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Abstract 
Ferrite tuned cavities must operate under a wide range of 

accelerating frequencies. The tuning is done by modulating the 
current in the coil surrounding the ferrite. Feedback controllers 
arc used to improve the tuning condition by sensing the phase 
error. The design of controllers currently in use is based on clas
sical frequency domain techniques. Classical controllers in this 
application are sensitive to variations in the tuning system 
parameters. Also, these controllers generally fail to provide cor
rect transient response when there is beam in the cavity, since 
the beam loading changes the transfer function of the system. 
We have designed a robust and adaptive controller based on 
sliding mode techniques for a cavity tuning system on the ISIS 
synchrotron. The techniques are extendable to other systems. 

I. INTRODUcnON 
The analogue tuning loop used on ISIS RF systems (Figure 

1) was unable 10 provide the required accuracy. Hence a digital 
fecdforward controller based on inverse transfer characteristic 
of the type shown in Reference 1 was used. The application of 
such a digital loop has also been proposed for TRIUMF cavi
ties2

• Stability of such a feedback loop is ensured by exact pole
zero cancellation, which is difficult to achieve in practice. Also 
the stability cannot be guaranteed at all operating conditions for 
all the tuning systems due to variations in system characteris
tics. Ideally, a stand-alone, self-correcting, intelligent feedback 
controller would be well-suited for the system. Such controllers 
can be designed in classical frequency domain or with the 
recently invented, more powerful time-domain approach such 
as adaptive or variable structure controllers. The advent of new 
techniques would allow us to include variation in tuning system 
conditions due to beam loading, since the beam effects on the 
cavity can be regarded as external disturbance. 

The design of the time-domain controllers such as self-tun
ing or model reference adaptive controllers is not only complex, 

Figure 1. RF system representing cavity tuning loops. 
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but the hardware implementation turns out to be more cumber
some. A controller based on variable structure principle such as 
the sliding mode has all the good features of the adaptive con
troUers, and the algorithm is not difficult to implement. The 
controller we have discussed needs infocmation about the 
description of the transfer function model in tenns of time, I, in 
linear Slate space form with variables {~, b, C, D} as system 
matrices, "i (t) the control signal, ., (I) the. output signal, and 
I (I) the state variable matrix as follows: 

~(I) = .11(1) +b"i(l) (1) 
y(l) = CI(I) +D"i(t). 

However, it is not very difficult to obtain system matrices once 
the frequency response characteristic is measured. Several tech
niques are shown in Reference 3. Since the controUer is inher
ently insensitive 10 disturbance and to parameter variation -
unlike the classical PID, phase lag, phase lead and state feed
back - we expect 10 achieve good performance when the beam 
is injected in the machine. At the end of this paper a schematic 
layout of an analogue implementation is shown which can be 
interfaced to Figure 1 to the output of the function generator. 

II. SYSlEM MODEL 
The cavity tuning model shown in Reference 3 for Figure 1 

was obtained in z-domain and was of the 7th order. It was then 
converted to continuous time-domain Stale-space form of the 
type shown in Equation 1 by using a sampling period of lOllS 
which was used at the time of measurement. Since we observed 
some pole-zero cancellation in the 7th order model of the sys
tem, we used the standard model order reduction routines of 
Reference 4 by looking at the weightage on the Gramian vec
IOrs. Finally, we arrived at a 3rd order state space model. To 
check the validity of the 3rd order model a step response of the 
7th order discrete domain transfer function model was com
pared with the reduced 3rd order continuous domain state space 
model. The agreement was found to be very good. Hence the 
controller with a reduced 3rd order model was designed. 
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III. SLIDING-MODE CONTROLLER DESIGN 
The system Equation 1 can be rewritten with the individual 

elements and is shown in Equations 2 and 3 below. 

(2) 



,(<) " ~. 0, OJ ~}D"' (3) 

The variables xI' x2 and x3 are time varying functions called 
internal states of the system. In our cavity tuning problem they 
can be estimated. A brief discussion of this is given later. These 
estimated states are used in the controller to obtain the control 
signal. The control signal Uj can be assumed to have two inputs, 
II. and tlll.d , where", is the signal generared by the controller and 
llll.d the input disturbance: 

"'j(t) = ",(t) +tl"'d(t) . (4) 

Using the estimated states a time dependent sliding variable S is 
defined as follows: 

(5) 

The components gl' g2 and g3 of the matrix IT are assumed to 
be known at this stage. However, later in this paper we discuss 
briefly a method to calculate them. To design a stable feedback 
loop we need to choose a suitable, positive definite Lyapunov 
function. In this particular case we can use the fWlction as 

1 2 
V(t) = '2S . (6) 

For global stability the Lyapunov function, V, must be positive 
definite, and its first derivative, V, must be less than zero. In 
other words, 

SS<O , (7) 

where S is the time-derivative of Equation 5 and is given by 

S = 8T {6~+9(II.+tl"'.,)} 

= 8T~1 ·gz pJ~ + 8Tp ('" + tl",.,) 

(8) 

with 

a j = 8Tp
j 

i = 1.2.3 

We can split the parameters, a l ' a 2 , a 3 , and ~ into the nominal 
parameters, a

l 
0, az 

0
, a

3 
0, and lio and unknown parameters, 

tla}. tla2 , tla3 , and tl~ as follows: 

a. = a.O+tla. I· 1 2,3 
I I I ,= t 

(10) 

The nominal parameters were calculared using the measured 
system matrices {6. p} and the matrix IT of the controller. The 
unknown parameters are associated with the amount of system 
uncertainties excluding the disturbance signal. Also, let the con
trol law, 11., calculated by the controller, be divided into two 
parts: the continuous part, "'e' and the switching part, 11.$' The 
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continuous part will hold the tuning phase error zero under ideal 
plant conditions; at the same time the switching part will drive 
the phase error zero whenever there is uncenainty. Thus 

(11) 

The control signals "'e and 11., are designed such that the 
Lyapunov stability condition dictated by Equation 7 is satisfied 
Wlder the normal operating conditions. Also the control signals 
must not exceed the upper limits set by the bias regulator. Since 
"'e is used as the control function for the continuous part, we can 
group all the nominal parameters as follows: 

(12) 

Substiblting Equations 10, 11 and 12 into Equation 8 and rear
ranging, we obtain 

. 3 tlli ° 
S = Ii"'.+litl",.,+ 2. (tlaj-Waj )xj . 

i .. I 

(13) 

The switching pan of the control signal. "'., is arranged with 
gains to overcome the uncertainties as follows: 

"'. = - [ldxII + A::zlx21 + ~lx31 + 10] sgnS . (14) 

The function sgnS in Equation 14 is the signum function which 
has a value either + 1 or -1 when S:<! 0 and S < 0, respectively. 
The constants, 10. 11, A::z. ~are selecred such that Equation 7 is 
always satisfied. Clearly. with the following conditions on the 
gains. we can keep the loop stable if 

lei > s",pli (tlai - !~aiO)1 . .. .. , = 1.2.3 

10 > Itl"'~ • (15) 

The abbreviation "sup" used in Equation 15 is pronounced as 
"supremum" to represent the maximum value of the function. If 
the system parameters {6. 9} were accurately measured and if 
the variation due to temperature or other unknown effects is 
ignored. then the gains lei • A::z and ~ can be set to zero. Whereas 
the gain leo is still required to handle the input disturbance, tlll. d' 

when the beam is turned on. The choice of these gains gives dif
ferent weightings to the cost of control. Precise values can be set 
by acblally working on the system. Also, when the feedback 
gains. 10 -+~. are zero in Equation 14. then "'. is zero. Under 
this condition the control signal is '" = "'c' obtained by solving 
Equation 12, which appears like a linear state feedback control
ler. Since this type of controller may give oscillatory control 
signal. a saturation function could be defined in place of sgnS. 
It is defined with a constant 6 such that sgnS = 1 for S > 5, 
sgnS = -1 for S < -6. and sgnS = S/& for 6:<!S ~ -6. 

IV. ESTIMATION OF THE STATES 
From the previous section we noted that the required con

trol signal, "', can be generated by solving Equations 5,11, 12, 
and 14. We can do this provided the internal states, XI' x2 and 
x3 are known. In our problem they must be estimated. The state 
estimator is known as the "observer". We use the output signal, 
y (t) , and the input signal. "'i (t) , and obtain a standard Luen
berger observer. A simple design technique is discussed by 



Kailath5. Hen.ce, we simply quote the equation below: 

~ = M+pui+~[Y-Pl-(!IDu, (16) 

Where, ~ is the estimated state vector used to calculate the slid
ing variable, S, and ~ is the feedback gain vector. This gain 
vector is obtained from the system parameters, {t\,'} , and an 
arbitrary set of eigenvalues5. As a rule of thumb, the eigenval
ues of the observer are chosen such that the observer states con
verge to actual values almost 10 times faster than the controller 
eigenvalues corresponding to gl' 62 ,and g3' For designing the 
observer we have assumed that the input signal, Uj(t) , is mea
surable, meaning the disturbance signal, t:.ud , is accessible. In 
other words, Equation 16 will not estimate the states accurately 
when the beam comes on and hence may give problems, espe
cially when the eigenvalues are chosen close to the controller. 
Further work is underway to overcome the observer defects. 

For overall stability the eigenvalues of the observer and 
controller must be negative. The a matrix for the controUer is 
selected by trial and error method or by using eigenvalue 
assignment technique shown in Reference 6. In both cases the 
equivalent closed loop system, described by 

* = [.1-P(aTP)-laT6]~, (17) 

must have negative eigenvalues for stability. Equation 17 is 
obtained by substituting the condition 7 S!! 0 in Equation 8 and 
using the resulting expression for the equivalent control signal, 
"i' in Equation 1. When S E 0 one of the eigenvalues of Equa
tion 17 is zero6• Hence, for our system we specify only two 
eigenvalues, A.\ and ~, and igoore the third. The 8 matrix is 
then obtained from the following equation: 

aT = gTa(6) , (18) 

where the function a (.1) = (6 - A.\) (.1-~), and the matrix, 
qT is equal to the last row of the inverse of the controllability 
matrix of the system (Equation I), and the symbol T is used to 
signify the tranpose of the matrix. 

V. IMPLEMENTATION AND SIMULATION 
The feedback loop can be implemented, as always, in two 

ways, using analogue or digital circuits. A sehematic layout for 
analogue implementation is shown in Figure 2. The controller 
implementation would require a multiplexer to determine the 
sign change in the sliding variable. For digital implementation, 
a DSP chip, TMS32OC30, from Texas 1nstruments with a 32-bit 
floating point multiplication and accumulation time of 60ns can 
compute the control signal in under 5 ~s, in real time. 

We have simulated the loop performance with the control
ler at 51.1. s sampling rate in Figure 3, with a step disturbance sig
nal of t:.ud = + 0.1 V between 5 ms and 10 ms. Various 
parameters are shown in Figure 3. A saturation function with 
o = 1 x 1O~ is used in place of sgnS. Clearly the output tran
sients are controlled under less than 0.4°. At this stage it is 
recalled that the switching part of the control signal must not be 
made zero; otherwise the output of the system will become 
unbounded. This is because one of the eigenvalues of Equation 
17 is close to zero. Also, the controUability matrix of the system 
is observed to be very close to singularity. Hence all the feed
back parameters must be carefully chosen. 
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Y (I) 

~~_...J (or saturation 
ectilier funaiOll) 

Figure 2. Analogue implementation of the sliding mode controller 
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Figure 3. (a) Control,ignal," ,and (b) the phase error signal, y. 
under a step dislurbux:e, Au d = 0.1 v. 

VI. CONCLUSIONS 
We have shown a modem control technique to design a 

robust feedback controller such as the "sliding-mode" starting 
from an experimental"Bode diagram" of the system. We retain 
all the simplicity of the state feedback controller and add robust
ness to handle variation in blning errors due to beam loading or 
other uncertainties on the system. Although the controller is 
robust, a non-robust state estimator may give problems unless 
the eigenvalues are carefully selected. 
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