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Ab.tract 

In this paper we investigate the effect of three types of rf phase 
noise on the SSC beam: white, low p ... and notched noise. We 
present and compare results from Monte-Carlo trac:king simula­
tions using a linear transfer map and from numerical 101utions 
of an ... ociated diffuaion equation. 

Introduction 

Particle diffusion in longitudinal phase space due to rf 
noise, which leads to emiUance growth and particle lou, has 
been observed in the SppS[l]. It is therefore important to un­
derstand the effect of rf noise on the SSC beam 10 that the noise 
tolerance level of the collider rf system can be specified and a 
feedback system to minimiae noise can be deaigned. Dome[2] 
has provided a good theoretical baais in which the effect of noise 
is described by a Markov diffusion procell. In our work, the 
... ociated Foller-Planck equation is numerically intelrated by 
the method oflines[3]. For comparilOn and additional informa­
tion on the diffusion process, computer simulations in which the 
proton bunch circulates in a linear lattice with noise injected 
into the rf cavity are allO carried out. 

This work orisinated in studyinl a very promisinl applica­
tion of bent crystal channelinl to extract the SSC beam. This 
is attractive because a bent crystal of small lenlth can chan­
nel particles through a relatively large angle without incurrinl 
excewve particle lou. To exploit this phenomenon, a small 
part of the circulatinl beam must be gradually brought onto 
the crystal septum. It is in this respect that injection of white 
phase noise into the rf system is considered and, when combined 
with the introduction of hilh diaperaion at the location of the 
bent crystal, has been found feaaibler.]. However, white noise 
appean to pertllrb the beam core in a way that mi,ht afFect 
collider operations. Thus two other types of rf phase noise, low 
p ... and notched, which are expected to diffuse particles pri­
marily from the beam tail, are explored. A detailed account of 
compllter simulations usinl low paaa noise in connection with 
bent crystal extraction is given in [5]. 

Review of Theory 

The underlyinl theory is reviewed in this section and read­
ers are reCered to [2] for more details. For a sinulOidal rf voltage 
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with phase noise, the turn-ta-turn energy and phase variations 
in a stationary bucket are given by 

P.+1 - P. = -Ko lin;., (1) 

;.+1 - r/l. = P.+t + ¥'.+t - ¥'. (2) 

with p. = 27rh.,,(Ap./p.), Ko = 211'h.,,(eV/p.v.) and " = Q c -

117'. Here R is the turn number, ; the actual phase with 
noise relative to the synchronous phase, ¥' the phase noise, h. 
the harmonic number, Qc the momentum compaction factor, 
.., the ratio of the particle's total energy to its rest enerlY, P. 
(v.) the momentum (velocity) of the synchronous particle, e 
the electron charle, V the amplitude of the rf voltage and A 
refers to a difference taken with respect to the synchronolls 
particle. It can be shown that Ko = n'T: where n is the 
anlular frequency of small synchrotron oscillations and To the 
revolution period. In the continuous time approximation, the 
finite difference Eqs. (1) and (2) are replaced by the differential 
equations 

P = -n'sin;, 

~ = P + .p(t) 

(3) 

(4) 

where P == P./To. These two equations can be derived from 
the time-dependent Hamiltonian 

(5) 

In the unperturbed case (¥' = 0), the action J = 
(1/211') J Pd.; is conserved. For ¥' :;:. 0, Dome assumes con­
ditions are such that the action evolves by a Markov diffusion 
proceaa and then derives the one-dimensional diffusion equation 

Bp B ( Bp) 
Bt = BJ D(J)BJ ' 

with diffusion coefficient 

... 
("""·t 

h2( )S,,(mw.), cos mv __ I,S, .•. 
D(J) = 4 L: 

(6) 

(7) 

for the evolution of the action density p = p(J,t). Here w. 
is the angular frequency of the unperturbed synchrotron os­
cillation. The spedral density S,,(w) is the Fourier transCorm 
of the autocovariance R(r) = (¥'(t)¥'(t + r» of the stationary 
proceaa ¥,(t) and the noise variance is simply CT! = R(O). The 
quantities J, w.(J) and v(J) are easily defined through the 



intermediate variable 1:, 0 ~ I: < I, by J = (801:' /7:)B(I:), 
w. = 0(7:/2K(I:» and " = (7:/2)K(~)/K(I:) where K 
is the complete elliptic integral of the first kind and B = 
IoW

/2 cos' ,pd,p/v'l - 1:' sin',p. The variable I: is related to the 
unperturbed energy Ho by Ho = 21:'0'. 

Monte-Carlo Tracking Simulationa 

One thousand protons are followed in a linear lattice for 
the sse. To each proton six independent variables are aaBigned: 
hOrU:ontal coordinate (z) and angle (z'), vertical coordinate (,) 
and angle (,'), path length deviation from the reference tra­
jectory (I) and fractional momentum deviation from the syn­
chronous momentum (6 = fl:p/p.). The initial valuea of each 
are randomly generated according to Gauuian diatributions 
with the rms values of z, z', , and 71' determined by the lattice 
functions and the rms valuea of I and 6 determined by Ulum­
ing an energy spread of 1 GeV. To carry the protoDi around, 
a one-turn map constructed by the lattice functions ia applied 
to the vector (z, z'", ,', I, 6). When the protons traverae the rf 
cavity, the relative momentum difference ia changed according 
to 

6 6 eV. ( I. .+1 = • - --l1n 27:h-C + 'P.) 
P'''' 0 

(8) 

where Co ia the sse circumference. Equation (8) is derived 
from (1) by obaerving that til. = (27:h)'./Co + 'P •. 

In computer umulatioDi white noiae refen to the caae 

where the 'P. are drawn randomly from a Gauuian distribution 
each time the bunch puaea through the rf cavity. To obtain low 
p&II and notched noiae, the following ia done beforehand: gen­
erate a time series of white noiae for N turDl, {'Pl, 'P2,'" ,'PN}, 
compute the diacrete Fourier aeries {.1,.2,· .. , • N} and con­
struct -t/J. = Fl ! I: ReC._e2.i(_-1)(.-1)/N) (9) 

_=2 
in the cue of low pUl noiae or -. 

t/J. = F2{ 'P. -~ I: ReC._e2• i(--1)(.-1)/N)} (10) 
_=_+1 

in the caae of notched noiae. Here rna ~ 2 ia the largeat integer 
such that rna ~ Q •• N a, ml the smallest integer such that 
ml ~ Q •• N, Q •• the small-oac:illation synchrotron tune, a the 
filtering fraction and Fl and F2 are normalilation facton IUch 
that 'P. and t/J. have the lame tTp (For the sse, 0 = 26.6 
rad/aec and Q •• = 0.00123). Since ft ia the turn number and 
the synchrotron tune for +_ exp(27:i(m-1)(ft-1)/N) is Q_ = 
(m - l)/N, Eqs. (9) and (10) say that low p&II noiae contaiDi 
only the terms whoae synchrotron tunes are Ie .. than aQ •• and 
notched noiae contains all the terms except thOle whOle tunea 
are between aQ •• and Q ••. Simulations confirm that in theae 
two cuea the particles in the core, with tunea greater than 
aQ •• , are much leas perturbed than in the cue of white noiae. 
This is demoDitrated in Figs. 1 and 2 which show the initial 
distributions in longitudinal phue space of the 100t particles in 
the preaence of white noiae with tTp = 0.06 for 5.3 x 10' turns 
and in the preaence of notched noiae with tTp = 0.155 for 10' 
turns respectively. The same plot for a low p&II caae can be 
found in [5]. In the simulations, a = 0.85 and a particle ia 
defined to be lost when it croaaea the orbit whOle 6 .... ia 96% 
of the aeparatrix'i. The total number of 100t particlea is 160 in 
Fig. 1 and 134 in Fig. 2. 

2 

200 

•••• . .. 
100 • • • • • . , . '" • • - • •• .,. 0 

• ,."" \ .... 
I • .; .. " 
c 

~ . .. ~.d'!' ..... • ... a • - Do °0° •• 
x • •• I. •• • - o .... 

'0 
.. \ ...... "'.":, ... 
0 0 o ••• .., • ·8 

-100 • • • o • 0 • • • 

-200 
-0.1 0.0 0.1 0.2 

1 (m) 

Figure 1: Initial distribution in longitudinal phue space of the 
100t particles in the preaence of white noiae. 
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Figure 2: Initial distribution in longitudinal phue Ipace of the 
100t particles in the preaence of notched noiae. 

Numerical Solutions of Diffusion Equation 

The method of linel[3] is uled to integrate the difFusion 
equation (6). That is, the action variable J is discretiled, the 
partial derivatives with respect to J are calculated by a finite 
difference approximation and an ODE integrator with auto­
matic error control il employed to obtain the evolution in time 
of the action denuty at each grid point of J. Before integrat­
ing (6) one must fint calculate the difFuaion coefficient Dusing 
Eq. (7) for a particular Ipectral density ofphue noiae and define 
proper boundary conditionl. The following Ipectral densities 
are Ulumed for the three types of phue noiae we are consid­
ering: (1) s;loite = cODitant for 0 < W < 00, (2) s~- p .... = 
conltant for 0 < w < aO and 0 e}aewhere, (3) s:oteloe~ = 0 
for aO < w < 0 and constant elsewhere. For white noiae, an 
analytical expression for D can be derived from Eq. (7): 



noise, D is computed according to 

_ t L"l (2m+I)t 
Dlow p .... - 4w.S~ h2 « '-) 

COl 2m + IJv 
.. =1 

(12) 

where nl il an integer IUch that (2nl-I)W. :5 an < (2nl +l)w •. 
For notched noise, D is computed according to 

(13) 

where n2 is an inteser such that (271.2 - 1)w. :5 0 < (2n2 + 
I)w •. Since we obtain the diffusion coefficients and the action 
u functionl of A:, we Ipline fit D(Ie) verlul J(Ie) 10 &I to obtain 
D &I a function of J. With z = J/J. where J. = J(1e = 
0.96), Fig. 3 Ihowl D(z) for white, low pall and notched noile. 
The initial condition for Eq. (6), i.e., the initial diBtribution 
in action, il determined from the initial valuea of I and 6 that 
have been randomly senerated in the trackinS limulation and 
the boundary condition is taken to be ablOrbing at J = J., 
i.e., p(J.,t) = o. The final diBtributionl in action from Dome'l 
diffusion theory and the trac:k:ins simulation are compared in 
Fig. 4 for white noile with tT~ = 0.2 and in Fis. 5 for notched 
noiae with tT~ = 0.155. The final time correaponds to 10' turns 
in the caae of white noiae and 3 x 10' tuml in the caae of notched 
noiae. The asreement between simulation and theory il quite 
good in both caael. Since the diffusion coefficient for low pall 

noiae is lero for z < Zo where Zo = z(w = aO), the beam core 
Ihould not be affected. Our simulation allO confirDlll this. 

ConcluaiolUl 

We found lood alreement between Bimulation and Dome'l 
theory on the diffusion proce .. of the SSC beam due to rf phaae 
noile. We Ihowed that the beam core is much leal perturbed 
by low pau and notched noile than by white noiae. Future 
work will include a Itudy of amplitude noile and the effect of a 
feedback loop on rf noise. 
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Fisure 3: Diffusion coefficientl for white, low pall and notched 
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Figure 4: Final diltribution in action in the prelence of white 
noiae with tT~ = 0.2 for 10' turnl. 
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Fisure 5: Final diltribution in action in the prelence of notched 
noile with tT~ = 0.155 for 3 x 10' turnl. 


