
.....

,-,,"".,"..... SSCL-391
"-;~

....,

~, Supercenducting Super Collider Laboratory
C?
~ . .
u
U)
U) ..~.•.,

••••.1'.1'

..............

I
The SSC Field Bus: A High-Performance
Control System Front End Concentrator

for "Slow" Accelerator Controls
/

D. R. Haenni, C. G. Saltmarsh, H. C. Lue,
and S. M. Hunt
/

.•./"

/ March 1991

.'

....,{' .

.......

...••

....
,."

SSCL-391

THE SSC FIELD BUS: A HIGH.PERFORMANCE CONTROL SYSTEM
FRONT END CONCENTRATOR FOR "SLOW" ACCELERATOR

CONTROLS·

D. R. Haenni, C. G. Saltmarsh, H. C. Lue, and S. M. Hunt

AcceleratorDivision
Superconducting Super Collider Laboratoryt

2550 Beckleymeade Ave.
Dallas, TX 75237

March 1991

·Presented at the Third International Industrial Symposium on the Superconducting Super Collider, March
13-15, 1991.

tOperated by the Universities Research Association, Inc., for the U.S. Department of Energy under
Contract No. DE-AC02-89ER40486.

THE SSC FIELD BUS: A IDGH·PERFORMANCE CONTROL SYSTEM FRONT

END CONCENTRATOR FOR "SLOW" ACCELERATOR CONTROLS

D. R. Haenni, C. G. Saltmarsh, H. C. Lue, and S. M. Hunt

Accelerator Division

Superconducting Super Collider Laboratory*
2550 Beckleymeade Ave.
Dallas, TX 75237

Abstract: The SSC control system must support a large number of
"slow" or industrial type control points. A front-end system is described
which could serve as both a data concentrator and a distributed process
controller for these points. Unlike many distributed control systems, this
front end is designed to provide strong support for centralized controls. The
live parameter data base in the central system can be updated at a rate which
is fast compared to that usually needed for process control loops. Portions of
this data base can be optionally replicated in regional computers to provide
both local control stations and distributed control loops. In addition to the
global and regional levels the system also allows the distribution of loops to
the local I/O crate level. A possible implementation of this system is under
development which is based on industrial standard SID-Bus for accelerator
hardware interfacing, time domain multiplexing (TDM) for communications
transport, and a form of reflective memory for the back-end interface to the
lrest of the control system.

INTRODUCTION

In categorizing the control points needed for the SSC, one notices that a large number
(perhaps as many as 250,000) of them fall into a group which are industrial process or
"slow" controls. Here slow controls can be roughly defined as those which require updating
at rates on the order of 10-20 Hz or less. They can be contrasted for example with other
accelerator controls which require precise global timing and/or faster update rates such as
magnet ramping, transferring beam between accelerators, quench protection, and beam
instrumentation.

*Operated by the Universities Research Association, Inc., for the U.S. Department of
Energy under Contract No. DE-AC02-89ER40486.

Process controls completely suffice for some accelerator subsystems such as cryogenics
or LCW. To maintain the proper perspective, however, one must remember that the
cryogenics "subsystem" will have on the order of 50,000 to 100,000 control points. It
includes 12 refrigeration plants distributed around the nearly 98 km of collider and high
energy booster tunnels with approximately 185 km of cryogen distribution systems for the
superconducting magnets. Some of the planned operating modes of the cryogenic system
will involve the coordination of several adjacent plants and their associated distribution
systems. Other groups of accelerator subsystems can use slow controls to provide either
monitoring functions and/or hardware controls in conjunction with or support of other types
of controls or control systems. An important characteristic of the subsystems using slow or
industrial controls is that they are involved more with providing the environment of the
accelerator than actually accelerating the beam. Portions of these subsystems will be put
into operation during the construction of the accelerators and thus represent early users of
the sse control system.

DESIGN REQUIREMENTS

At this early stage in the implementation of the accelerator hardware, details of control
requirements and accurate lists of control points are not yet available. Indeed some non
trivial part of this information may not be available until after the equipment is either
purchased, delivered or installed. Therefore the present design of the front end system has
been guided by a set of broad requirements. The list changes with time as more
requirements are defined or better elucidated. The current list includes the following:

• Minimize the amount of computer hardware, software, and functionality at
the interface end of the system which may be in hostile environments or
radiation areas.

• Design around open, widely used industrial standards.

• Plan to use commercial products and limit the amount of custom hardware
needed in the system.

• Minimize the sensitivity of the system to the total number of control points.

• Provide the ability to distribute the execution of appropriate control loops to
the lowest level of the system.

• Provide for regional level control systems to support the commissioning,
maintenance, and backup controls of large accelerator components (e.g. a
cryogenics refrigerator).

• Provide a centralized live parameter database which is updated at a rate
sufficient for control loop execution, real time "knobbing" of parameters by
operators, and global data logging.

• Provide uniform access to the information available to the front-end system
to facilitate inter subsystem data sharing and control loops.

• Contain costs where possible.

2

Control Computer
w._,.,.,...,.,..,.w.,...·...w"'... w •.,..,......·...... ,·.·.··

MEM DATA ._~ .w.w.·

MAP BASE'~ CNTL
I/O PROC

~:;OPER

•

•

Fig. 1. Simple control system with memory mapped 110.

Try to make the front-end system appear to the rest of the control system as
essentially a piece of hardware.

Try to take advantage of the fact that the main communications around the
accelerator complex will be based on TOM technology.

SYSTEM DESIGN

To better appreciate the front-end system design it is instructive to consider the control
systems in Figs. 1-3. The very simple system in Fig. 1 has high performance due to its
memory mapped accelerator hardware interface and direct memory access to this
information by the control program. Such a system is too small for the sse and must be
expanded by adding a distributed accelerator hardware interface or front-end system. The
extension of this simple control system to one having a front end which communicates with
the control computer via a LAN is given in Fig. 2(a). This system is severely limited
/because of the computational overhead and bandwidth limitations of the LAN. A common
work-around to these problems involves distributing the control process into the interface
computers as is shown in Fig. 2(b). Such a distributed control system requires allocating
increased processing power in the front-end computers, loses the ability to have a complete
centralized database with timely updates, creates problems for control loops correlating data
across multiple interface computers, and is still burdened with the bandwidth limitations of
the LAN.

A plethora of variations on the theme of LAN-based distributed control systems exist.
The non trivial problem common to all such systems is the communications limitations and
processing overhead of the LAN itself. To push back the level at which the control system
is bounded by communications restrictions one moves more and more functionality into the
front end. The immense size and complexity of the sse essentially guarantees that any
LAN-based control system will be limited by communications bandwidth. Obviously
control systems which do not rely on LAN-based communications should be investigated.

One alternative communications scheme involves replacing the LAN with reflected
memory. Reflective memory is essentially a pair of coupled memory blocks in different
computers which are joined by a communications link. When the contents of a location in
one memory is modified it is automatically reflected in the other memory. Reflective
memory is often implemented entirely in hardware. The performance of the reflective
memory system depends on the size of the memory, the speed of its data link, and the
protocol of the communications. These parameters can be adjusted to meet a desired
memory update rate given some estimate on the rate at which changes are made in the
memory contents. Reflective-memory-based control systems are shown in Fig. 3 which
parallel the ones shown in Fig. 2. The 110 process in the interface computer is simply a loop

3

HDWR.

HDWR

.ID~.!f~<::e Computer

• MEM .~; I/O~'
· MAP '~lPROC'

I/O" .

LAN I/O. Control
:..~.!3.Q.~j Computer

t~
'6ATA:~,CNTL •
·BASE1~PROCl

(a)

:,_ •...:

Interface Computer
.., ---•..." "

· ••~ •• I/O
........................... " MEM i~.PROC.

HDWR. =4=:!:l MAP ;;;;;:=:-:::::;;;;;;;::
.....~-.._-, I/O~;CNTL

'. ~lPROC. -
....;

LAN (b)

OPER

Fig. 2. Centralized control system with interface processors communicating over a LAN
(a). Further expansion ofthe system to include distributed controls (b).

which moves data between reflective memory and accelerator hardware interfaces. This can
be accomplished with a minimal embedded processor running a dedicated program without
an operating system. There are some important differences between LAN and reflective
memory based systems. The reflective memory system increases its total communications
bandwidth proportionately with the size of the front-end system. It does not have a
maximum bandwidth limitation like a LAN-based system. In larger LAN-based systems
distributed controls are required to obtain acceptable performance. A reflective-memory
based control system may use distributed controls for other reasons such as redundancy or
fault tolerance.

The reflective memory based control systems in Fig. 3 do require a large number of
parallel independent communications paths. Telephone systems provide this kind of service
and can carry many independent links over a single cable by using techniques such as TDM.
TOM systems provide communications channels with fixed bandwidth which is independent
of other traffic on the system. Unlike a LAN, however, a TOM system provides only point
to point communications. One drawback of computer communications using mM
technology results from the fact that appropriate TDM-computer (reflective memory)
interfaces are not widely available.

4

HDWR

HDWR

REF ,_~_~.

MEM

. ...Btl·
iCNTL··
·PROC;

(a)

OPER

(b)

OPER
..... ~

Control
Computer
,,~,~~-~~.....

REF

'. MEM'
REF

. MEM·

·w:JI •.•.
CNTL .

.PROC·.

Interface Computer
.............•__...•.. ...•~.~~~•...........~'

MEM I/O .~

MAP ~·PROC

I/O

HDWR·

HDWR

Fig. 3. Centralized control system wiith interface processors using reflective memory
communications (a). Further expansion of the system to include distributed
controls (b).

The proposed front end system for the SSC is shown in Fig. 4. It consists of three levels:
(a) local- providing accelerator hardware interfacing and some control loops; (b) regional
providing for intermediate level control loops and the opportunity for distributed local
control systems; and (c) global - supporting system-wide control loops and the central
control complex. Local systems support two reflective memory interfaces and thus can feed
data in parallel to both the global and a regional system.

Local level systems are envisioned to be standard backplane crates supporting industrial
I/O cards, a minimal I/O processor, reflective memory, and an optional local loop processor
(with reflective memory interface). Regional systems would be UNIX workstations or small
symmetric multiprocessor (SMP) type computers. The global level would likely contain a
number of SMP systems. The regional and global levels of the front end interact with other
portions of the control system which are not yet well defined.

At the regional and global levels, the front end supports two processes; one providing
control loops and the other providing data access management to the reflected memory for
the rest of system. Other control system processes would provide operator interfaces,
supervisory controls and high-level functions. To the rest of the control system the front

5

. 'DATA"'I
i ACCESS !fREGiONALI
:MANAGER! I LOOPS !
... ··.·.·.···.·· •.·•.·fl.,,: •.·) .. '.·..lf~: .•.•.•••.:

REGIONAL REF MEM I

•• DATA'IACCESS il'GLOBAL;
iMANAGER! LOOPS!

·· ..·.·..•.•·.••...·••.11..·.·' :•.•••.•.·.·.·.·ll.•.·.••.•.· '
GLOBAL REF MEM •

r~~:LII:!£~:RI
s...•. ••....•.••·•.•.f.l., •.••.••.•.·....•..••.••.....·.•.•.·.•·.11.·.•. ·.·.· srREGIONAL REF MEM i

I
..'····.. ·· ; I'm ·:··..··•..1 ,·· m...........,

I
HDWR; !HDWR~ILOCALI

1/0 I, 1/0 1=+1LOOPS iL'l"} t ..· ..··"t··, ::
fHtWRI !HtWRl
L· ·..- -_ · - - ,.:. t -.-, - _)

Fig. 4. Proposed structure for the sse front end data concentrator for "slow" or industrial process controls.

end. through its reflective memory interface, appears as a kind of low-level programmable
logic controller. This controller provides for data acquisition, parameter setting, control
loops for steady state operation, low-level interlocks, and basic alarm monitoring.

The information necessary to describe the front-end system can be captured in a database.
The process of generating programs for the front end can be automated. The front end could
be configured (programmed) through the database. This would encapsulate the front-end
system and hide details of its implementation from the rest of the control system.

SYSTEM IMPLEMENTATION

The actual implementation of a system using the above design is only now beginning. It
is starting from the local level since that is least dependent on designs outside the scope of
this project.

Based on the estimate of 250,000 control points and 100-200 points per local system,
there will likely be around 1800 local systems in the SSe. Ifhalf of the local systems also
support control loops the there will be nearly 3000 local level processors. In the interest of
containing costs, it is desirable to chose the simplest system which provides adequate
performance at this level. Among such low-level systems SID-Bus (IEEE-961) has been
chosen for initial tests. This bus was designed for industrial control applications, is
supported by a large number of vendors who provide a wide range of different industrial I/O
interfaces, and has simple bus interface requirements thus facilitating the design of special
purpose cards when necessary. Usually STO-Bus processor cards are based on some
member of the 8086 processor family. The hardware I/O function in Fig. 4 would be carried
out by a processor which can access the STO-Bus backplane. For local loops a slave
processor can be added to the STO-Bus that has a shared memory which can be accessed by
the master I/O processor. Several vendors offer single board processors suitable for these
tasks in the under $500 price range (quantity 1).

In addition to processors, the STO-Bus crates would contain industrial I/O interface
cards. It has not been decided whether these cards should provide isolation and signal
conditioning or if one should make use of commercially available external isolation and
conditioning systems. The latter is attractive since it would limit the number of different
kinds of STO-Bus interface cards needed in the system.

A suitable TOM to STO-Bus reflective memory based interface is not commercially
available. The bandwidth currently assigned to each reflective memory in the front-end
system is 8000 bytes/sec which is the basic rate used for digital telecommunications. This
would be extracted from a standard Tl signal line which simultaneously carries 24 basic rate
communications channels. In developing a reflective memory design for the sse control
system, it was decided to use a message (parcel) passing protocol for reflective memory
updates. As part of the effort to minimize complexity at the local level, it was realized that a
fully symmetric reflective memory communications system was not necessary. The regional
and global ends of the communications paths needed reflective memory. The local end
could deal directly with the parcels through 2K byte deep input and output FIFO buffers.
The TOM interface loads only one type of parcel into the input FIFO. The FIFO is large
enough to store several messages while they await processing. Output parcels are prepared
in an internal buffer and then copied to the output FIFO for subsequent automatic
transmission. Again several parcels can be stacked in the FIFO. The local system is capable
of generating many kinds of output parcels. In operation the local system would send

7

BYTE WIDE I/O PORTS

HARDWARE
INTERFACE

END

............................

INPUT
MESSAGE

FIFO

OUTPUT
MESSAGE

FIFO

PARCEL
DIRECTIONS

.-......................•.......

CONTROL OUTPUT INPUT .• SENSOR! READBACK SPECIAL
ROOM MESSAGE. MESSAGE; STATUS OF _ : FUNCTIONS. (a)
END BUFFER BUFFER INPUTS OUTPUTS' BUFFERS

.••• w ~.- , , .•- .,. .•,'.w.,.:' ' ' -""" ,.-, --" -~,. w ".,,,••"'...,.,,_:_m - ,"~.!~ - - .-.-- ·.-~

··_·OUTpUT"····'·"··iNPUTm..wm-READBAC-K~OF""W----s'PECiA'C'--'"
·MESSAGE .• MESSAGE CONTROL LOOP FUNCTIONS (b)

BUFFER BUFFER PARAMETERS BUFFERS

Fig. 5. Communications interfaces for modified reflective memory showing memory
maps for hardware I/O processors (a) and loop processors(b).

update parcels for accelerator hardware inputs at regular intervals; settings would be
changed by sending individual command parcels to the local system. Changed output
settings would be reflected as they are made. Such a scheme acknowledges the well known
fact that control systems read more input data than they change output settings. This local
level communications scheme also supports conventional serial communications between
local level and regional or global systems. The FIFO based TI to STD-Bus interface was
designed in about two man weeks. A prototype SID card supporting two complete
interfaces is being developed.

The communications scheme is outlined schematically in Fig. 5. This shows possible
reflective memory maps for the local processors. A regional reflective memory would look
like a patchwork of these maps plus an extra block for the regional loops process. The
global reflective memory would have all local level maps, maps for all regional loops, and a
map for the global loops.

As a sanity check, the execution timing for an 8 Mhz 8088 was computed for a local
system interfaced to 128 analog input channels. Assuming a standard multiplexed ADC
with a 25 microsecond conversion time, a buffer size of 256 bytes, 8000 byte/sec
communications rate with the FIFO based interface, and transmitting updates at a rate of 20
Hz to both global and a regional systems, it was found that the processor was using only
34% of its computing power and 65% of the bandwidth on each output channel. Without the
overhead of an operating system or real time kernel 66% of the computing power, 100% of
the input bandwidth and 34% of the output bandwidth on two communications channels is
available for dealing with commands to change settings.

8

SPECIFICATIONS
AND

CONFIGURATION

PROGRAM HARDWARE
GENERATOR ~, I/O

REGIONAL
LOOPS

...

LOCAL
LOOPS

.- .

GLOBAL
LOOPS

PROGRAM
GENERATOR --.

PROGRAM
GENERATOR ~'

PROGRAM
GENERATOR --.

........... ,., ","-", RUNTIME
PARAMETER PARAMETER
EXTRACTER ~ DATA

'.'w wn. 'w BASE

LOOP
DISTRIBUTER

MAIN
CONFIGURATION

DATA
BASE

M -~'-"~I==w
MEMORY
MAPPER

Fig. 6. Major components and information flow in the automatic extraction of front end
programs from the main configuration data base.

While the tasks for the local-level processors are extremely simple, programming them is
complicated by the fact that each local system will have a different accelerator hardware
interface or control loop configuration. Furthermore the local systems should provide direct
support for hardware interface debugging. These requirements would best be met if the
local processors carried a ROM-based interpreted computer language. A current candidate
for this language is some type of FORTH-like language. It is interactive, extensible, small
in size, and can be optimized for high-speed operation through directly incorporating
assembly language routines. Programming FORTH systems even in assembly language can
be accomplished using normal ASCII text over a serial port. Thus local systems would not
need separate connections for programming or configuration changes.

It should be remembered that once the front end system is developed local level
processor programming will be carried out by automatic program generators from a
configuration database. A schematic diagram of how this might be accomplished is shown
in Fig. 6. A central database would feed programs which determine the reflective memory
map layouts and the distribution of control loops at the local, regional, and global levels.
The information from these sources would be fed into appropriate program generators and a
program which set up run-time parameter databases for the data access managers. A high
level application specific language needs to be devised or adapted to describe the loop
applications. This language would be processed by interpreters or run-time engines in the
appropriate systems.

9

CONCLUSIONS

The front-end system for slow or industrial process controls for the sse meets the
current list of requirements. The system will be refined and better specified as more
requirements become available and the initial test implementation becomes further
developed.

10

