SSCL-412

CZ/CPS
A Communications ZEBRA Implementation Using CPS

Lee A. Roberts

Physics Research Division
Superconducting Super Collider Laboratory*
2550 Beckleymeade Avenue
Dallas, Texas 75237

April 1991

*Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract No.
DE-AC02-89ER40486

SSCL-412

CZ/CPS
A Communications ZEBRA Implementation Using CPS

Lee A. Roberts

Abstract

CZ/CPS is an implementation of the Communications ZEBRA distributed computing environment
utilizing the CPS communications protocol. CZ/CPS is intended for parallelization of high energy
physics application programs using the CERN Program Library memory and data structure management
features. CZ/CPS provides transparent communication of ZEBRA data structures among cooperative
processes using standard interfaces for ZEBRA I/0. Examples of usage in a CPS HBOOK4 and
GEANT3 application are provided.

ii

1.0
2.0

3.0

4.0

CONTENTS

INTRODUCTION.....cuiiiuininieinnisnssisissssissessesassississesasssastsstosssssossessossssastsstsssssssssass 1
FEATURES.......coniiintiiintitnnenncsssassssssesisssessssssssstossosesssonssasssssasssssasssssssssssssnssasanssess 1
2.1 ZEBRA/FZ......uniiriuennneereessanssesssssssasssasssssssssansastsnsessssssssssssssssssssenssssssssnsaneses 1
2.1.1 PUIPOSE c..uunetiiinaiirieeinnetssnetenstatsssaasiessssascssssssessssasasssaassssassssssssss sonssnnans 1
2.1.2 ImPIEMENLAtON........cocuenvrrinisssosarssessesserssanssasanssassnssssasasascossasaseassneessansass 2
2.1.3 SUDPIOZTAIMS......ccccocetiunrennirnsiesiesessissesscrassssssossssssssesssssssssssessessasssssssssssss 4
2.2 HBOOKA4/ZEBRA SEIVET......cccvvenianmrueseiiorisncssanmsassasnnsonssssssssssassasssssasssssassnsnes 6
2.2.1 PUIPOSE c.uueererinecerenncatsssssassasssnssasssessesssesessasssasssssssssssassasassssssssessosssssansans 6
2.2.2 ImMPIEMENLALON......cuceinriiranseissrssssssessessesssssassssssssssssssssssssssssssasesssssessassssse 6
2.2.3 SUDPIOZTAIMS......cccrvrrsrissrssasssissrssscssissessiessssanssssssssssssssssasssssssssnssssesssssasssese 7
2.3 FFREADuciiiitinininrsnisisnisssasassssstsssssasss 8
2.3.1 PUIPOSE..ccuieeicercuenraesnnesasssaresssssstsssssssssstassansssssssassssessssesssssssssssssssssssassnes 8
2.3.2 IMPIEMENLALON.......ucevreeeiruecensssssssssrsasssssssnssanssessassassssesassassssssssssassssessansane 9
2.3.3 SUDPIOZIAMIS........oueeereiicniiiisnnnisssinsaesosssenssnnensnnessasssssensessssssssssssssssnansses 9
EXAMPLES.......cciiitinniiinininsesnnssisssssosssasssssssstsssssssstsssssssasssesssssasssssssassnsssssnsnasssasaoss 11
3.1 Transfer of GEANT3 initialization data STUCIUTEScceceerecressunsscssrssecssessenes 12
3.1.1 CONTROL PrOCESS—SEIVET ...ceereurirrcsessarecssrsssassassssasssasssasssasassassesaasaes 12
3.1.2 WORKER pProcess——CIENL.......cocecereceresrcreserraecsecsencsesssesnnsssasonsenssassssane 13
3.2 Transfer of user-defined ZEBRA data StruCtures..........cccesveeseeccseesensessessassesanns 14
3.2.1 CONTROL PrOCESS—SEIVET ...ccvurrersesserasaesensanssasssnesassssasasssasssssssssssasanse 15
3.2.2 WORKER Process——CHENL......ccovinrirnerssniccnincerssacesnssesssssssssosssssnsesasnne 15
3.3 Transfer of HBOOK4 histograms to WORKER pProcessesccoocerveresvnnnencee 15
3.3.1 CONTROL process—ZEBRA CHENL......c.ccoeriercrcrecnesisaossnsassascssaccsanacs 16
3.3.2 WORKER process—ZEBRA SEIVET.......cccoceruerercnessesaessssssssesasssesasssannens 17
3.4 Accumulation of HBOOK4 histograms from WORKER processes.................. 19
3.4.1 CONTROL process—ZEBRA Client...........ccccceeccrecrescosercssecsseescesanna 19
3.5 Collection of event FZ Outputccccccceeeuecccenrencsuecnnicsesssenessssecssssasessessasssonssasanns 20
3.5.1 OUTPUT PrOCESS ——SEIVETcoreersenrsreessossansssasssasssasossessassssesessssssasnssss 20
3.5.2 WORKER ProCess——CleNL.......cccevieserrnerurcerssessaessesssssasssassasssssssssassneens 22
3.6 Distribution of FFREAD input to WORKER Processes........c..ccocsseesessessursesacnne 23
3.6.1 CONTROL PrOCESS—SEIVETceceeccreecsscnreeesssnsesananessssssasassssssssssssssasans 23
3.6.2 WORKER Process——CHENL.......ccccueriertrracaruessnecrasssssssssesseessasesssecseassnes 24
SUMMIARYouoctieereeneenesenensessessaessnssssassssssssssnsesssstassnssassassnsssssssssssssossossassosssansses 25
REFERENCES......cccccinineisninmaennesssssssssassssssstsstsssssesssssssnsssssnsssssnsssssssssssssssassssssessssns 27

1.0 INTRODUCTION

CPS! parallelization of many high-energy physics simulation and analysis codes depends upon the
ability to distribute and manage I/O of ZEBRA? data structures. Users are familiar with the popular
HBOOKA4’ histogramming and data analysis package from the CERN Program Library.? GEANT3’
appears to be a popular “standard” for detector description and simulation. Both HBOOK4 and
GEANT3 internally use ZEBRA data structures; event-level parallelization of these applications
depends upon interprocess communication of ZEBRA data structures.

The CZ/CPS communications package was designed to take full advantage of standard features
available in the CERN Program Library codes. Recent development efforts on several of these codes
have provided techniques (or “hooks”) for interprocess (and interprocessor) communication of data
structures based upon a user-specified communications protocol. One example of these communications
features is the CSPACKS® package for distributed computing, available in a recent release of the CERN
Program Library.

The CZ/CPS communication package draws upon the communications ideas and features present in
the following packages:

o ZEBRA—FZ Channel 1/O
* HBOOK4—CZ Communications Interface
* (CSPACK—ZEBRA Server and CZ _Communications Interface.

CZ/CPS provides capabilities for communication of ZEBRA data structures, complete with data
conversion among unlike processors, using sequential FZ I/O. In addition, HBOOK4 histograms may be
manipulated as RZ structures using facilities derived from the handling of global sections on VAX/VMS
and the CZ communications software.

In addition, a subset of the programming techniques used for the CZ/CPS implementation may be
used to provide distributed FFREAD® format-free input processing for cooperative processes.

20 FEATURES
2.1 ZEBRA/FZ

2.1.1 Purpose

ZEBRA/FZ communications provides the basic method for transferring ZEBRA data structures
among cooperative processes. ZEBRA/FZ allows transfer of data structures using a sequential medium
with proper relocation of pointers and data conversion among incompatible machine architectures.

ZEBRA/FZ communications may be used for distribution of GEANT3 initialization data structures
(geometry, materials, particles, etc.), collection of event output data structures into a common FZ output

file, and distribution of FZ event records to analysis processes. Communication of user-defined data
structures (magnetic field maps, etc.) may be handled in a straightforward manner using standard FZ I/O
interfaces. ZEBRA/FZ also provides the underlying communications for the HBOOK4/ZEBRA Server
interface.

2.1.2 Implementation

CZ/CPS communication of ZEBRA/FZ data structures is performed using the FZ Channel I/O
medium. Defaults of the FZ Channel medium include Exchange File Format (fixed-length records) and
Exchange Data Format (32-bit, big endian, IEEE). These defaults are quite appropriate for the CPS
environment, which may consist of a heterogeneous mixture of processors.

Definition of the FZ Channel as a ZEBRA 1/O medium is performed using the standard FZFILE
subroutine interface. Any positive logical unit number may be associated with the FZ Channel;
FORTRAN logical unit number restrictions are not imposed. Similarly, selection of the physical record
length is up to the user; the standard (default) length should be adequate. CZ/CPS usage should apply
the following options to FZ Channel definitions:

* Option ’C’ selects medium “Channel.”

* Option I’ selects “Input” direction. Option 'O’ selects “Output” direction.
* Option ’S’ selects “Separate” data structures.

¢ Option "U’ selects “Unpacked” data structures.

Option ’S’ guarantees that each ZEBRA data structure will be started in a separate physical record.
(Earlier ZEBRA releases included option ’S’ as a default for media Memory and Channel.) Option ’U’
disables the “packing” operation in the exchange format I/O process, leaving it instead under the user’s
control. On 32-bit computers, “packing” performs byte-swapping, if necessary, to insure that data is in
exchange (big endian) format. The CPS communications protocol, which guarantees that 32-bit integer
variables are transferred correctly, performs this “packing” operation automatically. The CZ/CPS
subroutines take advantage of this feature to minimize the amount of byte-swapping required in ZEBRA
data communications.

The FZ Channel medium depends upon an application-specific channel handler subroutine for
input/output of data. This channel handler subroutine receives output records from FZOUT and provides
input records to FZIN. Management of the “channel” is handled by this subroutine, which reads or
writes FZ physical records on the “channel.” In the case of CZ/CPS, two application-specific channel
handler subroutines are provided. One of these subroutines (CZBUFR) uses a CPS memory block as its
“channel,” reading or writing information into this local, but globally available, I/O buffer. The second
of these subroutines (CZCPS) uses CPS subroutines ACP_GET or ACP_SEND to read or write
information on this globally available 1/O buffer.

2

Parameters describing the CPS-specific aspects of the application must be set via subroutine
CzCPSI for access by the channel management subroutines. This information includes the following:

e CPSBUF—CPS block number of globally available I/O buffer.
e BUFLEN—Iength (in bytes) of CPS I/O buffer.

* OFFSET—offset (in bytes) into CPS 1/O buffer.

e SETPRO—CPS process number of communicating process.

e REMSUB—CPS remote subroutine number for ZEBRA Server.

Not all of these parameters are required in each situation. Table 1 presents an overview of the
parameter usage. Current values of these parameters may be retrieved via subroutine CZCPSR. (Values
are stored in a FORTRAN common block which need not be visible to the user.) The current
implementation of CZ/CPS does not provide parameter storage for multiple buffers; it is assumed that a
common buffer is used with consistent or reset parameters. Note: It is the user’s responsibility to reset
the OFFSET parameter after each series of FZ I/O transfers.

Table 1. Overview of parameter usage for CPS-specific aspects of the CZ/CPS interface. User must
provide values for entries labeled “user;” “system” values are provided automatically. Some
parameters are not always applicable or are client-mode only.

Parameter ZEBRA/FZ ZEBRA/FZ HBOOK4/ZEBRA HBOOK4/ZEBRA

Server Server
CZBUFR CZCPS CZBUFR CZCPS
CPSBUF n/a user n/a user
BUFLEN user user user user
OFFSET user user system system
SETPRO n/a user n/a system

Definition of the channel handler subroutine to ZEBRA is performed using the FZHOOK subroutine.
This subroutine associates an I/O stream with the desired channel manager after the “file” has been
initialized with FZFILE but before any I/O operations are attempted with FZIN or FZOUT.

Communication of ZEBRA FZ information using CZ/CPS must be coordinated among server and
client processes. Multiple clients may read from a single server without interference. This capability
allows a substantial savings in memory usage, since only the server process requires a large CPS
memory buffer, rather than duplication in each client. Synchronization points (as provided by
ACP_SYNC) must be used to coordinate access. Obviously, clients should not begin reading until the
server has placed the information into the buffer. Similarly, the server must not overwrite the buffer until
all clients have finished reading the information. The examples shown in a later section demonstrate
these features.

Complete documentation on usage of the FZ Channel medium and FZEOOK may be found in the
ZEBRA Reference Manual. 4

2.1.3 Subprograms
CZBUFR

Description: Subroutine CZBUFR performs I/O of FZ physical records on a local memory buffer in
FORTRAN common block CCZBUF. The size of this memory buffer must be set by the user.
Declaration of this memory buffer as a CPS I/O block must be performed by the user. Subroutine
CZBUFR allows multiple ZEBRA data structures to be read or written sequentially on a local memory
buffer. Subroutine CZBUFR also provides the message-passing interface used by the CPS ZEBRA
Server. CZ/CPS subroutine CZBUFR is functionally equivalent, but with lower overhead, to subroutine
CZCPS operating on a local CPS memory buffer.

Interface:

SUBROUTINE CZBUFR (IBUF, IOWAY)
INTEGER IBUF (*), IOWAY (2)
COMMON /CCZCPS/ ICZOFF, ICZSET, IC2ZCPS, ICZBUF, ICZRS
COMMON /CCZBUF/ MCZBUF (1)
Usage: Not user callable. Must be declared EXTERNAL and defined for FZ I/O via F ZHOOK.

CZ/CPS interface parameters must be set using subroutine CZCPSI.

EXTERNAL CZBUFR
CALL FZFILE (LUN,CZBLK, 'COSU’)
CALL FZHOOK (LUN, CZBUFR, IDUMMY)

CZCPS

Description: Subroutine CZCPS performs I/O of FZ physical records on a remote CPS memory
buffer. The size of this memory buffer must be set by the user. Declaration of this memory buffer as a
CPS I/0 block should be performed by the user. Subroutine CZCPS allows multiple ZEBRA data
structures to be read or written sequentially on a remote CPS memory buffer using ACP_GET or
ACP_SEND. Subroutine CZCPS also provides the message-passing interface used by the CPS ZEBRA
Server. CZ/CPS subroutine CZCPS is functionally equivalent to CSPACK subroutine CZTCP, but uses
CPS as a communications protocol rather than TCP/IP.

Interface:

SUBROUTINE CZCPS (IBUF, IOWAY)
INTEGER IBUF (*), IOWAY (2)
COMMON /CCZCPS/ ICZOFF, ICZSET, ICZCPS, ICZBUF, ICZRS

Usage: Not user callable. Must be declared EXTERNAL and defined for FZ 1/O via FZHOOK.
CZ/CPS interface parameters must be set using subroutine CZCPSI.

EXTERNAL CzCPS
CALL FZFILE (LUN,CZBLK, 'CISU’)
CALL FZHOOK(LUN, CZCPS, IDUMMY)

CZCPSI

Description: Initialization interface for variables in FORTRAN common block CCZCPS.

Interface:

SUBROUTINE CZCPSI (NAME, VALUE)

CHARACTER* 6 NAME

INTEGER VALUE

COMMON /CCzCPS/ ICZOFF, ICZSET, ICZCPS, ICZBUF, ICZRS

Usage: User and CZ/CPS internal. NAME may assume the following values:
* CPSBUF—CPS block number of globally available I/O buffer.
* BUFLEN—Iength (in bytes) of CPS I/O buffer.
* OFFSET—offset (in bytes) into CPS /O buffer.
* SETPRO—CPS process number of communicating process.

* REMSUB—CPS remote subroutine number for ZEBRA Server.

Not all of these parameters are required in each situation. Table 1 presents an overview of the

parameter usage.
CZCPSR

Description: Retrieval interface for variables in FORTRAN common block CCZCPS.

Interface:

SUBROUTINE CZCPSR (NAME, VALUE)

CEARACTER*6 NAME

INTEGER VALUE

COMMON /CCzZCPS/ ICZOFF, ICZSET, ICZCPS, IC2ZBUF, ICZRS

Usage: User and CZ/CPS internal. NAME may assume the following values:

* CPSBUF—CPS block number of globally available I/O buffer.
* BUFLEN—Ilength (in bytes) of CPS I/O buffer.

* OFFSET—offset (in bytes) into CPS I/O buffer.
* SETPRO—CPS process number of communicating process.
« REMSUB—CPS remote subroutine number for ZEBRA Server.

Not all of these parameters are required in each situation. Table 1 presents an overview of the
parameter usage.

2.2 HBOOKJ4/ZEBRA Server
2.2.1 Purpose

HBOOK4/ZEBRA Server communications provide a convenient method for transfer and
manipulation of HBOOK4 histograms in cooperative processes. An interface similar to VAX/VMS
global sections and RZ direct-access files is provided for the user. In a typical CPS job, the user may
declare (book) histograms in an initialization process, use HROUT to write these histograms to each
worker process, analyze data, and finally use HRIN to read and sum the histograms from each of the
worker processes.

2.2.2 Implementation

HBOOK4/ZEBRA Server communications depend upon the ZEBRA/FZ communications described
in the previous section. Two FZ Channel media are used: logical unit 998 for output and logical unit 999
for input. At the present release of HBOOK4, these values are coded directly into the HBOOK4/CZ
interface. Both FZ Channel media must be properly defined before HBOOK4/ZEBRA Server 1/O is
attempted. However, unlike the ZEBRA/FZ communications described in the previous section, the user
need not be concerned with resetting the I/O buffer offset or the communicating process number; these
are reset automatically. Synchronization of communicating processes is handled automatically via call-
and-wait usage of remote subroutine calls.

The CPS ZEBRA Server, ZSCPS, must be accessed via remote subroutine call. The user must define
ZSCPS as a remote entry point to the CPS software using ACP_ DECLARE _SUBROUTINE and set the
remote subroutine number for the CZ/CPS software using CZCPSI. All ZEBRA Server requests are
handled in a method quite similar to the standard ZEBRA Server available in CSPACK.

HBOOK4/ZEBRA Server operations return the IQUEST vector of the remote process. Therefore,
HBOOKA4/ZEBRA Server operations must occur between pairs of processes—a single client and a
single server—otherwise confusion will result from multiple servers attempting to write into the single
I/O buffer on the client process.

Supported HBOOK4 operations include the following:

* HRFILE—initiate connection to specified CPS process.

* HREND—terminate connection to specified CPS process.

* HROUT—write histograms to current CPS process. Users may select the following options:
— Write a single histogram to the remote process.
— Write all histograms in the current directory to the remote process.
— Write a directory “tree” of histograms to the remote process.

¢ HRIN—read histograms from current CPS process. Users may select the following options:
— Read a single histogram from the remote process.
— Read all histograms from the remote current directory.
— Add histograms if offset is 99999.

* HMDIR—make a subdirectory of the remote current directory.

* HCDIR—change the remote current directory.

* HRDIR—return a list of subdirectories of the remote current directory.

2.2.3 Subprograms
ZSCPS

Description: Subroutine ZSCPS is a ZEBRA Server for CPS cooperative processes which supports

remote HBOOK4 operations on histograms in its local memory. ZSCPS must be accessed as a remote

subroutine call. Supported operations include remote input and output of histograms and remote
directory manipulation.

Auxiliary entry points ZSCPSI, ZSCPSO, ZSCPSM, ZSCPSC and ZSCPSR perform tasks for
the control subroutine.

Interface:

SUBROUTINE ZSCPS (IMAIL, IPROC,ISOURC)
INTEGER IMAIL(20), IPROC, ISOURC
COMMON /CC2CPS/ ICZOFF, ICZSET, ICZCPS, ICZBUF, ICZRS

Usage: Not user callable. Must be declared EXTERNAL and declared a CPS remote subroutine.

EXTERNAL ZSCPS
CALL ACP_DECLARE_SUBROUTINE (ZSCPS,RZSCPS,3,80,4,4)

HRFILE

Description: Customization of CZ-specific code present in standard HRFILE to handle CZ/CPS

communications. Adapt code for VAX/VMS global sections to handle CZ/CPS communicating

processes via ZEBRA Server.

Interface:

SUBROUTINE HRFILE (LUN, CHDIR, CHOPT)

INTEGER LUN
CHARACTER* (*) CHDIR,CHOPT

Usage: User. LUN must specify the CPS process number of the server process. Use option ‘G’ .

HROUT

Description: Customization of CZ-specific code prcseht in standard HROUT to handle CZ/CPS
communications. Supports staridard CZ operations.

Interface:

SUBROUTINE HROUT (IDD, ICYCLE, CHOPT)
INTEGER IDD, ICYCLE
CHARACTER* (*) CHOPT

Usage: User. Use options TN’ when writing a directory “tree” of histograms to a remote process.
HMDIR, HRDIR, HRZCD & HRZOUT

Description: Customization of CZ-specific code present in standard subroutines to handle CZ/CPS

communications.

Interface: No change from standard implementation.

Usage: No change from standard implementation.

23 FFREAD

2.3.1 Purpose

FFREAD is widely used in applications referencing the CERN Program Library as a free-format
input processing interface for application data cards. GEANT3 is among these applications, where a
standard set of “system” FFREAD data cards and optionally user-defined FFREAD data cards are used
to control initialization. In a typical application, a variety of common blocks are affected by the
combination of “system” and user FFREAD cards. When attempting CPS distribution of such
initialization, one faces the task of broadcasting the effects of these many data cards—typically covering
many common blocks—and certainly varying from user to user. Or, one may choose to broadcast the
FFREAD data cards—and let each cooperative process perform the initialization itself.

A consistent interface for all FFREAD data cards—"system” or user—in CPS GEANTS3 applications
may be achieved via the second approach. Broadcast of FFREAD data cards to each cooperative
process—with each performing its own initialization should be acceptable as long as initialization times
are reasonably short.

2.3.2 Implementation

Communication of FFREAD data cards from an initialization process to a set of cooperative worker
processes can be handled quite easily. FFREAD data cards intended for the worker processes may be
loaded into a CPS memory block as fixed-length records (of length LINPUT as set within FFREAD) for
global access from the worker processes. Access from the worker processes may be handled by an
alternate input routine, FFCPS, which “reads” the data cards in the CPS memory block using ACP_GET.
Definition of this alternate input routine is handled by the standard FFREAD subroutines FFSET and
FFRSET.

Parameters describing the CPS-specific aspects of the application must be set via subroutine
FFCPSI for access by the alternate input routine. This information includes the following:

* CPSBUF—CPS block number of globally-available I/O buffer
* BUFLEN—Ilength (in bytes) of CPS I/O buffer

* OFFSET—offset (in bytes) into CPS I/O buffer

* SETPRO—CPS process number of communicating process.

Current values of these parameters may be retrieved using subroutine FFCPSR. (Values are stored
in a FORTRAN common block which need not be visible to the user.) The current implementation of
CZ/CPS does not provide parameter storage for multiple buffers; it is assumed that a common buffer is
used with consistent or reset parameters.

Communication of FFREAD data cards using CZ/CPS must be coordinated among server and client
processes. Appropriate use of synchronization points (as provided by ACP_ SYNC) can coordinate access
to the memory buffer.

2.3.3 Subprograms
FFCPS

Description: Subroutine FFCPS performs input of FFREAD data cards from a remote memory
buffer. The size of this memory buffer must be set by the user. Declaration of this memory buffer as a
CPS I/O block should be performed by the user. Subroutine FFCPS uses ACP_GET to access each
FFREAD data card. Each data card is assumed to be a fixed-length record of length LINPUT as set
within FFREAD.

Interface:
SUBROUTINE FFCPS (IBFSIZ)
INTEGER IBFSIZ

Usage: Not user callable. Must be declared EXTERNAL and defined as an alternate FFREAD input
routine via FFSET and FFRSET . CPS interface parameters must be set using subroutine FFCPSI .

EXTERNAL FFCPS
CALL FFSET (' LINP’ , -FFLUN)
CALL FFRSET (FFLUN,FFCPS)

FFCPSI

Description: Initialization interface for variables in FORTRAN common block CFFCPS.

Interface:

SUBROUTINE FFCPSI (NAME, VALUE)

CHARACTER*6 NAME

INTEGER VALUE

COMMON /CFFCPS/ IFFOFF, IFFSET, IFFCPS, IFFBUF

Usage: User. NAME may assume the following values:
* CPSBUF—CPS block number of globally-available I/O buffer.
e BUFLEN—Iength (in bytes) of CPS I/O buffer.
* OFFSET—offset (in bytes) into CPS I/O buffer.

* SETPRO—CPS process number of communicating process.
FFCPSR

Description: Retrieval interface for variables in FORTRAN common block CFFCPS.

Interface:

SUBROUTINE FFCPSR (NAME, VALUE)

CHARACTER*6 NAME

INTEGER VALUE

COMMON /CFFCPS/ IFFOFF, IFFSET, IFFCPS, IFFBUF

Usage: User. NAME may assume the following values:
e CPSBUF—CPS block number of globally available I/O buffer.
¢ BUFLEN—Iength (in bytes) of CPS I/O buffer.

10

OFFSET—offset (in bytes) into CPS I/O buffer.

SETPRO—CPS process number of communicating process.

3.0 EXAMPLES

Several application examples of CZ/CPS are now presented. These examples have been derived from
a CPS event-level parallelization of the Bottom Collider Detector (BCD) GEANT3 simulation.’

In its present implementation, the CPS parallelization of the BCD GEANT3 simulation takes the
following form. Each process performs its own basic initialization of ZEBRA, GEANT3 (GZEBRA,
GINIT) and HBOOK4 (HLIMIT), if required.

* CONTROL process.

Reads and distributes FFREAD data cards for WORKER processes.

Generates and distributes GEANT3 initialization data structures (geometry, materials,
particles, etc.) to WORKER processes.

Reads (via FZ) and distributes field maps of two dipole magnets to WORKER processes.
Creates and distributes HBOOK4 analysis histograms to WORKER processes.

Starts event generation servers.

Starts FZ output collector.

Controls GEANT3 event loop, distributing run number, event number and random generator
seeds via remote subroutine calls to WORKER processes.

Accumulates HBOOK4 histograms from WORKER processes at end of run.

Closes FZ output collector.

e EVTGEN processes.

ISAJET!® or PYTHIA!! event generation servers.
Interface via remote subroutine call.

Provide events for WORKER processes.

Number of event generation servers may be adjusted to meet computational demand or
physics needs.

Could be adapted into disk/tape input event servers.

* QUTPUT processes.

FZ output collector.

11

— Interface via ZEBRA/FZ and remote subroutine call.

— Number of collectors may be adjusted to meet output load.
* WORKER processes.

— BCD GEANT3 event generation server.
— CPS ZEBRA Server.
— Interface via remote subroutine call.

—~ Request services from EVTGEN and OUTPUT servers.

3.1 Transfer of GEANT3 initialization data structures

This example demonstrates the transfer of GEANTS3 initialization data structures from an
initialization (or control) process to a set of worker processes. Code fragments for the initialization and
worker processes are shown in the following subsections. We assume that the initialization process has
the GEANT initialization data structures available in its local ZEBRA store.

The code fragments display the following steps:

* Perform CPS initialization in CONTROL and WORKER processes. Write GEANTS3 initialization
data structures into memory buffer in CONTROL process.

* Synchronization point. WORKER processes may now read information.

* WORKER processes read GEANTS3 initialization data structures from CONTROL process.
e Synchronization point. WORKER processes have read information.

* All processes advance to next task.

3.1.1 CONTROL process—server
o} Define CPS block number for FZ channel transfers.

INTEGER CPSFZ
PARAMETER (CPSFZ = 1)

c Define FZ channel buffer size (words). Buffer is local.
(o] Adjust buffer size as necessary for individual applications.

INTEGER CZBUF
PARAMETER (CZBUF = 262144)

c Declare CPS memory buffer for FZ Channel I/0.

INTEGER MCZBUF
COMMON /CCZBUF/ MCZBUF (CZBUF)

12

C Define block size (words) for FZ channel data transfers.
o] 900 woxrds is ZEBRA default; must be multiple of 90 woxrds.

INTEGER CZBLK
PARAMETER (CZBLK = 900)

Cc Declare channel handler subroutine. CPS block is local.
Cc Use channel handler for local CPS memory block.

EXTERNAL CZBUFR
(o} Initialize CPS software.

CALL ACP_INIT
c Define CPS memory block for FZ channel communications via CPS.
Cc Store buffer length (bytes) for channel handler.

CALL ACP_DECLARE BLOCK (MCZBUF, 4*CZBUF,CPSFZ)
CALL CZCPSI (’'BUFLEN’, 4*CZBUF)

(o] Transfer GEANT data structures to local memory buffer.

CALL CZCPSI(’'OFFSET’, 0)

CALL GOPEN (LUNFZ, ’'COSU’,CZBLK,IERROR)
CALL FZHOOK (LUNFZ, CZBUFR, IDUMMY)

CALL GSAVE (LUNFZ, ' INIT', -1,0,IERROR)
CALL GCLOSE (LUNFZ, IERROR)

c Synchronize CONTROL and WORKER processes after data structure
c transfer to local memory buffer.

CALL ACP_SYNC(ACP_SET OF PROCESSES (2, CONTROL, WORKER) , 1)
C Synchronize CONTROL and WORKER processes after WORKER processes have
c completed transfers from local memory buffer.

CALL ACP_SYNC(ACP_SET OF_ PROCESSES (2, CONTROL, WORKER) , 2)

3.1.2 WORKER process—client
(o} Define CPS block number for FZ channel transfers.

INTEGER CPSFZ
PARAMETER (CPSFZ =1)

Lo} Define FZ channel buffer size (words). Buffer is remote.
c Adjust buffer size as necessary for individual applications.

INTEGER CZBUF
PARAMETER (CZBUF = 262144)

13

aaon

an

3.2

Define block size (words) for FZ channel data transfers.
900 woxrds is ZEBRA default; must be multiple of 90 words.

INTEGER CZBLK
PARAMETER (CZBLK = 900)

Declare channel handler subroutine. CPS block is remote.
Use channel handler with ACP_GET and ACP_SEND for remote access.

EXTERNAL CZCPS

Initialize CPS software.

CALL ACP_INIT

Define CPS block information for FZ channel communications via CPS.
CPS block is remote. Store CPS block number, buffer length (bytes) and
CPS process number of CONTROL process.

CALL CZCPSI (' CPSBUF’,CPSF2)

CALL CZCPSI (' BUFLEN',6 4*CZBUF)

CALL ACP_JOB_INFO (1,CONTROL, IPROC1, IPROCN)

CALL CZCPSI (' SETPRO’, IPROC1)

Synchronize CONTROL and WORKER processes to allow data structures to be
written into memory buffer on CONTROL process.

CALL ACP_SYNC (ACP_SET_OF PROCESSES (2, CONTROL, WORKER),1)
Read GEANT INITialization data structures from FZ channel.
CALL CZCPSI (' OFFSET’,0)

CALL GOPEN (LUNFZ, ' CISU’ ,CZBLK, IERROR)

CALL FZBOOK (LUNFZ,CZCPS, IDUMMY)

CALL GGET (LUNFZ, ' INIT', -1, IDENT, IERROR)

CALL GCLOSE (LUNFZ, IERROR)

Synchronize processes when transfers have finished.

CALL ACP_SYNC (ACP_SET_OF PROCESSES (2, CONTROL, WORKER) , 2)

Transfer of user-defined ZEBRA data structures

This example demonstrates the transfer of user-defined ZEBRA data structures from an initialization

(or control) process to a set of worker processes. Code fragments for the initialization and worker
processes are shown in the following subsections. We assume that the initialization process has the
user’s data structures available in its local ZEBRA store. We also assume that the code fragments of the
previous example have been executed prior to the present code fragments.

14

In this example, the user has two data structures, the magnetic field maps of two dipole magnets, at
JBFLD (1) and JBFLD (2) in ZEBRA division IXCONS. This example demonstrates the transfer of
multiple data structures within a single CZ/CPS “file.” We use the CPS memory buffer as defined in the
previous example—only the offset into the memory buffer need be reset. Synchronization points are
used to coordinate the data transfer, as in the previous example.

3.2.1 CONTROL process—server
c Transfer magnetic field maps to WORKER processes, if necessary.

IF (IFIELD.EQ.1) THEN
CZCPSI (’ OFFSET' , 0)

FZFILE (LUNFZ, CZBLK, ' COSU')

FZHOOK (LUNFZ, CZBUFR, IDUMMY)

FZOUT (LUNFZ, IXCONS, JBFLD (1) ,0,’ ,2,0,
FZOUT (LUNFZ, IXCONS, JBFLD(2) ,0,’ ',2,0,
FZENDO (LUNFZ, ' T')

ACP_SYNC (ACP_SET_OF PROCESSES (2, CONTROL, WORKER) , 3)
ACP_SYNC (ACP_SET_OF_PROCESSES (2, CONTROL, WORKER) , 4)

FEEEEEEE

ENDIF

3.2.2 WORKER process—client _
C Transfer magnetic field maps to WORKER process, if necessary.

IF (IFIELD.EQ.1l) THEN
ACP_SYNC (ACP_SET OF_PROCESSES (2, CONTROL, WORKER) , 3)
CZCPSI (' OFFSET' , O)

FZFILE (LUNFZ, CZBLK, ' CISU')

FZEOOK (LUNFZ, CZCPS, IDUMMY)

FZIN (LUNFZ, IXCONS, JBFLD (1) ,1,’ /,0,0)

FZIN (LUNFZ, IXCONS, JBFLD (2) ,1,’ ’,0,0)

FZENDI (LUNFZ, ' T')

ACP_SYNC (ACP_SET_OF_PROCESSES (2, CONTROL, WORKER) , 4)

CEEEEEES

ENDIF

3.3 Transfer of HBOOKA4 histograms to WORKER processes

This example demonstrates the transfer of HBOOK4 histograms from an initialization (or control)
process to a set of worker processes. Code fragments for the initialization and worker processes are
shown in the following subsections. We assume that the user’s histograms are available in the local
ZEBRA store of the initialization process.

Most of the CZ/CPS initialization procedure shown in this example is identical to that of the first
example. Note that two FZ Channel media are defined with logical units 998 (output) and 999 (input).

15

Both may share a common I/O buffer, since no simultaneous bidirectional data transfers occur.
Management of the buffer offset is internal to the HBOOK4/ZEBRA Server, unlike the case of FZ
transfers shown in the previous examples.

3.3.1 CONTROL process—ZEBRA client
o] IADCPS in common CZSOCK must be set for HEBOOK4/ZEBRA Server.

COMMON /CZSOCK/ LUNCZ, IADCPS
(o] Define parameters for CPS remote subroutines.

INTEGER RZSCPS
PARAMETER (RZSCPS = 1)

(o] Define FZ channel transfer “logical units”.
C Use values consistent with HBOOK4/CZ interface.

INTEGER CZLUNI
PARAMETER (CZLUNI = 999)
INTEGER CZLUNO
PARAMETER (CZLUNO = 998)

(o] Define CPS block number for FZ channel transfers.

INTEGER CPSFZ
PARAMETER (CPSFZ = 1)

o Define FZ channel buffer size (words). Buffer is local.
Cc Adjust buffer size as necessary for individual applications.

INTEGER CZBUF
PARAMETER (CZBUF = 262144)

c Declare CPS memory buffer for F2Z Channel I/O.

INTEGER MCZBUF
COMMON /CCZBUF/ MC2ZBUF (CZBUF)

(o} Define block size (words) for FZ channel data transfers.
c 900 words is ZEBRA default; must be multiple of 90 words.

INTEGER CZBLK
PARAMETER (CZBLK = 900)

c Declare channel handlexr subroutine. CPS block is local.
c Use channel handler for local CPS memory block.

EXTERNAL CZBUFR

16

o000

Declare character variable for RZ top directory name.
CHARACTER*4 CHTOP
Initialize CPS software.

Declare CPS block for FZ channel communications via CPS.
Store buffer length (bytes) for channel handler.

CALL ACP_DECLARE BLOCK (MCZBUF, 4*CZBUF, CPSFZ)
CALL CZCPSI(’/BUFLEN’,6 4*CZBUF)

Initialize FZ Channel Input and Output media for HBOOK4/ZEBRA
Server communications.

CALL FZFILE (CZLUNO,CZBLK, 'COSU’)
CALL FZFILE (CZLUNI,CZBLK,'CISU’)
CALL FZHOOK (CZLUNO, CZBUFR, IDUMMY)
CALL FZHOOK (CZLUNI, CZBUFR, IDUMMY)

Define channel handler address for CZ communications interface.

IADCPS=JUMPAD (CZBUFR)
CALL JUMPST (IADCPS)

Define CPS remote subroutine number of ZEBRA Server in WORKER process.
CALL CZCPSI (' REMSUB’ ,RZSCPS)

Loop over all WORKER processes.

Open each WORKER process with option 'G’.

Write all histograms in current directory to each WORKER.
Close each WORKER process when finished.

CALL ACP_JOB_INFO (1, WORKER, ISTART, ICOUNT)
DO 100 IPROC = ISTART, ISTART + ICOUNT-1
WRITE (CHTOP, ' (I4.4)’) IPROC
CALL HRFILE (IPROC,CHTOP,'G’)
CALL HROUT (0,ICYCLE,’ ')
CALL HREND (CHTOP)

100 CONTINUE

3.3.2 WORKER process—ZEBRA server

(o

IADCPS in common CZSOCK must be set for HBOOK4/ZEBRA Server.
COMMON /CZSOCK/ LUNCZ, IADCPS

Define parameters for CPS remote subroutines.

17

INTEGER RZSCPS
PARAMETER (RZSCPS = 1)

Define FZ channel transfer “logical units”
Use values consistent with HBOOK4/CZ interface.

INTEGER CZLUNI

PARAMETER (CZLUNI = 999)

INTEGER CZLUNO

PARAMETER (CZLUNO = 998)

Define CPS block number for FZ channel transfers.

INTEGER CPSFZ
PARAMETER (CPSFZ = 1)

Define FZ channel buffer size (words). Buffer is remote.
Adjust buffer size as necessary for individual applications.

INTEGER CZBUF
PARAMETER (CZBUF = 262144)

Define block size (words) for FZ channel data transfers.
900 words is ZEBRA default; must be multiple of 90 wozrds.

INTEGER CZBLK
PARAMETER (CZBLK = 900)

Declare channel handler subroutine. CPS block is remote.
Use channel handler with ACP_GET and ACP_SEND for remote access.

EXTERNAL CZCPS
External declaration for ZEBRA Server.
EXTERNAL 2ZSCPS

Initialize CPS software.
Declare ZEBRA Server as a remote subroutine.

CALL ACP_INIT
CALL ACP_DECLARE_ SUBROUTINE (ZSCPS, RZSCPS, 3, 80, 4, 4)

Define CPS block information for FZ channel communications via CPS.
CPS block is remote. Store CPS block number and buffer length (bytes).

CALL CZCPSI (’CPSBUF’,CPSFZ)
CALL CZCPSI (’'BUFLEN’, 4*CZBUF),

Initialize FZ Channel Input and Output media for HBOOK4/ZEBRA
Server communications.

18

CALL FZFILE (CZLUNO,CZBLK, 'COSU’)
CALL FZFILE (CZLUNI,CZBLK, 'CISU’)
CALL FZHOOK (CZLUNO,CZCPS, IDUMMY)
CALL FZHOOK (CZLUNI,CZCPS, IDUMMY)

(o} Define channel handler address for CZ communications interface.

IADCPS = JUMPAD (CZCPS)
CALL JUMPST (IADCPS)

ol Service remote subroutine calls.

CALL ACP_SERVICE_CALLS

34 Accumulation of HBOOK4 histograms from WORKER processes

This example shows the accumulation of HBOOK4 histograms from the set of WORKER processes
at job termination. We assume that the conditions of the previous example hold—the CONTROL process
continues to have the initial set of (empty) histograms that were written to each of the WORKER
processes for filling. We also assume that the finished WORKER processes have been queued on the
DONE_QUEUE with an ACP$END_OF QUEUE marker.

Only one cycle of each histogram is supported under CZ/CPS, as the remote “file” is actually a
ZEBRA memory store. The special offset of 99999 causes the input histograms to be added to those in
memory.

No code segment is shown for the WORKER process. The remote subroutine server of the previous
example is adequate.

3.4.1 CONTROL process—ZEBRA client
c Collect histograms from WORKER processes.

For each WORKER,
remove from DONE_QUEUE,
open ZEBRA Server connection,
input and add all histograms in top directory,
close ZEBRA Server connection.

e NeoNele e

100 CONTINUE
CALL ACP_DEQUEUE_PROCESS (IPROC, DONE_QUEUE)
IF (IPROC.EQ.ACPSEND OF QUEUE) GOTO 200
WRITE (CHTOP, ' (I4.4)') IPROC
CALL HRFILE (IPROC,CHTOP,'G')
CALL HRIN (0,1, 99999)
CALL HREND (CHTOP)
GOTO 100
200 CONTINUE

19

3.5 Collection of event FZ output

This example demonstrates the collection of FZ event output from GEANT3 by an OUTPUT server.
When each WORKER process enters subroutine GUOUT, an OUTPUT server is dequeued. The FZ event
output is transferred to the OUTPUT server’s local memory buffer for output to disk or tape. The data
transfer to disk or tape is done asynchronously as the WORKER process proceeds to its next event. Since
all data transfer is performed using binary exchange format, output may be collected from a
heterogeneous set of WORKER processes to form an FZ binary exchange format file. Note: This OUTPUT
server is designed for a 32-bit, big endian machine. Additional byte-swapping is required before writing
data to disk or tape when running on a 32-bit, little endian machine.

3.5.1 OUTPUT process—server
INCLUDE 'acp_user.inc’

C Define parameters for CPS process queues.

INTEGER QOUTPUT
PARAMETER (QOUTPUT = 1)

c Define parameters for CPS remote subroutines.

INTEGER RCREAT, ROUTBL, RFINIS
PARAMETER (RCREAT =
PARAMETER (ROUTBL =
PARAMETER (RFINIS =

wNn e
- N

C Define CPS block number for FZ channel transfers.

INTEGER CPSFZ
PARAMETER (CPSFZ =1)

C Define FZ channel buffer size (words). Buffer is local.
c Adjust buffer size as necessary for individual applications.

INTEGER CZBUF
PARAMETER (CZBUF = 262144)

(o] Declare CPS memory buffer for FZ Channel I/O.

INTEGER MCZBUF
COMMON /CCZBUF/ MCZBUF (CZBUF')

(o4 Declare CPS remote subroutines.
EXTERNAL CREATE

EXTERNAL OUTBLK
EXTERNAL FINISH

20

Initialize CPS software.

CALL ACP_INIT

CALL ACP_DECLARE BLOCK (MCZBUF, 4*CZBUF, CPSFZ)

CALL ACP_pECLARx_SUBROUTINE(CREATE,RCREAT,S,80,4,4,4,4)
CALL ACP_DECLARE SUBROUTINE (OUTBLK,ROUTBL, 1,4)
CALL ACP_DECLARE_SUBROUTINE (FINISH,RFINIS, 0)
CALL ACP_DECLARE QUEUE (QOUTPUT, 1,4)

CALL ACP_S!NC(ACP$ALL_PROCESSES,0)

Service CPS remote subroutine calls.

CALL ACP_SERVICE_CALLS

END

SUBROUTINE CREATE (NAME, MEDIUP, LRECP, NBUFP, SOURCE)
Open the FZ output file.

INTEGER NAME (*), INAME (20), MEDIUP, LRECP, NBUFP, SOURCE, TARGET
CHARACTER*80 CHNAME

INCLUDE ‘acp_user.inc’

INTEGER LUNPTR, MEDIUM, LRECL, NBUF
COMMON / FILE / LUNPTR, MEDIUM, LRECL, NBUF

MEDIUM = MEDIUP
LRECL = LRECP

NBUF = NBUFP

CALL ACP_CLASS_INFO (TARGET, IPROC1, IPROCN)

CALL ACP_CONVERT (NAME, INAME, 80, ACP$CHARACTER, SOURCE, TARGET)
CALL UHTOC (INAME, 4, CENAME, 80)

LENGTE = LENOCC (CENAME)

CALL CFOPEN (LUNPTR,MEDIUM, LRECL, 'w’, NBUF, CHNAME (1:LENGTH) , ISTAT)
END

SUBROUTINE OUTBLK (NPHR)

Write NPHR physical records of length LRECL to the FZ file.
INTEGER NPHR

INTEGER MCZBUF
COMMON /CCZBUF/ MCZBUF (1)

21

INTEGER LUNPTR, MEDIUM, LRECL, NBUF
COMMON / FILE / LONPTR, MEDIUM, LRECL, NBUF

DO 100 I=0,NPHR-1
CALL CFPUT (LUNPTR, MEDIUM, LRECL, MCZBUF (1+I*LRECL) , ISTAT)

100 CONTINUE

3.5.2

* % % % % % % %

* %

* % % %

*

END
SUBROUTINE FINISH

INTEGER LUNPTR, MEDIUM, LRECL, NBUF
COMMON / FILE / LUNPTR, MEDIUM, LRECL, NBUF

Close the FZ output file.
CALL CFCLOS (LUNPTR, MEDIUM)
END

WORKER process—client
We assume that the CONTROL process has opened the FZ output file using
the following code fragment.

CHNAME = ’'geant.fz’
CALL UCTOH (CHNAME, INAME, 4, 80)

IMED = 0
IBLOCK = CZBLK
INBUF = 0

ICLASS = CONTROL
CALL ACP_CALL (IPROC,ACP$WAIT, RCREAT,
INAME, IMED, IBLOCK, INBUF, ICLASS)

We also assume that the WORKER process has previously opened the FZ
connection for event output using the following code fragment.

CALL CZCPSI ('CPSBUF',CPSFZ)

CALL CZCPSI (' BUFLEN’ ,4*CZBUF)

CALL GOPEN (LUNITS (2), 'COSU’ ,CZBLK,IERROR)
CALL FZHOOK (LUNITS(2) ,CzCPS, IDUMMY)

The following code fragment from SUBROUTINE GUOUT of WORKER process
demonstrates the use of an OUTPUT server to collect GEANT FZ output.

Attach an output process
CALL ACP DEQUEUE_ PROCESS (IPROC, QOUTPUT, NPER)

Transfer event output to output process

22

CALL CZCPSI (’OFFSET’,0)

CALL CZCPSI ('’ SETPRO’, IPROC)

CALL GSAVE (LUNITS (2) ,KEYS,NSAVE, IDEVT, IER)
CALL CZCPSR(’'OFFSET’ ,IOFF)

NPHR = IOFF/ (4*CZBLK)

C Transfer output to file

CALL ACP_CALL (IPROC, QOUTPUT, ROUTBL, NPHR)

*

We expect that the CONTROL process will execute the following commands
to terminate and close the FZ output file.

*

ACP_JOB_ INFO (1, OUTPUT, IPROC 1, IPROCN)
CZCPSI (' OFFSET’,0)

CZCPSI (' SETPRO’ ,IPROC])

GCLOSE (LUNITS (2) , IERROR)
CZCPSR (' OFFSET’ ,IOFF)

= IOFF/ (4*CZBLK)

ACP_CALL (IPROC1, ACP$WAIT, ROUTBL, NPHR)
ACP_CALL (IPROC1,ACPSWAIT, RFINIS)

FH I

w
a

Distribution of FFREAD input to WORKER processes

This example demonstrates distributed FFREAD input to a set of WORKER processes. The FFREAD
data cards for the worker processes are written into a CPS memory buffer on the CONTROL process for
access by the WORKER processes. Users should adjust the size of the memory buffer to match the
requirements of their applications.

3.6.1 CONTROL process—server

C Define distributed FFREAD “logical unit”.
Cc Equate CPS block number to FFREAD “logical unit”.

INTEGER FFLUN
PARAHETER (FFLUN = 98)

INTEGER CPSFF
PARAMETER (CPSFF = 98)

(o] Define FFREAD buffer size. Buffer is local.
C Allow 50 card images.

INTEGER FFBUF
PARAMETER (FFBUF = 1000)

C Declare CPS memory buffer for distributed FFREAD input.

INTEGER MFFBUF
COMMON /CFFBUF/ MFFBUF (FFBUF)

23

Define block size (woxrds) for distributed FFREAD input.
Use card images---FFREAD default value.

INTEGER FFBLK
PARAMETER (FFBLK = 20)

Declare character buffer for input.

CHARACTERY (4*FFBLK) STRING

Initialize CPS software.

CALL ACP_INIT

Declare CPS block for FFREAD input via CPS. CPS block is local.
CALL ACP_DECLARE BLOCK (MFFBUF, 4*FFBUF , CPSFF)

Transfer FFREAD cards for WORKER processes to local memory buffer.
Pack buffer with fixed-length Hollerith recoxds.

IFFOFF = 0

100 READ (FFLUN, ' (A) ' ,END=200) STRING

CALL UCTOH (STRING, MFFBUF (1+IFFOFF) , 4, 4*FFBLK)
IFFOFF = IFFOFF + FFBLK
GOTO 100

200 CONTINUE

Synchronize CONTROL and WORKER processes. WORKER processes may now
perform remote FFREAD input.

CALL ACP_SYNC (ACP$ALL PROCESSES, 0)

WORKER process—client

Define distributed FFREAD “logical unit”.
Equate CPS block number to FFREAD “logical unit”.

INTEGER FFLUN
PARAMETER (FFLUN = 98)

INTEGER CPSFF
PARAMETER (CPSFF = 98)

Define FFREAD buffer size. Buffer is remote.
Allow 50 card images.

INTEGER FFBUF
PARAMETER (FFBUF = 1000)

External declaration for alternate input routine.

24

EXTERNAL FFCPS
(o} Initialize CPS software.
CALL ACP_INIT

(o] Obtain FFREAD data cards from memory buffer on CONTROL process.
(o Set alternate input subroutine to allow FFREAD input via CPS.

CALL FFSET ('LINP’,-FFLUN)
CALL FFRSET (FFLUN, FFCPS)

Define CPS block information for FFREAD input via CPS.
CPS block is remote. Store CPS block number, buffer length (bytes) and
CPS process number of CONTROL process.

o0

CALL FFCPSI (’CPSBUF’ ,CPSFF)

CALL FFCPSI ('BUFLEN',4*FFBUF)

CALL ACP_JOB_INFO (1, CONTROL, IPROC1, IPROCN)
CALL FFCPSI (' SETPRO’ , IPROC1)

C Synchronize CONTROL and WORKER processes to allow FFREAD carxds to be
Cc written into memory buffer on CONTROL process.

CALL ACP_SYNC (ACP$AI.L_PROCESSES, 0)
c Read data cards.

CALL FFCPSI('OFFSET’,0)
CALL GFFGO

40 SUMMARY

CZ/CPS introduces recent developments in distributed computing techniques in the CERN Program
Library into the CPS cooperative processes environment. CZ/CPS provides easy-to-use interprocess
ZEBRA/FZ data communication for program initialization, event distribution, and event collection. The
CPS ZEBRA Server provides a simple, yet familiar, interface for histogram distribution and collection
via its integration of features from VAX/VMS global sections and RZ direct-access files. Distributed
FFREAD input for CPS processes simplifies FFREAD initialization distribution by handling system and
user-defined data cards on an equal basis.

A representative collection of examples demonstrates the capabilities of the CZ/CPS interface.
Transfer of GEANT3 initialization data structures, GEANT3 event FZ output, HBOOK4 histogram
input, output and summation, and distribution of FFREAD data cards can be easily accomplished.

25

REFERENCES

1.

ACP Cooperative Processes User's Manual, Fermilab Computer Research & Development
Department, Fermi National Accelerator Laboratory.

CERN Program Library manual, G. Benassi, ed., CERN Computer Centre.

R. Brun, M. Goossens, and J. Zoll, ZEBRA User Guide, CERN Computer Centre Program Library
Long Writeup Q100.

J. Zoll, ZEBRA Reference Manual, CERN Computer Centre.

R. Brun and D. Lienart, HBOOK User Guide, Version 4, CERN Computer Centre Program Library
Long Writeup Y250.

R. Brun, B. Holl, J. Shiers, O. Couet, C. Magnin, J. Wood, F. Hemmer, and B. Segal, CSPACK,
CERN Computer Centre Program Library Q124.

R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini, GEANT3 User’s Guide, CERN
DD/EE/84-1, May 1986.

R. Brun, R. Hagelberg, J. C. Lassalle, G. Misuri, and J. Vobrueggen, FFREAD User Guide and
Reference Manual, CERN Computer Centre Program Library Long Writeup 1302.

L. A. Roberts, BCD/CPS, An event-level GEANT3 parallelization via CPS, SSCL-413, SSC
Laboratory.

10. F.E. Paige and S. D. Protopopescu, ISAJET 6.36, Brookhaven National Laboratory.

11.

H.-U. Bengtsson and T. Sj6strand, PYTHIA 5.5, University of Lund and CERN/TH.

27

