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Abstract

The transverse motion of charged particles in a circular
accelerator can be well represented by a one-turn high-
order Taylor map. [1] For particles without energy devia-
tion, the one-turn Taylor map is a 4-dimensional polynomi-
als of four variables. The four variables are the transverse
canonical coordinates and their conjugate momenta. To
include the energy deviation (off-momentum) effects, the
map has to be parameterized with a smallness factor repre-
senting the off-momentum and so the Taylor map becomes
a 4-dimensional polynomials of five variables. It is for this
type of parameterized Taylor map that a mehtod is pre-
sented for converting it into a parameterized Dragt-Finn
facctorization map. Parameterized nonlinear normal form
and parameterized kick factorization can thus be obtained
with suitable modification of the existing technique.

I. INTRODUCTION

A one-turn Taylor map parameterized for off-momentum
transverse propagation relative to the dispersed closed or-
bit in a circular alternating-gradient synchrotron [2] can
be given in the form

g = m(z68):%
ﬂ2 - . "3 - .
= M@)E+) Upi(@)6 + Y Tss(£)6 +---,(1)
i=0 =0

where the transverse canonical phase space coordinates,
z= [:r:,p,,y, py] are deviations relative to the dispersed
closed orbit; § = AP/P, is a parameter for the off-
momentum, which is usually a smallness factor in the do-
main of physical interest. Terms in each of the polynomials
ﬁk,,'(i:') for k = 2,3,---and i = 0,1,---,n; are all of the
order k£ of £. The parameterized Courant-Snyder matrix,
M(8), is truncated at an order of 8" and given by

M(8) = Mo+ 6M; + 6* My + - -+ 6" My, ()

where My, M, - - -, M, are all 4x4 and usually coupled ma-
trices. Note that n > ny > ng > --- > ng > --- and that
the dispersed closed orbit can be expressed as

.’E‘c = Ec,o -+ 65¢;,1 + 625«:,2 + .-y (3)

** Operated by Universities Research Association, Inc., for the
U.S. Department of Energy under the Contract No. DE-ACO02-
89ER40486.

which is a polynomial of § with an order of n or higher.

If the Taylor map is extracted from a symplectic tracking
program, then it is symplectic when it is expanded to the
infinite order of  and §. We assume the Taylor map given
by Eq. 1 is such a type of Taylor map truncated at a finite
order of § and £. Such a truncated Taylor map, although
not symplectic because of the missing of the high-order ef-
fects, can be order-by-order converted into a Dragt-Finn
factorization map. [3] However, the addition of the param-
eter 6 makes such a factorization process trickier. In this
paper, the author presents a method of factorizing such a
perameterized Taylor map given by Eq. 1. Only a single
parameter, 6, is considered. though extension to a multi-
parameter case is analogous.

II. NorMALIZATION OF M(6)

The key to the Dragt-Finn factorization of a parame-
terized Taylor map given by Eq. 1 is the normalization of
its associated parameterized Courant-Snyder matrix M (§)
given by Eq. 2. A method [4] has been presented recently
to normalize M (6) via order-by-order symplectic factoriza-
tion such that

R(8) = AT (S)M(5)A(6) + o (8”+),

where the normalized parameterized rotation R(é) and the
canonical generation matrix A(6) are given as follows.

cospi(8)  sinpy(6) 0 0
R() = —sin p;(8) cos uy(8) 0 0
- 0 0 cos uz(8)  sinpa(é) |’
0 0  —sinpz(8) cosuy(é)
where

#a((s) = pa,0 + '6#0,1 + 62/‘0,2 +---+ 6nﬂa,ny

for @ = 1,2. The inverse of R(§) is also a decoupled rota-
tion given by

cospy(6) —sinpy(6) O 0

R-Y(6)= sin p1(6)  cos py(6) 0 0
0 0 cos pa(6) —sin ua(8)
0 0 sin po(6)  cos pa(6)

The symplectic matrix A(6) is of order §*("+1)/2 which
is a concatenation of a series order-by-order canonical gen-
eration matrices given by

A(6) = Ao(I + 8 AT + 6% A2)--- (I + 6" A,).



Its inverse is given by
ATV 8) = (I —6"An)---(I — 82A2)(I — 6A1) A

Note that Ag and its inverse Ay’ are the familiar genera-
tion matrices for normalization of My such that [5]

Ro = AalMvo
cospyo sinp o 0 0
_ —sinpiy o €OSp1,0 0 0
- 0 0 cospzo sinpag
0 0 —sinpao COS M2

For the detailed solution of y,: and A; fori=1,2,---,n
and o = 1,2, please refer to Reference (4].

II1. DRAGT-FINN FACTORIZATION

For Dragt-Finn factorization of the parameterized Tay-
lor map given by Eq. 1, one first makes a similarity trans-
formation on the map such that

m(&,8):T=A(Z, §)m(Z,6)A"1(Z,6) : £
=R(6)E+E 1[72,{(5)5"-}-2 10-:3','(5:‘)6'.4-. .oy
i=0 i=0

where A(Z, 6) is the global form of A(§). One then make
a concatenation of the transformed map ym(Z,6) with
R~1(Z,6) such that

2m(%,6):Z = R™Y(Z, 6)m(Z,6) : £
nz n3
= Z+) 200 (D)6 +Y 2Usi(2)6 +-- (4)
=0 =0

where R~1(Z,6) is the global form of the inverse of the
rotation matrix R(6). Due to symplecticity of the Taylor
map (when it is expanded to the infite order), for each of
the 2[72,;(5) for i = 0,1,---,ng there exists a third-order
(every term is third order) polynomial of Z, f3:(£) such
that

[f2,4(2), &] = 202,:(3). (5)
Therefore, from Eq. 4, one obtains

m(Z,8):E=exp(: 3 fas(£)8 )+ 2U'ai(2)6 +- -+,

i=0 £=0

where
2's4(8) = 2Us.4(8) ~ 31fs(8), Usi(@), 21

Concatenating om(Z, ) with

exp(—: ZfS,i(f)y 1),

=0

one obtains

am(Z,8):% = ezp(—: Y f3,:(£)6' )am(Z,6) : £

=0
ns - . Ny - .
= £+ aUs4(2)6'+)  aUai(F)6 +--.
t=0 $=0

Again, due to symplecticity, for each of the 3(73,;(5:') for
t=0,1,---,n3, there exists a fourth-order (every term is
fourth order) polynomial of £, f4 (%) such that

[f4,i(%), 2] = 3U3,4(3). (6)

One thus obtains the Dragt-Finn factorization of the fourth
order given by

exp(: zs:f.,,.-(:i‘)&" ).

1=0

Following the similar steps given above, one can proceed
further to obtain the Dragt-Finn factorization of the higher
orders given by

Nkl

exp(: Z fk,;(i‘)&‘ ),

$=0

for ¥ = 5,6,---. The parameterized Taylor map given by
Eq. 1 can then be represented by a symplectic map given
in global form by

© = m(F6):%
= A~YE 86)my(Z,6)A(E,96) : F, (7)

where

my(Z,6)=R(Z, 6)e:cp(:za: fa,,-(i:')é" :)e:cp(:za: f4,.~(:i:')6i H RRE

i=0 i=0

IV. Di1sCUSSIONS

At first glance, one may wonder why Eq. 5 (or Eq. 6),
which is one of the important steps for leading to the pa-
rameterized Dragt-Finn factorization of a dispersed-closed-
orbit Taylor map, is true. Let us assume that the Taylor
expansions are all infinite orders of 6, that is, n = ny, =
ng = --- = oo. If a suitable small factor is substituted
for 6 into Eq. 1, then one obtains the associated regular
closed-orbit non-parametrized Taylor map which is a fa-
miliar type of map for Dragt-Finn factorization. Now if
we first obtain the linear parameterized normalized rota-
tion R(6) and its associated parametrized canonical gen-
eration matrix A(6) up to the infinite order of §, and then
substitue the same small factor for §, we would have ob-
tained the same linear non-parameterized normalized ro-
tation R and its associated non-parametrized canonical
generation matrix A as those obtained for the associated



non-parameterized Dragt-Finn factorization. Therefore, it
would make no differnece whether we first obtain Eq. 4 to
infinite order of § and then substitue the small factor for
é or we first substitue the small factor for 6 in Eq. 1 to
obtain a non-parameterized closed-orbit Taylor map and
then obtain the associated non-parameterized equivalence
of Eq. 4. Thus, due to symplecticity, there must exist a
third-order (every term is third order) polynomial of Z,
f(Z,6), such that

[£(Z,6),2] =Y _ 202,4(2)6". (8)

=0

Since f(Z,8) can always be Taylor expanded as

f(Z,6)=)_ fi&)¢, 9)

=0
by comparing Eq. 8 and Eq. 9, one can conclude that
[£i(&), 8] = 2U24(3)

foreachi=0,1,2,- ,.o.Furthermore, since terms with a
certain order of é can only be contributed through concate-
nation from terms with lower or equal orders of 4, trunca-
tion of higher-order terms will not change the outcome for
the lower-order Lie operators. Therefore, f3:(Z) = fi(Z)
fori=0,1,---,ns.

In practice, differential algebra [6] can be used to ob-
tain the Taylor map. Indeed, a truncated Taylor map
of the type given by Eq. 1 and its associated dispersed
closed orbit given by Eq. 3 can be obtained for the SSC
lattice (and others) with the use of a post-Teapot [7] map
extraction program Zmap. [8] Implementation of such a
parameterized Taylor-map Dragt-Finn factorization can
be achieved with some modification of the available non-
parameterized Dragt-Finn factorization routine in Zlib [9]
and others [10] [11]. Once the parameterized dragt-Finn
factorization of the type given by Eq. 7 is obtained, param-
terized normal form can be obtained with suitable modi-
fication of the existing technique [10] and parameterized
kick factorization [12] {13] can be obtained for faster long-
term symplectic kick map tracking.
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