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Abstract 

Using an approximation to the conduction fluid equa­
tions, a solution is given using the direct method of inte­
gration of a differential equation. This solution establishes 
a possible increasing relation between the quench velocity 
and length of the cond uctor. 

I. INTRODUCTION 

When a normal zone appears in a superconducting (s.c.) 
cable, it propagates axially with a so called "quench veloc­
ity," Vq , which depends mainly of the conductor charac­
teristics and very little on the cooling effect of Helium [1]. 
However, if the ratio of the longitudinal to transversal di­
mensions of the conductor is quite large, the expansion 
of the heated Helium in the normal zone may drive fluid 
elements far from the initial normal zone, which could 
induce other normal zones in the conductor because of 
the compression of these fluid elements and their friction 
with the strands of the cable. The quench velocity would 
have much higher value than the pure Fourier conduction 
mechanism; this is called thermohydraulic quench back 
(THQB) mechanism. After the numerical discovery [2] of 
the THQB mechanism, an analytical approximation to this 
phenomenon appeared [3] using the similarity method for 
the differential equations. Although this solution suggests 
high quench velocities for the THQB mechanism, it cannot 
be accepted since the solution predicts much faster quench 
velocities for short s.c. cables than for long ones. In addi­
tion, an experiment [4] seems to contradict its predictions. 
In this paper, a direct method of integration is used in 
the differential equation (derived from approximations) in 
order look for a different solution. 

II. ApPROXI~1ATIONS 

For one-dimensional fluid (Helium) moving in a long 
tube pipe of diameter D and length L, satisfying the re­
latioll D/ L « 1, and being heating up (quench appears 
in the s.c. surounding the tube pipe) at the origin, :: = 0, 
the equat.ions which govern the sl ate of the fl uid are the 
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continuity equation 

(1) 

the momentum conservation equation 

(2) 

the mechanical energy conservation equation 

d 1 2 a(pv) 
p -(e + -v ) = --- + q 

dt 2 az' (3) 

the state equation 

1 Bp 
dp = =zdp- -T ds, 

C Cp 
(4) 

and the second law equation 

de = Tds + dw , (5) 

where c is the speed of sound, B is the volume coefficient 
of thermal expansion, cp is the specific heat, T is the tem­
perature, e is the specific internal energy, s is the specific 
entropy, q is the power density entering the Helium, p is 
the pressure, p is the density, v is the velocity of the fluid, 
and F is given in terms of the Fanning friction factor, j, 
as 

F= 2~2 

The operator d/dt is defined as 

(6) 

(7) 

In the model, the hot-zone (Helium gas), which is lo­
cated where the quench appears, is separated from the 
cold-zone (Helium fluid) by a hot-cold interface front which 
has a velocity Z at its location, z = Z. The initial condi­
tion for any fluid element is 

v(z,O)=o, (8) 

and the boundary conditions (assuming an infinity cable 
for t he moment) are 

r(cx:. t) = ° (9a) 
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and where the functions a(t) and b(t) are determined by the 

v(::: = 2,t) = 2 . (9b) boundary and initial conditions. 

Csing (2) and (3), and identifying p(ar/fJ=)/ p with the 
rate of change of the external work, d .... :/ dt, the expres­
sion (5) is written as 

q 
Tds = - + vF , 

p 
(10) 

where vF represents the entropy production due to the ir­
reverible conversion by friction of kinetic energy to internal 
energy [5]. Using (10) and (7) in (4), it follows that 

dp = ..!... (8P + v 8
p

) _ Bp (!!.. + FV) 
dt c2 az az cp p 

Assuming now dv / dt = 0, 

8p 
-=-pF az 

(11 ) 

(12) 

in (2), and using this in (11) along with the assumtion 
that p = constant and c2 = constant, the following ex­
pression is obtained after some rearragements: 

ov + ~., op = B [!!.. + 4mf v3 ] , 
oz pc" at Cp p D (13) 

where m is defined as 

(14) 

Consider now that the Joule power heating density does 
not depend on z, oq/oz = O. Then using the expression 

(15 ) 

in the partial differentiation with respect to z of the equa­
tion (13), it follows that 

02v _ 4fv ov + 3B (4mf )v2 ov 
oz2 - Dc2 at Cp D az' 

( 16) 

Finally, using (12) and (16) and rearranging terms, the 
following equation results: 

a2 v av3 

a:: 2 = (m;3 - Ct/3) a;:; , 

where Ct and 3 are given by 

and 

4f 
Ct =-­

Dc" 

(1 i) 

(18a) 

(l8b) 

The solutions of the equation (Ii) are given by the folio\\,­
ing'luildrature: 

J ____ d_l_· --,--::-. = = + bet) . 
nit) + (nd - ,,/:))/.3 

( 19) 

III. CO:\DITIO!\S A:-'D SOLUTION 

It is not difficult to see that in order to satisfy the con­
dition (9a), the function aCt) must be zero. Applying the 
condition (9b) to this, the following solution results: 

z 
v( z, t) = , 

)1 - g(z - Z)Z2 
(20) 

where 9 is defined as 

9 = 2(m(3 - Ct/3) = 8f [~+ ~] 
D 2cp 6c" 

(21) 

Note that in order for the solution to have physical mean­
ing, the relations z 2: Z and 1 - g(z - Z)Z2 > 0 must be 
satisfied. The simplest way to satisfy the condition (8) is 
to ask for Z the dependence 

(22) 

where n > 1 and Xo is a constant. This relation is in 
accordance with the experiments [3]. The expression (20) 
suggests the velocity of the fluid elements farther apart 
from the hot-cold interface front. This fact, together with 
the above observation, imposes the following restriction in 
the space-time coordinates for the validity of the expres­
sion (20): 

1 
o ~ z - Z ~ gZ2 ' t > 0 , (23) 

i.e., the size of the region, ahead of the hot-cold interface 
front where the expression (20) is applicable, is inversely 
proportional to the square of the hot-spot interface front 
velocity. For 9 = 0, (20) is valid everywhere in the fluid, 
and each element has the same velocity, Z. 

IV. TEMPERATURE AND PRESSURE 

Making use of the relation (12), the pressure rise in the 
fluid at the point z and at the time t is obtained by inte­
grating the equation 

2pf J' 2 p(z,t) = -D v dz. (24) 

Substituting (20) in (24) and integrating, the next expres­
sIOn aTlses: 

2f P [ . ,,] pC:::, t) = Dg log 1 - g(:: - Z)Z' + d(t) , (25) 

where d(t) is an arhitrary function determined by the 
boundary conditions. Assume that at the distance z = L, 
the pressure flrops to zero. Then t.he pressure is given by 

_ _ 2fp I 0 [ 1 - y(= - Z)Z"] 
fJ( -. t) - - 0 0 " 

Dff 1 - y(/. - Z)Z" 
(26 ) 
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At this point the temperature of the differential fluid el­
ement "dz" has two contributions: one is due to the 
pressure itself, p(z,t) (~~)~,' and the other arises from 

the wall shear stress (fw = D(pF)/4) at the point z, 

fin J~ v3(:, r)dr (the mass of the fluid element in con-
p 

sideration is m = 7r pD2 dz I 4, and the volume generated in 
the differential dz-displacement is dV = 7rDud:dt). The 
total temperature rise is gi ven by 

2f it (aT) .t.T(z,t)=D v3(z,r)dr+p(z,t) ~ 
cp 0 up V 

(27) 

V. THQB FINISH TIME 

The time at which the entire conductor becomes normal 
is called the "finish time," and it is given by 

.t.T(z = L, tf) = (.t.T)on , (28) 

where (.t.T)on is the change needed to reach the current­
sharing threshold temperature. This time is explicitly ex­
pressed as the solution of the following equation: 

2fn
3 
X; it! _r=====r=3=n=-=3=d=r:::;:::===:;: 

cpD 0 y'1- g(L - Xorn)n2X;r2n-2 
= (.t.T)on 

(29) 
As Figure 1 shows, for two different s.c. cables of 
lengths L and I such that L 2: I, the finish time satisfies 
the relation 

(30) 

so the THQB induced quench velocity is never higher for 
shorter s.c. cables. In order for the THQB mechanism 
to be observed, the finish time must be smaller than the 
normal quench delay time, tq = LIVq , and the time of the 
end-quench phenomenon, tend. This last time is the time 
taken for the devise to fall off its stored energy. Then the 
following relation must be satisfied: 

(31 ) 

For the experiment in Reference 3 (ORNL), the follow­
ing parameters are considered: 11 = 4/3, f = 0.02, D = 
0.707mm, B = 0.1176 f{-l, cp = 8400 1/I\gI\, c = 
131 mis, and L = 25 m. Then it follows 9 = 3.782 X 10- 3 

and .2LD = 6.735 X 10-3 I\s 2 m- 3 , and from Figure 1, c, 
the time to see the entire cable-in-conduit normal is about 
15 seconds, so a THQB mechanism is not expected here. 
However, if the diameter. D. is reduced by about one order 
of magnitude, this mechanism is very likely to appear. 

The above approach may not be applicable to the 
4-cm R,\.: D full-length dipole magnets. since the paralll­
pt('r j) is not \\"cll-ddil1f'd. In addition. the colltrihution of 
the Fourit>r rOllducl Ion Ilwchanislll ha~ not y"1 Iwcn clari­
fied [Ii]. 
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Figure 1: Normalized Change of Temperature as a Func­
tion of the Finish Time. 

VI. CONCLUSION 

Using the direct integration approach in the one­
dimensional differential equations, a restrictive fluid ve­
locity expression was obtained which satisfies the initial 
and boundary conditions. This expression brings about a 
finish time which is nonincreasing with the length of the 
conductor. In particular, if a THQB mechanism is estab­
lished in a magnet, the expression suggest that the normal 
zone will grow faster for longer magnets in a quench event. 
More experimental and theoretical work is required to fully 
understand this THQB phenomenon. 
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