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Abstract 

A quench velocity expression which has a divergent be
havior close to the critical current density is reported here. 
This quench velocity has the same behavior presented by 
that of the quench velocity measurements made on the 
I7-m-long, 4-cm-aperture sse R&D dipole magnets which 
show a clear departure from the expected theoretical adi
abatic expression. 

I. INTRODUCTION 

When a normal zone, with dimensions larger than the 
minimum propagation zone (mpz), is formed in a super
conducting (s.c.) cable [1], it propagates along the con
ductor with a so-called "axial quench velocity," and the 
phenomenon itself is called "quench." When the s.c. cable 
is used to form the coil of a superconducting magnet, the 
store energy of the magnet is dissipated in the coil in the 
form of heat generated by the normal zone of the s.c. cable. 
Special care must be taken to protect the magnet against 
overheating or major damage may occur in the event of a 
quench. 

The quench velocity measured up to now in the coil 
(inner-upper turns) of the sse R&D 4-cm dipole magnets 
has very high value when the operating current is close 
to the short sample limit (consequently, the hot-spot tem
perature measured indicates that it is not high [2]), the 
values are higher than one could expect from the theoreti
cal point of view. This same quench velocity behavior was 
found in the HERA superconducting dipole magnet [3], 
and so far there has not been a clear explanation for this 
phenomenon. The thermal hydraulic quench-back mecha
nism (3) has been proposed as a possible explanation for 
these very high quench velocity values. However, in this 
report, I wish to show tP'l.t it is possible to obtain a qual
itative explanation for this phenomenon using the Fourier 
conduction mechanism. 

II. USUAL QUENCH VELOCITY 

)'10st of the quench velocity expressions are equivalent 
to the next one [I): 
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where Jo is the current density flowing in the copper ma
trix; 6 is the density; c is the specific heat; the quantity 
(6c) represents the average taken all over the conductor ele
ments and valuated at the temperature ().; k is the thermal 
conductivity; (}o is the batch temperature; the temperature 
(}l depends on (}o, the resistivity p, Jo • the cross section 
area A, the perimeter P and the heat transfer coefficient 
h, as (}J = (}o + pf; / hP; the temperature (). depends on 
the critical temperature, (}e (at zero current densit.y), and 
the generation temperature, (}g as 

(2) 

The generation temperature, (}g, depends on the operating 
current density, Jo , and the critical current density, Jeo (at 
the operating temperature), in the following form: 

(3) 

The heat transfer term corresponds to a very fast tran
sient process having almost no effect in the quench simu
lations, so it is common to make h = 0 in (1) to obtain the 
adiabatic expression 

J o n::o;-
Va. = (6c). V ~ , (4) 

where Lo = pk/(}. = 2.45 x 1O-8WQf{-2 is the Lorentz 
number. This quench velocity expression depends on the 
magnetic field through the critical temperature, Be, and the 
critical current density, Jeo (it is higher for higher magnetic 
fields). However, this expression does not express the ex
perimental singular behavior of the quench velocity when 
the operational current approaches the critical current den
sity [4). In fact, using the relations (2) and (3), the term 
(). - (}o can be written as 

(5) 

which shows a singularity for (4) when Jo = 2Jco (note 
that operating at a current density higher than Jeo has no 
physical meaning). There are other expressions (5) which 
bring about different values than (4). and they depend 
differently on the operating current density. 



III. SI:\G1.JLAR QCE:\CH VELOCITY 

Consider one-dimensional quench propagation and as
sume that the quench appears at the origin z = 0 of the 
reference system S inside the conductor at the time t = O. 
The conductor is embedded in a magnetic field B, and it 
drives a current density Jo . The normal zone is propagat
ing on the positive and negative direction with a speed V, 
which divides the conductor in a normal zone (I) and a 
s.c. zone (II) regions. The temperature of the normal zone 
is described by the following equation: 

and the temperature of the s.c. zone is described by the 
equation 

where the parameters appearing here have the same mean
ing as described above. 

Change the variables x and t by { and T defined as 

:\ow. consider the following conditions in the solutions 
(lOa) and (lOb): 

i) The heating temperature is located on the far left hand 
side of our reference system 5, that is. 

lim UI(O = U1 = pAJ;/hP. (12) 
E--oo 

ii) The'batch temperature, 00 , is at the far right hand side. 
that is 

lim Un({) = O. 
E-+oo 

(13) 

iii) The solutions (lOa) and (lOb) are matched at the front 
({ = 0) where the boundary of the normal and s.c. zone is, 
to the trigger temperature, O. (which takes account of the 
mpz required for a quench). This condition is expressed 
by 

UI(O) = Un(O) = U •. (14) 

Using the above conditions in (10), the solutions take the 
following form: 

{ = x - Vi and T = i, (7) and 

which are the coordinates of a reference system 5 traveling 
to the right at the speed V. Assuming a stationary state 
in this reference system (the temperature does not change 
with time) and using the variable U defined by 

(8) 

the equations for the temperature In the normal and 
s.c. zones are given by 

and 

The solutions of these equations are, respectively, 

(lOa) 

and 

where ql and q2 are the characteristic roots of the equation 
(9) given by 

(lla) 

and 

(~= (be)l' [ 
1- "2k 

2k 2 ] 
1 + (hP/Ak)( (be) V) + 1 . (lIb) 
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UIl(O = U. exp(q20· (15b) 

Finally, applying the condition of continuity of heat flux 
at the boundary { = 0, expressed by 

_ k ( d UI ) = _ k (d ~II ), ( 16) 
d{ E=O d... {=o 

and after making some arrangements, the following expres
sion is obtained: 

( 17) 

where 60 is the shift in the generating temperature, q = 
Jo/Jeo is the fraction of critical current density, Lo = 
pk/«()c - ( 0 ) is the Lorentz number, 'Y = eu : se is the 
copper to s.c. ratio, and the function F(h) is defined by 

F(h) = 1
2hP

(O. - 00
) - III 

ApF; 
1- hP(O. - ( 0 ) 

ApJ; 
(18) 

The square root in the denominator of (18) is well
defined since the requirement of heat propagation implies 
that the condition pf; > hP(O. - Bo)/A is satisfied. The 
adiabatic quench velocity (h=O) is then given by 

(19) 

which shows explicitly a singularity at the point q = I + 
U)/«()c - ( 0 ), For q lower than 1, the value obtained with 
(19) approaches that obtained with (4).1 

1 It is possible to choose the approximation pk/B. = L" instead 
of (20) to obtain a singular quench velocity expression too, but this 
one has different limit for small q. 
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Figure 1: Comparison of the Measured Quench Veloc
ities with both Theoretical Expressions (4) and (19), 
The length needed for the :'i'ormal Zone to propagate is 
lOpm or 15p7n, 

IV. Vag 1:--: THE sse R&D 401 DIPOLE ~1AGNETS 

In order to make the calculation of the adiabatic quench 
velocity as a function of q. the magnetic field in the con
ductors is needed as a function of the operating current. 
Turn 16 is given approximately by the relation [2] B = 
0.7505 + 0,947 x 10- 31. where the current. 1. is given in 
amperes and the magnetic field. B. is given in Teslas. 
The critical current density of the conductor. at the bath 
temperature (Jo = ·1.351\'. can be deduced from the ref
erence [6]. Figure 1 shows the result of the calculations 
comparing the values of both expressions (4) and (19) as 
well as some experimental results. The length L used to fit 
the experimental data is between 10 pm and 15 pm (these 
values are consistent with the mpz length condition) which 
gives us a bO of the order of 1O- 6 1{. 

\'. CO:--:CLUSION 

r sing t he Fourier conduction mechanism. it was possi
ble to obtain an adiabatic quench velocity expression (19) 
which reproduces the quench behavior of the SSC R&D 
dipole magnets with respect the fraction of critical cur
rent. For its derivation. it was important to notice that 
the current sharing [7] was neglected and t.hat the heat 
generation started at the temperature Og. but the normal 
ZOIl(, init iated its propagation (quench) at the tempera
turf' 0., which was the temperature that. the normal zone 
front carried a\\·ay. The qlwnch velocity is an important 
paralllcter for COli fide!!!'!' on t he quench silllulation stud-

ies to find the appropriate quench protection system for 
these magnets. The determination of the quench velocity 
for the o~her turns in the coil required a more elaborate 
computer program. now in progress. Without the term 6(J. 

expression (19) is singular exactly at lo = 1 co and repro
duces only qualitatively the experiment.al data. The term 
b(J is used to fit the experimental data which, in turn. gives 
us infqrmation about the mpz length needed to trigger a 
quench (according to the model used here). The singu
larity obtained in expression (17) appears due to the ap
proximation of not sharing current. It is expected that a 
better model will remove this singularity, while retaining 
very high quench velocity values when q - 1. Although 
a constant specific heat has been used to derive the adi
abatic quench velocity expression (19), it is possible to 
remove this restriction using the concept of Hentalpy [8] 
and making h = 0 in equation (6). The Fourier conduction 
mechanism suggests a possible qualitative and quantitative 
explanation to the quench velocity behavior with respect 
to the fraction of short sample current limit. More detailed 
experiments are required to rule it out from the connec
tion of the very high quench velocity experimental values 
observed. 
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