
BCD/CPS
An Event-level GEANT3 Parallelization via CPS

Lee A. Roberts

Physics Research Division
Superconducting Super Collider Laboratory·

2550 Becldeymeade Avenue
Dallas, Texas 75237

Apri11991

SSCL-413

·Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC02-89ER40486

SSCL-413

BCD/CPS
An Event-level GEANT3 Parallelization via CPS

Lee A. Roberts

Abstract

BCD/CPS is an implementation of the Bottom Collider Detector GEANTI simulation for CPS

processor ranches. BCD/CPS demonstrates some of the capabilities of event-parallel applications

applicable to current SSC detector simulations using the CPS and CZlCPS communications

protocols. Design, implementation and usage of the BCD/CPS simulation are presented along with

extensive source listings for novice GEANT3/CPS programmers.

iii

CONTENTS

1.0 IN1RODUCTION ... 1
2.0 CPS OVERVIEW .. 1
3.0 DESIGN ... 2

3.1 Tasks .. 3
3.2 Classes .. 4
3.3 Control and Data Flow .. 4

3.3.1 Initialization phase .. 5
3.3.2 Processing phase ... 7
3.3.3 Tennination phase .. 7

3.4 States .. 8
4.0 IMPLEMENTATION .. 8

4.1 BCD/CPS sequences .. 9
4.2 CONTROL decks .. 11

4.2.1 BCDINIT .. 11
4.2.2 UGINIT ... 12
4.2.3 GRUN ... 18
4.2.4 UGLAST .. 19

4.3 GENERA 1'E decks .. 22
4.3.1 BCDGEN .. 22
4.3.2 UGINIT ... 23
4.3.3 GEVENT .. 26
4.3.4 GUOUT ... 28
4.3.5 GUPYTHIA ... 29
4.3.6 GUISA ... 31
4.3.7 FINISH .. 33

4.4 OUTPUT decks .. 33
4.4.1 BCDOUT .. 33
4.4.2 CREATE ... 34
4.4.3 OU1l3LK .. 35
4.4.4 FINISH .. 36

4.5 EVTGEN decks-PYTHIA version .. 37
4.5.1 BCDPYTH .. 37
4.5.2 PYGEN .. 39
4.5.3 FINISH .. 40

4.6 EVTGEN decks-ISAJET version .. 40
4.6.1 BCDISA ... 41
4.6.2 ISAGEN ... 42
4.6.3 FINISH .. 43

v

5.0 USAGE 43
5.1 Source Generation 43
5.2 Compilation and Loading 45
5.3 Execution ... 45

6.0 SUMMARy ... 46
REFERENCES ... 47

VI

1.0 INTRODUCTION

Simulation and design of detectors for the Superconducting Super Collider (SSC) Laboratory will

require substantial computational resources. For many simulation tasks, the necessary computational

resources will be much more than any single processor can deliver within an acceptable time interval.

In such cases, the event-level parallelism of most high-energy physics applications can be exploited to

parallelize the simulation task over a multitude of processors.

The Physics and Detector Simulation Facility 1 of the Physics Research Division at the SSC

Laboratory has been designed for event-level parallel simulations of SSC detectors using GEANT32

and the ACP Cooperative Processes Software3 This "500 MIPS" facility will initially provide

approximately 3 x 234 MIPS in a batch processor ranch of symmetric multiprocessor UNIX servers

and approximately 30 x 28.5 MIPS in a loosely-coupled interactive front-end of uniprocessor UNIX

servers. Expansion of this facility to approximately "4000 MIPS" is anticipated by the end of fiscal

year 1992.

The ACP Cooperative Processes Software (CPS) provides software tools that simplify the

parallelization of an event-based computational task over a distributed set of processors. Jobs are

generally separated into CPS tasks performing specific functions. Examples of tasks include job

initialization, input from event tapes, event analysis, and output to event summary tapes. Each of

these tasks is performed by a "class" of CPS processes having its own executable program. Users are
responsible for separating uniprocessor applications into CPS tasks and coding a program for each of

these tasks.

BCD/CPS provides an example of CPS event-level parallelization of GEANT3 detector

simulations. BCD/CPS includes only those programs and subroutines which required modification

during the conversion of the BCD GEANT3 uniprocessor simulation to the BCD/CPS event-parallel

simulation. Many of the programming techniques used in BCD/CPS should be easily applicable to

other detector simulations, as almost none of the BCD/CPS code is specific to the Bottom Collider

Detect~ GEANT3 simulation.

2.0 CPS OVERVIEW

The ACP Cooperative Processes User's Manual describes CPS as follows:3

The ACP Cooperative Processes Software (CPS) is the software part of the
Fermilab second generation A CP multiprocessor project. It is a package of software
tools that make it easy to split a computational task (called a job) among a set of
processes distributed over one or more computers. Apart from considerations of speed,
the set of processes will operate identically whether on a single computer or spread
across multiple computers. Each process runs a program written by the user.

The primary tools comprise a Job Manager program and a set of subroutines. The
Job Manager starts the processes, provides common support services, handles errors
that occur, and stops the processes when the task is over. The subroutines provide
mechanisms for interprocess communication, remote subroutine calls, and synchro­
nization. These tools support a wide range of models of parallel programming.

The primary goal of CPS is to allow the user to conveniently access the power of multiple CPUs

to accomplish an event-parallel computational task. CPS was designed to meet the parallel-processing

needs of many high-energy physics applications. CPS provides basic utilities for event-level

parallelization of high-energy physics applications.

Users are responsible for adapting uniprocessor applications to the parallel (CPS) environment.

Typical applications require only minor changes to a small set of subroutines-usually those

associated with initialization, control of the main event loop, input/output of event data, and

termination. Uniprocessor applications are divided by functional task into separate programs using

CPS utilities for interprocess communication and control.

Execution of a CPS event-parallel application requires a mapping between processes and the

available computers in the CPS ranch. Such a mapping must be provided by the user as input to the

CPS Job Manager. This mapping indicates the location of each main program, the number of copies

of each program to be run, and the allocation of processes to processors. As the CPS event-parallel

application is started by the CPS Job Manager, each of the user's processes is started and

interprocess communication and control is overseen by the CPS Job Manager.

Users are referred to the ACP Cooperative Processes User's ManuaZ 3 for details on CPS utilities

and usage.

3.0 DESIGN

Conversion of an uniprocessor event-based application to a CPS event-parallel application may be

accomplished through the following steps:

• Identify the major tasks performed by the uniprocessor application.

• Associate each major task with one (or more) CPS process class(es).

• Determine the control and data flow among CPS process classes.

• Determine the CPS process states (queues) for each CPS class.

• Code the programs for each CPS process class.

• Debug.

The following subsections detail the application of the first four steps in the creation of the

BCD/CPS event-parallel simulation.

2

A common feature among CPS event-parallel applications is a particular task that may be

distributed to "as many as possible" processors. Although the present implementation of CPS allows

only a single class to be distributed to "as many as possible" processors, the design of a CPS

application should allow multiple "as many as possible" classes to take advantage of all available

processors in a heterogeneous CPS ranch. BCD/CPS was developed on a heterogeneous CPS ranch

consisting of two processors-a Silicon Graphics 4D/25G and a DECstation 2100--in order to

guarantee robustness of the software with respect to big- and little-endian byte ordering.

In BCD/CPS, "as many as possible" processes perform all I/O via CPS. In this way, the

BCD/CPS job is insensitive to whether particular file systems are available across the entire CPS

ranch. Such restrictions were a standard feature of ACP first generation farms, since no file systems

were available to "as many as possible" processes. Depending upon the implementation of the CPS

ranch, this restriction may not apply.

3.1 Tasks

The tasks performed by the BCD GEANTI detector simulation are quite similar to those present

in most GEANT3 detector simulations. BCD GEANT3 detector simulations exhibit the following

features:

• Control-initialization and termination

• ISAJE'f9 or PY1HIAIO event input

• FZ event output

• GEANTI event loop.

Initialization of BCD GEANTI simulations includes the generation of the GEANTI geometrical

description of the BCD detector, input of the BCD GEANT3 extended particle decay database,

generation of materials and other GEANTI initialization ZEBRA data structures, input of BCD dipole

field maps and booking of user-defined HBOOK47 histograms. Many of these processes are

controlled by FFREAD8 input data cards which may vary from run to run.

Interfaces to ISAJET and PYTIlIA are used by BCD GEANTI to provide input events. Direct

interfaces to both generators are available, where the input event may be generated during the

GEANTI simulation. An interface to ISAJET-format event tIles is also provided.

BCD GEANT3 event data are written to a sequential medium using ZEBRA FZ I/O. Depending

upon the particular application, any combination of the KINE, JXYZ, HITS and DIGI data

structures may be saved for later analysis. In most cases, the amounts of FZ I/O can be significant.

Subroutine GRUB in the standard GEANT3 release is used to control the uniprocessor GEANTI

event loop. Generalization of this procedure is required for the CPS event-parallel implementation of

BCD/CPS.

3

Variations of the above can also be imagined. One can consider using FZ event input to read

HITS data structures for generation of digitizations and later output of the DIGI data structure via

FZ. One can also consider using multiple event generator interfaces--<>ne for minimum bias events,

one for "interesting" physics--when studying event overlap effects in SSC detectors. Such exercises

will be left to the user.

3.2 Classes

BCD/CPS, as implemented for a heterogeneous CPS ranch of one Silicon Graphics 4D/25G and

one DEC station 2100, utilizes five CPS process classes for the four tasks described in the previous

subsection. The CPS process classes are as follows:

• CONTROL-initialization, control and termination

• EVTGEN-ISAJET 6.36 or PYTHIA 5.5 input event generator

• OUTPUT-binary exchange FZ sequential event output

• GENERATE-Silicon Graphics GEANT3 event generator

• GENERATE-DECstation 2100 GEANT3 event generator.

As one might expect, since the goal of the CPS parallelization is to obtain as many GEANTI

events as possible in the shortest possible time, the "as many as possible" class of processes is the

GENERATE class. Since two processor types were available in the development CPS ranch, two

GENERATE classes were required, even though identical FORTRAN programs were used.

3.3 Control and Data Flow

BCD/CPS is designed to maintain as much of the uniprocessor simulation structure as is

reasonably possible. As such, the CONTROL process follows the typical GEANT3 program outline.

Indeed, after its initialization of ZEBRA and HBOOK4, the CONTROL process proceeds into three

phases:

• Initialization phase-tJGINIT

• Processing phase-GRON

• Termination phase--UGLAST.

Each of these processing phases will be discussed below.

The EVTGEN and OUTPUT processes are pure "slave" remote subroutine servers, servicing

remote subroutine calls from CONTROL and GENERATE processes. The GENERATE processes

proceed through several initialization steps in synchronization with the CONTROL process before

becoming "slave" remote subroutine servers for requests from the CONTROL process.

4

3.3.1 Initialization phase

Two initialization stages are present in the CONTROL process initialization phase. These stages

are:

• BCD GEANTI uniprocessor initialization of CONTROL process

• Distribution of initialization data to other CPS process classes.

These initialization stages and the CPS data flow will be discussed in the following paragraphs.

The first stage is unchanged from the uniprocessor implementation. The following steps are

included in the uniprocessor implementation:

• Standard GEANT3 variable initialization (GINIT)

• Read FFREAD data cards

• Material definition

• Particle definition

• Geometry setup

• Physics initialization

• Book HBOOK4 histograms.

All of these initializations affect only the CONTROL process; during the second stage, this data is

communicated to other CPS process classes.

Data flow during the first stage is from FFREAD input data cards and ZEBRA FZ and/or RZ files

into the CONTROL process. Internal generation of GEANT3 initialization data structures

(geometry, materials, particles, etc.) will occur in many applications.

The second stage includes the initialization of CPS and the transfer of initialization data to the

other CPS processes in the job. In addition to CPS memory blocks, synchronization points, and

remote subroutine calls, the (7JCPS4 communications features are used during the initialization of

the BCD/CPS job. The following steps are performed in the CONTROL process during the

distribution stage of initialization:

• CPS initialization via ACP INIT

• Declare CPS memory blocks for FFREAD and CZ/CPS data transfers

• Input and transfer FFREAD data cards for GENERATE processes

• Write GEANTI initialization data to GENERATE processes via (7JCPS

• Write BCD dipole field maps to GENERATE processes via CZlCPS

• Synchronize with self-initializing EVTGEN process(es)

5

• Initialize OUTPUT process(es}-create binary exchange FZ output file(s)

• Initialize CZ/CPS for communications with CPS ZEBRA Servers

• Write HBOOK4 histograms to GENERATE processes via C7/CPS

• Initialize random number sequences for GENERATE processes.

In the EVTGEN class of processes, the following events occur during the second initialization

stage:

• CPS initialization via ACP INIT

• Declaration of CPS memory blocks for event data transfer

• Declaration of CPS remote subroutines

• Declaration of CPS process queue

• Data card input and initialization of Monte Carlo event generator.

In the OUTPUT class of processes, the following events occur during the second initialization

stage:

• CPS initialization via ACP_INIT

• Declaration of CPS memory block for CVCPS data transfer

• Declaration of CPS remote subroutines

• Declaration of CPS process queue

• Respond to CONTROL process requests.

In the GENERATE class of processes, the following events occur during the second initialization

stage:

• CPS initialization via ACP INIT

• Declaration of CPS remote subroutines

• Declaration of CPS process queue

• Input GEANTI initialization and dipole field maps as FZ data from CONTROL process

• Initialization of CPS ZEBRA Server

• Respond to CONTROL process requests.

Data flow during the second stage includes access of the following input data cards:

• CONTROL process inputs FFREAD data cards for GENERATE processes

• Each EV'lGEH process inputs an appropriate set of data cards (for ISAJET or PYTHIA).

6

GENERATE processes obtain their initialization data from the CONTROL process via CZ/CPS,

consistent with the BCD/CPS design for "as many as possible" processes. GEANT3 initialization

data structures and BCD dipole field maps are transferred using the ZEBRA/FZ communications

facilities of CZ/CPS. HBOOK4 histograms are distributed to GENERATE processes using the

HBOOK4/ZEBR A Server communications facilities of CZ/CPS. Initialization of the OUTPUT FZ

server is performed by CPS remote subroutine call and may include the output of GEANT3

initialization data structures via CZ/CPS followed by their transfer to disk (or tape).

As the initialization phase concludes, all "slave" subroutine servers are placed on CPS process

queues to await further action.

3.3.2 Processing phase

Control and data flow in the processing phase is typical of the canonical event loop. The

CONTROL process starts (via CPS remote subroutine call) each GENERATE process, passing it the

run identification number, the event sequence number, and the random generator seeds. After each

GENERATE process finishes an event, the CONTROL process restarts it with a new set of

parameters. This CONTROL procedure continues until the desired number of events have been run.

As subroutine GRUN in the CONTROL process now consists of an event loop with a CPS

remote subroutine call, the standard action of GRUB is now performed by the GENERATE process

in its subroutine GEVENT. After setting the random generator seeds, GEVENT calls the standard

GEANT3 subroutines GTRIGI, GTRIG and GTRIGC. Within subroutine GTRIG, both sub­

routines GUKINE and GUOUT request services from other CPS process classes via remote

subroutine call.

Subroutine GUKINE invokes the interface to the EVTGEN processes. When each GENERATE

process requires an input event, a remote subroutine call is placed with an EVTGEN process. At this

point, the EVTGEN process generates an input event and the event data is transferred to the

GENERATE process for GEANT3 processing.

Subroutine GUOUT invokes the interface to the OUTPUT processes. All required FZ event

output is written via CZ/CPS to an OUTPUT process for asynchronous transfer to disk (or tape).

3.3.3 Termination phase

During the termination phase, the CONTROL process accumulates all of the partial histograms
from the GENERATE processes using CZ/CPS communications. The accumulated histograms are

printed and are written into an RZ ftle for later manipulation.

All "slave" remote subroutine servers are terminated via a remote subroutine call to the subroutine

FINISH in each server process. Servers are terminated process-by-process and class-by-class to

coordinate the collection of server output in the job manager logfile. Subroutine FINISH in each

server performs any necessary cleanup activities--prints process statistics, final random number

7

seeds, etc.-and closes all open files, including standard output. (Explicitly closing standard output
allows the output buffer to be properly flushed to the job manager logfile.) After all remote subroutine
servers have been terminated, the CPS job is stopped.

3.4 States

BCD/CPS process states are quite simple-"ready" and "busy." At the end of the initialization
phase, all "slave" remote subroutine servers are placed upon process queues and are "ready." Three
process queues are required-for EVTGEN, OUTPUT and GENERATE processes. (No distinction
is necessary among GENERATE processes of differing processor type.)

As the CONTROL process enters the processing phase, "ready" GENERATE processes are
dequeued and become "busy." When each GENERATE process requires an input event, a "ready"
EVTGEN process is dequeued, becomes "busy" during the event generation and data transfer to the
requesting GENERATE process, and is finally queued again as "ready." Similarly, when each
GENERATE process performs FZ event output, a "ready" OUTPUT process is dequeued, becomes
busy during the FZ data transfer, and is queued again as "ready" after the disk (or tape) I/O has
completed. Finally, when each GENERATE process finishes its event, it is queued again as "ready."
As the processing phase reaches completion, the CONTROL process waits until all GENERATE

processes are "ready" before proceeding to the termination phase.
Upon entering the termination phase, the CONTROL process dequeues each of the

GENERATE processes in turn, accumulating its histograms into the job summary histograms in the
CONTROL process. After all histograms are accumulated, all GENERATE processes are queued
again. The CONTROL process now proceeds through each process queue, dequeuing each server
and executing its FINISH subroutine.

4.0 IMPLEMENTATION

BCD/CPS was implemented through modification of a small number of subroutines already
present in the BCD GEANT3 simulation and in the standard GEANT3 software. Event-level

parallelization of BCD GEANT3 was relatively simple using the parallelization and interprocess
communications tools provided by CPS and CZ/CPS.

Locations of CPS memory buffers were chosen so as to minimize the total memory buffer
requirements. Large CZlCPS communications buffers are present in the CONTROL and OUTPUT

process classes. No CPS memory buffers are declared in the GENERATE process classes, reducing
the size of the "as many as possible" processes. The GENERATE processes use CZ/CPS to read or
write information into CZJCPS communications buffers in the CONTROL and OUTPUT processes.

The following subsections present the results of the two final steps for conversion of an

uniprocessor event-based application to a CPS event-parallel application--code development and

debugging. BCD/CPS source code is in PATCHY 11 Master file (PAM) format and depends upon the

PAM files for CZ/CPS (CZCPS), BCD GEANT3 (USER314) and GEANT3 (GEANT). The

8

PATCHY sequences from CZCPS, USER314 and GEANT will not be shown with the

following source decks.

4.1 BCD/CPS sequences

All processes in a CPS job must use consistent values for CPS parameters. These parameters

include CPS process class definitions, CPS remote subroutine definitions, CPS process queues, and

CPS memory block definitions. BCD/CPS definitions for CPS parameters are kept in PATCHY

sequences for access by all program segments. These parameter defmitions are shown below.

evcPs parameters and sizes of memory buffers must also be coordinated among CPS process

classes. These parameters are also kept in PATCHY sequences for the BCD/CPS application.

Many computer systems will require some "extra" effort to insure that the CZlCPS versions of

HBOOK4 subroutines BMDIR, BRDIR, BRFILE, BROUT, BRZCD and BRZOUT

are loaded from the CZ/CPS library (libczcps. a) rather than from the standard version

(libpacklib. a). External declarations solve this difficultly on most machines; such definitions

have been included below.

+ltEEP,BCDCLASS.
C Define parameter. for CPS process classe ••

IIU'EGER CONTROL, EVTGEN, OOTPOT, GENSGI, GENDEC
PARAMETER (CONTROL = 1)
PARAMETER (BVTGEN = 2)
PARAMETER (OOTPOT = 3)

PARAMETER (GENSGI = 4)

PARAMETER (GENDEC = 5)
+DEP,BCDRSOB.
C Define parameter. for CPS remote .ubroutine •.

INTEGER RFINISB
PARAMETER (RFINISB = 0)

:INTEGER RZSCPS, RGEVENT
PARAMETER (RZSCPS = -1)
PARAMETER (RGEVENT = -2)

INTEGER RCREATE, ROOTBLlt
PAlUUIBTER (RCRBATE = -1)
PARAMETER (ROOTBLlt = -2)

:INTEGER REVTGEN
PAlUUIBTER (REVTGEN

+ltEEP,BCDQOEOE.

= -1)

C Define parameter. for CPS proce.. queue ••

:INTEGER QEVTGEN, QOOTPOT, QGENER
PARAMETER (QEVTGEN = 1)

9

PARAMETER (QOOTPOT
PARAMETER (QGENER

+ltEEP,BCDFFCPS.

= 2)
= 3)

C Define parameters for FFREAD CPS interface.

C Define FFREAD channe~ transfer "~ogica~ unit".
C Equate CPS block n\mber to ITRFAD channel. "~oq:i.cal unit" •

XNTEGER FFLON
PARAMETER (FFLON = 98)

XNTEGER CPSF!'
PARAMETER (CPSFI' = 98)

C Define FFREAD cbanne~ buffer size.
C A~~o" 50 card images.

XNTEGER FFBOF
PARAMETER (FFBtJF = 1000)

C. Define ~ock size (wo:r:ds) for !'FREAD channel data transfers.
C Ose card i.mages---FFREAD defau~t va~ue.

XNTEGER FFBLlt
PARAMETER (FFBLlt

+ltEEP,BCDCZCPS.

= 20)

C Define parameters for !'Z channe~ CPS interface.

C Define FZ channe~ transfer "~ogica~ units".

XNTEGER CZLONX
PARAMETER (CZLONX
XNTEGER CZLONO
PARAMETER (CZLONO

= 999)

= 998)

C Define CPS b~ock number for FZ channe~ transfers.

XNTEGER CPSFZ
PARAMETER (CPSFZ = 999)

C Define FZ cbanne~ buffer size.

XNTEGER CZBOF
PARAMETER (CZBtJF = 524288)

C Oaf ina ~ock si ze (wo:r:ds) for FZ channel dat a t zan sfea.
C 900 wo:r:ds is ZEBRA defau~t; DUst be DU~tiple of 90 wo:r:ds.

XNTEGER CZBLlt
PARAMETER (CZBLlt

+ltEEP,BCDEVCPS.

= 900)

C Define CPS b~ock number for EVTGEN interface.

10

INTEGER CP SEVT
PARAMETER (CP SEVT = 1)

+KEEP,CPSEXT.
C External declarations for CZ/CPS BBOOlt4 modifications.

EXTERNAL BMDIR
EXTERNAL BRDIR
EXTERNAL BUILB
EXTERNAL 0001'
EXTERNAL BRZCD
EXTERNAL BRZOOT

+KEEP,CZSOClt.
COMMON /CZSOClt/ LONCZ, IADCPS

4.2 CONTROL decks

Only three subroutines from the BCD GEANT3 uniprocessor event simulation required

modification for the BCD/CPS event-parallel CON'l'ROL process. These subroutines are

• UGINI'l'-user-supplied GEANT3 initialization subroutine

• GRUN-GEANT3 event processing loop

• UGLAS'l'-user-supplied GEANT3 termination subroutine.

These subroutines are presented in the following subsections. In addition, cosmetic changes
(comments) were applied to the main program; it is shown below to remind the user of the general
GEANT3 job structure.

4.2.1 BCDINIT

Program BCDINIT is the CON'l'ROL program for the BCD/CPS event-parallel GEANT3

simulation. Details of the CPS customization are hidden within subroutines UGINIT, GRUB and

UGLAST. BCDINIT is a typical GEANTI main program.

+DEClt,BCDINIT.
PROGRAM BCDINIT

C.
C.

* *

C. * CONTROL (initialization) process for CPS version of *
C. * BCD GEANT3 simulation. *

* * Ose with GEANT 3.14 and HBOOIt4.

* * Author:
* Date:

*

Lee Roberts
April 20, 1991

*
*
*
*
*
*

C.
C.
C.
C.
C.
C.
C. ***

+SEQ,OSERBXT.
+SEQ,BCDBXT.
+SEQ,CPSEXT.

11

C Provide adequate storage for GEANT3 and BBOOK4.

PARAMETER (NG=1000000,NB=500000)

COMMON /GCBANIC./ Q (NG)
COMMON /PAWC/ B (NB)

C Al.locate memory for ZEBRA and BBOOK4.

CALL GZEBRA (NG)
CALL BLIMIT(-NB)

C Initialization phase.

CALL OGINIT

C Processing phase.

CALL GRON

C Termination phase.

CALL OGLAST

END

4.2.2 UGINIT

Customization of subroutine OGINIT for the BCD/CPS event-parallel simulation required the
addition of CPS initialization features. In addition to local initialization of the CPS software, the
CONTROL process coordinates the initialization of the other CPS processes in the job.

The most intensive of these activities is the initialization of the GENERATE event generation
processes. These processes acquire their FFREAD initialization data cards, their GEANT3
initialization data structures, and the BCD dipole field maps from the CONTROL process. In
addition, any user-defined histograms are transferred to the GENERATE processes via the CPS
ZEBRA Server.

Some of the code shown below is clearly specific to the BCD GEANT3 application. However,
for completeness of the example, all of the code is present.

+DECK,UGINIT.

C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.

SOBROOTIHB OGINIT

* *
* GEAHT3 initia~ization *
* standard GEAHT3 variab~e initia~ization *
* c~aim 'I./O units 15--29 for LOM'I.TS , JOH'I.TS *
*
*
*
*
*
*

read FFREAD data cards
materia~ definition
partic~e definition
geometry setup
physics initia~ization

book HBOOX4 histograms

12

*
*
*
*
*
*

* * CPS initia~ization (via CZ/CPS)

*
*
*
*
*
*
*
*
*

dec~are CPS memory b~ocks for FFREAD and CZ/CPS
read FFREAD data cards for GENERATE processes
write GEAN'r3 INITia~ization data to GENERATB processes
write BCD magnetic fie~d maps to GENERATE processes
initia~ize EVTGEN processes
initia~ize OUTPUT processes
write HBOOK4 histograms to GENERATE processes
initia~ize GENERATE random number sequences

* Author: Lee Roberts
April 23, 1991 * Date:

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c. ***

l:NCLUDE ' acp _user. inc'

+SEQ,GCBANK.
+SEQ,GCI'LAG.
+SEQ,GCLl:S'1'.
+SEQ,GCtJNl:'1'.
+SEQ,'1'tJNl:'1'S.
+SEQ,GCNtJK.
+SEQ,BCDI'I'.
+SEQ,CZSOCK.
+SEQ,BCDCLASS.
+SEQ,BCDQtJEtJE.
+SEQ,BCDRStJB.
+SBQ,BCDI'I'CPS.
+SEQ,CI'I'BtJF.
+SEQ,BCDCZCPS.
+SEQ,CCZBtJl'.

EX'1'ERNAL CZBtJl'R
EX'1'ERNAL CZCP S

l:N'1'EGER LFI'BtJl'(I'FBtJF)
EQtJl:VALENCE (MI'FBtJI',LI'FBtJF)
l:N'1'EGER LCZBtJF(CZBtJF)
EQtJl:VALENCB (KCZBtJI',LCZBtJF)

l:N'1'BGBR l:QOBS'1'(lOO)
COMMON /QOBS'1' / l:QtJES'1'

COIIMON /FLDMAP / JBI'LD (2)
l:N'1'EGBR JBI'LD

l:N'1'BGER l:DEN'1',l:ER,l:FLAG
CHARAC'1'ER*4 KEYS (20)
CHARAC'1'ER*80 E!IV

l:N'1'EGER l:DEAD (32) , NDEAD
CHARAC '1'ER * 4 CS'1'OP
l:N'1'EGER l:NAME (20)

13

INTEGER IERROR
CBARACTER*(4*FFBLK) STRING

C Initial.ize CPS software.

CALL ACP INIT

C Initial.ize GEANT3 variabl.es.

CALL GINIT

C Define FORTRAN l.ogical. units for I/O.
C LIN =~ 5
C LaJT =~ 6
C ZEBRA I/O (Fz/RZ) (Xl WNITS.
C LUNITS (1) ~ FZ Gl!'.AN'l'3 inp1t.
C LUNITS (2) ~ FZ Gl!'.AN'l'3 output --- _ 0000'1'
C LUNITS (3) ~ RZ BBOC1t4 histogram storage see OOLAST
C LUNITS (4) ~ RZ IAGNET field map
C Standazd (fozmatted) I/O on ~NITS.
C JON ITS (1) ~ BCD extended paz:ticl.e decay database
C JON ITS (2) ~ user modificatiCXlS to BCD extendecl decay table
C JON ITS (3) ~ FFRDD inp1t for CPS CXRTROL PZOOBSS
C JON ITS (4) ~ FFRDD inp1t for CPS G&:NERAD! process

LIN = 5
LOOT = 6
DO 100 I = 0 , 4

100 LONITS(I+l) = 15 + I
DO 200 I = 0 , 9

200 JONITS(I+l) = 20 + I

C Define envi.ronment names for fil.e access.

LNAMES (1) = 'GEANT FZIN'
LNAMES (2) = 'GEANT-FZOOT'
LNAMES(3) = ' GEANT-BBOOK4 '
LNAMES (4) = 'GEANT-KAGNET'
JNAMES (1) = 'PARTICLE DATABASE'
JNAMES (2) = 'OSER PARTICLE DATABASE'
JNAMES (3) = 'FFREAD CONTROL'
JNAMES (4) = 'FFREAD-GENERATE'

C Allow user-defi.Dad !'FREAD data cazels. Define in OOI'I'KY.

CALL OGFFKY

C Procl.aim.

WRITE (CBKAIL, , (lX,A52)')
' ***** BCDCPS version 1.02 <==> April. 23, 1991 *****,

CALL GNAIL(O,O)

C Read data cards.

14

CALL GETENVF (JNAMES (3) (1:LENOCC(JNAMES(3»),BNV)
IF (ENV .EQ.' ') BNV=JNAMES (3)
OPEN(ONIT=JUNITS(3),FILB=ENV,STATOS='OLD')
CALL FFSBT('LINP' ,JUNITS(3»
CALL GFFGO
CLOSE(JONITS(3»

C Initialize data structures.

CALL GZINIT

C Open FZ files for GEAHT input and output, if requested.

IF (NGET • GT . 0) TBEN

C Ose environment name (or file name) in LHAKBS (1) for FZ
input.

C Assume binary eXchange mode.

CALL GETENVF (LNAMES (1) (l:LENOCC(LNAMES(l»),ENV)
IF (ENV .EQ.' ') ENV=LNAMES (1)
CALL CFOPEN(LOHPTR,0,900,'r' ,O,ENV,ISTAT)
IQOEST(l) = LOHPTR
CALL GOPBN(LOHITS(l), 'LXI' ,O,IER)

C Get GEANT initialization, if reque.ted.

DO 300 I = 1, NGET
CALL OBTOC(LGET(I),4,KEYS(I),4)

300 CONTINOE
CALL GGET(ABS(LOHITS(l»,KEYS,-NGET,IDENT,IER)

END IF

C Initialize standard GEAHT3 internal histograms •

IF (NBSTA. GT • 0) CALL GBBSTA

C Load standard GJi'AHT3 materials and. BCD materials.

CALL GMATB
CALL OGMATE

C Ose BCD extended particle decay table.
C JPARr is booked during first GSPAR.T call with space for NPARr particles.

DART = 225
CALL OGPART

C Define the geometrical setup.

CALL OGEOK

C Compute eros s section and energy loss tables.

CALL GPBYSI

C Book user histograms.

15

CALL OGBOOK

C Declare CPS block for :&'FREAD data card distribution via CPS.

CALL ACP_DECLARE_BLOCK(MFFBOF,4*FFBOF,CPSFF)

C Transfer 1'FR.l!'AD cams for GENERATE processes to ~ocal IDBDDry buffer.

J:FFOFF = °
CALL GETENVF(JNAMES(4) (1:LENOCC(JNAMES(4»),ENV)
J:F (ENV. EQ. ' ') ENV=JNAMI!S (4)
OPEN (ONJ:T=JONJ:TS (4) , I'J:LE=ENV , STATOS = ' OLD')

400 READ(ONJ:T=JONJ:TS(4), , (A)',END = 500) STRJ:NG
CALL OCTOB(STRJ:NG,MFFBOI'(1+J:I'FOFF),4,4*FFBLK)
J:FFOFF = J:FFOFF + FFBLK
GOTO 400

500 CLOSE (JONJ:TS (4»
CALL ACP_SYNC(ACP$ALL_PROCESSES,O)

C Declare CPS block for FZ cbanne1 COllllUnicat~caa via CPS.

CALL
CALL
CALL

ACP DECLARE BLOCK(MCZBOI',4*CZBOF,CPSFZ)
CZCPSJ:('CPSBOF',CPSFZ)
CZCPSJ:('BOFLEN',4*CZBOI')

C Transfer GEAN'l' data structures to ~oca~ memory buffer.

CALL CZCPSJ:('OFFSET',O)
CALL GOPEN(CZLONO,'COSO',CZBLK,J:ERROR)
CALL FZBOOK(CZLONO,CZBOFR,J:DOMNY)
CALL GSAVE(CZLONO,'J:NJ:T',-~,O,J:ERROR)
J:I' (J:ERROR. HE. 0) TBEN

1IRJ:TE (CEDIAIL, *) 'Error writing J:NI:Ti.alization data .J:ERROR = "
• J:ERROR

CALL GMAJ:L(O,O)
ENDJ:I'
CALL GCLOSE (CZLONO, J:ERROR)

C Sync:brcnize CXlTmoL and GERERA'lZ processes after data structure
C transfer to ~oca~ memory buffer.

CALL ACP_SYNC(ACP_SET_OI'_PROCESSES (3,CXlTmoL,GENSGI,GERDEC),~)

C Sync:brcm.ize CXlTmoL and GERERA'lZ processes after GENERATE pxocesses
C have oomp1.eted transfers from 1.ooa1. memory buffer.

CALL ACP _ smc (AcP _SET _CR _PROCESSES (3, CCIft'R)L, GBNSGJ:, GENDE) ,2)

C Transfer maqneti.c field uaps to GENERATE processes, ~f necessary.

J:F (J:FJ:ELD.EQ.l) TBEN
CALL CZCPSJ:('OFFSET',O)
CALL FZFJ:LB(CZLONO,CZBLK,'COSO')
CALL I'ZBOOK(CZLONO,CZBOFR,J:DOMNY)
CALL FZOOT(CZLONO,J:XCONS,JBI'LD(l),O,' ',2,0,0)
CALL FZOOT(CZLONO,J:XCONS,JBFLD(2),0,' , ,2,0,0)
CALL I'ZENDO(CZLONO,'T')
CALL ACP_BmC (ACP_SET_OF_PBOCESSES (3, CXlTmoL,GENSGI, GE:NIEC) ,3)

16

CALL ACP SYNC (ACP SET OF PRX:ESSES (3, Can~OL,GENSGI, GENDEC), 4)
ENDII' - - --

C P~ace EVTGEN processes on queue.

CALL ACP ~tJB PROCESS(ACP SET OF PRX:ESSES (1, EV'l'GEN),
I QEVTGEN, ISRC) - --

C Initialize OOTPOT processes.

CALL GETENVF (LNAMES (2) (1:LENOCC(LNAMES(2»),ENV)
IF (ENV .EQ.' ') ENV=LNAMES (2)
LENV = LENOCC (ENV)
llIED = 0
IBLOClt = CZBLlt
INBOF = 0
ICLASS = CONTROL
CALL ACP JOB INI'0(1,OOTPOT,IPROC1,IPROCN)
CALL ACP-DEAD PROCESS INI'0(ICLASS,32,IDEAD,NDEAD)
DO 600 IPROC -; IPROC1-; IPROC1+IPROCN-1

IF (IOCOMP (IPROC, IDEAD,NDEAD) .EQ.O) THEN
IF(IPROCN.G'l' .1) WIlI'l'E (ENV(LENV+1 :LENV+2), , (12.2)')

I IPROC-IPROC1
CALL OCTOH (ENV, INAME, 4, 80)
CALL ACP CALL(IPROC,ACP$WAIT,RCREATE,

I INAJIE,l:MED, IBLOClt, INBOI', ICLASS)
END IF

600 CONTINOE

C Save GEANT .in.it.ia~izat.ion, if requested.

II' (NSAVE. GT. 0) THEN
DO 700 I = 1, NSAVE

CALL OHTOC(LSAVE(I),4,ltEYS(I),4)
700 CONTINOE

CALL GOPEN(LONITS(2),'COSO',CZBLlt,IERROR)
CALL I'ZHOOlt(LONITS(2),CZCPS,IDOMMY)
CALL CZCPSI('OI'I'SET',O)
CALL CZCPSI (' SE'l'PR)' ,ACP SET CR' PROCESSES(l ,c:xnpo'l')
CALL GSAVE(LONITS(2),ltEYS,-NSAVE,0,IER)
CALL CZCPSR('OI'I'SET',IOI'I')
NPHR = 101'1' I (4 *CZBLlt)
CALL ACP CALL(ACP SET CR PRcx::BSSES (1,0t71'Pt7.r) ,QOt71'Pt7.r, lOJ'lBLlt,

I NPHR1 - --
END II'

C In.itia~.ize CPS ZEBRA server.

CALL I'ZI'ILE(CZLONO,CZBLlt,'COSO')
CALL I'ZI'ILE(CZLONI,CZBLlt,'CISO')
CALL I'ZHOOlt(CZLONO,CZBOI'R,IDOMMY)
CALL I'ZHOOlt(CZLONI,CZBOI'R,IDOMMY)
IADCPS=JOMPAD(CZBOI'R)
CALL JOMPST (IADCPS)
CALL CZCPSI('REMSOB' ,RZSCPS)

17

C
C
C

Tran.f.r hi.tograms to GENERATE proc ••••••
Initia.liz. GEANT3 random numb.r g.n.rator u.ing sequences
ava.i.labl.e .in GaNONQ. Se1ect sequence via CPS proce •• IPnber.

DO 900 ICLASS = GENSGI, GENDEC
CALL ACP JOB INFO(l,ICLASS,ISTART,ICOUNT)
CALL ACP-DEAD PROCESS INFO(ICLASS,32,IDBAD,NDBAD)
DO 800 IPROC == ISTART, ISTART+ICOUNT-l

IF (IOCOMP (IPROC, IDEAD,NDEAD) .BQ.O) TBBN
WRITB(CBTOP,' (14.4)') IPROC
CALL BRFILE(IPROC,CBTOP,'G')
CALL BROOT (0, ICYCLB,' ')
CALL BREND (CBTOP)
NRNDKl. = IPROC
NRNDII2 = 0
CALL ACP QOBtB PROCESS(IPROC,QCZNI!!R, IDRIJN,IIBVT,

I NRNDIU', NRNDM2)
ENDIF

800 CONTINOB
900 CONTINOE

RETORN
END

4.2.3 GRUN

Subroutine GRUN controls the GEANT3 event loop. For CPS applications, the action contained

within the event loop may be placed in a CPS remote subroutine in a class of "as many as possible"
processes. In this case, the event loop may be transformed into a loop which dequeues inactive

remote subroutine servers and restarts them via a remote subroutine call using the "call-and-queue"
mechanism. This approach has been taken in the BCD/CPS event-parallel simulation. The event

action from the uniprocessor GRON is now contained in subroutine GBVBNT in each of the

GENERATE event generation servers. Subroutine GRUN merely passes run identification number,

event sequence number, and random generator seeds at each remote subroutine call and counts events

until the event loop is finished. Before returning, GlWN waits for all CPS remote subroutine server

queues to fill, thus guaranteeing that all processing has fmished.

+DBClt,GRUN.

C.
C.
C.
C.
C.
C.
C.
C.
C.
C.

SOBROOTINE GRUR

**
* * * Steering routine to process a11 the events *
* Adapted from standard GEAN'1'3 subroutine GRON for CPS usage. *
*
* * Author:
* Date:

*

Lee Roberts
January 7, 1991

*
*
*
*
* **

INCLUDE ' acp _user. inc'

18

+SEQ,GCFLAG
+SEQ,GCTIME
+SEQ,BCDQUEUE
+SEQ,BCDRSUB

C.

INTEGER RUNID, EVTID

SAVE IFIRST
DATA IFIRST /0/

C.--
C.
C lteep starting time
C

C
C
C

C
C
C

C

C
C
C

C

IF(IFIRST.EQ.O)TBEN
IFIRST==l
CALL TIMEX (TIMINT)

EHDIF

Dequeue event generati.on process

Generate next event

EVTID == IDEVT
CALL ACP_CALL(IPROC,QCZNER, RZVEN'l', RDNm, EVTm, NRNII4l ,NR1D42)

IDEVT == IDEVT + 1
IEVENT == IEVERT + 1
IF(IEVENT.LE.BEVENT)GO TO 10

End of run

IEORUN == 1
90 IEVENT==IEVENT - 1

CALL ACP WAIT QUEUE(QGEBER,ACP$FULL)
CALL ACP-WAIT-QUBUE(QEVTGBN,ACP$FULL)
CALL ACP WAIT QUBUB(QOUTPUT,ACP$FULL)

99 RETURN
BND

'.2.4 UGLAST

Customization of subroutine OGLAST for the BCD/CPS event-parallel simulation required the

'tion of CPS termination features. Subroutine UGLAST accumulates HBOOK4 histograms from

1:BERATE processes using the CPS ZEBRA Server. These accumulated subroutines are

in the CPS job manager logfile and are written into an HBOOK4 direct-access (RZ) file. In

all "slave" remote subroutine servers are methodically fmished via their remote subroutine

FIB~

logflle.

'terface, allowing process statistics and output to be collected into the CPS job manager

~y, the CPS job is terminated.

19

+DECK,OGLAST.
SOBROOTINE OGLAST

C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.

*
*
*
*
*
*
*
*
*
*
*
*

CPS/GEANT3 termination routine.
ca~~ GLAST for GEANT3 termination
c~ose GEANT3 FZ input and output fi~es
co~~ect BBOOK4 histoqrams from GENERATE processes
print HBOOK4 histoqrams
create RZ fi~e of HBOOK4 histoqrama
finish execution of CPS subroutine servers

Author: Lee Roberts
Date: Apri~ 23, 1991

*
*
*
*
*
*
*
*
*
*
*
*

J:NCLODE ' acp _user. inc'

+SEQ,GCLJ:ST.
+SEQ,GCONJ:T.
+SEQ,TONITS.
+SEQ,BCDCZCPS.
+SEQ,BCDCLASS.
+SEQ,BCDQOEOE.
+SEQ,BCDRSOB.

C

J:HTEGER J:ER,J:PROC,J:OFF,NPBR
CHARACTER* 8 0 ENV
CHARACTER*4 CBTOP
J:NTEGER RONJ:D,EVTJ:D,NRNDM1,NRNDM2

CALL GLAST

Close FZ files for GEART input and output, if

J:F (NGET.GT.O) CALL GCLOSE(LONJ:TS(l),J:ER)
J:F (NSAVB. GT. 0) TBEN

requested.

100 CALL ACP DEQOEOE J:F POSSJ:BLE(J:PROC,QOOTPOT,NPBR)
J:F (J:PRoC:RE.ACP$EMPTY) GOTO 100
CALL CZCPSJ:('OFFSET',O)
CALL era SI (, SB'l'PaO' , K:P SE T OF PlU)CZS SES (1. ,OO'.EPtJT»
CALL GCLOSE (LONJ:TS (2)-;J:BR) -
CALL CZCPSR('OFFSET' ,J:OFF)
NPBR = J:OFFI (4*CZBLK)
CALL ACP CALL(ACP SET CR mCXZSSES(l,OO'l'PO'r) ,QOO'l'PO'r, lOJ'lBLK,

, EBR) - - --
CALL ACP WAJ:T QOBOE(QOOTPOT,ACP$FOLL)

ENDJ:F --

C Collect histoqram..

20

200 CONTXNUE
CALL ACP DEQUEUE XF POSSXBLE (XPROC,QGENER,RONXD, EVTXD,

NRNDMl. ;NRNDN2) - -
XF (XPROC . EQ . ACP $BJCPTY) GO TO 300
WRXTE(CBTOP,' (X,.,)') XPROC
CALL BRFXLE(XPROC,CBTOP,'G')
CALL BRXN(0,1,99999)
CALL SUND (CSTOP)
GOTO 200

300 CALL ACP OlEtE PROCZSS(ACP SET OF PRX:ESSES (2, GENSGl: ,GE1I)EC),
QGENER,XDRUN,XDEVT,NRNDM~,NRNDM2)

C Output histograms .

CALL SXSTDO

C Save histograma in an RZ fi1e .
C Use environment name (or fi1ename) in LNAMES for storage.

LRECL=102'
CALL GETENVF (LNAMBS (3) (1:LENOCC(LNAMBS(3»),ENV)
XF (ENV .EQ.' ') ENV=LNAMES(3)
CALL RZOPEN(LONXTS(3),'BBOOK',ENV,'N',LUCL,XSTAT)
CALL BRFXLE(LONXTS(3),'SBOOK' ,'NX')
CALL SROUT (0, XCYCLE, , ,)
CALL SUND (, SBOOK')
CLOSE(LUNXTS(3»

C Finish this CPS process.

CLOSE (6)

C Finish EVTGEN processes.

'00 CONTXNUE
CALL ACP DEQUEUE IF POSSXBLE(XPROC,QEVTGEN,XSRC)
XF (IPRoc.EQ.ACP$EMPTy) GOTO 500
CALL ACP CALL(XPROC,ACP$WAXT,RFXNXSS)
GOTO '00-

500 CONTXNUE

C Finish OUTPUT processes.

600 CONTXNUE
CALL ACP DEQUEUE IF POSSXBLE(XPROC,QOUTPUT,NPSR)
XF (XPROC-:EQ.ACP$EMPTY) GOTO 700
CALL ACP CALL(XPROC,ACP$WAXT,RFXNXSS)
GOTO 600-

700 CONTXNUE

C Finish GENERATE processes.

800 CONTXNUE
CALL ACP DEQUEUE IF POSSIBLE (IPROC,QGENER,IDRON,XDEVT,

I NRNDMl. ~NRNDM2) - -
XF (XPROC.EQ.ACP$EMPTY) GOTO 900
CALL ACP CALL(XPROC,ACP$WAXT,RFXNXSS)
GOTO 800-

900 CONTXNUE

21

C Stop this CPS job.

CALL ACP _STOP_JOB

END

4.3 GENERATE decks

Program BCDGEN is the "as many as possible" program for the BCD/CPS event-parallel
GEANT3 simulation. After initialization by the CON'l'ROL process, program BCDGEN is a "slave"

remote subroutine server capable of GEANT3 event generation and ZEBRA Server histogram
manipulations. All input and output is performed via CPS or CVCPS through other CPS process
classes. As a result, several BCD GEANT3 uniprocessor subroutines required modification for CPS
or CZlCPS I/O. In addition, the event action from the standard GEANT3 event loop is added as a

remote subroutine. Creation of the BCD/CPS GENERATE process resulted in the addition or

modification of the following subroutines:

• BCDGEN-main program for GEANT3 event generation server

• UGINIT-user-supplied GEANT3 initialization subroutine

• GEVENT-GEANT3 event processing action

• GOOUT-user-supplied GEANT3 event output subroutine

• GUPYTBIA-BCD GEANTI interface to PYTHIA 5.5

• GOlBA-BCD GEANT3 interface to ISAJET 6.36

• FINISH-remote subroutine server tennination subroutine.

These subroutines are presented in the following subsections.

4.3.1 BCDGEN

CPS initialization for the GENERATE class is hidden within the UGINIT subroutine. After all
initializations have been completed, this program becomes a "slave" subroutine server through the
ACP SERVICE CALLS subroutine.

+DECIC,BCDGEN.

C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.

PROGRAJI BCDGEN

* * * GENERATB (event qeneration) process for CPS version of *
* BCD GEANT3 simulation. *
*
*
*
*
*
*

Ose with GEANT 3.14 and BBOOlt4.

Author:
Date:

Lee Roberts
April 20, 1991

*
*
*
*
*
* ***

22

+SEQ,USEREXT.
+SEQ,BCDEXT.
+SEQ,CPSEXT.

C Provide adequate storaqe for GEANT3 and BBOOlt4.

PARAMETER (NG=1000000,NB=500000)

COMMON /GCBAlfI(/ Q (NG)
COMMON /PAWC/ B (NB)

C Set time l.imi. t for process.

CALL TIMEST(86400.)

C Al.l.ocate memory for ZEBRA and BBOOlt4.

CALL GZEBRA(NG)
CALL BLIKIT(-NB)

C Initial.isation phase.

CALL UGINIT

C Procesainq phaae.

CALL ACP_SERVICE_CALLS

END

4.3.2 UGINIT

Customization of subroutine tJGINIT for the BCD/CPS GENERATE process required the

addition of CPS initializations and the adaptation of input codes to read from the CON'l'ROL process

via CZ/CPS. FFREAD data cards for the GENERATE process are read via the distributed FFREAD

facility of CZ/CPS. The basic GEANT3 initializations in GINIT and GZINIT are perfonned, but

the GEANTI initialization data structures are obtained via CZ/CPS from the FZ "me" located in the

CONTROL process. The BCD dipole field maps are input in a similar fashion. After initializing the

FZ channel for FZ event output and the CPS ZEBRA Server, UGINIT perfonns the standard

physics initializations before returning.

+DEClt,UGINIT.
SUBROUTINB UGINIT

C.
C.
C.
c.
C.
c.
c.
c.
C.

**
* * CPS/GBANT3 initialization

*
*
*
*
*
*

- declare CPS remote subroutines and queues
- standard GBANT3 variable initialization
- claim I/O units 15--19 for LUHITS
- read I'I'READ data carda via CPS
- read GBANT3 INITialization data via CZ/CPS
- read BCD magnetic field maps via CZ/CPS

23

*
*
*
*
*
*
*
*

*
*
*

- initialize CPS ZEBRA server
physics initialization

* Author:
* Date:

Lee Roberts
January 7, 1991

*
*
*
*
*

C.
C.
C.
C.
C.
C.
C.

* *
**

INCLUDE 'acp_uaer.inc'

+SEQ,GCBANlt.
+SEQ,GCUNIT.
+SEQ,BCDFF.
+SEQ,CZSOClt.
+SEQ,BCDCLASS.
+SEQ,BCDQUEUE.
+SEQ,BCDRSUB.
+SEQ,BCDFFCPS.

EXTERNAL FFCP S

+SEQ,BCDCZCPS.
EXTERNAL CZCPS

COIIMON /FLDMAP / JBFLD (2)
INTEGER JBFLD

INTEGER IDENT,IDUIIMY,IERROR

EXTERNAL ZSCPS
EXTERNAL GEVENT
EXTERNAL FINISH

C Initial.ize CPS aoftware.

ACP INIT CALL
CALL
CALL
CALL
CALL

ACP-DECLARE SUBROUTINE(ZSCPS,RZSCPS,3,80,4,4)
N:P DECLARE DlOJTINE (GEVEN'l', lGEVEN'l', 4, 4 ,4, 4, 4)
ACP DECLARE_SUBROUTINE(FINISH,RFINISH,O)
ACP_DECLARE_QUEUE(QGENER,4,4,4,4,4)

C Initial.ize GEANT3 variabl.ea.

CALL GINIT

C Define FOR.TRAN ~ogica~ units for r./O.
C LIN => 5
CLOUT ==> 6
C ZEBRA I/O (FZ/RZ) on LUNITS.
C LUNITS (1) ==> FZ GEANT3 input.
C LUNITS (2) ==> FZ GEANT3 output --- aee UGOUT

LIN = 5
LOUT = 6
DO 100 I = 0 , 4

100 LUNITS(I+1) = 15 + I

C Allow uaer-definad ITREAD data cuda. Defina in UGFFltY.

CALL UGFFltY

24

C a:.tain ITREAD data cams frem I18J11Ory buffer CD CXBmDL pJ:OCess.
C Set al.ternate ilplt subroutine to allow FFREAD input via CPS.
C Define source and target classes to al.low prClper data conversi.on.

CALL FFSET('LINP',-FFLON)
CALL FFRSET (FFLON, FFCPS)

C Declare CPS block for FFREAD communication. via CPS.

CALL
CALL
CALL
CALL

FFCPSI('CPSBOF' ,CPSFF)
FFCPSI('BOFLEN',4*FFBOF)
ACP JOB IHFO(1,CONTROL,IPROC1,IPROCN)
FFCPSI('SETPRO',IPROC1)

C Sync:hron.ize CXBmoL and GlHERA'!lB proce to allow FI'READ carda
C to be written into memory buffer on CONTROL proce ••.

C Read data carda.

CALL FFCPSI (' OFFSET' ,0)
CALL GFFGO

C Initialize data .tructure •.

CALL GZINIT

C Sync:hron.ize CXBmDL and GlHERAD! processes to allow data atzuctum.
to be written into memory buffer on CONTROL proce ••.

CALL ACP_SDlC(ACP_SB'l'_CE'_PRcx::BSSES (3, CXB'mOL,GDlSGI, GlHIEC) ,1)

C Declare CPS block for FZ channel CODllllniCat.iona v.ia CPS.

CALL
CALL
CALL
CALL

CZCPSI('CPSBOF',CPSFZ)
CZCPSI('BOFLEH' ,4*CZBOF)
ACP JOB IRFO(1,CONTROL,IPROC1,IPROCN)
CZCPSI ('SETPRO' , IPROC1)

C Read GEANT INITialization data .tructure. from FZ channel.

CALL CZCPSI('OFFSET' ,0)
CALL GOPBN(CZLONI,'CISO',CZBLX,IERROR)
CALL FZBOOX(CZLONI,CZCPS,IDOMNY)
CALL GGBT(CZLONI,'INIT',-l,IDENT,IERROR)
IF (IERROR. HE . 0) TBEN

1IRJ: m (0IMA1:L, *) 'I::a:or reading %H%T i.al.i.za tiOD dat; •• mmu>R = "
• IBRROR

CALL GKAIL(O,O)
ENDIF
CALL GCLOSE (CZLONI, IERROR)

C Synchronize proce •• e. when tran.fer. have fini.hed.

C Transfer maqnetic field maps to GENERAD! proce.se., if neoessazy.

25

IF (IFIELD . EQ . 1) '1'HEN
CALL ACP S!NC(ACP SE'1' CR PRCX!BSSES (3, cx:BmDL,GEHSGI, GE:NDEC),3)
CALL CZCPSI (' OFFSET' ,(»
CALL FZFILE(CZLONI,CZBLK,'CISO')
CALL FZHOOK(CZLONI,CZCPS,IDOMNY)
CALL KZLINlt(IXCCBS,' lFUJJIIAP I' ,.:JBFUJ (1) ,olBFUJ (2) ,olBFID (1))
CALL FZIN(CZLONI,IXCONS,JBFLD(l),l,' , ,0,0)
CALL FZIN(CZLONI,IXCONS,JBFLD(2),1,' , ,0,0)
CALL FZENDI(CZLONI,''1'')
CALL ACP_S!NC(ACP_SE'1'_CR_PRCX!BSSES (3, cx:BmDL,GEHSGI, GE:NIEC) 4)

ENDIF

C Open FZ Channel for GEAN'1' FZ event output.

CALL GOPEN(LONI'1'S(2) ,'COSO',CZBLK,IERROR)
CALL FZHOOK(LONI'1'S(2),CZCPS,IDOMNY)

C Ini Ualize F Z Channel Input and Out put media for HBOOlt41 ZEBRA
C Server communications.

CALL
CALL
CALL
CALL

FZFILE(CZLONO,CZBLK,'COSO')
FZFILE(CZLONI,CZBLK,'CISO')
FZHOOK(CZLONO,CZCPS,IDOMNY)
FZHOOK(CZLONI,CZCPS,IDOMNY)

C Define channel handler address for CZ oommmicatioDS interface.

IADCPS = JOMPAD (CZCPS)

CALL JOKPS'1' (IADCP S)

C Compute cross section and energy loss tables.

CALL GPHYSI

RE'1'ORN
END

4.3.3 GEVENT

Subroutine GEVEN'1' is the "heart" of the BCD/CPS event-parallel simulation. GEVEN'1'

contains the action which must be parallelized across "as many as possible" processors. This action is

the GEANT3 event trigger-the tracking of an event through the detector, the storing of hits, and the

calculation of detector digitizations. Subroutine GEVEN'l' is an adaptation of the standard GEANT3

subroutine GRUR. Additional parameters have been added for CPS parallelization to specify the run

identification number, the event sequence number, and the random generator seeds for the GEANT3

event.

26

+DECK,GEVEN'1'.

C.
C.
C.
C.
C.
C.
C.
C.
C.

SUBROUTINE GEVEN'1'(RURID,EV'1'ID,NRNDM1,NRNDM2)

* * * Steering routine to process a single CPS event. *
* Adapted fJXlll atandcm:l CZAN'l'3 sub%OUtine GmlN for CPS usage *
* * * Author:
* Date:
*

Lee Roberts
January 7, 1991

*
*
*

INTEGER RURID, BV'1'ID, NRNDMl, NRNDM2

INCLUDE ' acp _user. inc'

+SEQ,GCFLAG.
+SEQ,GC'1'IME.

C.

SAVE IFIRS'1'
DATA IFIRST/O/

c. --
C.
C Assign event-specific values
C

C
C
C

C
C
C

C
C

IDRUN=RUNID
IDBVT=BVTID
NRNDM(1)=NRNDM1
NRNDM (2) =NRNDM2

Initialize the random number generator

IF (NRNDM(2) .NE.O)TBEN
CALL GRNDMQ(NRNDM(1),NRNDM(2),1, 'S')
GO '1'0 1

ENDIF
IF (NRNDM(l) .G'1'.O)'1'BEN

ISBQ=NRNDM (1)
CALL GRNDMQ(NRNDM(1),NRNDM(2),ISBQ,'Q')
CALL GRNDMQ(NRNDM(1),NRNDM(2),ISEQ,'S')
GO '1'0 1

BNDIF
1 CCR'l'INtJE

Keep starting time

IF (IFIRS'1'.BQ.0) '1'BEN
IFIRS'1'=l
CALL TIMEX (TIMIN'1')

END II'

Initialize event partition

27

C

C
C
C

C

CALL GTRXGX

Process one event (trigger)

CALL GTRXG

C C1ear event partition
C

CALL GTRXGC
C

XF(XEORUB.NE.0) TBEN
CALL ACP FATAL PROCESS ERROR(ACP$TBXS PROCESS,

I ' XEORUB -nonzero. Stop - worker. ') -
ENDXF

C
C Update input parameters
C

C

C

RUBXD=XDRUN
EVTXD=:tDBVT
CALL GRNDMQ(NRNDM(1),NRNDM(2),O,'G')
NRNDM1=NRNDM(1)
NRNDM2=NRNDM(2)

:tEVENT = XEVENT + 1

99 RETURN
END

4.3.4 GUOUT

Subroutine GUOUT defines the interface between the GENERATE event generation processes

and the OUTPUT event output collectors. After a "ready" OUTPUT process is dequeued, the

selected GEANT3 event data structures are written as FZ sequential output into the CZJCPS memory

buffer in the OUTPUT process. Finally and asynchronously, the OUTPUT process is instructed to

transfer the FZ event data to disk (or tape) before queuing itself as "ready" for another event.

+DECIt,GUOUT.

C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.

SUBROUTXNE GUOUT

* * * User routine ca11ed at the end of each event. *
*
*
*
*
*
*
*
*

BCDCPS usage:
- fi11 histograms
- write FZ event output to OUTPUT server

Author:
Date:

Lee Roberts
January 7, 1991

*
*
*
*
*
*
*
*

28

+SEQ,GCFLAG.
+SEQ,GCLIST.
+SEQ,GCNOK.
+SEQ,GCONIT.
+SEQ,BCDCZCPS.
+SEQ,BCDQOEOE.
+SEQ,BCDRSOB.

C

C

C

C

C

INTEGER lER
LOGICAL START
CHARACTER*o4 KEYS (20)
DATA START I. TRUE. I
SAVE KEYS, START

REAL VERT (3), PVERT (4)
INTEGER OBOF (10)

Convert Bollerith keys to character for run

IF (START) TBEN
START = . FALSE.
DO 100 I = 1, NSAVE

CALL OBTOC(LSAVE(l),o4,KEYS(I),o4)
100 CONTINOE

END IF

Fill user-defined histograms

CALL OGFlLL

CALL

CALL
CALL
CALL
CALL
DBR

CALL

END

Attach an output process

Transfer event output to output process

CZCPSI('OFFSET' ,0)
CZCPSl('SETPRO',IPROC)
GSAVE(LOHlTS(2),KEYS,NSAVE,IDEVT,IER)
CZCPSR('OFFSET',IOFF)
= lOFF I (4 *CZBLlC)

Transfer output to file

ACP_CALL (lPROC, QOUTPOT,ROUTBLK,HPBR)

4.3.5 GUPYTHIA

Subroutine GUPYTBIA defines the interface between the GENERATE event generation

processes and the PYTHIA version of the EVTGEN event generators. After a "ready" EVTGEN

process is dequeued, a new event is generated. The particle data is transferred to the GENERATE

process and converted for introduction into GEANTI. Meanwhile, the EVTGEN process is again

"ready" and is queued.

29

+DECK,GUPYTHIA.
SUBROUTINE GOPYTHIA

C. **
C. * *
C . * PYTHIA event generator interface for BCD GEANT3 *
C. * *

* Interface to CPS EV'l'GEN event generator server

*
* Author:
* Date:

*

Lee Roberts
January 7, 1991

*
*
*
*
*

C.
C.
C.
C.
C.
C. **

INCLUDE ' acp_user. inc'

INTEGER XDKPDG
EXTERNAL XDKPDG

+SEQ,GCI'LAG.
+SEQ,GCltINE.
+SEQ,GCONST.
+SEQ,GCUNIT.
+SEQ,TUNITS.
+SEQ,PYCOII.
+SEQ,BCDEVCPS.
+SEQ,BCDQUEUE.
+SEQ,BCDRSUB.

REAL PLAB (4)
INTEGER TRltNtJII

C Use system iDitial.ization fl.ag IFD1IT(20) for G'OPYmIA iDitial.,izatial.

C
C
C
C
C
C

IF (II'INIT (20) .EQ. 0) II'INIT (20) = 1

Interface to EVTGEN event generator---PYTHIA
Attach an EVTGEN process.
Generate a PYTHIA event.
Obtain the particle data for the event.
Queue the EVTGEN process.
Convert floating point event data.

version.

CALL
CALL
CALL
CALL
CALL
CALL
CALL

ACP DEQUEUE PROCESS (IPROC,QEVTGEN, ISRC)
ACP-CALL(IPROC,ACP$WAIT,REVTGEN,ISRC)
ACP-GET(IPROC,N,240004,CPSEVT,0)
ACP-QUEUE PROCESS(IPROC,QEVTGEN,ISRC)
ACP-CLASS-INI'O(ITGT, IPROC1, IPROCN)
ACP-CONVERT(P(1,1),P(1,1),20*N,ACP$REAL 4,ISRC,ITGT)
ACP CONVERT(V(1,1),V(1,1),20*N, ACP$REAL_4, ISRC, ITGT)

C We assume all tracks come from the primary vertex.
C Loop over all particles, enter into GEANT.

30

C

300
400
500

DO 600 I= 1,N
IF (K(I,l) .GE.1.AND.K(I,1) .LE.10) THEN

ID=K(I,2)
IPART=XDKPDG(ID)
PLAB(l)=P(I,l)
PLAB(2)=P(I,2)
PLAB(3)=P(I,3)
PLAB(4)=P(I,4)
IF (IP ART. NIL 0) THEN

Do R)'l' enter part.ic1es listed ClIl JaNE data cud into simulation.

DO 300 J = 1,10
IF (PEINE (J) .EQ.BIG) GOTO 400
IF (FLOAT (IPART) .BQ.PEINE (J» GOTO 500

CONTINUB
CALL GSElNE(PLAB,IPART,l, 0, O,TRltNUM)
CONTINUB

ELSE
WRITE(CHMAIL,' (lX,A22,I5,A12,I5)')

'»»> GOPrrBIA, E'veDt ' ,mEV'l',' : Particle' ,m
CALL GMAIL(O,O)
WRITE(CHMAIL,' (15X,A15,4F16.4)') 'four momentum:' ,PLAB
CALL GMAIL(O,O)

ENDIF
BNDIF

600 CONTINUE

RETURN
END

4.3.6 GUISA

Subroutine GOISA defines the interface between the GENERATE event generation processes

and the ISAJET version of the EVTGEN event generators. After a "ready" EVTGEN process is

dequeued, a new event is generated. The particle data is transferred to the GENERATE process and

converted for introduction into GEANT3. Meanwhile, the EVTGEN process is again "ready" and is

queued.

+DEClt,GUISA.
SUBROUTINB GUISA

C. **
c. * *
c.
c.
C.
C.
C.
C.

*
*
*
*
*
*

XSAJBT event generator interface for BCD

Xnterface to CPS BVTGEN event generator

Author: Lee R.oberts
Date: January 7, 1991

GBANT3. *
*

.erver. *
*
*
*

c. * *
C. **

INCLUDE ' acp _user. i.nc'

31

INTEGER XDltI SA
EXTERNAL XDltISA

+SEQ,GCFLAG.
+SEQ,GCltINE.
+SEQ,GCONST.
+SEQ,GCONIT.
+SEQ,TONITS.
+SEQ,PARTCL.
+SEQ,BCDBVCPS.
+SBQ,BCDQOBOB.
+SEQ,BCDRSOB.

REAL PLAB (4)
INTEGBR TRKNOK

C Ose system init.ial.ization flag IFINI'l'(20) for GUJ:SA initiaJ.izatien.

IF (IFINIT (20) .BQ. 0) IFINIT (20) = 1

C Interface to BVTGli:N event genezator--ISA~ vez:aien.
C Attach an BVTGEN process.
C Generate an ISAJET event.
C Obtain the particle data for the event.
C Queue the BVTGEN process.
C Convert floating point event data.

CALL ACP DBQOBOE PROCESS(IPROC,QEVTGBN,ISRC)
CALL ACP-CALL(IPROC,ACP$WAIT,REVTGEN,ISRC)
CALL ACP-GET(IPROC,NPTCL,4*(8*KXPTCL+1),CPSEVT,0)
CALL ACP-QOBOB PROCESS(IPROC,QEVTGBN,ISRC)
CALL ACP-CLASS-INFO(ITGT,IPROC1,IPROCN)
CALL ACP cikVERT(pP'l'CL(l ,1) ,PPTCL(l ,1) ,20'*NP'l'CL,ACP$RFAL 4,

, ISRC, f"TGT) 1-

C We assume &11 tracks come from the primary vertes.
C Loop over a11 partic1es, enter into GBANT.

C

100
200
300

DO 400 I=l,NPTCL
ID=IDENT(I)
IPART=XDltISA(ID)
PLAB(l)=PPTCL(l,I)
PLAB(2)=PPTCL(2,I)
PLAB(3)=PPTCL(3,I)
PLAB(4)=PPTCL(4,I)
ZF (ZPART . HE. 0) THEN

Do)I)'l' enter particles 1.isted en KINE data caz:d .into simulation.

DO 100 J=1,10
IF (PltIBB (J) .BQ.BIG) GOTO 200
IF (FLOAT (IPART) . EQ. PltIBB (J)) GOTO 300

CONTINOB
CALL GSltINE(PLAB,IPART,l,O,O,TRltNOM)
CONTINOE

32

ELSE
WRITE(CBNAIL,' (lX,A19,I5,A12,I5)')

t ,»»> GUISA, Event' ,mEV'l',': Particle',m
CALL GNAIL (0,0)
NRITE(aDlAIL,' (l5X,Al5,4Fl6.4)') 'four-mouantum:' ,PLAB
CALL GMAIL(O,O)

END IF
4 ° ° CONTINUE

RETURN
END

4.3.7 FINISH

Subroutine FINISH contains the tennination sequence for the GENERATE event generation

servers. After adjusting the event count and printing the GEANT3 process statistics, the standard

output is closed to enable proper flushing of the output buffer to the CPS job manager 10gfIJ.e.

+DECK,FINISB.
SUBROUTINE FINISB

C.
C.
C.
C.
C.
C.
C.
C.
C.

* *
* Terminat! CD sub%OUtine for CZNERATE event genaratiCD *
* process.
*
* Author:
* Date:
*

Lee Roberts
January 7, 1991

*
*
*
*
* ***

+SEQ,GCFLAG.

C Print GEANT3 statistics and c~ose standard output.

IEORUN=1
IEVENT=IBVENT-l
CALL GLAST
CLOSE (6)
END

4.4 OUTPUT decks

The FZ output collector is a new feature introduced as part of the CPS parallelization of the BCD
GEANT3 uniprocessor simulation. The OUTPUT collector gathers FZ event outputs from the
GENERATE processes, assembling them into a common FZ sequential output file.

4.4.1 BCDOUT

Program BCDOU'l' is a pure "slave" remote subroutine server. CPS initialization includes

declaration of a large CZ/CPS memory buffer, declaration of CPS remote subroutines, and

declaration of a CPS process queue before synchronizing with all other processes and becoming a

server.

33

+DECK,BCDOOT.

C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.

PROGRAM BCDOOT

**
* *
* OOTPOT (FZ evant coll.ector) process for CPS version of *
* BCD GEANT3 a:iJlulation. *
* *
*
*
*
*
*

Ose with GEANT 3.14 and BBOOK4.

Author:Lee Roberts
Date: April 20, 1991

*
*
*
*
*

**

:INCLUDE ' acp _user. inc'

+SEQ,BCDCLASS.
+SEQ,BCDQOEOE.
+SEQ,BCDRSOB.
+SEQ,BCDCZCPS.
+SEQ,CCZBOF.

:INTEGER LCZBOF(CZBOF)
EQO:IVALENCE (MCZBOF,LCZBOF)

C Declare CPS remote subroutines.

EXTERNAL CREATE
EXTERNAL OOTBLK
EXTERNAL F:IN:ISB

C :Initialize CPS software.

CALL
CALL
CALL
CALL
CALL
CALL

CALL

ACP :IN:IT
ACP-DECLARB BLOCK(KCZBOF,4*CZBOF,CPSFZ)
ACP-DECLARB-SOBROOT:INE(CRBATE,RCRBATE,5,80,4,4,4,4)
ACP-DECLARE-SOBROOT:INE(OOTBLK,ROOTBLK,1,4)
ACP-DECLARB-SOBROOT:INE(F:IN:ISB,RF:IN:ISB,O)
ACP_DECLARB QOEOE(QOOTPOT,1,4)

ACP_SYNC(ACP$ALL_PROCESSES,O)

C Service CPS remote subroutine calls.

CALL ACP SERV:ICE CALLS

END

4.4.2 CREATE

Subroutine CREATE defines the file creation interface for the OUTPUT collector. The logical

record length and the output me name are used to open the FZ output me.

34

+DECK,CREATE.

C.
C.
C.
C.
C.
C.
C.
C.
C.

SUBROUTINE CREATE (NAME,MEDIUP, LRECP , NBUFP , SOURCE)

* *
* File c%8ation interface for FZ event output oo~l.ector. *

*
* * Author:
* Date:

*

Lee Roberts
April 20, 1991

*
*
*
*
*

INTEGER NAME (*), MEDIUP, LRECP, NBUFP, SOURCE

INCLUDE ' acp _user. inc'

INTEGER LUNPTR, MEDIUM,
COMMON / FILE / LUNPTR,

LRECL, NBUF
MEDIUM, LRECL, NBUF

INTEGER INAME (20), TARGET, ISTAT
CBARACTER*80 CHNAME

C Save medium, ~ogica~ record ~ength and I/O buffer count.

MEDIUM = MEDIUP
LRECL = LRECP
NBUF = NBUFP

C Determine FZ output fi~e name .

CALL ACP CLASS INFO(TARGET,IPROC1,IPROCN)
CALL ACP CONVERT (NAME, INAME, 80, ACP$CHARACTER, SOORCE,TARGET)
CALL UHTOC(INAME, 4,CHNAME, 80)
LENGTH = LENOCC (CHNAME)

C Open I'Z output fi~e .

CALL CFCPEN(IDNP'l'R,MEDIUM,LRECL, 'w' ,NBW, CBNAME (1: IE !G'l'H), I smT)

END

4.4.3 OUTBLK

Subroutine OUTBLK transfers FZ output from the CZlCPS buffer to the output file on disk or

tape. In the case of little endian architectures, byte-swapping is required to obtain FZ binary exchange

format output. OUTBLK uses the same low-level output subroutine (CFPUT) as the standard FZ

output subroutines.

35

+DECK,OOTBLK.
SUBROOTINE OOTBLK(NPHR)

C. ***

* C.
C.
C.
C.
C.
C.
C.

*
*
*
*
*
*

Data storage interface for i'Z event output coll.ector. *

Author:
Date:

Lee Roberts
Apri~ 20, 1991

*
*
*
*

INTEGER NPHR

+SEQ, BCDCZCPS.
+SEQ,CCZBOF.

INTEGER LONPTR, MEDIUM,
COMMON / FILE / LONPTR,

INTEGER ISTAT

+SELF,IF=DECS.

LRECL, NBOF
MEDIUM, LRECL, NBOF

C Swap bytes before output on ~itt~e endi.an machine.

CALL VXINVB(KCZBOF,NPHR*LRECL)

+SELF.
C Write NPBR physi.ca~ records of ~enqth mEa. to the FZ file.

DO 100 I = 0, NPBR-1
CALL CFPOT(LONPTR,MEDIOK,LRECL,KCZBOF (l+I*LRECL),ISTAT)

100 CONTINOE

END

4.4.4 FINISH

Subroutine FINISH contains the termination sequence for the OO'l'PO'l' event output collector.

After closing the FZ output file, the standard output is closed to enable proper flushing of the output

buffer to the CPS job manager logfile.

+DECK,FXlIUSB.
SUBROOTINE FINISH

C. ***
C.
C.
C.
C.
C.
C.

*
*
*
*
*
*

TermLnaticn

Author:
Date:

*
subzoutine for i'Z event output co11ect or. *

*
Lee Roberts *
Apri~ 20, 1991 *

*
C. ***

36

INTEGER LONPTR, MEDIUM,
COMMON / FILE / LONPTR,

LRECL,
MEDIUM,

NBOF
LRECL, NBW

C Close the FZ output file and standard output.

CALL CFCLOS(LONPTR,MEDIUM)
CLOSE (6)
END

4.5 EVTG EN decks-PYTHIA version

The BVTGEN event generation servers provide input events from Monte Carlo generators to the

BCD/CPS event-parallel simulation. These event generation servers were developed from the direct

interfaces to the Monte Carlo generators present in the uniprocessor implementation of the BCD

GEANTI simulation. The number of EVTGEN event generation servers present in a BCD/CPS job

may be adjusted to meet processing demands. Modifications and enhancements can be envisioned to

use multiple classes of EVTGEN servers to provide differing types of physics events to a CPS event­

parallel simulation. The following implementation of an EVTGEN server uses PYTIIIA 5.5.

4.5.1 BCDPYTH

Program BCDPYTB is a pure "slave" remote subroutine server which reads an initialization file

specified by the UNIX environment name GUPYTBIA _ INPUT. This initialization file specifies the

PYTHIA run characteristics. BCD GEANT3 usage requires that only primary particles be

produced-particle decays are disabled.

+DECIt,BCDPYTB.

C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.

PROGRAM BCDPYTB

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

IlVTGEN (event generator) process for CPS version of
BCD GEANT3 simulation. PYTHIA 5.5 version.

Direct interface to PYTHIA 5.5. Uses PYTHIA command file
in the following card-image format cards 1 , 2 are
required; (un1~ted) additional cards for LOGIVB are
optional.

card ,1
card '2 Title, up to 78 characters, enclosed in

PRXNXT parameters, separated by commas
FRAME: up to 4 characters
BEAM,TARGET: up to 5 characters
WIN: real number

quotes

NPRINT,NJUMP: listing control, as in ISAJET
cards '3+: string for LUGIVIl, enclosed in quotes

37

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*

The lines below illustrate the required format.
All character strings MUST be enclosed in quotes.

'DESCRIPTIVE TITLE OF RUN'
'FRAME','BEAM','TARGET' ,WIN,NPRINT,NJUMP
'VARIABLE=VALUE;VARIABLE=;VARIABLE(l)=VALUE'
'VARIABLE(S,lO)=VALUE;VARIABLE=VALUE'

Author:
Date:

Lee Roberts
April 23, 1991

*
*
*
*
*
*
*
*
*
*
*

c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c.
c. ***

INCLUDE ' acp_user.inc'

EXTERNAL PYGEN
EXTERNAL FINI SH

+SEQ,BCDCLASS.
+SEQ,BCDQUEUE.
+SEQ,BCDRSUB.
+SEQ,BCDEVCPS.
+SEQ,PYCOM.

CBARACTER*4 FRAME
CBARACTER*5 BEAM, TARGET
CBARACTER*80 TITLE, LINE
REAL WIN,PLAB(4)

INTEGER NPRINT,NJOMP
COMMON / PRNT / NJOMP, NPRINT

CBARACTER*80 ENV
+SELF,IF=-APOLLO,IF=-HPUX,IF=-IBMRT.

LOGICAL LOAD
DATA LOAD /. FALSE. /
SAVE LOAD

C Load PYTHIA and JETSET b~ock data subprograms.

+SELF.

IF (LOAD) THEN
CALL PYDATA (LOAD)
CALL LUDATA(LOAD)

ENDIF

C Ini.ti.a~i.ze CPS software.

CALL
CALL
CALL
CALL
CALL

ACP INIT
ACP-DECLARE BLOCK(N,240004,CPSEVT)
ACP-DECLARE-SUBROUTINE (PYGEN,REVTGEN,1, 4)
ACP-DECLARE-SUBROUTINE(FINISH,RFINISH,O)
ACP DECLARE QUEUE(QEVTGEN,1,4)

C GtJPrl'BIA INPt1l' => environment ncae for Prl'BIA ocmnand file.

38

CALL GETENVF('GUPYTHIA INPUT' ,ENV)
IF (ENV .EQ.' ') ENV=' GUPYTHIA INPUT'
OPEN(UNIT=l,FILE=ENV,STATUS='OLD')

C Process PYTHIA command f.i1e.

READ(l,*) TITLE
READ (1, *) FRAME, BEAM, TARGET, WIN, NPRINT, NJOMP

100READ(1,*,END=200) LINE
CALL LUGlVE (LINE)
GOTO 100

200 CLOSE (1)

C In.i t.ia1.ize PYTHIA.

CALL PYINIT(FRAME,BEAM,TARGET,WIN)

CALL ACP_SYNC(ACP$ALL_PROCESSES,O)

C Serv.ice remote subrout.ine calls.

CALL ACP SERVICE CALLS

END

4.5.2 PYGEN

CPS remote subroutine PYGEN provides the action for the PYTHIA version of the EVTGEN

event generator server. Each remote subroutine call to PYGEN generates another PYTHIA event.

+DECK,PYGEN.

C.
C.
C.
C.
C.
C.
C.
C.
C.

SUBROUTINB PYGEN(ISRC)

* *

*
*
*
*
*
*

PYTmA 5.5 event generator remote subroutine .interface. *
*
*

Author:
Date:

Lee Roberts
Apr.i1 20, 1991

*
*
*

INTEGER ISRC

INTBGBR NJOMP, NPRINT
COMMON / PDT / NJOMP, NPRINT

INTEGBR IBVT
DATA :tEn' / 0 /
SAVE IBVT

C Generate event.

39

IEV'l' = IEVTI + 1
CALL ACP CLASS INFO(ISRC,IPROC1,IPROCN)
CALL PYEVNT -

C Print se~ected events.

IF (IEVT.LE.NJUMP*NPRINT) THEN
IF (mV'l'.J!',Q.1.0R.MCD(:IEVT,NJOMP) .EQ.O) CALL LULXST (2)
ENDIF

END

4.5.3 FINISH

Subroutine FINISH contains the termination sequence for the PYTHIA version of the

EV'l'GEN event generation servers. After printing the PYTlllA process statistics, the standard output

is closed to enable proper flushing of the output buffer to the CPS job manager logfile.

+DEClt,FINISH.

C.
C.
C.
C.
C.
C.
C.
C.
C.

C

SUBROUTINE FINISH

*
* 'l'erminati em

*
subzoutine far Pn'HIA 5 .5 evant genera t.i.on *

* server.
*
* Author:
* Date:
*

Lee Roberts
Apri~ 20, 1991

*
*
*
*
*

Print PYTHIA statistics and c~ose standard output.

CALL PYSTAT (1)
CLOSB (6)
END

4.6 EVTGEN decks-ISAJET version

The EV'l'GEN event generation servers provide input events from Monte Carlo generators to the

BCD/CPS event-parallel simulation. These event generation servers were developed from the direct

interfaces to the Monte Carlo generators present in the uniprocessor implementation of the BCD

GEANTI simulation. The number of EV'l'GEN event generation servers present in a BCD/CPS job

may be adjusted to meet processing demands. Modifications and enhancements can be envisioned to

use multiple classes of EVTGEN servers to provide differing types of physics events to a CPS

event-parallel simulation. The following implementation of an EV'l'GEN server uses ISAJET 6.36.

40

4.6.1 BCDISA

Program BCDISA is a pure "slave" remote subroutine server which reads two initialization files

specified by the UNIX environment names GUISA_INPUT and ISADECAY_DATA. One

initialization file specifies the ISAJET run characteristics; BCD GEANT3 usage requires that only

primary particles be produced-particle decays are disabled. The other initialization file specifies the

ISAJET particle decay database.

+DECK,BCDISA.
PROGRAM BCDISA

C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.
C.

EV'l'GI!:N (.~t generator) process for CPS varsi.on of
BCD GEANT3 siDulation. ISAJET 6.36 version.

*
*
*
*

*
*
*
*
*
*
*
*

Direct ISAJET event generation---no intermadiate event *
file necessaz:y. ISAJET decay table and ISAJET CCllllDand *
file am mad upon initiu entz:y. *

* Author:
* Date:

*

Lee Roberts
April. 23, 1991

*
*
*
* ***

INCLUDE ' acp _user. inc'

EXTERNAL ISAGEN
EXTERNAL FINISB

+SEQ,BCDCLASS.
+SEQ,BCDEVCPS.
+SEQ,BCDQUEUE.
+SEQ,BCDRSUB.
+SEQ,IDRUN.
+SEQ,PARTCL.

CBARACTER* 8 0 ENV
+SELF,IF=-APOLLO,IF=-BPUX,IF=-IBMRT.

LOGICAL LOAD
DATA LOAD I. FALSE. I
SAVE LOAD

C Load ISAJET block data subprogram.

IF (LOAD) CALL ALDATA (LOAD)
+SELF.

C Initia~ize CPS software.

CALL
CALL
CALL
CALL
CALL

ACP INIT
ACP-DECLARE BLOCK(NPTCL,4*(8*MXPTCL+l),CPSEVT)
ACP-DECLARE-SUBROUTINE (ISAGEN,REVTGEN, 1, 4)
ACP-DECLARE-SUBROUTINE(FINISB,RFINISB,O)
ACP DECLARE QUEUE(QEVTGEN,1,4)

41

C GOXSA INPtJ'l' =<> environment nama for XSA.lET ccmnand fi.le.
C XSAIECAY DATA =<> environment nama for XSA.lET parti.c1e decay table.

CALL GETENVF('GUXSA XNPUT',ENV)
XI' (ENV .EQ.' ') ENV=' GUXSA XNPUT'
OPEN(UNXT=1,FXLE=ENV,STATUS='OLD')
CALL GETENVF('XSADECAY DATA',ENV)
XI' (ENV • EQ. ' ,) ENV=' XSADECAY DATA'
OPEN(UNXT=2,FXLE=ENV,STATUS='OLD')

CALL XSAXNX(-2,O,1,6)
CALL XSABEG (XFL)
XI' (XFL • Nll:. 0) TUN

CALL ACP FATAL PROCESS ERROR(ACP$TBXS PROCBSS,
I ' »»> GUXSA, -error i.n XSAJET command fi.1e')

BNDXF

XEVT = °

C Service remote aubroutine ca11a •

CALL ACP SERVXCB CALLS - -
BND

4.6.2 ISAGEN

CPS remote subroutine XSAGEN provides the action for the ISAJET version of the EVTGEN

event generator server. Each remote subroutine call to XSAGER generates another ISAJET event.

+DECIt,XSAGEN.

C.
C.
C.
C.
C.
C.
C.
C.

SUBROUTXNB X SAGEN (XSRC)

* * * XSA.1ET 6.36 event generator zemote aubZ'O\1tine int.edace. *
* * * Author:
* Date:

*

Lee Roberta
January 25, 1991

*
*
*

XNTEGBR XSRC

+SEQ,XDRUN.

LOGXCAL Olt, DONE

C Generate event.

42

CALL ACP CLASS INFO(ISRC,IPROC1,IPROCN)
1 IEVT=IEVT+1 -

CALL ISAEVT(IEVT,OX,DONE)
IF (• NOT. OX) GOTO 1

END

4.6.3 FINISH

Subroutine FINISH contains the termination sequence for the ISAJET version of the EVTGEN

event generation servers. After printing the ISAJET process statistics, the standard output is closed to

enable proper flushing of the output buffer to the CPS job manager logflle.

+DECX,FINISB.
SUBROOTINE FINISB

c. ***
c.
c.
c.
c.
C.
c.
c.

*
*
*
*
*
*
*

Termin aU. on
server .

Author:
Date:

*
subz:outin. for ISA.JET 6.36 event generation *

*
*

L.e Roberts *
January 7, 1991 *

*
c. ***

C Print ISAJET statistics and clos. standard output.

CALL ISAEND
CLOSE (1)
CLOSE (2)
CLOSE (6)
END

5.0 USAGE

5.1 Source Generation

Generation of the BCD/CPS source programs from the PATCHY decks is quite straightforward.

As mentioned before, BCD/CPS source code depends upon the PAM files for CZlCPS (CZCPS),

BCD GEANT3 (OSER314) and GEANT3 (GEANT). The PATCHY sequences from CZCPS,

USER314 and GEAN'l' must be included when generating the BCD/CPS source programs.

The following UNIX shell script demonstrates the generation of the BCD/CPS source programs.

Location of the PAM fIles is system dependent. ,
'Generate BCD/CPS CONTROL program. ,
ypatchy «\ \

43

bcdcps bcdinit. f ttp tty . go
+EXE.
+ASM, 21, R=! . COECR ID>,
+OSE,P=GCDES.
+OSE,P=BCDCDES,OSERCDES.
+OSE,P=CPSCDES.
+OSE,P=*BCDIN:r:T.
+OSE,SGI.
+PAM, 12,R=GCDES, T=ATTACB. ../cern/cn1201/pam/geant.pam
+PAM,13,R=OSERCDES,T=ATTACB. ../user314.pam
+PAM,14,R=CPSCDES,T=ATTACB. czcpa.pam
+PAM,ll.
+QOIT.
\\
t
t Generate PICD/CRS GENBRM'E GI'ANT3 ev80t aerver P%09'J:aII1.
t
ypatchy «\ \
bcdcpa bcdgen. f ttp tty . go
+EXE.
+ASM,21,R=! .COECR ID>,
+OSE,P=GCDBS.
+OSE,P=BCDCDES,OSERCDBS.
+OSE,P=CPSCDES.
+OSE,P=*BCDGEN.
+OSE,SGI.
+PAM, 12,R=GCDBS, T=ATTACB. ../cern/cn1201/pam/geant.pam
+PAM,13,R=OSBRCDBS,T=ATTACB. ../uaer314.pam
+PAK,14,R=CPSCDES,T=ATTACB. czcpa.pam
+PAK,ll.
+QOIT.
\\
t
t Generate BCD/CPS OOTPOT aerver program.
t
ypatchy «\ \
bcdcpa bcdout. f ttp tty . go
+EXE.
+ASM, 21, R=! . COECR 1D>,
+OSB,P=GCDBS.
+OSE,P=BCDCDES,OSERCDES.
+OSB,P=CPSCDES.
+OSE,P=*BCDOOT.
+OSB,SG1.
+PAM, 12,R=GCDBS, T=ATTACB.
+PAN,13,R=USERCDES,T=ATTACB.
+PAK,14,R=CPSCDES,T=ATTACB.
+PAK,11.
+QUIT.
\\
t

../cern/cn1201/pam/geant.pam

../user314.pam
czcpa.pam

t Generate BCD/CPS BVTGEN aerver program---PYTB1A veraion.
I
ypatchy «\ \
bcdcpa bcdpyth. f ttp tty . go
+EXE.
+ASM, 21, R=! . COECR ID>,
+OSE,P=GCDES.

44

+USB,P=BCDCDES,USBRCDES.
+USB,P=CPSCDES.
+USB,P=*BCDPYTB.
+USB,SGI.
+PAM,12,R=GCDBS,T=ATTACB. ../cern/cn1201/pam/geant.pam
+PAM,13,R=USERCDES,T=ATTACB. ../user314.pam
+PAM,14,R=CPSCDES,T=ATTACB. czcps.pam
+PAM,ll.
+QUJ:T.
\\

Generate PCD/CRS EV'l'GBN server prognm---J:SAJET version.

ypatchy «\ \
bcdcp. bcdisa. f ttp tty . go
+BXB.
+ASN,21,R=' .CDBClC J:D>,
+USB,P=GCDES.
+USB,P=BCDCDES,USBRCDES.
+USB,P=CPSCDBS.
+USB,P=*BCDJ:SA.
+USB,SGJ:.
+PAM, 12,R=GCDBS, T=ATTACB. . ./cern/cn1201/pam/geant.pam
+PAM,13,R=USBRCDBS,T=ATTACB. ../user314.pam
+PAM,14,R=CPSCDES,T=ATTACB. czcp •. pam
+PAM,ll.
+QUJ:T .
\\

5.2 Compilation and Loading

Standard UNIX FORTRAN compilation and loading commands are used when generating the

executable BCD/CPS programs. The CZ/CPS library (libczcps. a) and the CPS library

(libacp. a) must be included in the loader sequences when and where required. In other respects,

compilation and loading of BCD/CPS executable programs is identical to the compilation and loading

of the BCD GEANT3 uniprocessor simulation.

The user must be sure to include the CZlCPS modifications to HBOOK4 rather than the standard

HBOOK4 subroutine implementations. The CZlCPS library must precede the CERN package library

(libpacklib. a) , and appropriate external references are often needed.

5.3 Execution

BCD/CPS jobs are run under the control of the CPS Job Manager. A job description file must be

written to describe the application to the CPS Job Manager. An example job description file for

BCD/CPS on the development two-processor ranch is shown below.

SHARE CLASSBS = 1, 2, 3, 4

c1a •• = 1
CPU type = SGNIPS
number of processes = 1

45

c~ass =

c~ass =

c~ass =

c~ass =

program = -/cps/bcc:i.i.n.i.t. cps
2
CPO type = SGMIPS
number of processes = 1
program = -/cps/bcc:ipyth. cps
3
CPO type = SGMIPS
number of processes = 1
program = -/cps/bcc:iout
4
CPO type = SGMIPS
number of processes = 1
program = - / cps /bcc:igen . sg.i.
5
CPO type = OL'l'RIXDEC
number of processes = 1
program = ... / cps /bcc:igen • c:iec

BCD GEANT3 uses several UNIX environment variables to specify input/output files. BCD/CPS

continues this usage. However, these variables must be set for the CPS processes as started by the

CPS job manager. A UNIX shell script is specified as the program for each CPS process class

requiring UNIX environment variables. An example of such a shell script for the BCD/CPS

CONTROL process is shown below.

i
setenv PARTICLE DATABASE -/part.i.c~e.c:iatabase
setenv GEAHT MACfuT - /magnet • rz
setenv GEAHT-SBOOK4 -/geant .hboolc4
setenv GEART J'ZOOT - / geant • fz
setenv J'J'READ CONTROL -/ffreac:i.contro~
setenv J'J'READ-GENERATE -/ffreac:i.generate
exec -/cps/bcd.i.n.i.t

These environment variables allow external control over input and output file specifications in a

UNIX programming environment. VAX/YMS logical names and IBM VM/CMS DDNAMEs were

used similarly in BCD GEANT3 uniprocessor simulations.

Use of the CPS Job Manager and the CPS Job Monitor is fully described in the ACP Cooperative
Processes User's Manual. 3

6.0 SUMMARY

BCD/CPS demonstrates many of the features required in CPS event-level parallelization of SSC
detector GEANT3 simulations. Design of the BCD/CPS event-level application applied the standard
CPS design philosophy to the existing BCD GEANT3 uniprocessor detector simulation.
Implementation of BCD/CPS required the modification and addition of a relatively small number of
subroutines and a small coding effort. The results of these design and implementation steps have been
shown in enough detail to allow the inexperienced CPS programmer to understand the control and
data flow of the BCD/CPS application.

46

REFERENCES

1. Physics and Detector Simulation Facility Specifications, Computer Acquisition Working Group,
SSCL-275, SSC Laboratory.

2. R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini. GEANT3 User's Guide,
CERNDDIEEl84-1, May 1986.

3. ACP Cooperative Processes User's Manual, Fermilab Computer Research & Development
Department, Fenni National Accelerator Laboratory.

4. L. A. Roberts, CZICPS, A Communications ZEBRA Implementation Using CPS, SSCL-412,
SSC Laboratory.

5. Expression of Interest for a Bottom Collider Detector at the SSC, Bottom Collider Detector
Collaboration, SSC Eol #8.

6. R. Brun, M. Goossens, and J. Zoll, ZEBRA User Guide, CERN Computer Centre Program
Library Long Writeup Ql00.

7. R. Brun and D. Lienart, HBOOK User Guide, Version 4, CERN Computer Centre Program
Library Long Writeup Y250.

8. R. Brun, R. Hagelberg, J. C. Lassalle, G. Misuri, and J. Vobrueggen, FFREAD User Guide
and Reference Manual, CERN Computer Centre Program Library Long Writeup 1302.

9. F. E. Paige and S. D. Protopopescu, ISAJEI' 6.36, Brookhaven National Laboratory.

10. H.U. Bengtsson and T. Sjostrand, PYTHIA 5.5, University of Lund and CERN/fH.

11. H. J. Klein and J. Zoll, PATCHY Reference Manual, CERN Computer Centre.

47

