-Finn factorization has been ob­
tained. [7] With suitable modification of the existing tech­
nique [8], a parameterized nonlinear normal form of the 
map can also be programmed. 
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