SSCL-413

BCD/CPS
An Event-level GEANT3 Parallelization via CPS

Lee A. Roberts

Physics Research Division
Superconducting Super Collider Laboratory*
2550 Beckleymeade Avenue
Dallas, Texas 75237

April 1991

*Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC02-89ER40486

SSCL-413

BCD/CPS
An Event-level GEANT3 Parallelization via CPS

Lee A. Roberts

Abstract

BCD/CPS is an implementation of the Bottom Collider Detector GEANT3 simulation for CPS
processor ranches. BCD/CPS demonstrates some of the capabilities of event-parallel applications
applicable to current SSC detector simulations using the CPS and CZ/CPS communications
protocols. Design, implementation and usage of the BCD/CPS simulation are presented along with
extensive source listings for novice GEANT3/CPS programmers.

1.0
2.0
3.0

4.0

CONTENTS

INTRODUCGTION ...iiitiiiitiiiiiiitiiiteeteinreaateeaesssensesansssassesssnnnerannaseesns 1
CPS OVERVIEWtiiiiiiiiiiiiiiiieiiaeeteeeeaetasssesneesnsssssnasesenesensnesessssssasens 1
D E ST G N ittt ittt tiretaaeeenseesasennssessssanseesassesssssssonassoosessssasessns 2
K20 B ¥ T < SO 3
32 S . uutitteiieeiennnseeseeeeasassssseceannsasseseaassesnsnssestessosstsocesosoncansnanas 4
3.3 Control and Data FIOW....c.c.uiiiiiiiiiiiiiiiiiiiiiiieeeeecnaecsasssossssosacnnsncas 4
3.3.1 Initialization Phase.........cceeeiriiiiiiiiiiiiiiiiiiiieiiiiieeiieaieie e 5
3.3.2 Processing phaseccoieiiiiiiiiiiiiiiiiiiiiiiiiii e, 7
3.3.3 Termination Phase.......ccceeiveieiniiniiriiniinieriiiereirniaieeisersennenaans 7
B 7 (- S PPN 8
IMPLEMENT T AT IO N it iiiiieeieeieteiriaesrecnnsessessscsesssnsnnsessasssns 8
4.1 BCD/CPS SEQUENCES....cuutueeneeennenerntenraeereereeteressarantassesseisesasssserenns 9
4.2 CONTROL deCKS.uuiiiiiiiiiiiiiiiiiiiiiiiiiieeeireieetseaseiaseseaaaneaasanssnsons 11
4.2.1 BODINITutiiiiiiiiiiiiiiitetateeteatneeensasseseeaeranssesasesnsssacnes 11
4.2.2 UGINIT ..oiiiiiiiiiiiiiiiiietrieereeeseeseanssennssesncssosnnecsnnssonsens 12
4.2.3 GRUN . ciiiiiiiiiiiiiiiiiiiiiieiteeenetesantatsssenssesssncsssonssssanssossss 18
4.2.4 UGLAST ..ttt eiiiiiteaeteeteseteaasssseecsnasesssssaconnnssons 19
4.3 GENERATE GECKS...cceitiiriiiteerueeinteareeeseecennecnnnsecsnsssessnssssssssssnases 22
4.3.1 BODGEN...iiiiiiiiiiiiiiiiiiieitieittattetteetersacsasssnessnssnnsannssessnns 22
-3 Jr 2 0 €) 111 ¥ U PP PPt 23
4.3.3 GEVENTiiiiiiiiiiiiiiiiiiiiii et eireeereeeanssecaassssennssesnnsennens 26
4.3.4 GUOUT ..ottt et eiieetteesessetaessaressnasenssssennteenes 28
4.3.5 GUPYTHIA.....ooiiiiiiiiiiiiiiiiiiitiereterttatrensrensesesnassnsansnns 29
4.3.6 GUIS A. .ottt it ereetteaaseestaeesaresnsesasessnesnnenn 31
4.3 7 FINISH. ...ttt iieiteaaeeeetaseeatssenanseeanssens 33
4.4 OUTPUT deCKS. iiiiiiiiiiiiiiiiiiiiiieieiiieeieraeseieenenessesensesesssssscnsnsensns 33
4.4.1 BODOUToiiiiiitiiiieiiniiietiieeteteetssseaassestassesessssesassssensans 33
442 CREATE. . ..o ciiiiieetiereeeeereeneeenneeessssennsssennnenns 34
4.4.3 OUTBLEK ...ttt itiiiettteeesnseeesesssssesssessssessscassnesans 35
4.4.4 FINISH. ...ttt ittt teieeeisteeaesetessreansssensssesnsasen 36
4.5 EVTGEN decks—PYTHIA VEISIONcioiiieieeiiiietereeninnneneeresansansesanes 37
4.5.1 BODPYTH.....oiiiiiiiiiiiiiiiiiii i itieiiieeiereeienseeesssessasescsases 37
4.5.2 PYGEN. . ..ottt ittt ettt titseeasssesenseresassesnssseannens 39
4.5.3 FINISH. ..ot ettt teeeeeeeeisssessasannsaaeans 40
4.6 EVTGEN decks—ISAJET VerSION.....ccccieiieiiirerreineenrereererensscsnsscnnennns 40
4.6.1 BODISA ..ottt ittt eiitteteestaatetetassteanaraaraaaanas 41
4.6.2 ISAGEN. .. .ottt eiieter e erireeeeiaeretareeanaaaaanns 42
4.6.3 FINISH. ..o e e et e eaaaae 43

5.1 Source Generation..........couiiiiiiiiiiiiaitiitiiteeeatiererienneareererneaneansasens 43
5.2 Compilation and Loading..........cccoiiiiiiiiiiiiiiiii e 45
RIRCI © (v 11+) B TP 45
SUMM A R Y i e e e ettt et e e ettt era e aaaas 46
REFERENCES i et st ee e e et s e eneeeaaas 47

1.0 INTRODUCTION

Simulation and design of detectors for the Superconducting Super Collider (SSC) Laboratory will
require substantial computational resources. For many simulation tasks, the necessary computational
resources will be much more than any single processor can deliver within an acceptable time interval.
In such cases, the event-level parallelism of most high-energy physics applications can be exploited to
parallelize the simulation task over a multitude of processors.

The Physics and Detector Simulation Facility ! of the Physics Research Division at the SSC
Laboratory has been designed for event-level parallel simulations of SSC detectors using GEANT 32
and the ACP Cooperative Processes Software3 This “500 MIPS” facility will initially provide
approximately 3 x 234 MIPS in a batch processor ranch of symmetric multiprocessor UNIX servers
and approximately 30 x 28.5 MIPS in a loosely-coupled interactive front-end of uniprocessor UNIX
servers. Expansion of this facility to approximately “4000 MIPS” is anticipated by the end of fiscal
year 1992.

The ACP Cooperative Processes Software (CPS) provides software tools that simplify the
parallelization of an event-based computational task over a distributed set of processors. Jobs are
generally separated into CPS tasks performing specific functions. Examples of tasks include job
initialization, input from event tapes, event analysis, and output to event summary tapes. Each of
these tasks is performed by a “class” of CPS processes having its own executable program. Users are
responsible for separating uniprocessor applications into CPS tasks and coding a program for each of
these tasks.

BCD/CPS provides an example of CPS event-level parallelization of GEANT3 detector
simulations. BCD/CPS includes only those programs and subroutines which required modification
during the conversion of the BCD GEANT3 uniprocessor simulation to the BCD/CPS event-parallel
simulation. Many of the programming techniques used in BCD/CPS should be easily applicable to
other detector simulations, as almost none of the BCD/CPS code is specific to the Bottom Collider
Detector GEANT3 simulation.

2.0 CPS OVERVIEW

The ACP Cooperative Processes User's Manual describes CPS as follows:3

The ACP Cooperative Processes Software (CPS) is the software part of the
Fermilab second generation ACP multiprocessor project. It is a package of software
tools that make it easy to split a computational task (called a job) among a set of
processes distributed over one or more computers. Apart from considerations of speed,
the set of processes will operate identically whether on a single computer or spread
across multiple computers. Each process runs a program written by the user.

The primary tools comprise a Job Manager program and a set of subroutines. The
Job Manager starts the processes, provides common support services, handles errors
that occur, and stops the processes when the task is over. The subroutines provide
mechanisms for interprocess communication, remote subroutine calls, and synchro-
nization. These tools support a wide range of models of parallel programming.

The primary goal of CPS is to allow the user to conveniently access the power of multiple CPUs
to accomplish an event-parallel computational task. CPS was designed to meet the parallel-processing
needs of many high-energy physics applications. CPS provides basic utilities for event-level
parallelization of high-energy physics applications.

Users are responsible for adapting uniprocessor applications to the parallel (CPS) environment.
Typical applications require only minor changes to a small set of subroutines—usually those
associated with initialization, control of the main event loop, input/output of event data, and
termination. Uniprocessor applications are divided by functional task into separate programs using
CPS utilities for interprocess communication and control.

Execution of a CPS event-parallel application requires a mapping between processes and the
available computers in the CPS ranch. Such a mapping must be provided by the user as input to the
CPS Job Manager. This mapping indicates the location of each main program, the number of copies
of each program to be run, and the allocation of processes to processors. As the CPS event-parallel
application is started by the CPS Job Manager, each of the user’s processes is started and
interprocess communication and control is overseen by the CPS Job Manager.

Users are referred to the ACP Cooperative Processes User’'s Manual 3 for details on CPS utilities
and usage.

3.0 DESIGN

Conversion of an uniprocessor event-based application to a CPS event-parallel application may be
accomplished through the following steps:

* Identify the major tasks performed by the uniprocessor application.

e Associate each major task with one (or more) CPS process class(es).
* Determine the control and data flow among CPS process classes.

¢ Determine the CPS process states (queues) for each CPS class.

* Code the programs for each CPS process class.

¢ Debug.

The following subsections detail the application of the first four steps in the creation of the
BCD/CPS event-parallel simulation.

A common feature among CPS event-parallel applications is a particular task that may be
distributed to “as many as possible” processors. Although the present implementation of CPS allows
only a single class to be distributed to “as many as possible” processors, the design of a CPS
application should allow multiple “as many as possible” classes to take advantage of all available
processors in a heterogeneous CPS ranch. BCD/CPS was developed on a heterogeneous CPS ranch
consisting of two processors—a Silicon Graphics 4D/25G and a DECstation 2100—in order to
guarantee robustness of the software with respect to big- and little-endian byte ordering.

In BCD/CPS, “as many as possible” processes perform all 1/O via CPS. In this way, the
BCD/CPS job is insensitive to whether particular file systems are available across the entire CPS
ranch. Such restrictions were a standard feature of ACP first generation farms, since no file systems
were available to “as many as possible” processes. Depending upon the implementation of the CPS
ranch, this restriction may not apply.

3.1 Tasks

The tasks performed by the BCD GEANTS3 detector simulation are quite similar to those present
in most GEANT?3 detector simulations. BCD GEANT?3 detector simulations exhibit the following

features:
¢ Control—initialization and termination
* ISAJET? or PYTHIA1 event input

* FZ event output
¢ GEANT3 event loop.

Initialization of BCD GEANT3 simulations includes the generation of the GEANT3 geometrical
description of the BCD detector, input of the BCD GEANT?3 extended particle decay database,
generation of materials and other GEANT3 initialization ZEBRA data structures, input of BCD dipole
field maps and booking of user-defined HBOOK4’ histograms. Many of these processes are
controlled by FFREAD® input data cards which may vary from run to run.

Interfaces to ISAJET and PYTHIA are used by BCD GEANTS3 to provide input events. Direct
interfaces to both generators are available, where the input event may be generated during the
GEANT3 simulation. An interface to ISAJET-format event files is also provided.

BCD GEANT3 event data are written to a sequential medium using ZEBRA FZ 1/O. Depending
upon the particular application, any combination of the KINE, JXYZ, HITS and DIGI data
structures may be saved for later analysis. In most cases, the amounts of FZ I/O can be significant.

Subroutine GRUN in the standard GEANTS3 release is used to control the uniprocessor GEANT3
event loop. Generalization of this procedure is required for the CPS event-parallel implementation of
BCD/CPS.

Variations of the above can also be imagined. One can consider using FZ event input to read
HITS data structures for generation of digitizations and later output of the DIGI data structure via
FZ. One can also consider using multiple event generator interfaces—one for minimum bias events,
one for “interesting” physics—when studying event overlap effects in SSC detectors. Such exercises
will be left to the user.

3.2 Classes

BCD/CPS, as implemented for a heterogeneous CPS ranch of one Silicon Graphics 4D/25G and
one DECstation 2100, utilizes five CPS process classes for the four tasks described in the previous
subsection. The CPS process classes are as follows:

* CONTROL—initialization, control and termination

* EVTGEN—ISAJET 6.36 or PYTHIA 5.5 input event generator

* OUTPUT—binary exchange FZ sequential event output

* GENERATE—Silicon Graphics GEANT3 event generator

* GENERATE—DECstation 2100 GEANT?3 event generator.

As one might expect, since the goal of the CPS parallelization is to obtain as many GEANT3
events as possible in the shortest possible time, the “as many as possible” class of processes is the
GENERATE class. Since two processor types were available in the development CPS ranch, two
GENERATE classes were required, even though identical FORTRAN programs were used.

3.3 Control and Data Flow

BCD/CPS is designed to maintain as much of the uniprocessor simulation structure as is
reasonably possible. As such, the CONTROL process follows the typical GEANT3 program outline.
Indeed, after its initialization of ZEBRA and HBOOK4, the CONTROL process proceeds into three
phases:

¢ Initialization phase—UGINIT
* Processing phase—GRUN

¢ Termination phase—UGLAST.

Each of these processing phases will be discussed below.

The EVTGEN and OUTPUT processes are pure ‘“slave” remote subroutine servers, servicing
remote subroutine calls from CONTROL and GENERATE processes. The GENERATE processes
proceed through several initialization steps in synchronization with the CONTROL process before
becoming “slave” remote subroutine servers for requests from the CONTROL process.

3.3.1 Initialization phase

Two initialization stages are present in the CONTROL process initialization phase. These stages
are:

* BCD GEANTS3 uniprocessor initialization of CONTROL process

¢ Distribution of initialization data to other CPS process classes.
These initialization stages and the CPS data flow will be discussed in the following paragraphs.

The first stage is unchanged from the uniprocessor implementation. The following steps are
included in the uniprocessor implementation:

e Standard GEANTS3 variable initialization (GINIT)

* Read FFREAD data cards

* Material definition

* Particle definition

* Geometry setup

* Physics initialization

* Book HBOOKA4 histograms.

All of these initializations affect only the CONTROL process; during the second stage, this data is
communicated to other CPS process classes.

Data flow during the first stage is from FFREAD input data cards and ZEBRA FZ and/or RZ files
into the CONTROL process. Internal generation of GEANT3 initialization data structures
(geometry, materials, particles, etc.) will occur in many applications.

The second stage includes the initialization of CPS and the transfer of initialization data to the
other CPS processes in the job. In addition to CPS memory blocks, synchronization points, and
remote subroutine calls, the CZ/CPS* communications features are used during the initialization of
the BCD/CPS job. The following steps are performed in the CONTROL process during the
distribution stage of initialization:

e CPS initialization via ACP_INIT

¢ Declare CPS memory blocks for FFREAD and CZ/CPS data transfers

* Input and transfer FFREAD data cards for GENERATE processes
e Write GEANTS3 initialization data to GENERATE processes via CZ/CPS
¢ Write BCD dipole field maps to GENERATE processes via CZ/CPS
* Synchronize with self-initializing EVTGEN process(es)
5

Initialize OUTPUT process(es)—create binary exchange FZ output file(s)
Initialize CZ/CPS for communications with CPS ZEBRA Servers
Write HBOOKA4 histograms to GENERATE processes via CZ/CPS

Initialize random number sequences for GENERATE processes.

In the EVTGEN class of processes, the following events occur during the second initialization

stage:

CPS initialization via ACP_INIT
Declaration of CPS memory blocks for event data transfer

Declaration of CPS remote subroutines
Declaration of CPS process queue

Data card input and initialization of Monte Carlo event generator.

In the OUTPUT class of processes, the following events occur during the second initialization

stage:

CPS initialization via ACP_INIT
Declaration of CPS memory block for CZ/CPS data transfer

Declaration of CPS remote subroutines
Declaration of CPS process queue
Respond to CONTROL process requests.

In the GENERATE class of processes, the following events occur during the second initialization

stage:

CPS initialization via ACP_INIT
Declaration of CPS remote subroutines

Declaration of CPS process queue
Input GEANTS3 initialization and dipole field maps as FZ data from CONTROL process

Initialization of CPS ZEBRA Server
Respond to CONTROL process requests.

Data flow during the second stage includes access of the following input data cards:

CONTROL process inputs FFREAD data cards for GENERATE processes
Each EVTGEN process inputs an appropriate set of data cards (for ISAJET or PYTHIA).

GENERATE processes obtain their initialization data from the CONTROL process via CZ/CPS,
consistent with the BCD/CPS design for “as many as possible” processes. GEANTS3 initialization
data structures and BCD dipole field maps are transferred using the ZEBRA/FZ communications
facilities of CZ/CPS. HBOOK4 histograms are distributed to GENERATE processes using the
HBOOK4/ZEBR A Server communications facilities of CZ/CPS. Initialization of the OUTPUT FZ
server is performed by CPS remote subroutine call and may include the output of GEANT3
initialization data structures via CZ/CPS followed by their transfer to disk (or tape).

As the initialization phase concludes, all “slave” subroutine servers are placed on CPS process
queues to await further action.

3.3.2 Processing phase

Control and data flow in the processing phase is typical of the canonical event loop. The
CONTROL process starts (via CPS remote subroutine call) each GENERATE process, passing it the
run identification number, the event sequence number, and the random generator seeds. After each
GENERATE process finishes an event, the CONTROL process restarts it with a new set of
parameters. This CONTROL procedure continues until the desired number of events have been run.

As subroutine GRUN in the CONTROL process now consists of an event loop with a CPS
remote subroutine call, the standard action of GRUN is now performed by the GENERATE process
in its subroutine GEVENT. After setting the random generator seeds, GEVENT calls the standard
GEANTS3 subroutines GTRIGI, GTRIG and GTRIGC. Within subroutine GTRIG, both sub-
routines GUKINE and GUOUT request services from other CPS process classes via remote
subroutine call.

Subroutine GUKINE invokes the interface to the EVTGEN processes. When each GENERATE
process requires an input event, a remote subroutine call is placed with an EVTGEN process. At this
point, the EVTGEN process generates an input event and the event data is transferred to the
GENERATE process for GEANT3 processing.

Subroutine GUOUT invokes the interface to the OUTPUT processes. All required FZ event
output is written via CZ/CPS to an OUTPUT process for asynchronous transfer to disk (or tape).

3.3.3 Termination phase

During the termination phase, the CONTROL process accumulates all of the partial histograms
from the GENERATE processes using CZ/CPS communications. The accumulated histograms are
printed and are written into an RZ file for later manipulation.

All “slave” remote subroutine servers are terminated via a remote subroutine call to the subroutine
FINISH in each server process. Servers are terminated process-by-process and class-by-class to
coordinate the collection of server output in the job manager logfile. Subroutine FINISH in each
server performs any necessary cleanup activities—prints process statistics, final random number

7

seeds, etc.—and closes all open files, including standard output. (Explicitly closing standard output
allows the output buffer to be properly flushed to the job manager logfile.) After all remote subroutine
servers have been terminated, the CPS job is stopped.

3.4 States

BCD/CPS process states are quite simple—"ready” and “busy.” At the end of the initialization
phase, all “slave” remote subroutine servers are placed upon process queues and are “ready.” Three
process queues are required—for EVTGEN, OUTPUT and GENERATE processes. (No distinction
is necessary among GENERATE processes of differing processor type.)

As the CONTROL process enters the processing phase, “ready” GENERATE processes are
dequeued and become “busy.” When each GENERATE process requires an input event, a “ready”
EVTGEN process is dequeued, becomes “busy” during the event generation and data transfer to the
requesting GENERATE process, and is finally queued again as “ready.” Similarly, when each
GENERATE process performs FZ event output, a “ready” OUTPUT process is dequeued, becomes
busy during the FZ data transfer, and is queued again as “ready” after the disk (or tape) I/O has
completed. Finally, when each GENERATE process finishes its event, it is queued again as “ready.”
As the processing phase reaches completion, the CONTROL process waits until all GENERATE
processes are “ready” before proceeding to the termination phase.

Upon entering the termination phase, the CONTROL process dequeues each of the
GENERATE processes in turn, accumulating its histograms into the job summary histograms in the
CONTROL process. After all histograms are accumulated, all GENERATE processes are queued
again. The CONTROL process now proceeds through each process queue, dequeuing each server
and executing its FINISH subroutine.

4.0 IMPLEMENTATION

BCD/CPS was implemented through modification of a small number of subroutines already
present in the BCD GEANT3 simulation and in the standard GEANT3 software. Event-level
parallelization of BCD GEANT3 was relatively simple using the parallelization and interprocess
communications tools provided by CPS and CZ/CPS.

Locations of CPS memory buffers were chosen so as to minimize the total memory buffer
requirements. Large CZ/CPS communications buffers are present in the CONTROL and OUTPUT
process classes. No CPS memory buffers are declared in the GENERATE process classes, reducing
the size of the “as many as possible” processes. The GENERATE processes use CZ/CPS to read or
write information into CZ/CPS communications buffers in the CONTROL and OUTPUT processes.

The following subsections present the results of the two final steps for conversion of an
uniprocessor event-based application to a CPS event-parallel application—code development and
debugging. BCD/CPS source code is in PATCHY!! Master file (PAM) format and depends upon the
PAM files for CZ/CPS (czcps), BCD GEANT3 (USER314) and GEANT3 (GEANT). The

8

PATCHY sequences from CZCPS, USER314 and GEANT will not be shown with the
following source decks.

4.1 BCD/CPS sequences

All processes in a CPS job must use consistent values for CPS parameters. These parameters
include CPS process class definitions, CPS remote subroutine definitions, CPS process queues, and
CPS memory block definitions. BCD/CPS definitions for CPS parameters are kept in PATCHY
sequences for access by all program segments. These parameter definitions are shown below.

CZ/CPS parameters and sizes of memory buffers must also be coordinated among CPS process
classes. These parameters are also kept in PATCHY sequences for the BCD/CPS application.

Many computer systems will require some “extra” effort to insure that the CZ/CPS versions of
HBOOK4 subroutines HMDIR, HRDIR, HRFILE, HROUT, HRZCD and HRZOUT
are loaded from the CZ/CPS library (1ibczcps. a) rather than from the standard version
(libpacklib. a). External declarations solve this difficultly on most machines; such definitions

have been included below.

+KEEP, BCDCLASS.
C Define parameters for CPS process classes.

INTEGER CONTROL, EVTGEN, OUTPUT, GENSGI, GENDEC
PARAMETER (CONTROL
PARAMETER EVTGEN
PARAMETER OUTPUT
PARAMETER GENSGI
PARAMETER GENDEC

+KEEP, BCDRSUB.
Cc Define parameters for CPS remote subroutines.

-
A4

—~ o~ o~ o~
nnannn
NN
-~ ot

INTEGER RFINISH
PARAMETER (RFINISH

0)

INTEGER RZSCPS, RGEVENT
PARAMETER (RZSCPS
PARAMETER (RGEVENT

nan
1
N
~

INTEGER RCREATE, ROUTBLK
PARAMETER (RCREATE
PARAMETER (ROUTBLK

"
!
N
b

INTEGER REVTGEN
PARAMETER (REVTGEN

"
1
v
A4

+KEEP, BCDQUEUE.
C Define parameters for CPS process gqueues.

INTEGER QEVTGEN, QOUTPUT, QGENER
PARAMETER (QEVTGEN =1)

9

PARAMETER (QOUTPUT
PARAMETER (QGENER

]
wN
A4

+KEEP, BCDFFCPS.

(o] Define parameters for FFREAD CPS interface.
C Define FFREAD channel transfer “logical unit”.
c Equate CPS block nurber to FFREAD channel “logical unit”.
INTEGER FFLUN
PARAMETER (FFLUN = 98)
INTEGER CPSFF
PARAMETER (CPSFF = 98)
Cc Define FFREAD channel buffer size.
o Allow 50 card images.
INTEGER FFBUF
PARAMETER (FFBUF = 1000)
C. Define block size (words) for FFREAD channel data transfers.
C Use card images---FFREAD default value.
INTEGER FFBLK
PARAMETER (FFBLK = 20)
+KEEP, BCDCZCPS.
c Define parameters for FZ channel CPS interface.
c Define FZ channel transfer “logical units”.
INTEGER CZLUNI
PARAMETER (CZLUNI = 999)
INTEGER CZLUNO
PARAMETER (CZLUNO = 998)
c Define CPS block number for FZ channel transfers.
INTEGER CPSFZ
PARAMETER (CPSFZ = 999)
c Define FZ channel buffer size.
INTEGER CZBUF
PARAMETER (CZBUF = 524288)
Cc Defina block size (woxds) for FZ channel data transfers.
(o 900 woxrds is ZEERA default; must be multiple of 90 woxds.
INTEGER CZBLK
PARAMETER (CZBLK = 900)
+KEEP, BCDEVCPS.
o Define CPS block number for EVTGEN interface.

10

INTEGER CPSEVT

PARAMETER (CPSEVT =1)
+KEEP, CPSEXT.
c External declarations for CZ/CPS HBOOK4 modifications.

EXTERNAL HMDIR

EXTERNAL HRDIR

EXTERNAL EBRFILE

EXTERNAL HROUT

EXTERNAL ERZCD

EXTERNAL HRZOUT

+KEEP, CZSOCK.
COMMON /CZSOCK/ LUNCZ, IADCPS

4.2 CONTROL decks

Only three subroutines from the BCD GEANT3 uniprocessor event simulation required
modification for the BCD/CPS event-parallel CONTROL process. These subroutines are

* UGINIT—user-supplied GEANTS3 initialization subroutine

* GRUN—GEANT3 event processing loop

* UGLAST—user-supplied GEANT3 termination subroutine.

These subroutines are presented in the following subsections. In addition, cosmetic changes

(comments) were applied to the main program,; it is shown below to remind the user of the general
GEANTS3 job structure.

4.2.1 BCDINIT

Program BCDINIT is the CONTROL program for the BCD/CPS event-parallel GEANT3
simulation. Details of the CPS customization are hidden within subroutines UGINIT, GRUN and
UGLAST. BCDINIT is a typical GEANT3 main program.

+DECK, BCDINIT.
PROGRAM BCDINIT

C. R T R R R R R Ry T T R T T T R P R R R Ry
C. * *
C. * CONTROL (initialization) process for CPS version of *
C. * BCD GEANT3 simulation. *
C. * *
C. * Use with GEANT 3.14 and HBOOK4. *
C. * *
C. * Author: Lee Roberts *
C. * Date: April 20, 1991 *
C. * *
c. R T T T L T R R R e
+SEQ, USEREXT.

+SEQ, BCDEXT.

+SEQ, CPSEXT.
11

c Provide adequate storage for GEANT3 and HBOOK4.
PARAMETER (NG=1000000,NHE=500000)

COMMON /GCBANK/ Q(NG)
COMMON /PAWC/ H(NEH)

Cc Allocate memory for ZEBRA and HBOOKA.

CALL GZEBRA (NG)
CALL HLIMIT(-NH)

C Initialization phase.

CALL UGINIT

C Processing phase.
CALL GRUN
Cc Termination phase.

CALL UGLAST

END

4.2.2 UGINIT

Customization of subroutine UGINIT for the BCD/CPS event-parallel simulation required the
addition of CPS initialization features. In addition to local initialization of the CPS software, the
CONTROL process coordinates the initialization of the other CPS processes in the job.

The most intensive of these activities is the initialization of the GENERATE event generation
processes. These processes acquire their FFREAD initialization data cards, their GEANT3
initialization data structures, and the BCD dipole field maps from the CONTROL process. In
addition, any user-defined histograms are transferred to the GENERATE processes via the CPS

ZEBRA Server.
Some of the code shown below is clearly specific to the BCD GEANT3 application. However,

for completeness of the example, all of the code is present.

+DECK, UGINIT.
SUBROUTINE UGINIT

2222222222 RS2 222 2R 2R 2R Rt i to 2 st 22 2t i sl st s R R R R 2 2
*

GEANT3 initialization

- standard GEANT3 variable initialization

- claim I/O wunits 15--29 for LUNITS & JUNITS
- read FFREAD data cards

material definition

- particle definition

- geometry setup

- physics initialization

- book HBOOK4 histograms

s NeNoNoNe NeNeNe NeNe Ke!

* % % % % % % %%
I
Lt BB EEEREERE]

12

C. * *

C. * CPS 4initialization (via CZ/CPS) *

C. * - declare CPS memoxry blocks for FFREAD and CZ/CPS *

c. * - read FFREAD data cards for GENERATE processes *

C. * - write GEANT3 INITialization data to GENERATE processes *

cC. * - write BCD magnetic field maps to GENERATE processes *

cC. * - initialize EVTGEN processes *

C. * - initjalize OUTPUT processes *

C. * - write HBOOK4 histograms to GENERATE processes *

C. * - initialize GENERATE random number sequences *

C. * *

C. * Author: Lee Roberts *

C. * Date: April 23, 1991 *

c. * *

c. R R L e Y T L2
INCLUDE 'acp_user.inc’

+SEQ, GCBANK.

+SEQ, GCFLAG.

+SEQ, GCLIST.

+SEQ, GCUNIT.

+SEQ, TUNITS.

+SEQ, GCNUM.

+SEQ, BCDFPF.

+SEQ, CZSOCK.

+SEQ, BCDCLASS.

+SEQ, BCDQUEUE.

+SEQ, BCDRSUB.

+SEQ, BCDFFCPS.

+SEQ, CFFBUF.

+SEQ, BCDCZCPS.

+SEQ, CCZBUF.

EXTERNAL CZBUFR
EXTERNAL C2CPS

INTEGER LFFBUF (FFBUF)
EQUIVALENCE (MFFBUF, LFFBUF)
INTEGER LCZBUF (CZBUF)
EQUIVALENCE (MCZBUF, LCZBUF)

INTEGER IQUEST(100)
COMMON /QUEST/ IQUEST

COMMON /FLDMAP/ JBFLD (2)
INTEGER JBFLD

INTEGER IDENT, IER, IFLAG
CHARACTER*4 KEYS (20)
CHARACTER*80 ENV

INTEGER IDEAD (32),NDEAD

CHARACTER*4 CHTOP
INTEGER INAME (20)

13

INTEGER IERROR
CHARACTER* (4*FFBLK) STRING

(o] Initialize CPS software.

CALL ACP_INIT

C Initialize GEANT3 variables.
CALL GINIT
c Define FORTRAN logical units for I/O.
c LIN == 5
(o IOUT ==> 6
c ZEBRA I/O (FZ/RZ) on IDNITS.
Cc LUNITS (1) == FZ GEANT3 input.
C LUNITS (2) ==> FZ GEANT3 ocutput --- see UGOUT
(o] LUNITS (3) == RZ HBOCK4 histogram storage --- see UGLAST
Cc ILUNITS (4) => RZ MAGNET field map
C Standard (formatted) I/O on JUNITS.
c JUNITS (1) => BCD extended particle decay database
(o JUNITS (2) => user modifications to BCD extended decay table
C JONITS (3) => FFREAD input for CPS CONTROL process
C JUNITS (4) => FFREAD input for CPS GENERATE process
LIN = 5
LOUT = 6

DO 100 I =0 , 4

100 LUNITS(I+1l) = 15 + I
DO 200 T =0, 9

200 JUNITS(I+1l) = 20 + I

(o4 Define environment names for file access.
LNAMES (1) = 'GEANT_FZIN'
LNAMES (2) = ’'GEANT_FZOUT'
LNAMES (3) = 'GEANT_HBOOK4'
LNAMES (4) = ’'GEANT_MAGNET'’
JNAMES (1) = 'PARTICLE_DATABASE'
JNAMES (2) = 'USER_PARTICLE_DATABASE’
JNAMES (3) = ’FFREAD_CONTROL’
JNAMES (4) = ’FFREAD_GENERATE’
C Allow user-defined FFREAD data cards. Define in UGFFKY.

CALL UGFFKY
(o4 Proclaim.
WRITE (CEMAIL, ' (1X,A52)')
'**kk*x%x BCDCPS version 1.02 <==> April 23, 1991 **kx &’
CALL GMAIL(O0,O0)

(o] Read data cards.

14

a0

300

CALL GETENVF (JNAMES (3) (1:LENOCC (JNAMES (3))) ,ENV)
IF (ENV.EQ.’ ‘) ENV=JNAMES (3)

OPEN (UNIT=JUNITS (3), FILE=ENV, STATUS='OLD')

CALL FFSET('LINP’, JUNITS(3))

CALL GFFGO

CLOSE (JUNITS (3))

Initialize data structures.
CALL GZINIT

Open FZ files for GEANT input and output, if requested.

IF (NGET.GT.0) THEN

Use environment name (or file name) in LNAMES(l) for FZ

input.
Assume binary eXchange mode.

CALL GETENVF (LNAMES (1) (1:LENOCC (LNAMES (1))),ENV)
IF (ENV.EQ.’ ') ENV=LNAMES (1)

CALL CFOPEN (LUNPTR,0,900,’x’,0,ENV,ISTAT)

IQUEST (1) = LUNPTR

CALL GOPEN (LUNITS (1), ‘LXI’,0,IER)

Get GEANT initialization, if requested.
DO 300 I = 1, NGET
CALL UHTOC(LGET(I),4,KEYS(I), 4)

CONTINUE

CALL GGET(ABS (LUNITS(l)),KEYS,-NGET, IDENT, IER)
END IF
Initialize standard GEANT3 internal histograms.
IF (NHSTA.GT.0) CALL GBHSTA
Load standard GEANT3 materials and BCD materials.

CALL GMATE
CALL UGMATE

Use BCD extended particle decay table.

JPART is booked during first GSPART call with space for NPART particles.

NPART = 225
CALL UGPART

Define the geometrical setup.

CALL UGEOM

Compute cross section and enexgy loss tables.
CALL GPHYSI

Book user histograms.

15

Qa

Qa0

400

CALL UGBOOK

Declare CPS hlock for FFREAD data card distribution via CPS.

CALL ACP_DECLARE_BLOCK (MFFBUF, 4*FFBUF, CPSFF)

Transfer FFREAD caxds for GENERATE processes to local memory buffer.

IFFOFF = 0

CALL GETENVF (JNAMES (4) (1:LENOCC (JNAMES (4))) , ENV)
IF (ENV.EQ.’ ') ENV=JNAMES (4)

OPEN (UNIT=JUNITS (4) , FILE=ENV,STATUS = ’OLD’)
READ (UNIT=JUNITS (4), ’'(A)’,END = 500) STRING
CALL UCTOH (STRING, MFFBUF (1+IFFOFF), 4, 4*FFBLK)
IFFOFF = IFFOFF + FFBLK

GOTO 400

500 CLOSE (JUNITS (4))

#

CALL ACP_SYNC (ACP$ALL_ PROCESSES, 0)
Declare CPS block for FZ channel commnications via CPS.

CALL ACP_DECLARE_BLOCK (MCZBUF, 4*CZBUF,CPSF2Z)
CALL CZCPSI(’'CPSBUF’,CPSF2)
CALL CZCPSI('BUFLEN’',6 4*CZBUF)

Transfer GEANT data structures to local memory buffer.

CALL CZCPSI(’'OFFSET’,0)
CALL GOPEN(CZLUNO, 'COSU’,CZBLK, IERROR)
CALL FZHOOK(CZLUNO,CZBUFR, IDUMMY)
CALL GSAVE (CZLUNO,'’INIT'’,-1,0,IERROR)
IF (IERROR.NE.0O) THEN
WRITE (CHMAIL,*) 'Error writing INITialization data.IERROR = /,
IERROR
CALL GMAIL(0,O0)
ENDIF
CALL GCLOSE (CZLUNO, IERROR)

Synchronize CONTROL and GENERATE processes after data structure
transfer to local memory buffer.

CALL ACP_SYNC(ACP_SET_OF_PROCESSES (3, CONTROL,GENSGI, GENDEC),1)

Synchronize OONTROL and GENERATE processes after GENERATE processes
have completed transfers from local memory buffer.

CALL ACP_SYNC(ACP_SET OF PROCESSES (3, CONTROL , GENSGI, GENDEC) ,2)
Transfer magnetic field maps to GENERATE processes, if necessary.

IF (IFIELD.EQ.1) THEN
CALL CZCPSI(’OFFSET', 0)
CALL FZFILE (CZLUNO,CZBLK, ' COSU’)
CALL FZHOOK (CZLUNO,CZBUFR, IDUMMY)
CALL FZOUT (CZLUNO, IXCONS,JBFLD(1),0,’ ’,2,0,0)
CALL FZOUT (CZLUNO, IXCONS,JBFLD (2),0,’ ’',2,0,0)
CALL FZENDO (CZLUNO, 'T’)
CALL ACP_SYNC (ACP_SET OF PROCESSES (3, CONTROL, GENSGI, GENLEC), 3)

16

c

#

#

600

700

CALL ACP_SYNC (ACP_SET OF PROCESSES (3, CONTROL, GENSGI, GENDEC), 4)
ENDIF

Place EVTGEN processes on queue.

CALL ACP_QUEUE_PROCESS(ACP_SET OF PROCESSES (1, EVIGEN),
QEVTGEN, ISRC)

Initialize OUTPUT processes.
CALL GETENVF (LNAMES (2) (1:LENOCC (LNAMES (2))) ,ENV)

IF (ENV.EQ.’ ') ENV=LNAMES (2)
LENV = LENOCC (ENV)

IMED = 0
IBLOCK = CZBLK
INBUF = 0

ICLASS = CONTROL
CALL ACP_JOB_INFO(1,OUTPUT, IPROC1, IPROCN)
CALL ACP_DEAD PROCESS_INFO(ICLASS, 32, IDEAD, NDEAD)
DO 600 IPROC = IPROC1, IPROC1+IPROCN-1
IF (IUCOMP (IPROC,IDEAD,NDEAD) .EQ.0) THEN
IF (IPROCN .GT .1) WRITE (ENV(LENV+1:LENV+2), ' (I2.2)')
IPROC-IPROC1
CALL UCTOH (ENV, INAME, 4, 80)
CALL ACP_CALL (IPROC, ACP$WAIT, RCREATE,
INAME, IMED, IBLOCK, INBUF, ICLASS)
ENDIF
CONTINUE

Save GEANT initialization, if zrequested.

IF (NSAVE.GT.0) THEN
DO 700 I = 1, NSAVE
CALL UHTOC (LSAVE (I), 4,KEYS(I),4)
CONTINUE
CALL GOPEN(LUNITS(2),'COSU’,CZBLK, IERROR)
CALL FZEOOK (LUNITS (2),CZCPS, IDUMMY)
CALL C2CPSI(’'OFFSET’,0)
CALL CZCPSI (' SETPRO’ ,ACP_SET CF PROCESSES(1,0UTPUT))
CALL GSAVE (LUNITS (2),KEYS, -NSAVE, 0, IER)
CALL C2ZCPSR(’'OFFSET’,6 IOFF)
NPHR = IOFF/ (4*CZBLK)
CALL ACP_CALL(ACP_SET_OF PROCE SSES (1,0UTPUT) ,QOUTP UT, ROUTELK,
NPHR)
ENDIF

Initialize CPS ZEBRA sexver.

CALL FZFILE (CZLUNO,CZBLK, 'COSU’)
CALL FZFILE (CZLUNI,CZBLK, "CISU’)
CALL FZHOOK (CZLUNO,CZBUFR, IDUMMY)
CALL FZHOOK(CZLUNI,CZBUFR, IDUMMY)
IADCPS=JUMPAD (CZBUFR)

CALL JUMPST (IADCPS)

CALL CZCPSI(’'REMSUB’,R2ZSCPS)

17

c Transfer histograms to GENERATE processes.
c Initialize GEANT3 random number generator using sequences
Cc available in GRNDMQ. Select sequence via CPS process mumber.
DO 900 ICLASS = GENSGI, GENDEC
CALL ACP_JOB_INFO(1l,ICLASS, ISTART, ICOUNT)
CALL ACP_DEAD_PROCESS_INFO(ICLASS, 32, IDEAD,NDEAD)
DO 800 IPROC = ISTART, ISTART+ICOUNT-1
IF (IUCOMP (IPROC, IDEAD,NDEAD) .EQ.0) TREN
WRITE (CHTOP,' (I4.4)’) IPROC
CALL HRFILE (IPROC,CHTOP,’'G’')
CALL HROUT (0, ICYCLE,’ ')
CALL EHREND (CHTOP)
NRNDM1 = IPROC
NRNDM2 = 0
CALL ACP_QUEUE PROCESS(IPROC,QGENER, IDRUN,IDEVT,
NRNDMI, NRNDM2)
ENDIF
800 CONTINUE
900 CONTINUE
RETURN
END
4.2.3 GRUN

Subroutine GRUN controls the GEANT?3 event loop. For CPS applications, the action contained
within the event loop may be placed in a CPS remote subroutine in a class of “as many as possible”
processes. In this case, the event loop may be transformed into a loop which dequeues inactive
remote subroutine servers and restarts them via a remote subroutine call using the “call-and-queue”
mechanism. This approach has been taken in the BCD/CPS event-parallel simulation. The event
action from the uniprocessor GRUN is now contained in subroutine GEVENT in each of the
GENERATE event generation servers. Subroutine GRUN merely passes run identification number,
event sequence number, and random generator seeds at each remote subroutine call and counts events
until the event loop is finished. Before returning, GRUN waits for all CPS remote subroutine server

queues to fill, thus guaranteeing that all processing has finished.

+DECK, GRUN,

noaoaoaoanoaoanan

SUBROUTINE GRUN

AKX KA AKX KR KKK K N KRk ko ok sk dkd ok ok i % % %k %k %k o 3% I i o % % % %

* *
* Steering routine to process all the events *
* Adapted from standard GEANT3 subroutine GRUN for CPS usage. *
* *
* *
* Author: Lee Roberts *
* Date: January 7, 1991 *
* *
2 E L R R R R R SR RSS2 222 X 2

INCLUDE 'acp_user.inc’

18

+SEQ, GCFLAG
+SEQ, GCTIME
+SEQ, BCDQUEUE
+SEQ, BCDRSUB

C.
o bt ittt L T
C.
c Keep starting time
o}
IF(IFIRST.EQ.0) THEN
IFIRST=1
CALL TIMEX (TIMINT)
ENDIF
Cc
c Dequeue event generation process
C
10 CALL ACP_DEQUEUE PROCESS (IPROC,QGENER, RUNID, EVTID, NRNDML , NRNDM2)
C
o] Generate next event
C
EVTID = IDEVT
CALL ACP_CALL(IPROC, QGENER, RGEVENT, RUNID, EVT ID, NRNDML ,NRNDM2)
o
IDEVT = IDEVT + 1
IEVENT = IEVENT + 1
IF (IEVENT.LE.NEVENT)GO TO 10
Cc
Cc End of run
C
IEORUN = 1
90 IEVENT=IEVENT - 1
CALL ACP_WAIT QUEUE (QGENER,ACPS$FULL)
CALL ACP_WAIT_ QUEUE (QEVTGEN,ACP$FULL)
CALL ACP_WAIT_QUEUE (QOUTPUT, ACP$FULL)
C
99 RETURN
END
1.2.4 UGLAST
Customization of subroutine UGLAST for the BCD/CPS event-parallel simulation required the
‘tion of CPS termination features. Subroutine UGLAST accumulates HBOOK4 histograms from
ENERATE processes using the CPS ZEBRA Server. These accumulated subroutines are
1) “in the CPS job manager logfile and are written into an HBOOK4 direct-access (RZ) file. In
ada. all “slave” remote subroutine servers are methodically finished via their remote subroutine
FINi. terface, allowing process statistics and output to be collected into the CPS job manager
logfile. ly, the CPS job is terminated.

INTEGER RUNID, EVTID

SAVE IFIRST
DATA IFIRST/0/

19

+DECK, UGLAST.
SUBROUTINE UGLAST

IR EE R AR ERERR R R R s il il i it st iR it s Rt i s 2 R R 2 & 1

*
* CPS/GEANT3 termination routine.

* -~ call GLAST for GEANT3 termination

* - close GEANT3 F2 input and output files

* -~ collect HBOOK4 histograms from GENERATE processes
* - print HBOOK4 histograms

* - create RZ file of HBOOK4 histograms

* - finish execution of CPS subroutine servers
*
*
*
*
*

Author: Lee Roberts
Date: April 23, 1991

% % % % % ¥ % % % % ¥ %

e NeNesNeNeNeRe Ne N Ne Ne NeNe Ny

22 2222222222222 2Rt 2222 2 2 et aR i st R 2 X 2 2 24

INCLUDE 'acp_user.inc’

+SEQ, GCLIST.
+SEQ, GCUNIT.
+SEQ, TUNITS.
+SEQ, BCDCZCPS.
+SEQ, BCDCLASS.
+SEQ, BCDQUEUE.
+SEQ, BCDRSUB.

INTEGER IER, IPROC,IOFF,NPHR
CHARACTER*80 ENV

CHARACTER*4 CHTOP

INTEGER RUNID,EVTID, NRNDM1l, NRNDM2

CALL GLAST
c Close FZ files for GEANT input and output, if requested.

IF (NGET.GT.0) CALL GCLOSE (LUNITS (1), IER)
IF (NSAVE.GT.0) THEN
100 CALL ACP_DEQUEUE_IF POSSIBLE (IPROC, QOUTPUT, NPHR)
IF (IPROC.NE.ACPSEMPTY) GOTO 100
CALL CZCPSI (' OFFSET’',0)
CALL CZCPSI(’SETPRO’ , ACP_SET OF PROCESSES (1,00TPUT))
CALL GCLOSE (LUNITS (2), IER)
CALL CZCPSR('OFFSET' , IOFF)
NPHR = IOFF/ (4*CZBLK)
. CALL ACP_CALL(ACP_SET_OF PROCESSES (1,0UTPUT) ,QOUTPUT, ROUTELK,
NPHR)

CALL ACP_WAIT_ QUEUE (QOUTPUT, ACP$FULL)

ENDIF

o Collect histograms.

20

200 CONTINUE
CALL ACP_DEQUEUE_IF_POSSIBLE (IPROC,QGENER,RUNID, EVTID,
NRNDM1, NRNDM2) ™~
IF (IPROC. xQ ACPSEMPTY) GOTO 300
WRITE (CHTOP, ' (I4.4)') IPROC
CALL HRFILE (IPROC,CHTOP,’'G’)
CALL HRIN(O,1,99999)
CALL HREND (CHTOP)
GOTO 200
300 CALL ACP_QUEUE PROCESS(ACP_SET_ OF PROCESSES (2, GENSGI,GENDEC),
QGENER, IDRUN, IDEVT, NRNDM], NRNDM2)

Output histograms.
CALL HISTDO

Save histograms in an RZ file.
Use environment name (or filename) in LNAMES for storage.

LRECL=1024
CALL GETENVF (LNAMES (3) (1:LENOCC (LNAMES (3))), ENV)
IF (ENV.EQ.’ ') ENV=LNAMES (3)

CALL RZOPEN(LUNITS(3),’ HBOOK’, ENV, 'N’,LRECL, ISTAT)
CALL BHERFILE (LUNITS(3),’HBBOOK', 'NX’)

CALL HROUT(0,ICYCLE,’ ')

CALL HREND (’/ EBOOK')

CLOSE (LUNITS (3))

Finish this CPS process.
CLOSE (6)
Finish EVTGEN processas.

400 CONTINUE
CALL ACP_DEQUEUE_IF POSSIBLE (IPROC,QEVTGEN, ISRC)
IF (IPROC.EQ.ACPS$EMPTY) GOTO 500
CALL ACP_CALL (IPROC,ACPS$WAIT, RFINISH)
GOTO 400
500 CONTINUE

Finish OUTPUT processes.

600 CONTINUE
CALL ACP_DEQUEUE_IF_ POSSIBLE (IPROC, QOUTPUT, NPHR)
IF (IPROC.EQ.ACPS$EMPTY) GOTO 700
CALL ACP_CALL (IPROC,ACP$WAIT, RFINISH)
GOTO 600
700 CONTINUE

Finish GENERATE processes.

800 CONTINUE
CALL ACP_DEQUEUE_IF_POSSIBLE (IPROC, QGENER, IDRUN, IDEVT,
NRNDM1 , NRNDM2)
IF (IPROC EQ.ACPSEMPTY) GOTO 900
CALL ACP_CALL (IPROC,ACPS$WAIT, RFINISH)
GOoTO 800
900 CONTINUE

21

(o] Stop this CPS job.
CALL ACP_STOP_JOB

END

4.3 GENERATE decks

Program BCDGEN is the “as many as possible” program for the BCD/CPS event-paraliel
GEANT3 simulation. After initialization by the CONTROL process, program BCDGEN is a “slave”
remote subroutine server capable of GEANT?3 event generation and ZEBRA Server histogram
manipulations. All input and output is performed via CPS or CZ/CPS through other CPS process
classes. As a result, several BCD GEANT?3 uniprocessor subroutines required modification for CPS
or CZ/CPS 1/O. In addition, the event action from the standard GEANT3 event loop is added as a
remote subroutine. Creation of the BCD/CPS GENERATE process resulted in the addition or
modification of the following subroutines:

* BCDGEN—main program for GEANT3 event generation server
* UGINIT—user-supplied GEANTS3 initialization subroutine

* GEVENT—GEANTS3 event processing action

* GUOUT—user-supplied GEANT3 event output subroutine

* GUPYTHIA—BCD GEANTS3 interface to PYTHIA 5.5

* GUISA—BCD GEANTS3 interface to ISAJET 6.36

¢ FINISB—remote subroutine server termination subroutine.
These subroutines are presented in the following subsections.

4.3.1 BCDGEN

CPS initialization for the GENERATE class is hidden within the UGINIT subroutine. After all
initializations have been completed, this program becomes a “slave” subroutine server through the
ACP_SERVICE_CALLS subroutine.

+DECK, BCDGEN.
PROGRAM BCDGEN

C. AR RN RN N AR AR AR AN AN AR R AR AR A AR AR R AR ARk h ko hdodkd
C. * *
C. * GENERATE (event generation) process for CPS version of *
C. * BCD GEANT3 simulation. *
C. * *
C. * Use with GEANT 3.14 and HBOOK4. *
C. * *
C. * Author: Lee Roberts *
C. * Date: April 20, 1991 *
C. * *
c. X I Y I Y T R T e 2 TR TR L X

22

+SEQ, USEREXT.
+SEQ, BCDEXT.
+SEQ, CPSEXT.

(o] Provide adequate storage for GEANT3 and HBOOKA4.
PARAMETER (NG=1000000,NH=500000)

COMMON /GCBANK/ Q(NG)
COMMON /PAWC/ H(NB)

C Set time limit for process.
CALL TIMEST(86400.)
c Allocate memory for ZEBRA and HBOOK4.

CALL GZEBRA (NG)
CALL BHLIMIT (-NH)

(o] Initialization phase.
CALL UGINIT

Cc Processing phase.
CALL ACP_SERVICE_CALLS

END

4.3.2 UGINIT

Customization of subroutine UGINIT for the BCD/CPS GENERATE process required the
addition of CPS initializations and the adaptation of input codes to read from the CONTROL process
via CZ/CPS. FFREAD data cards for the GENERATE process are read via the distributed FFREAD
facility of CZ/CPS. The basic GEANTS3 initializations in GINIT and GZINIT are performed, but
the GEANTS3 initialization data structures are obtained via CZ/CPS from the FZ “file” located in the
CONTROL process. The BCD dipole field maps are input in a similar fashion. After initializing the
FZ channel for FZ event output and the CPS ZEBRA Server, UGINIT performs the standard
physics initializations before returning.
+DECK, UGINIT.

SUBROUTINE UGINIT

2222222 2222222222822 R 2Rt aRRRaRERRRARERR2RRRR R &

CPS/GEANT3 initialization

- declare CPS remote subroutines and queues
- standard GEANT3 variable initialization
claim I/O units 15--19 for LUNITS

- read FFREAD data cards via CPS

- read GEANT3 INITialization data via CZ2z2/CPS
- read BCD magnetic field maps via Cz/CPS

23

OO OOO0OO0

* % % X X % X X
]

* % % % % % % ¥

C. * - initialize CPS ZEBRA server *
C. * ~ physics initialization *
C. * *
C. * Author: Lee Roberts *
C. * Date: January 7, 1991 *
c. * *
c. LR R S 2232322222222
INCLUDE 'acp_user.inc’

+SEQ, GCBANK.

+SEQ, GCUNIT.

+SEQ, BCDFF.

+SEQ,CZSOCK.

+SEQ, BCDCLASS.

+SEQ, BCDQUEUE.

+SEQ, BCDRSUB.

+SEQ, BCDFFCPS.
EXTERNAL FFCPS

+SEQ, BCDCZCPS.
EXTERNAL CZCPS
COMMON /FLDMAP/ JBFLD (2)
INTEGER JBFLD
INTEGER IDENT, IDUMMY, IERROR

EXTERNAL ZSCPS
EXTERNAL GEVENT
EXTERNAL FINISH

C Initialize CPS software.
CALL ACP_INIT
CALL ACP_DECLARE_SUBROUTINE (ZSCPS, RZSCPS, 3,80,4,4)
CALL ACP DEC[ARE WBMJTINE(GMNT RGEVENT, 4,4,4,4,4)

CALL ACP_ DECLARE SUBROUTINE (FINISH, RFINISH, 0)
CALL ACP DECLARE _QUEUE (QGENER, 4,4,4,4,4)

o} Initialize GEANT3 variables.

CALL GINIT

c Define FORTRAN logical units for I/O.

o] LIN ==> 5

(o LOUT ==> 6

o] ZEBRA I/O (FZ/RZ) on LUNITS.

C LUNITS (1) ==> FZ GEANT3 input.

C LUNITS (2) ==> FZ GEANT3 output --- see UGOUT
LIN = 5
LOUT = 6
DO 100 T =0 , 4

100 LUNITS(I+1l) = 15 + 1
C Allow user-defined FFREAD data cards. Define in UGFFKY.

CALL UGFFKY

24

e NeNe)

a0

Obt ain FFREAD data carxds from memory buffer on CONTROL process.
Set alternate inmput subroutine to allow FFREAD input via CPS.
Define source and target classes to allow proper data conversion.

CALL FFSET('LINP’,-FFLUN)
CALL FFRSET(FFLUN,FFCPS)

Declare CPS block for FFREAD communications via CPS.

CALL FFCPSI ('CPSBUF’,CPSFF)

CALL FFCPSI (/BUFLEN’,6 4*FFBUF)

CALL ACP_JOB_INFO(1l,CONTROL, IPROC1l, IPROCN)
CALL FFCPSI('SETPRO’,IPROC1)

Synchronize CONTROL and GENERATE processes to allow FFREAD cards
to be written into memory buffer on CONTROL process.

CALL ACP_SYNC (ACP $ALL_PROCESSES, 0)
Read data cards.

CALL FFCPSI('OFFSET’,0)
CALL GFFGO

Initialize data structures.
CALL GZINIT

Synchronize OONTROL and GENERATE processes to allow data structures
to be written into memory buffer on CONTROL process.

CALL ACP_SYNC(ACP_SET_OF PROCESSES (3, CONTROL,GENSGI, GENDEC),1)
Declare CPS block for FZ channel communications via CPS.

CALL CZCPSI('CPSBUF’', CPSFZ)

CALL CZCPSI ('BUFLEN’,b 4*CZBUF)

CALL ACP_JOB_INFO (1,CONTROL, IPROC1, IPROCN)
CALL CZCPSI (' SETPRO’,IPROC1)

Read GEANT INITialization data structures from FZ channel.

CALL CZCPSI(’/OFFSET’,0)
CALL GOPEN(CZLUNI,' 'CISU’,CZBLK,IERROR)
CALL FZHOOK(CZLUNI,CZCPS, IDUMMY)
CALL GGET(CZLUNI,’INIT’,-1,IDENT,IERROR)
IF (IERROR.NE.0) THEN
WRITE (CHMAIL,*) ‘Exror reading INITialization data .IERROR = ',
IERROR
CALL GMAIL(0,0)
ENDIF
CALL GCLOSE (CZLUNI, IERROR)

Synchronize processes when transfers have £finished.
CALL ACP_SYNC(ACP_SET OF PROCESSES (3, CONTROL, GENSGI,GENDEC), 2)
Transfer magnetic field maps to GENERATE processes, if necessary.

25

IF (IFIELD.EQ.l) THEN
CALL ACP_SYNC(ACP_SET_OF _PROCESSES (3, CONTROL, GENSGI, GENDEC), 3)
CALL CZCPSI (' OFFSET',0)

CALL FZFILE (CZLUNI,CZBLK, 'CISU’)

CALL FZHOOK (CZLUNI,CZCPS, IDUMMY)

CALL MZLINK(IXCONS,’/FLDMAP /', JBFLD (1) ,JBFLD (2) ,JBFLD (1))

CALL FZIN(CZLUNI,IXCONS,JBFLD(1),1,’ ’,0,0)

CALL FZIN(CZLUNI,IXCONS,JBFLD(2),1,’ ',0,0)

CALL FZENDI (CZLUNI,'T’)

CALL ACP_SYNC(ACP_SET_OF_PROCESSES (3, CONTROL, GENSGI, GENDEC) 4)

ENDIF

Cc Open FZ Channel for GEANT FZ event output.

CALL GOPEN(LUNITS(2),’'COSU’,CZBLK, IERROR)
CALL FZHOOK(LUNITS (2),CZCPS, IDUMMY)

c Initialize FZ Channel Input and Output media for HBOOK4/ZEBRA
o} Server communications.

CALL FZFILE (CZLUNO,CZBLK, 'COSU’)
CALL FZFILE (CZLUNI,CZBLK,'CISU’)
CALL FZHOOK (CZLUNO,CZCPS, IDUMMY)
CALL FZHOOK(CZLUNI,CZCPS, IDUMMY)

c Define channel handler address for CZ communications interface.
IADCPS = JUMPAD (CZCPS)
CALL JUMPST (IADCPS)

Cc Compute cross section and energy loss tables.
CALL GPHYSI

RETURN
END

4.3.3 GEVENT

Subroutine GEVENT is the “heart” of the BCD/CPS event-parallel simulation. GEVENT
contains the action which must be parallelized across “as many as possible” processors. This action is
the GEANT3 event trigger—the tracking of an event through the detector, the storing of hits, and the
calculation of detector digitizations. Subroutine GEVENT is an adaptation of the standard GEANT3
subroutine GRUN. Additional parameters have been added for CPS parallelization to specify the run
identification number, the event sequence number, and the random generator seeds for the GEANT3

event.

26

+DECK, GEVENT.

o NeNeNeNoNe No Ne e

SUBROUTINE GEVENT (RUNID,EVTID, NRNDM1, NRNDM2)

J d g de v & Kk de de ke e ke %k ke d ok de de ok %k de ko ok o 3k vk ok e vk db % g ok o dr ok %k o O o ok ok ok ok K ok

*

* Steering routine to process a single CPS event.

* Adapted from standard GEANT3 subroutine GRIUN for CPS usage
*

* Author: Lee Roberts

* Date: January 7, 1981

*

ARKK KRR R KRR AR R AR R KRR RRNRARRRNRRRR AR KA KRR ANRRNRARN KRR KRR AR

INTEGER RUNID, EVTID, NRNDM1l, NRNDM2

INCLUDE 'acp_user.inc’

+SEQ, GCFLAG.
+SEQ, GCTIME.

(o NeNeNeNe!

(s NeNe

(oMo Ne

SAVE IFIRST
DATA IFIRST/0/

Assign event-specific values

IDRUN=RUNID
IDEVT=EVTID

NRNDM (1) =NRNDM1
NRNDM (2) =NRNDM2

Initialize the random number generator

IF (NRNDM(2) .NE.0) THEN
CALL GRNDMQ(NRNDM(1l), NRNDM(2),1, 'S’)
GO TO 1

ENDIF

IF (NRNDM (1) .GT.0) TEEN
ISEQ=NRNDM(1)
CALL GRNDMQ (NRNDM (1) , NRNDM(2),ISEQ,’'Q’)
CALL GRNDMQ (NRNDM (1) h NRNDM(2),ISEQ,’'S’)
GO TO 1

ENDIF

CONTINUE

Keep starting time
IF (IFIRST.EQ.0) THEN
IFIRST=1
CALL TIMEX (TIMINT)
ENDIF

Initialize event partition

27

*
*
%*
*
*
*
*
*

CALL GTRIGI

Process one event (trigger)
CALL GTRIG
Clear event partition

CALL GTRIGC

Q Qo0 a0 o

IF (IEORUN.NE.O) THEN
CALL ACP_FATAL_PROCESS_ERROR (ACP $THI S_PROCESS,
'IEORUN nonzero. Stop worker.’)
ENDIF

Update input parameters

e NeNe

RUNID=IDRUN
EVTID=IDEVT

CALL GRNDMQ (NRNDM (1), NRNDM(2),0,’'G’)
NRNDM1=NRNDM (1)

NRNDM2=NRNDM (2)

IEVENT = IEVENT + 1

99 RETURN
END

4.3.4 GUOUT

Subroutine GUOUT defines the interface between the GENERATE event generation processes
and the OUTPUT event output collectors. After a “ready” OUTPUT process is dequeued, the
selected GEANT3 event data structures are written as FZ sequential output into the CZ/CPS memory
buffer in the OUTPUT process. Finally and asynchronously, the OUTPUT process is instructed to
transfer the FZ event data to disk (or tape) before queuing itself as “ready” for another event.

+DECK, GUOUT.
SUBROUTINE GUOUT

C. 2 22 222222 22X X222 R 2R RXXR R R 2 RXES R R X R X X B J
C. * *
cC. * User routine called at the end of each event. *
C. x *
C. * BCDCPS usage: *
C. * - £ill histograms *
C. * - write FZ event output to OUTPUT server *
C. * *
C. * Author: Lee Roberts *
C. * Date: © January 7, 1991 *
C. x *

AARXAEAEAXERXEAARAARRRARRRRRAARRT R AR AR Rk ko ko ok ok %k %k %

28

+SEQ, GCFLAG.
+SEQ, GCLIST.
+SEQ, GCNUM.
+SEQ, GCUNIT.
+SEQ, BCDCZCPS.
+SEQ, BCDQUEUE .
+SEQ, BCDRSUB.

INTEGER IER

LOGICAL START
CHARACTER*4 KEYS(20)
DATA START /.TRUE./
SAVE KEYS, START

REAL VERT(3), PVERT(4)
INTEGER UBUF (10)

C Convert Hollerith keys to character for run

IF (START) THEN
START = .FALSE.
DO 100 I = 1, NSAVE
CALL UHTOC (LSAVE(I), 4,KEYS(I),4)
100 CONTINUE
END IF

C Fill wuser-defined histograms
CALL UGFILL
C Attach an output process
CALL ACP_DEQUEUE_PROCESS (IPROC, QOUTPUT, NPHR)
o] Transfer event output to output process
CALL C2CPSI('OFFSET’,0)
CALL CZCPSI(’'SETPRO’,IPROC)
CALL GSAVE (LUNITS(2),KEYS,NSAVE, IDEVT, IER)
CALL CZCPSR(’'OFFSET’, IOFF)
NPHR = IOFF/ (4*CZBLK)
C Transfer output to file
CALL ACP_CALL (IPROC, QOUTPUT, ROUTBLK, NPHR)

END

4.3.5 GUPYTHIA

Subroutine GUPYTHIA defines the interface between the GENERATE event generation
processes and the PYTHIA version of the EVTGEN event generators. After a “ready” EVTGEN
process is dequeued, a new event is generated. The particle data is transferred to the GENERATE
process and converted for introduction into GEANT3. Meanwhile, the EVTGEN process is again
“ready” and is queued.

29

+DECK, GUPYTHIA.
SUBROUTINE GUPYTHIA

L2 222222 X222 22X X2 22222222 22X d2 X2 2 a2 adXZ2 222 Rsldd R
PYTHIA event generator interface £for BCD GEANT3
Interface to CPS EVIGEN event generator server

Author: Lee Roberts
Date: January 7, 1991

* %k % % % % F %

*
*
*
*
*
*
*
*
*

1222222222222 2222222222222 222 2222222 22222 RRE Rl S

anoaoanoaaooaonn

INCLUDE 'acp_user.inc’

INTEGER XDKPDG
EXTERNAL XDKPDG

+SEQ, GCFLAG.
+SEQ, GCKINE.
+SEQ, GCONST.
+SEQ, GCUNIT.
+SEQ, TUNITS.
+SEQ, PYCOM.
+SEQ, BCDEVCPS.
+SEQ, BCDQUEUE.
+SEQ, BCDRSUB.
REAL PLAB (4)
INTEGER TRKNUM

(o4 Use system initialization flag IFINIT(20) for GUPYTHIA initialization.
IF (IFINIT(20).EQ.0) IFINIT(20) = 1

Interface to EVIGEN event generator---PYTHIA version.
Attach an EVTGEN process.
Generate a PYTHIA event.
Obtain the particle data for the event.
Queue the EVTGEN process.
Convert floating point event data.

o NeNeNeNoNe

CALL ACP_DEQUEUE_PROCESS (IPROC, QEVTGEN, ISRC)
CALL ACP_CALL (IPROC,ACP$WAIT, REVTGEN, ISRC)
CALL ACP_GET (IPROC,N,240004,CPSEVT,0)

CALL ACP_QUEUE_PROCESS (IPROC, QEVTGEN, ISRC)
CALL ACP_CLASS_INFO(ITGT, IPROC1l, IPROCN)

CALL ACP_CONVERT(P(1,1),P(1,1),20*N,ACPSREAL_4,ISRC,ITGT)
CALL ACP_CONVERT(V(1,1),V(1,1),20*N, ACPSREAL_4,ISRC,ITGT)

We assume all tracks come from the primary vertex.
Loop over all particles, enter into GEANT.

Q0

30

DO 600 I= 1,N
IF (K(I,1).GE.1.AND.K(I,1).LE.10) THEN
ID=K(I,2)
IPART=XDKPDG (ID)
PLAB(1)=P (I, 1)
PLAB (2)=P (I, 2)
PLAB (3)=P (I, 3)
PLAB (4) =P (I, 4)
IF (IPART.NE.0) THEN

Cc Do NOT enter particles listed on KINE data card into simulation.

DO 300 J = 1,10
IF (PKINE(J).EQ.BIG) GOTO 400
IF (FLOAT (IPART) .EQ.PKINE(J)) GOTO 500

300 CONTINUE
400 CALL GSKINE (PLAB,IPART,1, 0,0, TRKNUM)
500 CONTINUE
ELSE
WRITE (CHMAIL, ' (1X,A22,1I5,A12,15)')
>>>>> GUPYTHIA, Event ' ,IDEVT,’ : Particle ' ,ID

CALL GMAIL(0,0)
WRITE (CHMAIL, '’ (15X,Al15,4F16.4)’) 'four momentum:’,6 PLAB

CALL GMAIL(O,0)
ENDIF
ENDIF
600 CONTINUE

RETURN
END

4.3.6 GUISA

Subroutine GUISA defines the interface between the GENERATE event generation processes
and the ISAJET version of the EVTGEN event generators. After a “ready” EVTGEN process is
dequeued, a new event is generated. The particle data is transferred to the GENERATE process and
converted for introduction into GEANT3. Meanwhile, the EVTGEN process is again “ready” and is

queued.

+DECK,GUISA.
SUBROUTINE GUISA

I Z 2222222222222 222 R 2222 X2 Rt 2 te gt st Rt 2 s 2 a2 2 & 8

C.

cC. *

C. * ISAJET event generator interface for BCD GEANT3. *
C. * *
C. * Interface to CPS EVTGEN event generator server. ¥
cC. * *
C. * Author: Lee Roberts *
C. * Date: January 7, 1991 *
C. * *
C. * *

% % % 3k g de %k % %k % K K % % ok J %k % de ok ok dk gk gk vk dk kK s s dk sk d kA ok gk % %k k% %k %k

INCLUDE 'acp_user.inc’
31

INTEGER XDKISA
EXTERNAL XDKISA

+SEQ, GCFLAG.
+SEQ, GCKINE.
+SEQ, GCONST.
+SEQ, GCUNIT.
+SEQ, TUNITS.
+SEQ, PARTCL.
+SEQ, BCDEVCPS.
+SEQ, BCDQUEUE.
+SEQ, BCDRSUB.

REAL PLAB (4)
INTEGER TRKNUM

o} Use system initialization flag IFINIT(20) for GUISA initialization.
IF (IFINIT(20).EQ.0) IFINIT(20) = 1

C Intexface to EVIGEN event generator---ISAJET version.

C Attach an EVTGEN process.

Cc Generate an ISAJET event.

c Obtain the particle data for the event.

C Queue the EVTGEN process.

c Convert floating point event data.

CALL ACP DEQUEUE PROCESS (IPROC, QEVTGEN, ISRC)

CALL ACP_CALL(IPROC,ACP$WAIT, REVTGEN, ISRC)

CALL ACP_GET (IPROC,NPTCL, 4* (8*MXPTCL+1) , CPSEVT, 0)
CALL ACP_QUEUE_PROCESS (IPROC, QEVTGEN, ISRC)

CALL ACP CLASS INFO(ITGT,IPROC1, IPROCN)

CALL ACP_CONVERT(PPTCL(1,1) ,PPTCL(1,1) ,20 *NPTCL ,ACP$REAL 4,

ISrRc,ITGT) P
c We assume all tracks come from the primary vertes.
c Loop over all particles, enter into GEANT.

DO 400 1I=1,NPTCL
ID=IDENT (I)
IPART=XDKISA (ID)
PLAB (1)=PPTCL (1, I)
PLAB (2) =PPTCL (2, I)
PLAB (3) =PPTCL (3, I)
PLAB (4)=PPTCL (4, I)
IF (IPART.NE.O) THEN

C Do NOT enter particles listed an KINE data card into simulation.
DO 100 J=1,10

IF (PKINE (J).EQ.BIG) GOTO 200
IF (FLOAT (IPART) .EQ.PKINE(J)) GOTO 300

100 CONTINUE
200 CALL GSKINE (PLAB, IPART, 1,0, 0, TRKNUM)
300 CONTINUE

32

ELSE

WRITE (CHMAIL, ' (1X,Al19,I5,A12,15)')
>>>>> GUISA, Event ' ,IDEVT,’: Particle ’,ID

CALL GMAIL(0,0)
WRITE (CHMAIL,’ (15X ,A15,4F16 .4)’) ’'four-momantum:’, PLAB
CALL GMAIL(0,0)

END IF

400 CONTINUE

RETURN
END

4.3.7 FINISH

Subroutine FINISH contains the termination sequence for the GENERATE event generation
servers. After adjusting the event count and printing the GEANT3 process statistics, the standard
output is closed to enable proper flushing of the output buffer to the CPS job manager logfile.

+DECK,FINISH.
SUBROUTINE FINISH

I E R 2R SRR RSS2 22222222222 RR 2R R 2R 22

c.

C. * *
C. * Termination subroutine for GENERATE event generation *
C. * proceass. *
C. * *
cC. * Author: Lee Roberts *
C. * Date: January 7, 1991 *
c. * *
C. %Kk kA kK ks ok ko ki ok 3k 3k ok ok sk ok 3k sk %k 3k 3k 3k ok 3k ok 3k ok ok ok o ok ok ok o ok ok i o &

+SEQ, GCFLAG.
C Print GEANT3 statistics and close standard output.

IEORUN=1
IEVENT=IEVENT-1
CALL GLAST
CLOSE (6)

END

4.4 OUTPUT decks

The FZ output collector is a new feature introduced as part of the CPS parallelization of the BCD
GEANT3 uniprocessor simulation. The OUTPUT collector gathers FZ event outputs from the
GENERATE processes, assembling them into a common FZ sequential output file.

4.4.1 BCDOUT

Program BCDOUT is a pure “slave” remote subroutine server. CPS initialization includes
declaration of a large CZ/CPS memory buffer, declaration of CPS remote subroutines, and
declaration of a CPS process queue before synchronizing with all other processes and becoming a

Server.
33

+DECK, BCDOUT.
PROGRAM BCDOUT

de % % % de de ok % %k sk %k ok K sk ke k d dk ok ok ok dk ok ok Jk dk sk 3k d dk %k gk ok ok ok 3k I %k ok Ak dk ke K

OUTPUT (FZ event collector) process for CPS version of
BCD GEANT3 aimalation.

Author:Lee Roberts
Date: April 20, 1991

naaonaonaoanoona

* *x
* *
* *
* *
* Use with GEANT 3.14 and HBOOKA4. *
* *
*x *
* *
* *
* *

I Z 2222222222222 2222222222222 2ttt Rttt 2 R & 4

INCLUDE 'acp_user.inc’
+SEQ, BCDCLASS.
+SEQ, BCDQUEUE.
+SEQ, BCDRSUB.
+SEQ, BCDCZCPS.
+SEQ, CCZBUF.

INTEGER LCZBUF (CZBUF)
EQUIVALENCE (MCZBUF, LCZBUF)

C Declare CPS remote subroutines.
EXTERNAL CREATE
EXTERNAL OUTBLK
EXTERNAL FINISH

o} Initialize CPS software.
CALL ACP_INIT
CALL ACP_DECLARE BLOCK (MCZBUF, 4*CZBUF,CPSFZ)
CALL ACP_DECLARE_SUBROUTINE (CREATE, RCREATE,5,80,4,4,4,4)
CALL ACP_DECLARE_SUBROUTINE (OUTBLK, ROUTBLK, 1,4)
CALL ACP_DECLARE_SUBROUTINE (FINISH, RFINISH,0)
CALL ACP_DECLARE_QUEUE (QOUTPUT,1,4)
CALL ACP_SYNC (ACP $AI.I._PROCESSES : 0)

C Service CPS remote subroutine calls.
CALL ACP_SERVICE_CALLS

END

4.4.2 CREATE

Subroutine CREATE defines the file creation interface for the OUTPUT collector. The logical
record length and the output file name are used to open the FZ output file.

34

+DECK, CREATE.

eEe e NeNs e N NeNe)

SUBROUTINE CREATE (NAME, MEDIUP, LRECP, NBUFP, SOURCE)

(222 2222222228222 R2RaR R8s 2Rttt Rt s i

File creation interface for FZ event output collector.

* *
* *
* *
* *
* Author: Lee Roberts *
* Date: April 20, 1991 *
* *
* *

(2222222222222 2222222222222 22R2 22222222222 R X

INTEGER NAME (*), MEDIUP, LRECP, NBUFP, SOURCE
INCLUDE 'acp_user.inc’

INTEGER LUNPTR, MEDIUM, LRECL, NBUF
COMMON / FILE / LUNPTR, MEDIUM, LRECL, NBUF

INTEGER INAME (20), TARGET, ISTAT
CHARACTER*80 CHNAME

Save medium; logical record length and I/0 buffer count.
MEDIUM = MEDIUP

LRECL = LRECP

NBUF = NBUFP

Determine FZ output £file name.

CALL ACP_CLASS_INFO (TARGET, IPROC1l, IPROCN)

CALL ACP CONVERT (NAME, INAME, 80, ACP$CKARACTER SOURCE, TARGET)

CALL UBTOC(INAME 4,CHNAME, 80)
LENGTH = LENOCC (CHNAME)

Open FZ output £file.
CALL CFOPEN (ILUNPTR ,MEDIUM, LRECL, ‘w’ ,NBUF, CHNAME (1:IE NGTH), I STAT)

END

4.4.3 OUTBLK

Subroutine OUTBLK transfers FZ output from the CZ/CPS buffer to the output file on disk or

tape. In the case of little endian architectures, byte-swapping is required to obtain FZ binary exchange
format output. OUTBLK uses the same low-level output subroutine (CFPUT) as the standard FZ

output subroutines.

35

+DECK, OUTBLK.
SUBROUTINE OUTBLK (NPHR)

C. A2 E RS SRR ERRRERRRRRRRRARARRRRARRRRRRRRRRRRRRREER]
C. *x *
C. * Data storage interface for FZ event output collectar. *
C. x *
c. * Author: Lee Roberts *
C. * Date: April 20, 1991 *
C. * *
C. L2 2222 22222222222 2222222 22X 22X R 2 2 tili s Rt R R R R J
INTEGER NPEHR
+SEQ, BCDCZCPS.
+SEQ, CCZBUF.

INTEGER LUNPTR, MEDIUM, LRECL, NBUF
COMMON / FILE / LUNPTR, MEDIUM, LRECL, NBUF

INTEGER ISTAT

+SELF, IF=DECS.
Cc Swap bytes before output on little endian machine.

CALL VXINVB (MCZBUF, NPHR*LRECL)

+SELF.
c Write NPHR physical recoxrds of length LRECL to the FZ file.

DO 100 I = O,NPHR-1
CALL CFPUT (LUNPTR,MEDIUM, LRECL,MCZBUF (1+I*LRECL), ISTAT)
100 CONTINUE

END

4.4.4 FINISH

Subroutine FINISH contains the termination sequence for the OUTPUT event output collector.
After closing the FZ output file, the standard output is closed to enable proper flushing of the output
buffer to the CPS job manager logfile.

+DECK,FINISH.
SUBROUTINE FINISH

C. A RSS2 2RSSR XXX R R X2 R2yaa i XX 2 82 R X2 2 22X R QR B X &
C. *

C. * Termination subroutine for FZ event ocutput collector. *
C. * *
C. * Authoxr: Lee Roberts *
C. * Date: April 20, 1991 *
C. x *
C. %k Ak ko dkdk khk ok kdkdkkkkkkkkkkkk ok ok dkk ko k ok ik k ik o % %k dk ik % % & &k %k % % %

36

INTEGER LUNPTR, MEDIUM, LRECL, NBUF
COMMON / FILE / LUNPTR, MEDIUM, LRECL, NBUF

c Close the FZ output file and standard output.

CALL CFCLOS (LUNPTR, MEDIUM)
CLOSE (6)
END

4.5 EVTGEN decks—PYTHIA version

The EVTGEN event generation servers provide input events from Monte Carlo generators to the
BCD/CPS event-parallel simulation. These event generation servers were developed from the direct
interfaces to the Monte Carlo generators present in the uniprocessor implementation of the BCD
GEANT3 simulation. The number of EVTGEN event generation servers present in a BCD/CPS job
may be adjusted to meet processing demands. Modifications and enhancements can be envisioned to
use multiple classes of EVTGEN servers to provide differing types of physics events to a CPS event-
parallel simulation. The following implementation of an EVTGEN server uses PYTHIA 5.5.

4.5.1 BCDPYTH

Program BCDPYTH is a pure “slave” remote subroutine server which reads an initialization file
specified by the UNIX environment name GUPYTHIA INPUT. This initialization file specifies the
PYTHIA run characteristics. BCD GEANT?3 usage requires that only primary particles be
produced—particle decays are disabled.

+DECK, BCDPYTH.
PROGRAM BCDPYTH

FRAME: up to 4 characters

BEAM, TARGET: up to 5 characters

WIN: real number

NPRINT,NJUMP: listing control, as in ISAJET
cards #3+: string for LUGIVE, enclosed in quotes

C. ARAK KRR AR KRR KRR RRRAKRA KRR R AA KRR R A AR Rk ks hkhkkkkkkk
c. * *
C. * EVTGEN (event generator) process for CPS version of *
C. * BCD GEANT3 simulation. PYTHIA 5.5 version. *
c. * *
C. * Direct interface to PYTHIA 5.5. Uses PYTHIA command file *
C. * in the following card-image format Cards 1 & 2 are *
C. * required; (unlimited) additional cards for LUGIVE are *
C. * optional. *
C. * card #1 : Title, up to 78 characters, enclosed in quotes *
C. * card #2 : PRINIT paramaters, separated by commas *
c * *
C. * *
c * *
C. * *
C. * *
C. * *

37

sNo Mo NN NN N Re Ne Ne Y

The lines below illustrate the required format.
All character strings MUST be enclosed in quotes.

'DESCRIPTIVE TITLE OF RUN'

"FRAME’ , ' BEAM'’ ,’' TARGET’ ,WIN,NPRINT, NJUMP
‘VARIABLE=VALUE; VARIABLE=; VARIABLE (1) =VALUE'
VARIABLE (5,10)=VALUE; VARIABLE=VALUE'

Author: Lee Roberts
Date: April 23, 1991

¥ % % % % % % N ¥ X X %

INCLUDE 'acp_user.inc’

EXTERNAL PYGEN
EXTERNAL FINISH

+SEQ, BCDCLASS.
+SEQ, BCDQUEUE .
+SEQ, BCDRSUB.
+SEQ, BCDEVCPS.
+SEQ, PYCOM.

+SELF,

+SELF.

Cc

CHARACTER*4 FRAME
CHARACTER*5 BEAM, TARGET
CHARACTER*80 TITLE,LINE
REAL WIN,PLAB(4)

INTEGER NPRINT, NJUMP
COMMON / PRNT / NJUMP,NPRINT

CHARACTER*80 ENV
IF=-APOLLO, IF=-HPUX, IF=-IBMRT.

LOGICAL LOAD
DATA LOAD /.FALSE./
SAVE LOAD

Load PYTHIA and JETSET block data subprograms.

IF (LOAD) TREN
CALL PYDATA (LOAD)
CALL LUDATA (LOAD)

ENDIF

Initialize CPS software.

CALL ACP_INIT

CALL ACP_DECLARE_BLOCK(N,240004,CPSEVT)

CALL ACP_DECLARE_SUBROUTINE (PYGEN, REVTGEN, 1, 4)
CALL ACP_DECLARE_SUBROUTINE (FINISH, RFINISH, 0)
CALL ACP_DECLARE_QUEUE (QEVTGEN, 1, 4)

GUPYTHIA INPUT => environment name for PYTHIA command file.

38

(2222222222222 222222222222 R 2R R a2 R R RRRERESSEEE

*
*
*
*
*
*
*
*
*
*
*
*

CALL GETENVF (' GUPYTHIA_INPUT’ , ENV)
IF (ENV.EQ.’ ’) ENV=' GUPYTEIA_INPUT’
OPEN (UNIT=1,FILE=ENV, STATUS='0OLD’)
C Process PYTHIA command file.
READ(1,*) TITLE
READ (1, *) FRAME , BEAM, TARGET, WIN, NPRINT, NJUMP
100 READ (1, *, END=200) LINE
CALL LUGIVE (LINE)
GOTO 100
200 CLOSE (1)
(o] Initialize PYTHIA.
CALL PYINIT(FRAME, BEAM, TARGET,WIN)
CALL ACP_SYNC (ACP $ALL_PROCESSES . 0)
o4 Service remote subroutine calls.
CALL ACP_SERVICE_CALLS

END

4.5.2 PYGEN

CPS remote subroutine PYGEN provides the action for the PYTHIA version of the EVTGEN
event generator server. Each remote subroutine call to PYGEN generates another PYTHIA event.

+DECK, PYGEN.
SUBROUTINE PYGEN (ISRC)

L2 2 S 2SR SRR RERARRRERRRARRERRRRRSRRRRRRRE2ERRR2RRRRE R

PYTHIA 5.5 event generator remote subroutine interface.

Date: April 20, 1991

anoQao0o0on00n

* *
* *
* *
* *
* Author: Lee Roberts *
* *
* *
x* *

KAk AKAhhkhhkhhkhkhkkkdhkkkkdkhkkhkhkdhkkihkdkkikhkhkhkikkiikkkkkkikk

INTEGER 1ISRC

INTEGER NJUMP, NPRINT
COMMON / PRNT / NJUMP, NPRINT

INTEGER IEVT
DATA IEVT / 0 /
SAVE IEVT

(o] Generate event.

39

IEVT = IEVTI+1
CALL ACP_CLASS_INFO(ISRC, IPROC1, IPROCN)
CALL PYEVNT
(o] Print selected events.
IF (IEVT.LE.NJUMP*NPRINT) THEN
IF (IEVT.EQ.1l.0R.MCD(IEVT,NJUMP) .EQ.0) CALL LULIST (2)
ENDIF

END

4.5.3 FINISH

Subroutine FINISH contains the termination sequence for the PYTHIA version of the
EVTGEN event generation servers. After printing the PYTHIA process statistics, the standard output
is closed to enable proper flushing of the output buffer to the CPS job manager logfile.

+DECK,FINISH.
SUBROUTINE FINISH

122 2 X222 X222 X2 2222 X222 2222 22222 X2 2 2 2o R 2 R & R4

Termination subroutine for PYTHIA 5.5 event generation
server.

*
%*
*
*
*
Date: April 20, 1991 *
*
*

*
*
*
*
* Author: Lee Roberts
*
*
*

LS 2 R R ERERRER SRR RS R 2R 2R R RRRRRRRRRRRESRR S

Q o000

Print PYTHBIA statistics and close standard output.

CALL PYSTAT (1)
CLOSE (6)
END

4.6 EVTGEN decks—ISAJET version

The EVTGEN event generation servers provide input events from Monte Carlo generators to the
BCD/CPS event-parallel simulation. These event generation servers were developed from the direct
interfaces to the Monte Carlo generators present in the uniprocessor implementation of the BCD
GEANT3 simulation. The number of EVTGEN event generation servers present in a BCD/CPS job
may be adjusted to meet processing demands. Modifications and enhancements can be envisioned to
use multiple classes of EVTGEN servers to provide differing types of physics events to a CPS
event-parallel simulation. The following implementation of an EVTGEN server uses ISAJET 6.36.

40

4.6.1 BCDISA

Program BCDISA is a pure “slave” remote subroutine server which reads two initialization files
specified by the UNIX environment names GUISA_INPUT and ISADECAY_DATA. One
initialization file specifies the ISAJET run characteristics; BCD GEANT3 usage requires that only
primary particles be produced—particle decays are disabled. The other initialization file specifies the
ISAJET particle decay database.

+DECK, BCDISA.
PROGRAM BCDISA

I 222 SRR RS SRS R RRERRRERRRRRRERERERRRSRRRRRERS S

EVTGEN (event generator) process for CPS version of
BCD GEANT3 simulation. ISAJET 6.36 version.

*

*

*

*

* Direct ISAJET event generation---no intermediate event
* file necessary. ISAJET decay table and ISAJET cammand
* file are read upon initial entry.
*
x
*x
*
%*

Author: Lee Roberts
Date: April 23, 1991

% % % % % % % ¥ N ¥ N ¥

L2 R SRR RS R R Rt 22l 2 X222 222 2 2 2 s s XX

cNoNeoNeNoNoNeNe NeNe e Ne N e!

INCLUDE 'acp_user.inc’

EXTERNAL ISAGEN
EXTERNAL FINISH

+SEQ, BCDCLASS.
+SEQ, BCDEVCPS.
+SEQ, BCDQUEUE.
+SEQ, BCDRSUB.
+SEQ, IDRUN.
+SEQ, PARTCL.

CHARACTER*80 ENV

+SELF, IF=-APOLLO, IF=~HPUX, IF=-IBMRT.
LOGICAL LOAD
DATA LOAD /.FALSE./

SAVE LOAD

(o4 Load ISAJET block data subprogram.
IF (LOAD) CALL ALDATA (LOAD)

+SELF.

C Initialize CPS software.

CALL ACP_INIT
CALL ACF_DECLARE_BLOCK (NPTCL, 4* (8 *"MXPTCL+1) , CPSEVT)
CALL ACP_DECLARE_SUBROUTINE (ISAGEN, REVTGEN,1, 4)
CALL ACP_DECLARE_SUBROUTINE (FINISH, RFINISH, 0)

CALL ACP_DECLARE_QUEUE (QEVTGEN, 1, 4)

41

c GUISA INPUT ==> environment name for ISAJET camnand file.
Cc ISADECAY DATA ==> enviromment name for ISAJET particle decay table.

CALL GETENVF ('GUISA_INPUT',6 ENV)

IF (ENV.EQ.’' ') ENV=/ GUISA_INPUT’

OPEN (UNIT=l1l, FILE=ENV, STATUS='0OLD’)

CALL GETENVF (' ISADECAY_DATA’ , ENV)

IF (ENV.EQ.’ ') ENV='ISADECAY DATA'

OPEN (UNIT=2, FILE=ENV, STATUS='QLD')

CALL ISAINI(-2,0,1,6)

CALL ISABEG (IFL)

IF (IFL.NE.O) THEN

CALL ACP_FATAL_ PROCESS_ERROR (ACP STHI S_PROCESS,

'>>>>> GUISA, error in ISAJET command file’)

ENDIF
IEVT = 0

CALL ACP_SYNC(ACP$ALL_PROCESSES,0)
c Service remote subroutine calls.

CALL ACP_SERVICE_CALLS

END

4.6.2 ISAGEN

CPS remote subroutine ISAGEN provides the action for the ISAJET version of the EVTGEN
event generator server. Each remote subroutine call to ISAGEN generates another ISAJET event.

+DECK, ISAGEN.
SUBROUTINE ISAGEN (ISRC)

c. ARARRRR R AR AR KRR KRR KRR ARNRRNRKRRARAKRRNNRRRRARNRIRAARRAKK
C. * *
C. * ISAJET 6.36 event generator remote subroutine interxface. *
c. * *
C. * Authoz: Lee Roberts *
C. * Date: January 25, 1991 *
C. * *
C. 222 RS SRR 2R R2X2RRARRRRARRRRX2 X2 X2 2t 2 X2 X X 2 X2 Rt R X X

INTEGER ISRC
+SEQ, IDRUN.
LOGICAL OK, DONE

C Generate event.

42

CALL ACP_CLASS_INFO(ISRC,IPROC1, IPROCN)
1 IEVT=IEVT+1

CALL 1ISAEVT (IEVT,OK,DONE)

IF (.NOT.OK) GOTO 1

END

4.6.3 FINISH

Subroutine FINISH contains the termination sequence for the ISAJET version of the EVTGEN
event generation servers. After printing the ISAJET process statistics, the standard output is closed to
enable proper flushing of the output buffer to the CPS job manager logfile.

+DECK,FINISH.
SUBROUTINE FINISH

%K KKk gk KKk Rk Kk ok sk ok kg ok ok ok kv ok gk ok Kk ok v %k kb ke ok sk ok k% %k %k k%

C.
C. * *
c. * Termination subroutine for ISAJET 6.36 event generation *
c. * gerver. *
c. * *
C. * Author: Lee Roberts *
C. * Datae: January 7, 1991 *
C. * *
C. L2 RS2SR 2R 222222822222 X222 X222 2R 28R iR 2t 2 R
o Print ISAJET statistics and close standard output.

CALL ISAEND

CLOSE (1)

CLOSE (2)

CLOSE (6)

END
5.0 USAGE

5.1 Source Generation

Generation of the BCD/CPS source programs from the PATCHY decks is quite straightforward.
As mentioned before, BCD/CPS source code depends upon the PAM files for CZ/CPS (CZCPS),
BCD GEANT3 (USER314) and GEANT3 (GEANT). The PATCHY sequences from CZCPS,
USER314 and GEANT must be included when generating the BCD/CPS source programs.

The following UNIX shell script demonstrates the generation of the BCD/CPS source programs.
Location of the PAM files is system dependent.

#
Generate BCD/CPS CONTROL program.
#

ypatchy <<\\

43

becdeps bedinit.f ttp tty .go

+EXE.

+ASM,21,R=! _CDECK ID>, !

+USE , P=GCDES.

+USE, P=BCDCDES, USERCDES.

+USE, P=CPSCDES.

+USE,P=*BCDINTT.

+USE, SGI.

+PAM, 12, R=GCDES, T=ATTACH. ../cern/cnl201/pam/geant .panm
+PAM, 13, R=USERCDES, T=ATTACH. ../user314.pam
+PAM, 14, R=CPSCDES, T=ATTACH. czcps.pam

+PAM, 11.

+QUIT.

1\t\

: Generate BCD/CPS GENERATE GEANT3 event server program.
ypatchy <<\\

bedeps bedgen.f ttp tty .go

+EXE.

+ASM,21,R=! .CDECK ID>, !

+USE, P=GCDES.

+USE, P=BCDCDES, USERCDES.

+USE, P=CPSCDES.

+USE, P=*BCDGEN.

+USE, SGI.

+PAM, 12, R=GCDES, T=ATTACH. ../cern/cnl20l/pam/geant .pam
+PAM, 13, R=USERCDES, T=ATTACH. ../user314.pam
+PAM, 14, R=CPSCDES, T=ATTACH. czcps.pam

+PAM, 11,

+QUIT.

\\

#

Generate BCD/CPS OUTPUT server program.

#

ypatchy <<\\

bcdecps bedout.f ttp tty .go

+EXE.

+ASM,21,R=! .CDECK ID>, !

+USE, P=GCDES.

+USE, P=BCDCDES, USERCDES.

+USE, P=CPSCDES.

+USE, P=*BCDOUT.

+USE, SGI.

+PAM, 12, R=GCDES, T=ATTACH. ../cern/cnl20l1/pam/geant.pam
+PAM, 13, R=USERCDES, T=ATTACH. ../user3l4.pam
+PAM, 14,R=CPSCDES, T=ATTACH. czcps.pam

+PAM, 11.

+QUIT.

k\

Generate BCD/CPS EVTGEN server program---PYTHIA version.
#

ypatchy <<\\

becdcps bedpyth.£f ttp tty .go

+EXE.

+ASM, 21,R=! .CDECK ID>, !

+USE, P=GCDES.

+USE, P=BCDCDES, USERCDES.

+USE, P=CPSCDES.

+USE ,P=*BCDPYTH.

+USE, SGI.

+PAM, 12, R=GCDES, T=ATTACH. ../cern/cnl20l/pam/geant.pam
+PAM, 13, R=USERCDES, T=ATTACH. ../user314.pam
+PAM, 14, R=CPSCDES, T=ATTACH. czcps.pam

+PAM,11.

+QUIT.

1\#\

Generate BCD/CPS EVIGEN server program---ISAJET version.
#

ypatchy <<\\

bedeps bedisa.f ttp tty .go

+EXE.

+ASM,21,R=! .CDECK ID>, !

+USE, P=GCDES.

+USE, P=BCDCDES, USERCDES.

+USE, P=CPSCDES.

+USE,P=*BCDISA.

+USE, SGI.

+PAM, 12, R=GCDES, T=ATTACH. ../cern/cnl201/pam/geant .pam
+PAM, 13, R=USERCDES, T=ATTACH. ../user3l4.pam
+PAM, 14,R=CPSCDES, T=ATTACH. czcps.pam

+PAM, 11.

+QUIT .

\\

5.2 Compilation and Loading

Standard UNIX FORTRAN compilation and loading commands are used when generating the
executable BCD/CPS programs. The CZ/CPS library (1ibczcps.a) and the CPS library
(1ibacp.a) must be included in the loader sequences when and where required. In other respects,
compilation and loading of BCD/CPS executable programs is identical to the compilation and loading
of the BCD GEANT3 uniprocessor simulation.

The user must be sure to include the CZ/CPS modifications to HBOOK4 rather than the standard
HBOQOOK4 subroutine implementations. The CZ/CPS library must precede the CERN package library
(libpacklib.a), and appropriate external references are often needed.

5.3 Execution

BCD/CPS jobs are run under the control of the CPS Job Manager. A job description file must be
written to describe the application to the CPS Job Manager. An example job description file for
BCD/CPS on the development two-processor ranch is shown below.

SHARE CLASSES = 1,2,3,4

class = 1
CPU type = SGMIPS
number of processes = 1

45

grogram = ~/cps/bcdinit.cps

class =

CPU type = SGMIPS

number of processes = 1

program = ~/cps/becdpyth.cps
class = 3

CPU type = SGMIPS

number of processes = 1

program = ~/cps/bcdout
class = 4

CPU type = SGMIPS

number of processes = 1

program = ~/cps/bcdgen.sgi
class = 5

CPU type = ULTRIXDEC
number of processes = 1
program = ~/cps/bcdgen.dec

BCD GEANTS3 uses several UNIX environment variables to specify input/output files. BCD/CPS
continues this usage. However, these variables must be set for the CPS processes as started by the
CPS job manager. A UNIX shell script is specified as the program for each CPS process class
requiring UNIX environment variables. An example of such a shell script for the BCD/CPS
CONTROL process is shown below.

#
setenv PARTICLE DATABASE ~/particle.database

setenv GEANT MAGNET ~/magnet.rxz

setenv GEANT_ HBOOK4 ~/geant.hbook4
setenv GEANT FZOUT ~/geant.fz

setenv FFREAD CONTROL ~/ffread.control
setenv FFREAD GENERATE ~/ffread.generate
exec ~/cps/bcdinit

These environment variables allow external control over input and output file specifications in a
UNIX programming environment. VAX/VMS logical names and IBM VM/CMS DDNAMEs were
used similarly in BCD GEANT?3 uniprocessor simulations.

Use of the CPS Job Manager and the CPS Job Monitor is fully described in the ACP Cooperative
Processes User's Manual. 3

6.0 SUMMARY

BCD/CPS demonstrates many of the features required in CPS event-level parallelization of SSC
detector GEANT3 simulations. Design of the BCD/CPS event-level application applied the standard
CPS design philosophy to the existing BCD GEANT3 uniprocessor detector simulation.
Implementation of BCD/CPS required the modification and addition of a relatively small number of
subroutines and a small coding effort. The results of these design and implementation steps have been
shown in enough detail to allow the inexperienced CPS programmer to understand the control and
data flow of the BCD/CPS application.

46

REFERENCES

1.

9.

Physics and Detector Simulation Facility Specifications, Computer Acquisition Working Group,
SSCL-275, SSC Laboratory.

R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini. GEANT3 User’'s Guide,
CERN DD/EE/84-1, May 1986.

ACP Cooperative Processes User’s Manual, Fermilab Computer Research & Development
Department, Fermi National Accelerator Laboratory.

L. A. Roberts, CZ/CPS, A Communications ZEBRA Implementation Using CPS, SSCL-412,
SSC Laboratory.

Expression of Interest for a Bottom Collider Detector at the SSC, Bottom Collider Detector
Collaboration, SSC Eol #8.

R. Brun, M. Goossens, and J. Zoll, ZEBRA User Guide, CERN Computer Centre Program
Library Long Writeup Q100.

R. Brun and D. Lienart, HBOOK User Guide, Version 4, CERN Computer Centre Program
Library Long Writeup Y250.

R. Brun, R. Hagelberg, J. C. Lassalle, G. Misuri, and J. Vobrueggen, FFREAD User Guide
and Reference Manual, CERN Computer Centre Program Library Long Writeup 1302.

F. E. Paige and S. D. Protopopescu, ISAJET 6.36, Brookhaven National Laboratory.

10. H.U. Bengtsson and T. Sjostrand, PYTHIA 5.5, University of Lund and CERN/TH.
11. H. J. Klein and J. Zoll, PATCHY Reference Manual, CERN Computer Centre.

47

