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Closed orbit correction in the SSC

G.Bourianoff, B.Cole, H.Ferede, FPilat,
Superconducting Super Collider Laboratory*
2550 Beckleymeade Avenue’

Dallas, Texas 75237

Abstract

A global comrection scheme proposed for use in the
SSC is described. Various features of the SSC lattice that
impact the ability to correct the orbit are discussed. Typical
results for the residual RMS closed orbit in the arc is
calculated to be 0.65mm with peak values of 3mm.

I. INTRODUCTION

Most of the techniques associated with closed orbit
correction are widely known. The present paper gives a brief
description of one such method and discusses the results
obtained when it is applied to the SSC collider lattice. The
emphasis is on features of the lattice which effect closed orbit
correction and it is likely that any of the 8 methods cataloged
in ref. [3] would yield similar results. The global scheme
described here is very robust and easy to apply. The results of
three separate studies are briefly described.

II. ANALYTIC FORMULATION OF THE ORBIT
SMOOTHING ALGORITHM

The closed orbit cormrection algorithm are more
completely described in references [1] and [2] but will be
summarized here for the sake of completeness.

The term reference orbit is defined to mean the
theoretical center line of the accelerator. The term closed orbit
is defined to mean that orbit which closes on itself in the
presence of magnet misalignment and field errors. The closed
orbit is described with respect to the reference orbit as are
magnet misalignments.

Let X, represent the closed orbit at a position d
corresponding to a detector. Let Ax, represent the change in
slope (dx/ds) produced by a magnetic element located at
position S, in an otherwise ideal lattice characterized by the
ideal lattice functions. The relationship between Ax, and
Xcof54) can be thought of as a Green’s function and is given in
equation 1.
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where p is the betatron tune, ¢, is the phase advance from
position d to position a, B, is ideal beta function at position a,
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B, is ideal beta function at position d.

This can be expressed in more compact form by
defining the matrix 7,(d) as shown in equation 2.

X, =T,(d)bX, (2)

Since the ideal beta functions are linear, the effect of many
kicks may be superimposed as shown in equation 3.
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The orbit correction process proceeds as follows. Let
X9 correspond to the closed orbit error at position d before any
correction is done. The total closed orbit at position X, is then
composed of two components X3 and the closed orbit
displacements produced by the adjuster kicks as specified in
equation 3. This is written symbolically in equation 4.
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If the number of adjustors and detectors were forced to
be equal, we could write a set of N equations in N unknowns
which would “cancel” out the error terms X3 to the extent that
the actual lattice functions are represented by the ideal lattice
functions P,, Ps. There would of course be a residual closed
orbit error at positions other than X,,.

In general, the number of detectors will exceed the
number of adjusters so it is necessary to define a minimization
procedure which can yield the set of corrector strengths AX,, .
To this end, we define a badness function B as shown in
equation 3.

N,

z (X,-x5rm?* (5)

where X% represents the displacement of the beam position
monitor at location d.

Equation 5 defines a badness function which is
“operational” in the sense that it is a directly measurable
quantity. It expresses the fact that the orbit can not be corrected
beyond the level at which it can be measured. The exact
manner in which X% is specified will be used in latter section
to examine issues associated with BPM alignment.



The global badness is a function of the set of corrector
strengths Av} ,Ax; , and Ay, . B is explicitly given in equation
6.

N
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The global minimum of B is defined by the set of condition:
aB
X,

=0 a=12,.Na (7N

The set of equations defined by equation 6 and 7 can be
expressed in matrix form by defining the vectors Q and v and

the square matrix M.
M, M
M= 1 "IN,
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where
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The unknown corrector strengths are now easily calculated
from the matrix expression given in equation 8.

Q=M"v (8)

It is desirable to have separate families of correctors
and detectors so that the beam can be corrected locally in a
special region such as the IR region yet have it integrated into
the global system in such a way that local correction does not
adversely atfect the global closed orbit.

This ts accomplished by placing a set of correctors and
detectors in the local region. The readings of the global set of
detectors is weighted and included in badness function.

Let NT, be total number of detectors, NL, be the
number of local detectors, NG, be the number of global
detectors.

Then equation 5 becomes

NL, NG,
2 2
B=W 'Y (xX,~X™7+w, Y (X,-xP™)
d=1 d=1

and the system of equations shown in equation 8 is of
order NL, (the number of local correctors). W, and W, are
arbitrary weighting factors. In general NG, will be much larger
than NL,,.

1. IMPLEMENTATION

The global correction described in the previous section
has been implemented in the code TEAPOT and applied to
simulating the collider ring of the SSC complex. The curmrent
design configuration of the SSC collider calls for one BPM
and one steering corrector in each regular cell in each plane.
There are 396 regular cells in two arcs in addition, there are 12
BPM’s and 12 correctors in each of the 4 interactions regions
and 54 additional detector- corrector pairs distributed through
the utility sections.

The BPM’s themselves are constructed with 4 plates
and can give beam position readings in 2 planes
simultaneously. The current plan is for only one plane of each
BPM to be connected in the arc, although the leads for the
other plane will be available and can be connected if necessary

The correctors and BPM’s are located in the spool
pieces adjacent to the focusing quadrupole for that plane. The
BPM is physically mounted on the same shaft with the
sextupole and can be closely aligned with the sextupole.

The lattice is composed of two semicircular arcs
separated by utility straight sections containing interaction
regions and injection sections. There are two low beta
interaction regions and two medium beta interaction regions in
addition to two utility straights in each ring in the collider.
Each of these are treated with a separate family of correctors
which are integrated with the global correctors as discussed in
the previous section.

The pnnciple magnetic multipole errors in
superconducting dipole magnets are given in Table 1. They are
dominated by the large systematic sextupole term created by
persistent current.

term systematic low | Systematic high random
energy energy
al 0.04 0.04 125
bl 0.04 0.04 0.50
a2 0.032 0.032 0.35
b2 2.0 0.800 1.15
a3 0.026 0.026 0.32
b3 0.026 0.026 0.16

Table 1 Principle Magnetic Multipole Errors.



The term residual error is defined to be the deviation of
the closed orbit from the reference orbit after orbit correction
has been performed. It has a major impact on accelerator
dynamic aperture. The method described here produces an
accurate closed orbit whose magnitude and distribution are
known. It is produced by three different mechanisms. The
relative importance of the three mechanisms is problem
dependent and general statements cannot be made. The first
mechanism is inaccuracy of the beam measurement process
caused by misalignment and imperfect calibration of the
BPM’s. The second mechanism is simply due to the fact that
the beam can be steered off reference in the region between
two adjacent corrector locations. In the collider lattice, there
are ten dipoles, a defocusing quad and a sextupole which can
all contribute to residual closed orbit error. The third
mechanism is that the lattice function used in correction
algorithm are based on ideal lattice functions rather than “real”
lattice functions.

IV. RESULTS

A number of simulation studies on various aspects of
orbit correction have been carried out which will be briefly
summarized here.

Baseline Calculations

Baseline calculations of the residual closed orbit error
have been done on the collider lattice for three cases. A lattice
without interaction. region (FODO lattice), a lattice with
uncorrected interaction regions and a lattice with corrected
interaction regions. All the lattices had the full set of errors part
of which are shown in table 1 and the full set of detectors and
correctors in the arcs (396). The runs with corrected IR regions
had 12 local BPM’s and 12 local correctors in each plane.
There were no alignment or multipole errors for the elements
in the IR’s. Typical results for the residual closed orbit are
given in table 2.

FODO UNCORRECTED | CORRECTED
LATTICE IR’s IR’s

All 0.7mm 1.2mm 0.7mm

elements

Bends

only 0.65mm 0.65mm 0.65mm

M

crra(;(r 2. 7mm 12mm 3.0mm

Table 2 Typical SSC Collider Residual Close Orbit Errors

The simulation concerning comrected IR’s is based on a
preliminary corrector placement scheme and will be improved.
A typical closed orbit plot after correction is shown in Figure 1
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Figure 1 Typical Closed Orbit Plot

BPM alignment studies

A study was conducted to determine the effect of
aligning BPM’s with the chromaticity sextupoles rather than
the quadrupoles. Since the sexturpole errors feeddown spread
and become random quadrupole errors which produce tune
spread, there was possibility that BPM alignment could eftect
tune shift and hence the dynamic aperture. The result of the
study was that the persistent current sextupole fields in the
dipoles contributed as much tune shift as the sextupoles. This
is more fully described in reference 2.

One versus two BPM’s per cell

A study was done to determine the impact of having one
BPM per cell as opposed to 2 BPM’s per cell. The BPM at the
focusing quad was retained. The basic result was that removing
the BPM’s a the defocusing quads increased the residual closed
orbit by approximately 10%.
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