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Abstract

In this paper we investigate the effect of three types of rf phase
noise on the SSC beam: white, low pass and notched noise. We
present and compare results from Monte-Carlo tracking simula-
tions using a linear transfer map and from numerical solutions
of an associated diffusion equation.

Introduction

Particle diffusion in longitudinal phase space due to rf
noise, which leads to emittance growth and particle loss, has
been observed in the SppS{1]. It is therefore important to un-
derstand the effect of zf noise on the SSC beam so that the noise
tolerance level of the collider tf system can be specified and a
feedback system to minimise noise can be designed. Déme[2]
has provided a good theoretical basis in which the effect of noise
is described by a Markov diffusion process. In our work, the
associated Fokker-Planck equation is numerically integrated by
the method of lines[3). For comparison and additional informa-
tion on the diffusion process, computer simulations in which the
proton bunch circulates in a linear lattice with noise injected
into the rf cavity are also carried out.

- This work originated in studying a very promising applica-
tion of bent crystal channeling to extract the SSC beam. This
is attractive because a bent crystal of small length can chan-
nel particles through a relatively large angle without incurring
excessive particle loss. To exploit this phenomenon, a small
part of the circulating beam must be gradually brought onto
the crystal septum. It is in this respect that injection of white
phase noise into the rf system is considered and, when combined
with the introduction of high dispersion at the location of the
bent crystal, has been found feasible[4). However, white noise
appears to perturb the beam core in a way that might affect
collider operations. Thus two other types of rf phase noise, low
pass and notched, which are expected to diffuse particles pri-
marily from the beam tail, are explored. A detailed account of
computer simulations using low pass noise in connection with
bent crystal extraction is given in [5].

Review of Theory

The underlying theory is reviewed in this section and read-
ers are refered to [2] for more details. For a sinusoidal rf voltage
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with phase noise, the turn-to-turn energy and phase variations
in a stationary bucket are given by

Pust — Py = —Kosin g, (1)

bnt1 — bn = Pat1 + Pat1 — On (2)
with Py = 2xhn(Apa/p.), Ko = 2xhn(eV/p,v.) and = a. -
1/4%. Here n is the turn number, ¢ the actual phase with
noise relative to the synchronous phase, ¢ the phase noise, A
the harmonic number, a, the momentum compaction factor,
v the ratio of the particle’s total energy to its rest energy, p,
(v.) the momentum (velocity) of the synchronous particle, e
the electron charge, V' the amplitude of the rf voltage and A
refers to a difference taken with respect to the synchronous
particle. It can be shown that Ko = 0?77 where 1 is the
angular frequency of small synchrotron oscillations and 7, the
revolution period. In the continuous time approximation, the
finite difference Eqs. (1) and (2) are replaced by the differential
equations

P =-0*sing, (3)

$=P+4(t) (4)

whete P = P,/To. These two equations can be derived from
the time-dependent Hamiltonian

2
= 2P 4+ 0% 24’ £ 4 Py(1). (5)

In the unperturbed case (¢ = 0), the action J =
(1/2x) § Pd¢ is conserved. For ¢ # 0, Déme assumes con-
ditions are such that the action evolves by a Markov diffusion
process and then derives the one-dimensional diffusion equation

) ] )
= =27 (D038, (6)

with diffusion coefficient
D(J)=4 AIV_; m’;;"('m ')S,(mw.), (7)

for the evolution of the action demsity p = p(J,t). Here w,
is the angular frequency of the unperturbed synchrotron os-
cillation. The spectral density S,(w) is the Fourier transform
of the autocovariance R(r) = (p(t)o(t + 7)) of the stationary
process p(t) and the noise variance is simply o3 = R(0). The
quantities J, w,(J) and v{J) are easily defined through the



intermediate variable k, 0 < k < 1, by J = (8Qk*/x)B(k),
w, = 0(x/2K(k)) and v = (x/2)K(v/1 — k?)/K(k) where K
is the complete elliptic integral of the first kind and B =
J;'/’ cos® ¥dy/4/1 — k? sin? . The variable k is related to the
unperturbed energy Ho by Ho = 2k,

Monte-Carlo Tracking Simulations

One thousand protons are followed in a linear lattice for
the SSC. To each proton six independent variables are assigned:
horisontal coordinate (z) and angle (z’), vertical coordinate (y)
and angle (y’), path length deviation from the reference tra-
jectory (I) and fractional momentum deviation from the syn-
chronous momentum (6§ = Ap/p.). The initial values of each
are randomly generated according to Gaussian distributions
with the rms values of z, z/, y and 3’ determined by the lattice
functions and the rms values of l and § determined by assum-
ing an energy spread of 1 GeV. To carry the protons around,
a one-turn map constructed by the lattice functions is applied
to the vector (z,2’,y,¥’',1,6). When the protons traverse the rf
cavity, the relative momentum difference is changed according

to
(®

where Co is the SSC circumference. Equation (8) is derived
from (1) by observing that ¢a = (2xh)la/Co + ©¥n.

In computer simulations white noise refers to the case
where the pn are drawn randomly from a Gaussian distribution
each time the bunch passes through the rf cavity. To obtain low
pass and notched noise, the following is done beforehand: gen-
erate a time series of white noise for N turns, {¥1,¥3,:*,oNn},
compute the discrete Fourier series {$;,®,,:--, &~} and con-
struct

GV . ls
bni1 = 6q — ;—;: nn(2rhco + ¥n)

2 ;
én=Fig 3 Re(Enemim-tn-0/N) (9)

m=3
in the case of low pass noise or

Pa = Fz{p. - % i Re(i'..e?m‘(m-x)(--l)hv)} (10)

mz=mg+l

in the case of notched noise. Here mgo > 2 is the largest integer
such that mo < Q,o,Na, m; the smallest integer such that
m; > Q.oN, Q.. the small-oscillation synchrotron tune, a the
filtering fraction and F; and F; are normalisation factors such
that p. and @. have the same o, (For the SSC, 1 = 26.6
rad/sec and Q,, = 0.00123). Since n is the turn number and
the synchrotron tune for ®,. exp(2xi(m—1)(n—1)/N)is Qmu =
(m —1)/N, Egs. (9) and (10) say that low pass noise contains
only the terms whose synchrotron tunes are less than aQ,, and
notched noise contains all the terms except those whose tunes
are between a@,, and Q,,. Simulations confirm that in these
two cases the particles in the core, with tunes greater than
aQ,,, are much less perturbed than in the case of white noise.
This is demonstrated in Figs. 1 and 2 which show the initial
distributions in longitudinal phase space of the lost particies in
the presence of white noise with o, = 0.06 for 5.3 x 10° turns
and in the presence of notched noise with o, = 0.155 for 107
turns respectively. The same plot for a low pass case can be
found in [5§]). In the simulations, @ = 0.85 and a particle is
defined to be lost when it crosses the orbit whose d,mee is 96%
of the separatrix’s. The total number of lost particles is 160 in
Fig. 1 and 134 in Fig. 2.

200 7 llllllllrllllxlﬁml
C AT ]
100 — AR -
— - ° L4 "\: . -
© - ° %'? e %7 -
é 0 t__ . 3o s .?'J'..E Re° . -
X - R L U
“© : o® 'B. ° o...n' :
—100-:-_ ° L] .. T
- white noise ee -
_200"lllll'illl’llllllunll'
-0.2 -0.1 0.0 0.1 0.2

1 (m)

Figure 1: Initial distribution in longitudinal phase space of the
lost particles in the presence of white noise.
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Figure 2: Initial distribution in longitudinal phase space of the
lost particles in the presence of notched noise.

Numerical Solutions of Diffusion Equation

The method of lines{3] is used to integrate the diffusion
equation (6). That is, the action variable J is discretised, the
partial derivatives with respect to J are calculated by a finite
difference approximation and an ODE integrator with auto-
matic error control is employed to obtain the evolution in time
of the action density at each grid point of J. Before integrat-
ing (6) one must first calculate the diffusion coefficient D using
Eq. (7) for a particular spectral density of phase noise and define
proper boundary conditions. The following spectral densities
are assumed for the three types of phase noise we are consid-
ering: (1) Sy*** = constant for 0 < w < oo, (2) Si™ ?*** =
constant for 0 < w < af} and O elsewhere, (3) S3***¢ = 0
for afl < w < 1 and constant elsewhere. For white noise, an
analytical expression for D can be derived from Eq. (7):

Dunise = 50 S K(1)(B(H) — 48 By(b)  (11)

where B, = j;'/z sin? ¢ cos? /1 — k?sin? $dy. For low pass



noise, D is computed according to

2m +1)*

n
a4
Diow pass = 4w, Sy Z cosh?((2m + 1)v)

m=1

(12)

where n, is an integer such that (2n; —~1)w, € afl < (2ny+1)w,.
For notched noise, D is computed according to

D 5 N (2m +1)*
notched = Dwhite — 4w, Sv Z co‘hz((zm + 1),) (13)
m=ny

where n; is an integer such that (2n2 — 1)w, < 0 < (2n; +
1)w,. Since we obtain the diffusion coefficients and the action
as functions of k, we spline fit D(k) versus J(k) so as to obtain
D as a function of J. With z = J/Js where J, = J(k =
0.96), Fig. 3 shows D(z) for white, low pass and notched noise.
The initial condition for Eq. (6), i.c., the initial distribution
in action, is determined from the initial values of | and § that
have been randomly generated in the tracking simulation and
the boundary condition is taken to be absorbing at J = J,,
i.e., p(Js,t) = 0. The final distributions in action from Dome’s
diffusion theory and the tracking simulation are compared in
Fig. 4 for white noise with o, = 0.2 and in Fig. 5 for notched
noise with oy = 0.155. The final time corresponds to 10° turns
in the case of white noise and 3x 10 turns in the case of notched
noise. The agreement between simulation and theory is quite
good in both cases. Since the diffusion coefficient for low pass
noise is sero for z < zo where zo = z(w = afl), the beam core
should not be affected. Our simulation also confirms this.

Conclusions

We found good agreement between simulation and Dome’s
theory on the diffusion process of the SSC beam due to rf phase
noise. We showed that the beam core is much less perturbed
by low pass and notched noise than by white noise. Future
work will include a study of amplitude noise and the effect of a
feedback loop on rf noise.

Acknowledgements

The authors thank A. Chao, T. Murphy and S. Peggs for
many fruitful discussions and W E. Schiesser for kindly provid-
ing us with his method of lines code DSS§/2. J.A.E. gratefully
acknowledges conversations with R. Cogburn.

References

(1] D. Boussard, "RF Techniques for pp”, in CERN Report
No. 84-15 Accelerator School on Antiprotons for Colliding
Beam Facilities, 1984, pp. 261-290.

[2] G. Dome, "Theory of RF Acceleration and RF Noise”, in
CERN Report No. 84-15 Accelerator School on Antiprotons
Jor Colliding Beamn Facilities, 1984, pp. 215-260.

{3) W.E. Schieaser, The Numerical Method of Lines Integra-
tion of Partial Differential Equations, Academic Press, San
Diego, 1991,

[4] B. Newberger and H.-J. Shih, "Low Intensity Beam Extrac-
tion at the SSC”, SSCL Report No. SSCL-344, January
1991.

[5] H.-J. Shih and A.M. Tuaratin, "Bent Crystal Extraction of
the SSC Beam with RF Noise Induced Diffusion™, SSCL
Report No. SSCL-389, March 1991,

1TF_I‘I_TIIIIITTIIIIIYIIWI-<
=" -
88—+ white noise —
- © Jow pass noise .’;
& N © notched noise o
=) L i
& ]
x L -
=] o S o -
2 }_" 0"’
L vv’ :%’
- .0‘
F | o | 1. ]
0
0.0 0.2 0.4 0.8 0.8 1.0

Figure 3: Diffusion coefficients for white, low pass and notched
noise.
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Figure 4: Final distribution in action in the presence of white
noise with o, = 0.2 for 10° turns.
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Figure 5: Final distribution in action in the presence of notched
noise with o, = 0.155 for 3 x 10° turns.



