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Abstract 
One way of synchronizing the SSC Low Energy Booster 

with the Medium Energy Booster is by matching the longitudi
nal phase of the designated RF buckets of two machines 
throughout acceleration to a pre-programmed trajectory. This 
makes the synchronization predictable in advance. The model 
associated with the phase-locking is time-varying and model 
parameters are subjected to disturbance due to errors in the 
bending magnetic field. Also the disturbance could be due to 
other feedback loops such as a B-field loop or a beam phase 
loop in the system. The measured phase error between the two 
reference waves may not be accurate. Hence in this paper we 
have shown the design of a Sliding-Mode controller for such an 
application. In the absence of measurement errors and parame
ter uncertainties and with no disturbance, the controller reduces 
to a classical gain feedback. Due to the general approach we 
have adopted in synthesizing the controller, the techniques can 
be applied to existing synchronization schemes. 

I. INlRODUcnON 
For extraction of beam from one accelerator to another, a 

synchronization loop of the type shown in Figure 1 can be used. 
This would involve synchronizing the beam frequency or the 
RF signal of the low-energy machine with an external reference 
source. The phase difference between the beam and the refer
ence source is used to correct the input frequency of the low 
energy machine. The reference source could be a separate fixed 
frequency oscillator driving the high power RF system of the 
higher energy machine while the synchronization process is 
under way. Phase synchronization is obtained when the phase 
error between the reference source and the beam frequency is 
made equal to zero. A simple design of such a feedback system 
consists of a state feedback gain k, as shown in Figure 1. Apart 
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Figure 1. Synchronization Loop. 
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from the synchronization loop, it is quite normal to have other 
feedback loops such as a beam phase loop or a B-field loop pro
viding a small correction function to the variable frequency 
source. The B-field loop is not able to give full indication of the 
correction required because of measurement inaccuracy in the 
field. Hence the field error would act as disturbance to the sys
tem. Under those circumstances, the feedback controller, k, will 
not be able to drive the phase detector output to zero since the 
state feedback loop cannot handle external disturbance on the 
system. In this paper we show the synthesis of a sliding-mode 
controller using Lyapunov Stability Theory. This controller 
behaves very much like a state feedback controller when the 
gain associated with robustness is turned off. We also discuss 
the effects due to Q of the RF cavity when we implement this 
type of controller. 

In our analysis we assume that the synchronization of the 
low energy machine can be done with the high energy machine 
throughout the acceleration. However, it can be switched on 
anytime during acceleration. Although the synchronization 
scheme in Reference 1 is different in its implementation from 
the conventional approach, in principle it is similar to Figure 1. 
Hence the feedback controller can be applied to the conven
tional phase-lock scheme. 

II. FEEDBACK CONTROLLER 
In the presence of B-field errors, the phase detector output, 

Oljl, can be represented 1 by the following equation with stan
dard notations. 

do,!, (I) = RY} (2rtOf(l) _ 2rtf ..::.. oB (I) ) 

dt Y}- y2 h h "4 B (I) (1) 

This equation is derived by ignoring the non-linear terms. For 
the present analysis the terms associated with SB(t) can be 
regarded as the disturbance to the system. Under no distur
bance, a more general way to write the above equation is in 
state-space form with variables (A(t)) , (b(l)}' (C(t») as system 
matrices, u(1) as the control signal, y(t) the output signal, and 
x(t) the state variable as follows: 

1 

i (t) = A (t) x (t) + b (t) u (t) 

yet) = C(t)x(t) 
(2) 



where ir 
x (I) = 0", (I) , A (I) = 0 , b(t) = --R , 

"f}-r 21t 
C (I) = 1 , and U (t) = TOf(t) 

The time variation of the parameters is represented by (t). 
For simplicity we do not write the script (I) in our discussion. 
With disturbance, i.e., 08(1#0, Equation 2 becomes equal to 

x = b(u+ud)' (3) 

where ud is regarded as the disturbance function and is equal to 

21tf 1 oB 
ud = -}I fr B . (4) 

Also, let us assume that the measured state. xm has an error of 
xd, then 

(5) 

where x is the actual state as described by Equation 3. Now the 
sliding variable is defined with the measured state as follows. 

(6) 

In this equation a is equal to the eigenvalue of the closed loop 
feedback system. Equation 5 is substituted in Equation 6, and 
resulting equation is differentiated with respect to time. The 
terms with i are replaced by Equation 3. After simplification, 
we get 

(7) 

The justification for the choice of the stable feedback loop 
is based on the Lyapunov function candidate. There is however 
no unique Lyapunov function for this problem. A more suitable 
one could be as follows: 

V = .!. b -1 S2 (8) 
2 

The above function is positive because the system parameter b 
is positive. Furthermore. from Lyapunov Stability Theory, a 
system of the type used in Equation 2 is stable when the time 
derivative of the positive definite Lyapunov function is nega
tive. Hence we will differentiate Equation 8 with respect to time 
and substitute Equation 7 in place of b -1 S . After simplification 
we get 

where 

V = S[U+Ud+gxd+ga(x+xd) -hS] 

b- 1 g = and (9) 

Here we can assume that the disturbance signal ud can be 
measured. Since the measurement will not be accurate, we can 
consider this term to have a nominal measurable term and an 
uncertainty function. When the measurements are not available, 
the nominal value will be zero. Similarly, parameter uncertain
ties can be assigned to g and h. Thus we can write: 

2 

ud = ud
o + t1ud 

g = gO + t1g 
(10) 

h = hO + t1h 
where the terms U dO, gO and h ° are the nominal quantities, and 
t1u , t1g and t1h are uncertainties in the parameters ud' g 
ant h , respectively. Now, using Equation 10 into Equauon 9, 
we obtain 

V = S [u + (u/ + t1ud ) + (gO + t1g) aXm 
- (h O + t1h) S + gXd]. (11) 

The control law, u, is defined in such a way that Equation 11 is 
always negative. Let it consist of the continuous part U c and a 
switching part us: 

U = Uc + Us 

where u = - u 0 - gOax + hO Sand c d m 

Us = - (kxlxml + kslSI + ko) sgnS . (12) 

The function sgnS in Equation 12 is a signum function 
which has a value of either +1 or -1 when S ~ 0 and S < 0, 
respectively. The constants k • k , and ko in Equation 12 are 
selected so as to make the tim; derivative of the Lyapunov func
tion negative. With simple algebra we can arrive at the follow
ing condition. 

kx > suplt1gal 

ks > suplt1hl 
(13) 

k o > suplt1ud + gXdl· 

In Equation 13, 'sup' is pronounced as supremum, which is the 
maximum value of the function. The magnitude of the constants 
depends on the parameter uncertainties, but for stability they 
must satisfy Equation 13. The continuous part in the control law 
in Equation 12 holds the phase error zero, while at the same 
time the switching part introduces the robustness into the loop. 
Hence the switching part would take care of the disturbance 
rejection and parameter uncertainties. Equations 6 and 12 form 
the feedback controller, as shown in Figure 2. 

Figure 2. Sliding-mode controller. 

Under the condition with no disturbance (ud=O), no mea
surement error (xd=O), and no parameter variation, the gains 
kx=ks=ka=0. Also, h=O for a time invariant system, since a state 
feedback design is applicable to only such systems. Hence the 
state equation of the closed loop feedback becomes equal to 

:i = bu = -ax , (14) 

where a/ b is now equal to the gain, k, shown in Figure 1. 



III. ANALYSIS OF THE LOOP PERFORMANCE 
The performance of the feedback loop is analysed by con

sidering the phase-locking between the Low Energy Booster 
and the Medium Energy Booster. The machine parameters 
shown in Reference 2 are used for the analysis. Figure 3(a) 
shows a plot of the decay of the phase detector output with 
respect to time, with the state feedback loop gain of k=2 and 5. 
The phase error converges to zero as expected. The profile of 
the phase error is, however, not important but it should be zero 
at the transfer time (ignoring all the fixed phase associated with 
the transfer line delays, etc). In an ideal situation, when there is 
no field error affecting the beam frequency, we would expect the 
synchronization to be good as shown in Figure 3. The loop per
formance deteriorates when ~teP magnitude of Ud= 11.6 radl 
sec (for (liB) / B = 5 X 10 for the Low Energy Booster) is 
introduced to the system and is held high until the extraction 
time. The time response of the phase error is shown in Figure 
3(b) for this disturbance. It is clear from this figure that the sys
tem is not robust since the phase error is not held zero or at least 
to a tolerable value. It can be minimized by making the feed
back gain excessively large which may lead to be.am oscilla
tions. 
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Figure 3. Tune response of the phase error 
(a) without disturbance; (b) with disturbance (step function at 42ms). 

In Figure 4(a) the loop performance is shown with the dis
turbance function for the sliding-mode controller. In Figure 4(b) 
the time response of the sliding variable S (Equation 6) is dis
played. From these figures it is clear that the product S S is 
always negative. Hence the loop is stable throughout the accel
eration. Also, the loop performance is very good under field 
errors compared to the usual gain feedback. To overcome field 
errors the feedback controller generates the compensating fre
quency shift to the oscillator. Since the constant ko controls the 
magnitude of the disturbance rejection, it would be useful to 
have it set very high. Higher ko may result phase oscillations for 
digital implementation with low sampling rates. However. the 
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Figure 4. (a) Tune response of the phase error (with disturbance); 

(b) Tune response of the sliding variable 
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analogue loops have no such problems. When there is no 
parameter variation (.1g == 0 and .1h == 0), the gains kx and ks 
can be negligible. Hence the switching part of the control input 
to the oscillator is mainly dominated by ko. Thus it is dominated 
by the system uncertainties. whereas the continuous part acts on 
the initial phase error by the same principle by which the state 
feedback loop works. If the initial phase error is large, then a 
sudden frequency shift of few khz would introduce beam oscil
lations. Hence a good solution would be to use the time varia
tion for appropriate gains including the eigenvalue, a. 
Implementation of such a gain sequence would be easier for a 
digital synchronization loop. 

It is well known that the beam frequency does not change 
instantaneously when the oscillator is shifted by the control sig
nal. u. The time constant is governed by the Q of the cavity and 
the amount of detuning caused by the beam current or a separate 
tuning loop. By assuming that the tuning error is well compen
sated, the equation between the beam frequency shift and the 
source frequency shift is given by 

w w 
. cav + cav 

U = ---u --u· 
2Q 2Q l 

(15) 

where W cay = resonant frequency of the cavity and 
ui = (21tOf) / h, with Ofi as the oscillator frequency shift. 
A block diagram representing Equations 2 and 15 is shown in 
Figure 5. The time response of the phase error is not very differ 

2-r::J-r+ ~ f Lm -
w cay 
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Figure 5.: System model with the Q of the RF cavity 

em from Figures 3 and 4 for the ratio (2Q) / W cay up to 1 mil
lisecond. 

IV. CONCLUSIONS 
Analytical treatment of the synchronization feedback loop 

is shown in this paper. Although the gain feedback loop is easier 
to design and implement, the simulation results show that the 
controller properties are not useful to handle changes in the syn
chronization conditions with B-field errors. The sliding-mode 
controller shows robustness for such applications. For large dis
turbance rejection, the inherent oscillatory nature of the control 
signal can be overcome by introducing well-known saturation 
function. 
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