
CZ/CPS
A Communications ZEBRA Implementation Using CPS

Lee A. Roberts

Physics Research Division
Superconducting Super Collider Laboratory·

2550 Becldeymeade Avenue
Dallas, Texas 75237

April 1991

SSCL-412

.Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract No.
DE-AC02-89ER40486

SSCL-412

CZ/CPS
A Communications ZEBRA Implementation Using CPS

Lee A. Roberts

Abstract

CZ/CPS is an implementation of the Communications ZEBRA distributed computing environment

utilizing the CPS communications protocol. CZ/CPS is intended for parallelization of high energy

physics application programs using the CERN Program Library memory and data structure management

features. CZ/CPS provides transparent communication of ZEBRA data structures among cooperative

processes using standard interfaces for ZEBRA I/O. Examples of usage in a CPS HBOOK4 and

GEANTI application are provided.

iii

CONTENTS

1.0 INTR.ODUCfION ... 1
2.0 FEATURES ... 1

2.1 ZEBRAIPZ ... 1
2.1.1 Purpose ... 1
2.1.2 Implementation ... 2
2.1.3 Subprograms .. ~ .. 4

2.2 HBOOK4/ZEBRA Server .. 6
2.2.1 Purpose ... 6
2.2.2 Implementation ... 6
2.2.3 Subprograms ... 7

2.3 FFREAD .. 8
2.3.1 Purpose ... 8
2.3.2 Implementation ... 9
2.3.3 Subprograms ... 9

3.0 EXAMPLES .. 11
3.1 Transfer of GEANT3 initialization data structures .. 12

3.1.1 CONTROL process-server .. 12
3.1.2 WORKER process-<:lient ... 13

3.2 Transfer of user-defined ZEBRA data structures ... 14
3.2.1 CONTROL process-server .. 15
3.2.2 WORKER process-<:lient ... 15

3.3 Transfer ofHBOOK4 histograms to WORKER processes 15
3.3.1 CONTROL process-ZEBRA client ... 16
3.3.2 WORKER process-ZEBRA server .. 17

3.4 Accumulation ofHBOOK4 histograms from WORKER processes 19
3.4.1 CONTROL process-ZEBRA client. .. 19

3.5 Collection of event FZ output .. 20
3.5.1 OUTPUT process -server .. 20
3.5.2 WORKER process-<:lient ... 22

3.6 Distribution of FFREAD input to WORKER processes 23
3.6.1 CONTROL process-server .. 23
3.6.2 WORKER process-<:lient ... 24

4.0 SUMMARY .. 25
REFERENCES .. 27

v

1.0 INTRODUCTION

CPSI parallelization of many high-energy physics simulation and analysis codes depends upon the

ability to distribute and manage I/O of ZEBRA 3 data structures. Users are familiar with the popular

HBOOK45 histogramming and data analysis package from the CERN Program Library.2 GEANT37

appears to be a popular "standard" for detector description and simulation. Both HBOOK4 and

GEANT3 internally use ZEBRA data structures; event-level parallelization of these applications

depends upon interprocess communication of ZEBRA data structures.

The CZ/CPS communications package was designed to take full advantage of standard features

available in the CERN Program Library codes. Recent development efforts on several of these codes

have provided techniques (or "hooks") for interprocess (and interprocessor) communication of data

structures based upon a user-specified communications protocol. One example of these communications

features is the CSPACK6 package for distributed computing, available in a recent release of the CERN

Program Library.

The CZ/CPS communication package draws upon the communications ideas and features present in

the following packages:

• ZEBRA-FZ Channel I/O

• HBOOK4---CZ Communications Interface

• CSPACK-ZEBRA Server and CZ Communications Interface.

CZlCPS provides capabilities for communication of ZEBRA data structures, complete with data

conversion among unlike processors, using sequential FZ I/O. In addition, HBOOK4 histograms may be

manipulated as RZ structures using facilities derived from the handling of global sections on V AXNMS

and the CZ communications software.

In addition, a subset of the programming techniques used for the Cz/CPS implementation may be

used to provide distributed FFREAD8 format-free input processing for cooperative processes.

2.0 FEATURES

2.1 ZEBRAlFZ

2.1.1 Purpose

ZEBRA/FZ communications provides the basic method for transferring ZEBRA data structures

among cooperative processes. ZEBRAIPZ allows transfer of data structures using a sequential medium

with proper relocation of pointers and data conversion among incompatible machine architectures.

ZEBRA/FZ communications may be used for distribution of GEANT3 initialization data structures

(geometry, materials, particles, etc.), collection of event output data structures into a common FZ output

fIle, and distribution of FZ event records to analysis processes. Communication of user-defmed data

structures (magnetic field maps, etc.) may be handled in a straightforward manner using standard FZ I/O

interfaces. ZEBRA/PZ also provides the underlying communications for the HBOOK4/ZEBRA Server

interface.

2.1.2 Implementation

CZ/CPS communication of ZEBRA/FZ data structures is performed using the FZ Channel I/O

medium. Defaults of the FZ Channel medium include Exchange File Format (fixed-length records) and

Exchange Data Format (32-bit, big endian, IEEE). These defaults are quite appropriate for the CPS

environment, which may consist of a heterogeneous mixture of processors.

Defmition of the FZ Channel as a ZEBRA I/O medium is performed using the standard rZrlLE

subroutine interface. Any positive logical unit number may be associated with the FZ Channel;

FORTRAN logical unit number restrictions are not imposed. Similarly, selection of the physical record

length is up to the user; the standard (default) length should be adequate. CZlCPS usage should apply

the following options to FZ Channel defmitions:

• Option 'c' selects medium "Channel."

• Option 'I' selects "Input" direction. Option '0' selects "Output" direction.

• Option'S' selects "Separate" data structures.

• Option 'u' selects "Unpacked" data structures.

Option'S' guarantees that each ZEBRA data structure will be started in a separate physical record.

(Earlier ZEBRA releases included option'S' as a default for media Memory and Channel.) Option '0'

disables the "packing" operation in the exchange format I/O process, leaving it instead under the user's

control. On 32-bit computers, "packing" performs byte-swapping, if necessary, to insure that data is in

exchange (big endian) format. The CPS communications protocol, which guarantees that 32-bit integer

variables are transferred correctly, performs this "packing" operation automatically. The CZ/CPS

subroutines take advantage of this feature to minimize the amount of byte-swapping required in ZEBRA

data communications.

The FZ Channel medium depends upon an application-specific channel handler subroutine for

input/output of data. This channel handler subroutine receives output records from FZOO'l' and provides

input records to rZIN. Management of the "channel" is handled by this subroutine, which reads or

writes FZ physical records on the "channel." In the case of CZlCPS, two application-specific channel

handler subroutines are provided. One of these subroutines (CZBUFR.) uses a CPS memory block as its

"channel," reading or writing information into this local, but globally available, I/O buffer. The second

of these subroutines (CZCPS) uses CPS subroutines ACP _GET or ACP _SEND to read or write

information on this globally available I/O buffer.

2

Parameters describing the CPS-specific aspects of the application must be set via subroutine

CZCPSI for access by the channel management subroutines. This information includes the following:

• CPSBUF-CPS block number of globally available I/O buffer.

• BUFLEN-length (in bytes) of CPS I/O buffer.

• OFFSET-offset (in bytes) into CPS I/O buffer.

• SETPRO--CPS process number of communicating process.

• REMSUB-CPS remote subroutine number for ZEBRA Server.

Not all of these parameters are required in each situation. Table 1 presents an overview of the
parameter usage. Current values of these parameters may be retrieved via subroutine CZ CP SR • (Values
are stored in a FORTRAN common block which need not be visible to the user.) The current
implementation of CZJCPS does not provide parameter storage for multiple buffers; it is assumed that a
common buffer is used with consistent or reset parameters. Note: It is the user's responsibility to reset
the OFFSET parameter after each series ofFZ I/O transfers.

Table 1. Overview of parameter usage for CPS-specific aspects of the CZJCPS interface. User must
provide values for entries labeled "user;" "system" values are provided automatically. Some
parameters are not always applicable or are client-mode only.

Parameter ZEBRAlFZ ZEBRAlFZ HBOOK4/ZEBRA
Server

CZBUFR CZCPS CZBUFR
CPSBUF n/a user n/a
BUFLEN user user user
OFFSET user user system
SETPRO n/a user n/a
REHSOB n/a n/a user/client

HBOOK41ZEBRA
Server

CZCPS
user
user
system
system
user/client

Definition of the channel handler subroutine to ZEBRA is performed using the FZBOOI< subroutine.

This subroutine associates an I/O stream with the desired channel manager after the "file" has been

initialized with FZFlLE but before any I/O operations are attempted with FZIN or FZOtJT.

Communication of ZEBRA FZ information using CZJCPS must be coordinated among server and

client processes. Multiple clients may read from a single server without interference. This capability

allows a substantial savings in memory usage, since only the server process requires a large CPS

memory buffer, rather than duplication in each client. Synchronization points (as provided by

ACP _SYNC) must be used to coordinate access. Obviously, clients should not begin reading until the

server has placed the information into the buffer. Similarly, the server must not overwrite the buffer until

all clients have finished reading the information. The examples shown in a later section demonstrate

these features.

3

Complete documentation on usage of the FZ Channel medium and I" ZBOOK may be found in the

ZEBRA Reference Manual. 4

2.1.3 Subprograms

CZBUFR

Description: Subroutine CZBUFR perfonns I/O ofFZ physical records on a local memory buffer in

FORTRAN common block CCZBOI'. The size of this memory buffer must be set by the user.

Declaration of this memory buffer as a CPS I/O block must be perfonned by the user. Subroutine

CZBUFR allows multiple ZEBRA data structures to be read or written sequentially on a local memory

buffer. Subroutine CZBOI'R also provides the message-passing interface used by the CPS ZEBRA

Server. CZJCPS subroutine CZBUFR. is functionally equivalent, but with lower overhead, to subroutine

CZCPS operating on a local CPS memory buffer.

Interface:

SOBROOTXNE CZBOFa (mOl', XOWAY)
:tHTEGER XBOF(*), XOWAY(2)
CONNON /cczCPs/ XCZOFF, XCZSET, xczCPs, XCZBOF, XCZRS
CONNON /CCZBOF / IICZBOF (1)

Usage: Not user callable. Must be declared EXTERNAL and defined for FZ I/O via I' ZBOOK.

CZJCPS interface parameters must be set using subroutine CZCPSI.

EXTERNAL CZBOFa
CALL FZFXLE(LON,CZBLX,'COSO')
CALL FZBOOK(LON,CZBOFR,IDUMNY)

CZCPS

Description: Subroutine CZCPS performs I/O of FZ physical records on a remote CPS memory

buffer. The size of this memory buffer must be set by the user. Declaration of this memory buffer as a

CPS 1/0 block should be perfonned by the user. Subroutine CZCPS allows multiple ZEBRA data
structures to be read or written sequentially on a remote CPS memory buffer using ACP _GET or

ACP _SEND. Subroutine CZCPS also provides the message-passing interface used by the CPS ZEBRA

Server. CZlCPS subroutine CZCPS is functionally equivalent to CSPACK subroutine CZTCP, but uses

CPS as a communications protocol rather than TCP/IP.

Interrace:

SOBROOTXNE CZCPS (XBOF, XOWAY)
:tHTEGER XBOF(*), XOWAY(2)
CONNON /cczCPs/ XCZOFF, XCZSET, xczCPs, XCZBOF, XCZRS

4

Usage: Not user callable. Must be declared EXi'ERNAL and defined for FZ I/O via FZBOOK.

CZ/CPS interface parameters must be set using subroutine CZCPSI.

EXTERNAL CZCPS
CALL I'ZFXLE (LON, CZBLIC, ' CXSO')
CALL I'ZBOOK(LON,CZCPS,XDOMMY)

CZCPSI

Description: Initialization interface for variables in FORTRAN common block CCZCPS.

Interface:

SOBROOTXNE CZCPSX (NAME, VALUE)
CllARACTER*6 NAME
mTEGER VALUE
COMMON /cczCPs/ XCZOI'I', XCZSET, xczCPs, XCZBOI', XCZRS

Usage: User and CZlCPS internal. NAME may assume the following values:

• CPSBOF-CPS block number of globally available I/O buffer.

• BOFLEN-Iength (in bytes) of CPS I/O buffer.

• OFFSEi'-offset (in bytes) into CPS I/O buffer.

• SEi'PRO-CPS process number of communicating process.

• REMSOB-CPS remote subroutine number for ZEBRA Server.

Not all of these parameters are required in each situation. Table 1 presents an overview of the

parameter usage.

CZCPSR

Description: Retrieval interface for variables in FORTRAN common block CCZCPS.

Interface:

SOBROOTXNE CZCPSR(NAME,VALUE)
CBARACTER*6 NAME
Df'l'EGER VALOE
COMMON /cczCPs/ XCZOI'I', XCZSET, xczCPs, XCZBOI', XCZRS

Usage: User and CZlCPS internal. NAME may assume the following values:

• CPSBOF-CPS block number of globally available I/O buffer.

• BOFLEN-Iength (in bytes) of CPS I/O buffer.

5

• OFFSET-offset (in bytes) into CPS I/O buffer.

• SETPR~PS process number of communicating process.

• REMSUB-CPS remote subroutine number for ZEBRA Server.

Not all of these parameters are required in each situation. Table 1 presents an overview of the

parameter usage.

2.2 HBOOK4!ZEBRA Server

2.2.1 Purpose

HBOOK4/ZEBRA Server communications provide a convenient method for transfer and

manipulation of HBOOK4 histograms in cooperative processes. An interface similar to V AXlYMS

global sections and RZ direct-access files is provided for the user. In a typical CPS job, the user may

declare (book) histograms in an initialization process, use KROUT to write these histograms to each

worker process, analyze data, and finally use BRIN to read and sum the histograms from each of the

worker processes.

2.2.2 Implementation

HBOOK4/ZEBRA Server communications depend upon the ZEBRA/PZ communications described

in the previous section. Two FZ Channel media are used: logical unit 998 for output and logical unit 999

for input. At the present release of HBOOK4, these values are coded directly into the HBOOK4/CZ

interface. Both FZ Channel media must be properly defined before HBOOK4/ZEBRA Server I/O is

attempted. However, unlike the ZEBRA/FZ communications described in the previous section, the user

need not be concerned with resetting the I/O buffer offset or the communicating process number; these

are reset automatically. Synchronization of communicating processes is handled automatically via call

and-wait usage of remote subroutine calls.

The CPS ZEBRA Server, ZSCPS, must be accessed via remote subroutine call. The user must define

ZSCP S as a remote entry point to the CPS software using ACP _DECLARE_SUBROUTINE and set the

remote subroutine number for the CZ/CPS software using CZCPSI. All ZEBRA Server requests are
handled in a method quite similar to the standard ZEBRA Server available in CSPACK.

HBOOK4/ZEBRA Server operations return the IQUEST vector of the remote process. Therefore,

HBOOK4/ZEBRA Server operations must occur between pairs of processes--a single client and a

single server-otherwise confusion will result from multiple servers attempting to write into the single

I/O buffer on the client process.

Supported HBOOK4 operations include the following:

• BRFlLE-initiate connection to specified CPS process.

• HREND-terminate connection to specified CPS process.

6

• BROOT-write histograms to current CPS process. Users may select the following options:

- Write a single histogram to the remote process.

- Write all histograms in the current directory to the remote process.

- Write a directory "tree" of histograms to the remote process.

• BRIN-read histograms from current CPS process. Users may select the following options:

- Read a single histogram from the remote process.

- Read all histograms from the remote current directory.

- Add histograms if offset is 99999.

• BMDIR-make a subdirectory of the remote current directory.

• BCDIR--change the remote current directory.

• BRDIR-retum a list of subdirectories of the remote current directory.

2.2.3 Subprograms

ZSCPS

Description: Subroutine ZSCPS is a ZEBRA Server for CPS cooperative processes which supports

remote HBOOK4 operations on histograms in its local memory. ZSCPS must be accessed as a remote

subroutine call. Supported operations include remote input and· output of histograms and remote

directory manipulation.

Auxiliary entry points ZSCPSI, ZSCPSO, ZSCPSM, ZSCPSC and ZSCPSR perform tasks for

the control subroutine.

Interface:

StJBROOTlNE ZSCPS (IHAIL, IPROC, ISOtJRC)
r.NTEGER LMAIL(20), IPROC, ISOORC
COMMON /cczCPs/ ICZOFF, ICZSET, ICZCPS, ICZBOF, ICZRS

Usage: Not user callable. Must be declared EXTERNAL and declared a CPS remote subroutine.

BX'l'EBNAL ZSCPS
CALL ACP_DECLARE_SaaROUTINE(ZSCPS,azSCPS,3,80,4,4)

HRFILE

Description: Customization of CZ-specific code present in standard HRFll..E to handle CZlCPS
communications. Adapt code for V AXNMS global sections to handle CZlCPS communicating
processes via ZEBRA Server.

7

Interface:

SUBROOTINE BRFILE(LON,CBDIR,CBOPT)

INTEGER LON

CBARACTER*(*) CBDIR,CBOPT

Usage: User. LON must specify the CPS process number of the server process. Use option 'G'.

HROUT

Description: Customization of CZ-specific code present in standard BROOT to handle CZ/CPS
communications. Suppons standard CZ operations.

Interface:

SUBROOTINE BROOT(IOO,ICYCLB,CBOPT)

INTEGER IOO,ICYCLE

CBARACTER*(*) CBOPT

Usage: User. Use options 'TN' when writing a directory "tree" of histograms to a remote process.

HMDIR, HRDIR, HRZCD & HRZOUT

Description: Customization of CZ-specific code present in standard subroutines to handle CZ/CPS

communications.

Interface: No change from standard implementation.

Usage: No change from standard implementation.

2.3 FFREAD

2.3.1 Purpose

FFREAD is widely used in applications referencing the CERN Program Library as a free-format

input processing interface for application data cards. GEANT3 is among these applications, where a

standard set of "system" FFREAD data cards and optionally user-defined FFREAD data cards are used

to control initialization. In a typical application, a variety of common blocks are affected by the

combination of "system" and user FFREAD cards. When attempting CPS distribution of such

initialization, one faces the task of broadcasting the effects of these many data cards-typically covering

many common blocks-and certainly varying from user to user. Or, one may choose to broadcast the

FFREAD data cards-and let each cooperative process perform the initialization itself.

8

A consistent interface for all FFREAD data cards-"system" or user-in CPS GEANTI applications

may be achieved via the second approach. Broadcast of FFREAD data cards to each cooperative

process-with each performing its own initialization should be acceptable as long as initialization times

are reasonably short.

2.3.2 Implementation

Communication of FFREAD data cards from an initialization process to a set of cooperative worker

processes can be handled quite easily. FFREAD data cards intended for the worker processes may be

loaded into a CPS memory block as fixed-length records (of length LINPUT as set within FFREAD) for

global access from the worker processes. Access from the worker processes may be handled by an

alternate input routine, rrcps, which "reads" the data cards in the CPS memory block using ACP GET.

Definition of this alternate input routine is handled by the standard FFREAD subroutines rrSET and

rrRSET.

Parameters describing the CPS-specific aspects of the application must be set via subroutine

FFCPSI for access by the alternate input routine. This information includes the following:

• CPSBOF-CPS block number of globally-available I/O buffer

• BOFLEN-Iength (in bytes) of CPS I/O buffer

• OrrSET-offset (in bytes) into CPS I/O buffer

• SETPRO--CPS process number of communicating process.

Current values of these parameters may be retrieved using subroutine rrCPSR. (Values are stored

in a FORTRAN common block which need not be visible to the user.) The current implementation of

CVCPS does not provide parameter storage for multiple buffers; it is assumed that a common buffer is

used with consistent or reset parameters.

Communication of FFREAD data cards using CVCPS must be coordinated among server and client

processes. Appropriate use of synchronization points (as provided by ACP _SYNC) can coordinate access

to the memory buffer.

2.3.3 Subprograms

FFCPS

Description: Subroutine FFCPS performs input of FFREAD data cards from a remote memory

buffer. The size of this memory buffer must be set by the user. Declaration of this memory buffer as a

CPS I/O block should be performed by the user. Subroutine FFCP S uses ACP _GET to access each

FFREAD data card. Each data card is assumed to be a fixed-length record of length LINPOT as set

within FFREAD.

9

Interface:
SUBROOTI:NE FFCPS (I:BFSI:Z)
:INTEGER mFSI:Z

Usage: Not user callable. Must be declared EX'l'ERNAL and defined as an alternate FFREAD input

routine via FFSE'l' and FFRSE'l'. CPS interface parameters must be set using subroutine FFCPSI.

EXTERNAL FFCPS
CALL FFSET('LI:NP',-FFLON)
CALL FFRSET (FFLUN, FFCP S)

FFCPSI

Description: Initialization interface for variables in FORTRAN common block CFFCPS.

Interface:

SUBROUTINE FFCPSI: (NAME, VALtJE)
CHARACTER* 6 NAME
:INTEGER VALtJE
COMMON /CFFCPS/ IFFOFF, I:FFSET, IFFCPS, IFFBO!"

Usage: User. NAME may assume the following values:

• CPSBt7F-CPS block number of globally-available I/O buffer.

• Bt7FLEH-length (in bytes) of CPS I/O buffer.

• OFFSE'l'--offset (in bytes) into CPS I/O buffer ..

• SE'l'PRo-CPS process number of communicating process.

FFCPSR

Description: Retrieval interface for variables in FORTRAN common block CFFCPS.

Interface:

SUBROUTI:NE FFCPSR (NAME, VALtJE)
CHARACTER* 6 NAME
:INTEGER VALtJE
COMMON /CFFCPS/ IFFOFF, IFFSET, IRCPS, IFFBO!"

Usage: User. NAME may assume the following values:

• CP SBt7F-CPS block number of globally available I/O buffer.

• Bt7FLEH-length (in bytes) of CPS I/O buffer.

10

• OFFSET-offset (in bytes) into CPS I/O buffer.

• SETPRo-CPS process number of communicating process.

3.0 EXAMPLES

Several application examples of CZlCPS are now presented. These examples have been derived from

a CPS event-level parallelization of the Bottom Collider Detector (BCD) GEANT3 simulation.9

In its present implementation, the CPS parallelization of the BCD GEANT3 simulation takes the

following form. Each process performs its own basic initialization of ZEBRA, GEANT3 (GZEBRA,

GINIT) and HBOOK4 (BLIMIT), if required.

• CONTROL process.

- Reads and distributes FFREAD data cards for WORKER processes.

- Generates and distributes GEANT3 initialization data structures (geometry, materials,
particles, etc.) to WORKER processes.

- Reads (via FZ) and distributes field maps of two dipole magnets to WORKER processes.

- Creates and distributes HBOOK4 analysis histograms to WORKER processes.

- Starts event generation servers.

- Starts FZ output collector.

Controls GEANT3 event loop, distributing run number, event number and random generator
seeds via remote subroutine calls to WORKER processes.

- Accumulates HBOOK4 histograms from WORKER processes at end of run.

- Closes FZ output collector.

• EV'l'GEN processes.

- ISAJET10 or PYTHIA 11 event generation servers.

- Interface via remote subroutine call.

- Provide events for WORKER processes.

Number of event generation servers may be adjusted to meet computational demand or
physics needs.

- Could be adapted into disk/tape input event servers.

• OUTPUT processes.

- FZ output collector.

11

Interface via ZEBRA/PZ and remote subroutine call.

Number of collectors may be adjusted to meet output load.

• WORKER processes.

BCD GEANT3 event generation server.

CPS ZEBRA Server.

Interface via remote subroutine call.

Request services from EVTGEN and OUTPUT servers.

3.1 Transfer of GEANT3 initialization data structures

This example demonstrates the transfer of GEANT3 initialization data structures from an

initialization (or control) process to a set of worker processes. Code fragments for the initialization and

worker processes are shown in the following subsections. We assume that the initialization process has

the GEANT initialization data structures available in its local ZEBRA store.

The code fragments display the following steps:

• Perform CPS initialization in CONTROL and WORKER processes. Write GEANT3 initialization
data structures into memory buffer in CONTROL process.

• Synchronization point. WORKER processes may now read information.

• WORKER processes read GEANT3 initialization data structures from CONTROL process.

• Synchronization point. WORKER processes have read information.

• All processes advance to next task.

3.1.1 CONTROL process-server

C Define CPS b10ck number for FZ channe1 transfers.

:INTEGER CPSFZ
PARAMETER (CPSFZ = 1)

C Define I'Z channe1 buffer size (words). Buffer is 1ocal..
C Adjust buffer size as necessary for individual app1ications.

:INTEGER CZBUF
PARAMETER (CZBUF = 262144)

C Dec1are CPS memory buffer for FZ Channe1 'I/O.

:INTEGER MCZBOF
COMNON /CCZBUF / MCZBOF (CZBUF)

12

C Define block size (words) for FZ channel data transfers.
C gOO words is ZEBRA default: must be multiple of gO words.

XHTEGER CZBLIt
PARAMETER (CZBLIt = gOO)

C Declare channel hand1er subroutine. CPS block is loca1.
C Ose channel hand1er for local CPS memory block.

EXTERNAL CZBUFR

C Znitialize CPS software.

CALL ACP INIT

C Define CPS memory block for FZ channel communications via CPS.
C Store buffer length (bytes) for channel hand1er.

CALL ACP-PECLARE_BLOCX(MCZBUF,4*CZBUF,CPSFZ)
CALL CZCPSI('BUFLEN',4*CZBUF)

C Transfer GEAN'l' data structures to local memory buffer.

CALL CZCPSI ('OFFSET', 0)
CALL GOPEN(LONFZ, 'COSO',CZBLIt,IERROR)
CALL FZBOOK(LONFZ,CZBOFR,IDOMNY)
CALL GSAVE(LONFZ,'XHIT', -1, 0, IERROR)
CALL GCLOSE(LONFZ,IERROR)

C Synchronize CONTROL and WORKER processes after data structure
C transfer to local memory buffer.

CALL ACP_SYNC(ACP_SET_OF_PROCESSES(2,CONTROL,WORKER),1)
C Synchronize CONTROL and WORKER processes after WORKER processes have
C completed transfers from loca1 memory buffer.

3.1.2 WORKER process-client

C Define CPS block number for FZ channel transfers.

XHTEGER CPSFZ
PARAMETER (CPSFZ = 1)

C Define FZ channel buffer size (words). Buffer is remote.
C Adjust buffer size as necessary for individua1 applications.

XHTEGER CZBUF
PARAMETER (CZBUF = 262144)

13

C Define b10ck size (woxda) fox FZ channe1 data txansfex ••
C gOO woxda is ZEBRA defau1t; IIDIst be DaI1tip1e of gO woxc1a.

:INTEGER CZBLIt
PARAMETER (CZBLIt = gOO)

C Declare channel handler subroutine. CPS block is remote.

C Use channel handler with ACP GET and ACP SEND for remote access.

EXTERNAL CZCPS

C :Initia1ize CPS softwaxe.

CALL ACP m:IT

C Define CPS b10ck infoxmation fox FZ channe1 cOBmJnications via CPS.
C CPS b10ck is xemote. Stoxe CPS block number, buffex length (bytes) and
C CPS pxocess numbex of CONTROL pxocess.

CALL CZCPS:I (' CPSBO!'" , CPSFZ)
CALL CZCPS:I('BUFLEN',4*CZBO!")
CALL ACP JOB :INFO(1,CONTROL,:IPROC1,:IPROCN)
CALL CZcPS:I ('SETPRO' , :IPROC1)

C Syncuonize CONTROL and. WORKER pxocesses to a110w data .txuctuxes to be
C wxitten into mamoxy buffex on CONTROL pxoces ••

CALL ACP_SYHC (ACP_SET_OF_PROCESSES (2, CONTROL, WOlUItIm), 1)

C Read. GEAHT Dt:ITia1ization data stxuctuxes fxom FZ channe1.

CALL CZCPS:I('OFFSET',O)
CALL GOPEN(LONFZ,'C:ISU',CZBLIt,:IBRROR)
CALL FZBOOK(LONFZ,CZCPS,:IDUMNY)
CALL GGET(LONFZ,'m:IT',-l,:IDENT,:IBRROR)
CALL GeLOSE (LONFZ, :IERROR)

C Synchxonize pxocesses when txansfex. have finished..

3.2 Transfer of user-defined ZEBRA data structures

This example demonstrates the transfer of user-defmed ZEBRA data structures from an initialization

(or control) process to a set of worker processes. Code fragments for the initialization and worker

processes are shown in the following subsections. We assume that the initialization process has the

user's data structures available in its local ZEBRA store. We also assume that the code fragments of the

previous example have been executed prior to the present code fragments.

14

In this example, the user has two data structures, the magnetic field maps of two dipole magnets, at

JBFLD (1) and JBFLD (2) in ZEBRA division l:XCONS. This example demonstrates the transfer of

multiple data structures within a single CZ/CPS "file." We use the CPS memory buffer as defmed in the

previous example--only the offset into the memory buffer need be reset. Synchronization points are

used to coordinate the data transfer, as in the previous example.

3.2.1 CONTROL process-server

C Transfer magnetic fie~d maps to WORKER processes, if necessary.

XI' (IFIELD .EO.l) THEN
CALL CZCPSI('OFFSET',O)
CALL FZFlLE(LONFZ,CZBLK,'COSO')
CALL FZBOOK(LONFZ,CZBOFR,IDOMNY)
CALL FZOOT(LUNFZ,IXCONS,J.BFLD(l),O,' ',2,0,0)
CALL FZOOT(LUNFZ,IXCONS,J.BFLD(2),0,' , ,2,0,0)
CALL FZENDO(LONFZ, 'T')
CALL ACP_SYNC(ACP_SET_OF_PROCESSES(2,CONTROL,WORKER),3)
CALL ACP_SYNC(ACP_SET_OF_PROCESSES(2,CONTROL,WORKER),4)

ENDIF

3.2.2 WORKER process-client

C Transfer magnetic fie~d maps to WORKER process, if necessary.

XI' (IFIELD.EO.l) THEN
CALL ACP_SYNC(ACP_SET_OF_PROCESSES(2,CONTROL,WORKER),3)
CALL CZCPSI('OFFSET' ,0)
CALL FZFlLE(LONFZ,CZBLK,'CISO')
CALL FZBOOK(LONFZ,CZCPS,l:DUNMY)
CALL FZIN(LONFZ,IXCONS,J,BFLD(l),l,' ',0,0)
CALL FZIN(LONFZ,IXCONS,J,BFLD(2),1,' ',0,0)
CALL FZENDI (LtmP'Z, , T')
CALL ACP_SYNC(ACP_SET_OF_PROCESSES(2,CONTROL,WORKER),4)

ENDIF

3.3 Transfer of HBOOK4 histograms to WORKER processes

This example demonstrates the transfer of HBOOK4 histograms from an initialization (or control)

process to a set of worker processes. Code fragments for the initialization and worker processes are

shown in the following subsections. We assume that the user's histograms are available in the local

ZEBRA store of the initialization process.

Most of the CZJCPS initialization procedure shown in this example is identical to that of the first

example. Note that two FZ Channel media are defined with logical units 998 (output) and 999 (input).

15

Both may share a common I/O buffer, since no simultaneous bidirectional data transfers occur.

Management of the buffer offset is internal to the HBOOK4/ZEBRA Server, unlike the case of FZ

transfers shown in the previous examples.

3.3.1 CONTROL process-ZEBRA client

C XADCPS ~n common CZSOCK must be set for BBOOK4/ZEBRA Server.

COMMON /CZSocx./ LONCZ, XADCPS

C Define parameters for CPS remote subroutines.

DfTEGER RZSCPS
PARAMETER (RZSCPS = 1)

C Define I'Z channel transfer "logical units".
C Ose values consistent with BBOOK4/CZ interface.

INTEGER CZLONI
PARAMETER (CZLONI = 999)
INTEGER CZLONO
PARAMETER (CZLONO = 998)

C Define CPS block number for I'Z channel transfers.

DfTEGER CPSI'Z
PARAMETER (CPSFZ = 1)

C Define I'Z channel buffer size (words). Buffer is local.
C Adjust buffer size as necessary for individual applications.

INTEGER CZBOF
PARAMETER (CZBOF = 262144)

C Declare CPS memory buffer for I'Z Channel I/O.

INTEGER MeZBOF
COMMON /CCZBOF/ MeZBOF (CZBtJI')

C Define block size (words) for I'Z channel data transfers.
C 900 words .is ZEBRA default: must be multiple of 90 words.

INTEGER CZBLK
PARAMETER (CZBLK = 900)

C Declare channel handler subroutine. CPS block is local.
C Ose channel handler for local CPS memory block.

EXTERNAL CZBOFR

16

C Declare character variable for RZ top directory name.

CHARACTER* 4 CBTOP

C Initialize CPS software.

C Declare CPS block for FZ channel communications via CPS.

C Store buffer length (bytes) for channel hanc:ll.er.

CALL ACP_DECLARE_BLOCK(MCZBOF,4*CZBOF,CPSFZ)
CALL CZCPSI('BOFLEN' ,4*CZBOF)

C Initialize FZ Channel Input and Output media for BBOOK4/ZEBRA
C Server communications.

CALL FZFILE(CZLONO,CZBLX,'COSO')
CALL FZFILE (CZLONI,CZBLX,' CISO')
CALL FZBOOK(CZLONO,CZBOFR,IDOMMY)
CALL FZBOOK(CZLONI,CZBOFR,IDOMMY)

C Define channel handler address for CZ communications interface.

UDCPS=JOMPAD (CZBOFR)
CALL JOMPST (UDCPS)

C Define CPS remote subroutine number of ZEBRA Server in WOlUCER process.

CALL CZCPSI ('REMSOB' , RZSCPS)

C Loop over al.l WORKER processes.
C Open each WORKER process with option 'G'.
C Write al.l histograms in current directory to each WORKER.
C Close each WOlUCER process when finished.

CALL ACP_JOB_INFO(l,WORKER,ISTART,ICOONT)
DO 100 IPROC = I START , ISTART + ICOONT-l

WRITE (CBTOP, , (I4. 4) ') IPROC
CALL BRFILE (IPROC, CBTOP, 'G')
CALL KROUT (0, ICYCLE,' ')
CALL HREND (CBTOP)

100 CONT::tNOE

3.3.2 WORKER process-ZEBRA server

C UDCPS in cODlDOn CZSOCK must be set for BBOOK4/ZEBRA Server.

COMMON /CZSOCK/ Lt1NCZ, UDCPS

C Define parameters for CPS remote subroutines.

17

DlTEGER RZSCPS
PARAMETER (RZSCPS = 1)

C Def20ne FZ channel transfer "lo9'2ocal units"
C Ose values cons2ostent with BBOOK4/CZ 2onterface.

DlTEGER CZLONI
PARAMETER (CZLONI = 999)
DlTEGER CZLONO
PARAMETER (CZLONO = 998)

C Define CPS block number for FZ channel transfers.

DlTEGER CPSFZ
PARAMETER (CPSFZ = 1)

C Define FZ channel buffer size (words). Buffer 20s remote.
C Adjust buffer s20ze as necessary for 2ondiv2odual appl2ocat2oons.

DlTEGER CZBOF
PARAMETER (CZBOF = 262144)

C Define block s20ze (words) for FZ channel data transfers.
C 900 words 20s ZEBRA default: must be mult20ple of 90 words.

DlTEGER CZBLIt
PARAMETER (CZBLIt - 900)

C Declare channel handler subrout2one. CPS block 20s remote.
C Ose channel handler with ACP_GET and ACP_SEND for remote access.

EXTERNAL CZCPS

C External declaration for ZEBRA Server.

EXTERNAL ZSCPS

C In2ot2oalize CPS software.
C Declare ZEBRA Server as a remote subroutine.

CALL Acp INIT
CALL ACP_DECLARE_SOBROOTr.NE(ZSCPS,RZSCPS,3,80,4,4)

C Def20ne CPS block 2onformation for FZ channel communicat2oons v20a CPS.
C CPS block 20s remote. Store CPS block number and buffer length (bytes).

CALL CZCPSI('CPSBOF' ,CPSFZ)
CALL CZCPSI('BOFLEN',4*CZBOF),

C In2ot2oal.2oze FZ Channel Input and Output media for BBOOlt4/ZEBRA
C Server communicat2oons.

18

CALL FZFlLE(CZLONO,CZBLX,'COSO')
CALL FZFlLE (CZLONI, CZBLX, , CISO')
CALL FZBOOK(CZLONO,CZCPS,XDONMY)
CALL FZBOOK(CZLONX,CZCPS,XDONMY)

C Define channel handler address for CZ communications interface.

ZADCPS = JtJMPAD (CZCPS)
CALL JtJMPST (ZADCPS)

C Service remote subroutine calls.

3.4 Accumulation of HBOOK4 histograms from WORKER processes

This example shows the accumulation of HBOOK4 histograms from the set of WORKER processes

at job termination. We assume that the conditions of the previous example hold-the CONTROL process

continues to have the initial set of (empty) histograms that were written to each of the WORKER

processes for filling. We also assume that the finished WORKER processes have been queued on the

DONE_QUEUE with an ACP$END _OF _QUEUE marker.

Only one cycle of each histogram is supported under CZ/CPS, as the remote "file" is actually a

ZEBRA memory store. The special offset of 99999 causes the input histograms to be added to those in

memory.

No code segment is shown for the WORKER process. The remote subroutine server of the previous

example is adequate.

3.4.1 CONTROL process-ZEBRA client

C Collect histograms from WORKER processes.

C For each WORDR,
C remove from DONJlLQOEUE,
C open ZEBRA Server connection,
C input and adel all histograms in top directory,
C close ZEBRA Server connection.

100 CONTXNOE
CALL ACP _DEQUEUE_PROCESS (IPROC, DONE_QUEUE)
XF (IPROC.EQ.ACP$END_OI'_QUEOE) GOTO 200
WRZT.E(CBTOP,' (X4.4)') XPROC
CALL BRFXLE(IPROC,CBTOP,'G')
CALL BRZN(0,1,99999)
CALL BREND (esTOP)
GOTO 100

200 CONTXNOE

19

3.5 Collection of event FZ output

This example demonstrates the collection of FZ event output from GEANT3 by an OUTPUT server.

When each WORKER process enters subroutine GUOUT, an OUTPUT server is dequeued. The FZ event

output is transferred to the OUTPUT server's local memory buffer for output to disk or tape. The data

transfer to disk or tape is done asynchronously as the WORKER process proceeds to its next event. Since

all data transfer is performed using binary exchange format, output may be collected from a

heterogeneous set of WORKER processes to form an FZ binary exchange format file. Note: This OUTPUT

server is designed for a 32-bit, big endian machine. Additional byte-swapping is required before writing

data to disk or tape when running on a 32-bit, little endian machine.

3.5.1 OUTPUT process-server

INCLUDE ' acp _user. inc'

C Define parameters for CPS process queues.

INTEGER QOtJ'l'POT
PARAMETER (QOtJ'l'POT = 1)

C Define parameters for CPS remote subroutines.

INTEGER RCREAT, ROOTBL, RFINIS
PARAMETER (RCREAT I: 1)
PARAMETER (ROOTBL = 2)
PARAMETER (RFINIS I: 3)

C Define CPS block number for FZ channel transfers.

INTEGER CPSFZ
PARAMETER (CPSFZ = 1)

C Define FZ channel buffer size (worda). Buffer is local.
C Adjust buffer size as necessary for individual applications.

INTEGER CZBOF
PARAMETER (CZBOF I: 262144)

C Declare CPS memory buffer for FZ Channel I/O.

INTEGER IICZBOF
COHNON /CCZBOF / IICZBOF (CZBOF)

C Declare CP S remote subroutines.

EXTERNAL CREATE
EXTERNAL OOTBLK
EXTERNAL FINISH

20

C Initia1ize CPS software.

CALL ACP_INIT
CALL ACP _DECLARE_BLOCK (MCZBtJF, 4 *CZBtJF , CP SFZ)
CALL ACP_DECLARB_SOBROUTINE (CREATE,RCREAT, 5, 80,4,4,4,4)
CALL ACP _DECLARIL SOBROUTINE (Ot7TBLJt, ROOTBL, 1, 4)
CALL ACP_DECLARE_SOBROUTINE(FINISH,RFINIS, 0)
CALL ACP _DECLARE_QUEUE (QOOTPUT, 1, 4)

CALL ACP_SYNC (ACP$ALL_PROCESSES, 0)

C Service CPS remote subroutine ca11a.

SUBROOTINE CREATE (NAME, MEDIOP , LRECP, NBtJFP , SOURCE)

C Open the FZ output fi1e.

INTEGER NAME(*), INAME(20), MEDIOP, LRECP, NBOFP, SOURCE, TARGET
CBARACTER*80 CBNANE

INCLUDE ' acp _user. inc'

INTEGER LONPTR, MEDION, LRECL, NBtJF
CONNON / FILE / LONPTR, MEDION, LRECL, NBtJF

MEDION = MEDIOP
LRECL = LRECP
NBtJF = NBOFP
CALL ACP_CLASS_INFO(TARGET,IPROC1,IPROCN)
CALL ACP _CONVERT (NANE, INANE, 80, ACP $CBARACTER, SOURCE, TARGET)
CALL OHTOC(rNAME,4,CBNANE,80)
LENGTH = LENOCC(CBNAME)

CALL CFOPEN(LONPTR,MEDION,LRECL,'w', NBtJF,CBNAME(l:LENGTH),ISTAT)

SO'BROtJTXNE OtJ'l'BLlt (NPBR)

C Write NPBR physica1 records of 1ength LRECL to the FZ fi1e.

INTEGER NPBR

INTEGER MCZBtJF
CONNON /CCZBtJF / MCZBtJF (1)

21

XNTBGER LUNPTR, MEDXUM, LRECL, NBtJF
COMMON I I'XLE I LUNPTR, MEDXUM, LRECL, NBtJF

DO 100 X=O,NPBR-l
CALL Cl'POT(LUNPTR,MEDraN,LRBCL,MCZBtJF(l+X*LRBCL),XSTAT)

100 CONT:INtJE

END

SOBROUTXNE I'XNXSB

XNTBGER LUNPTR, IIBDXUM, LRECL, NBO!'
COMMON I FXLE I LUNPTR, MEDIUM, LRECL, NBO!'

C C10se the FZ output fi1e.

CALL Cl'CLOS (LUNPTR, MEDXUM)

END

3.5.2 WORKER proc~lient

*
*

*
*
*
*
*
*
*
*

*
*

*
*
*
*

*
*
C

C

We assume that the CONTROL process has opened the rz output fi1e using
the f0110wing code fragment.

CBNAME = ' geant • fs'
CALL OCTOB(CBHAME,rNAME,4,80)
XMED = 0
IBLOClt = CZBLlt
INBtJF = 0
ICLASS = CONTROL
CALL ACP_CALL(IPROC,ACP$WAXT,RCREAT,
I INAME,XMED,IBLOCK,INBUI',ICLASS)

We a1so assume that the WORKER process has previous1y opened the I'Z
connection for event output using the fo11owing code fragment.

CALL CZCPSX (, CPSBtJF' , CPSI'Z)
CALL CZCPSI('BOI'LEN' ,4*CZBtJF)
CALL GOPEN(LOH%TS(2), 'COSO' ,CZBLK,%ERROR)
CALL I'ZBOOK(LONXTS(2) ,CZCPS,XDUMNX)

The fo11owing code fragment from SUBROOTINE GOOOT of WORKER process
demonstrates the use of an OUTPUT server to co11ect GBART rz output.

Attach an output process

Transfer event output to output process

22

C

*
*

*
*
*
*
*
*
*
*
3.6

CALL CZCPSI ('OFFSET',O)
CALL CZCPSI (' SETPRO' , :IPROC)
CALL GSAVE(LONITS(2),EEYS,NSAVE,IDEVT,IER)
CALL CZCPSR('OFFSET' , IOFF)
NPBR = IOFF/ (4*CZBLK)

Transfer output to fi~e

CALL ACP_CALL (IPROC, QOU'l'PtJ'l', ROOTBL, NPBR)

We expect that the CONTROL process wi~~ execute the fo~~owing commands
to ter-minate and c~ose the FZ output fi~e.

CALL ACP_JOB_ XNFO (1, OtJ'l'PO'l', IPROC 1, IPROCN)
CALL CZCPSI (' OFFSET' ,0)
CALL CZCPSI('SETPRO',IPROC~)
CALL GCLOSE(LONITS(2),IERROR)
CALL CZCPSR (' OFFSE'l" , IOFF)
NPBR II: IOFF / (4 *CZBLK)
CALL ACP _CALL (:IPROC1, ACP $WAXT , ROtJ'l'BL, RPBR)
CALL ACP_CALL(IPROC1,ACP$WAXT,RFINIS)

Distribution of FFREAD input to WORKER processes

This example demonstrates distributed FFREAD input to a set of WORKER. processes. The FFREAD

data cards for the worker processes are written into a CPS memory buffer on the CONTR.OL process for

access by the WORKER processes. Users should adjust the size of the memory buffer to match the

requirements of their applications.

3.6.1 CONTROL process-server

C Define distributed FFREAD "~ogica~ unit".
C Equate CPS b~ock number to FFREAD "~ogica1 unit".

INTEGER FFLON
PARABETER (FFLON = 98)

INTEGER CPSFF
PARAMETER (CPSFF = 98)

C Def~n. FFREAD buffer s~ze. Buffer is 1oca1.
C ~~ow 50 card :images.

INTEGER FFBOF
PARAMETER (FFBOF = 1000)

C Dec~are CPS memory buffer for distributed FFREAD input.

INTEGER MFFBOF
COMMON /CFFBOF / MFFBOF (FFBOF)

23

C Define block size (woxda) fox d;Lstxibuted !'FREAD ;i.nput.
C Ose card images---FFREAD default value.

%HTEGER I'FBLK
PARAMETER (ITBLlt = 20)

C DeClaxe chaxactex buffex fox input.

CHARACTER* (4*I'I'BLlt) STlUNG

C %n;Ltialize CPS softwaxe.

CALL ACP DT%T

C Declaxe CPS block fox I'I'READ input via CPS. CPS block is local.

C TX&nafex I'I'READ carda fox WORKER pxocesses to local memoxy buffex.
C Pack buffex with fixed-length Bollexith xecoxda.

%1'1'01'1' = 0
100 READ (I'I'LOH, , (A)' ,END=200) STlUNG

CALL OCTOB(STlUNG,Ml'l'BOI'(1+%1'I'01'l'),4,4*I'FBLK)
%1'1'01'1' = %1'1'01"1' + I'I'BLlt
GOTO 100

200 CON'l'%HOI!
C Synchxonize CONTROL and WOlUCER pxocesaes. WOlUCER pxoceases may now
C pexfoJ:lll xemote I'I'READ input.

CALL ACP _SYNC (ACP$ALL _PROCESSES, 0)

3.6.2 WORKER process--client

C Define d;Lstx;i.buted I'I'READ " logical unit".
C Equate CPS block numbex to I'I'READ "logical ,:,nit".

%HTEGER I'I'LOH
PARAMETER (I'I'LOH = 98)

J:HTEGER CP SI'I'
PARAMETER (CPSI'I' = 98)

C Define I'I'READ buffex size. Buffex is xemote.
CAllow 50 caxd images.

J:HTEGER I'FBOI'
PARAMETER (ITBOI' = 1000)

C Extexnal declaration fox altexnate input xoutine.

24

EXTERNAL FFCPS

C Xnitial.ize CPS software.

CALL ACP XNXT -
C Obtain FFREAD data carda from memory buffer on CONTROL process.
C Set al.ternate input subroutine to al.~ow FFREAD input via CPS.

CALL FFSBT (' LXNP' , -FFLON)
CALL FFRSET (FFLON, FFCP S)

C Define CPS b~ock information for FFREAD input via CPS.
C CPS b~ocJc is remote. Store CPS b~ocJc number, buffer ~ength (bytes) and
C CPS process number of CONTROL process.

CALL FFCPSX (' CPSBt7F' , CPSFF)
CALL FFCPSX ('Bt7FLBN' ,4*FFBt7F)
CALL ACP_JOB_XNFO(1,CONTROL,XPROC1,XPROCN)
CALL FFCPSX('SBTPRO',XPROC1)

C Synchronize CONTROL and WORKER processes to a~~ow FFREAD cards to be
C written into memory buffer on CONTROL process.

C Read data cards.

CALL FFCPSX ('OFFSET' ,0)
CALL GFFGO

4.0 SUMMARY

CZlCPS introduces recent developments in distributed computing techniques in the CERN Program
Library into the CPS cooperative processes environment. CZJCPS provides easy-to-use interprocess
ZEBRA/FZ data communication for program initialization, event distribution, and event collection. The
CPS ZEBRA Server provides a simple, yet familiar, interface for histogram distribution and collection
via its integration of features from V AXNMS global sections and RZ direct-access files. Distributed
FFREAD input for CPS processes simplifies FFREAD initialization distribution by handling system and
user-defined data cards on an equal basis.

A representative collection of examples demonstrates the capabilities of the CZJCPS interface.
Transfer of GEANT3 initialization data structures, GEANT3 event FZ output, HBOOK4 histogram
input, output and summation, and distribution of FFREAD data cards can be easily accomplished.

25

REFERENCES

1. ACP Cooperative Processes User's Manual, Fermilab Computer Research & Development
Department, Fenni National Accelerator Laboratory.

2. CERN Program Library manual, G. Benassi, ed., CERN Computer Centre.

3. R Brun, M Goossens, and I. Zoll, ZEBRA User Guide, CERN Computer Centre Program Library
Long Writeup Ql00.

4. I. Zoll, ZEBRA Reference Manual, CERN Computer Centre.

5. R Brun and D. Lienart, HBOOK User Guide, Version 4, CERN Computer Centre Program Library
Long Writeup Y250.

6. R Brun, B. Holl, I. Shiers, O. Couet, C. Magnin, I. Wood, F. Hemmer, and B. Segal, CSPACK,
CERN Computer Centre Program Library Q124.

7. R Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini, GEANI'3 User's Guide, CERN
DD/EE/84-1, May 1986.

8. R Brun, R. Hagelberg, J. C. Lassalle, G. Misuri, and I. Vobrueggen, FFREAD User Guide and
Reference Manual, CERN Computer Centre Program Library Long Writeup 1302.

9. L. A. Roberts, BCD/CPS, An event-level GEANT3 parallelization via CPS, SSCL-413, SSC
Laboratory.

10. F. E. Paige and S. D. Protopopescu, ISAJEI' 636, Brookhaven National Laboratory.

11. H.-U. Bengtsson and T. Sjostrand, PYTHIA 5.5, University of Lund and CERNfffI.

27

