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Abstract 

The benchmark suite used for initial technical evaluation of bids for the Super­

conducting Super Collider Laboratory (SSCL) Physics Detector Simulation Facility 

is described, and its results compared with standard industry benchmarks and the 

CERN benchmark. It is concluded that the industry benchmarks do not give an 

accurate guide to performance on HEP simulation programs across all architectures. 

The CERN and SSC benchmarks do agree. For the RISC architectures surveyed, the 

rating in SSCL units of processing power (SSCUPs) was approximately half the rating 

in industry-standard MIPS. For all systems, the ratio between SSCUPs and CERN 

units was four, with optimized programs. It is found to be clearly advantageous to 

allow optimization of code. The goal of 500 SSCUPs is achieved for the first phase 

of the facility: the facility has 678 without optimization, and with optimization of 

programs, 1010 units. The rating in CERN units is 232. 
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1.0 INTRODUCTION 

This note describes an initial benchmark suite developed to assist in evaluating 

systems for the SSCL Physics Detector Simulation Computing Facility (PDSF), and 

gives results from this suite. Also, comparisons with other benchmarks and comments 

on different compilation options are included. The Facility is being developed along 

the lines recommended by the SSC Computer Planning Committee,1 which opened 

the door to taking advantage of new technology by recommending an "open systems" 

approach. 

RISC technology, combined with Unix, has dramatically reduced the cost of ac­

cessible computing power. However, to take full advantage of this power, it is helpful 

to be aware of two aspects: 

• Neither MIPS, Mflops, nor SPECmarks are accurate guides to power on HEP 

programs; 

• On RISC machines, optimization can produce substantial (factors of 2) gains; 

but HEP programs may have to be edited in detail to allow these gains. 

A second purpose of the suite was to provide a comparison with the goal set for the 

initial phase of the Facility of 500 "MIPS" (actually DEC VAX-11/7802 equivalents, 

or VUPs). To avoid confusion with the standard meaning of the term MIPS and 

because the DEC VAX-11/780 is not a current machine, we adopted as a unit the 

SSCUP (SSCL Unit of Processing power), which is intended to be close to a VUP for 

the types of programs being considered (the definition is given below). Therefore, we 

can translate the goal for the Facility to be 500 SSCUPs. 

2.0 RISC AND UNIX 

The existence of the Unix operating system has been instrumental in bringing new 

computer technologies to the marketplace quickly. All but a small part of the system 

(the kernel and compiler) is written in a high-level language (C), resulting in fast and 

straightforward ports to new hardware. 

The basic concept of RISC (Reduced Instruction Set Computer) is to optimize 

simultaneously the VLSI chip set, the instruction set, and the high-level language 



compiler, bearing in mind that off-chip accesses are costly in time. Since this results 

in new CPU designs, the portability of Unix has been essential to bringing RISC 

technology to the marketplace quickly. RISC and Unix are therefore linked in practice. 

The RISC tradeoffs have led to a smaller instruction set and to the use of the 

chip area for a pipelined CPU, an instruction cache, and a register file. Further, all 

instructions are to be executed in one machine cycle, if possible. Memory accesses 

are restricted to LOAD /STORE and may take longer than one cycle; branches take 

two or three cycles. Floating-point arithmetic is usually done on a separate, pipelined 

coprocessor chip (FPU). Features of high-level language that are important for opti­

mization are: branches are frequent, the CALL/RETURN mechanism is heavily used, 

and variables are often local to a particular module. 

RISC compilers thus pay special attention to keeping the CPU and FPU pipelines 

full, maximizing instruction cache hits, and putting temporary variables in the register 

file to reduce memory LOAD/STORE cycles. Whether HEP codes can take advantage 

of these features can affect performance. 

Obviously, the tradeoffs will change as VLSI technology changes. 

3.0 BENCHMARKS 

For the purchase of the SSC Physics Detector Simulation Facility, it was helpful 

to have a set of benchmarks that reflected existing HEP simulation codes, in addition 

to the standard industry benchmarks. To motivate this, it is worth looking at the 

commonly used standard benchmarks: 

MIPS An integer performance benchmark based on the Dhrystone synthetic bench­

mark. 

Mflops A floating-point benchmark based on LINPACK matrix-manipulation rou­

tines, usually double precision using the 100 x 100 version. 

SPECmarks A benchmark using ten application programs from a variety of sources. 

Four are in C, the other six in double precision FORTRAN. 

These benchmarks are usually optimized to attain the highest possible rating. 
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Because the standard HEP code is single-precision (32-bit on most systems), may 

not be optimized in practice, and is "large," it was felt that the above benchmarks 

would not be a precise-enough guide in case of close competition. The decision was 

made to use programs which would reflect the initial use of the Simulation Facility. 

One major restriction was put on the suite: the CERN library was not to be used, 

since this would put a large burden on the vendors. Furthermore, it was decided to 

use only single-CPU times. 

The programs and compilation options that were selected to give reference execu­

tion times were: 

Isajet The Isajet (V6.31) test job, with most printing suppressed, compiled with 

all variables static, and the highest level of optimization compatible with using 

libraries. A 10 MB unformatted output file is written. 

Jetset The Jetset73 test job, compiled allowing automatic variables, both with op­

timization turned on and with optimization turned off. 

Pythia The Pythia54 test job, compiled with automatic variables, also with and 

without optimization. 

The choice of these options reflects standard use for these programs: Isajet V6.31 

has not been edited to allow automatic variables, and the authors of Pythia and 

Jetset recommend turning off optimization on the basis of previous experience. In 

practice, on most RISC systems tested, Isajet does not give "correct" results unless 

the static option is used, while Pythia and Jetset do give correct results on the test 

job when optimized. Optimization and debugging are mutually exclusive in some 

systems, and initially it is expected that users will use debugging. Therefore, the 

above combination, with no optimization of Pythia and Jetset, was felt to be a fair 

basis for evaluating bids, though higher performance can in fact be obtained. 

Timing was done in two ways: with the Unix /bin/time command, and with a C 

routine getime, which could give the same information. The two times were required 

to agree where appropriate. The time used for comparisons was the sum of the user 

CPU time and the system CPU time (on behalf of the user). 
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Besides the above options, other combinations were used to assess the effect of 

optimization and debugging on program compilation time, size, and execution time. 

We also measured performance with other programs: the 300 x 300 LINPACK bench­

mark, a program to measure FORTRAN routine-calling performance, one to check 
•. 

byte-ordering compatibility, and one to assess FORTRAN/C mixed language pro­

gramming issues. 

Validation of the results was simple: if the programs themselves reported no 

errors, and the results seemed "reasonable," the run was accepted. Due to variations 

in compilers, floating-point units, and optimization strategies, there was variation in 

results. So even though all RISC systems tested adhered to the IEEE floating-point 

standard, the results were not the same on different machines, and sometimes not the 

same for optimized and non-optimized runs. 

4.0 BENCHMARK RESULTS 

4.1 Units {SSCUPs) 

For a standard of computing power, we chose the DEC VAX 6420 at SSCL 

(SSCVXl). As noted above, the single-process CPU times (i.e., the execution times 

of a single process running on a single CPU) were used. We took the power of a single 

6420 CPU to be 7.0 SSCUPs for the particular situation. Note that the execution 

times varied by as much as 25% depending on the loading of SSCVXl, so that the 

shortest time was taken. The times are listed in Table 1. 

Table 1. Reference Execution Times on SSCVXl. 

Program Compilation option CPU Time (s) SSCUPs 
Isabench /NOOPT 246. -
Isa bench /OPT 192. 7.0 
Jetbench /NOOPT 68.1 7.0 
Jet bench /OPT 56.7 -
Py bench /NOOPT 88.3 7.0 
Py bench /OPT 65.7 -

To compare machines, we used a combined rating, being the geometric mean of 

the rating in SSCUPs, as normalized to SSCVXl, of the three selected programs,· 
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compiled using the standard options listed above. This rating we called the over­

all processing power in unoptimized SSCUPs. If improvements can be obtained by 

turning on optimization for Pythia and Jetset while retaining valid results, that will 

give a rating in optimized SSCUPs. 

4.2 Comparisons 

In this section we compare the processing power of various systems that either 

were considered for the SSCL simulation facility or are of interest. The systems 

discussed here are from DEC, SGI,3 IBM,4 HP-Apollo,5 and Sun.6 The details of the 

systems and compilation options used are listed in Appendix A. 

The ratings of the systems on various benchmarks are listed in Table 2. 

Table 2. System Ratings on Various Benchmarks. 

DP un-opt. opt. 

System MIPS Mflops SPECmarks SSCUPs SSCUPs 

DEC VAX-11/780 1 0.14 1.0 1.1 1.33 
DEC VAX 6420 (1 CPU) 7.5 1.18 7 7.0 8.2 
SGI 4D /380 ( 1 CPU) 30 5 18.5 13.5 21.6 

SGI 4D/35S 33 6 23.0 15.3 -

IBM RS6000/530 33 11.3 28.6 14.3 21.3 

IBM RS6000/520 29.5 8.5 22.0 11.9 -
Sun Spare 2 28.5 4.2 21.0 11.8 16.3 
DECstation 3100 14 1.6 10.8 6.4 10.0 

DECstation 5000 24 3.7 18.5 10.5 -

Apollo DNlOOOO (1 CPU) 22 6 18.6 11.6 17.4 

HP Apollo 9000/720 57 17 55.5 22.7 29.4 
HP Apollo 9000/730 76 22 72.2 - -

These ratings indicate that the performance on physics codes, given the restric­

tions, is not accurately predicted by the other quantities across the architectures, as 

discussed in Section 4.2.2. 

4.2.1 The CERN Benchmarks. We have run the CERN benchmark suite7 on two 

target systems to compare the rating in SSCUPs with that in CERN units. The 

CERN unit is based on the geometric mean of four programs, using the performance 

on a DEC VAX 8600 as one unit of performance. This machine is rated at about the 
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equivalent of 4 VAX-ll/780's. Thus we should be able to make a direct comparison 

between SSCUPs and CERN units, expecting a ratio of about 4:1. The four programs 

are CRN3, an old FOWL Monte Carlo program; CRN4, a program based on the 

LUND Monte Carlo code; and CRN5 and CRN12, old event-processing programs for . 
magnetic spectrometers using input data files. 

In comparing with the CERN benchmarks, we note that they are edited to allow 

full optimization, and they are smaller than the SSCL benchmarks: on one machine 

the executables range from 0.3 MB to 0.5 MB, compared with 0.8 MB to 1.3 MB for 

the SSCL benchmarks. 

The ratings of various systems on the two benchmarks are listed in Table 3. 

Table 3. System Ratings on the CERN and SSC Benchmarks. 

System std. SSCUPs opt. SSCUPs CERN units Ratio 

DEC VAX6420 (1 CPU) 7.0 8.2 1.9 est. 4.3 est. 
Apollo DNlOOOO {1 CPU) 11.6 17.4 (4.9) 3.6 

DECstation 3100 6.4 10.0 (2.8) 3.6 
DECstation 5000 10.5 - (4.4) -
SGI 4D/380 (1 CPU) 13.5 21.6 5.3 4.1 

HP Apollo 9000/720 22.7 29.4 (10.5) 2.8 

IBM RS6000/530 14.3 21.3 (5.9/4.9) 3.6/4.3 
Sun Spare 2 11.8 16.3 3.5 4.7 

The numbers in parentheses come from the listing in Reference 7, while the others 

were measured at the SSCL. The two listings for the IBM RS6000/530 reflect different 

compilation options for the CERN benchmark (not optimization options). From the 

above table, it is clear that there is reasonable agreement between the two ratings. 

4.2.2 Conclusions. Figures 1 through 4 compare the various ratings, showing that 

the standard industry ratings do not give an accurate guide to performance for HEP 

simulation code. The correspondence between MIPS and unoptimized SSCUPs is 

reasonably good, with a mean ratio of 0.45 SSCUPs/MIPS for RISC architectures 

(0.9 for the VAX CISC system). As expected, there is also good correspondence 

between optimized SSCUPs and CERN units, with a mean ratio of 4.1 optimized 

SSCUPs/CERN unit. 
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4.3 Optimization and Debugging 

Optimization can have large effects, but debugging does not much affect times of 

execution. We give details first for Pythia, Jetset, and Isajet on the SGI 4D /380, 

which are representative for RISC machines are listed in Table 4. 

Table 4. Effect of Compilation Options on SGI 4D 380. 

Program options Compile file size time (s) SSCUPs 
time (s) (kBytes) 

Pythia -00 42 1508 57.4 10.8 
-00-g 43 1604 57.4 10.8 

-01 56 1308 34.2 18.l 

-02 -Olimit 2000 826 1185 24.l 25.7 
-02 -Olimit 2000 -g3 828 1281 24.3 25.4 

-03 -Olimit 2000 1243 1125 24.8 24.9 
-02 -Olimit 2000 -static 837 1281 24.8 24.9 

Jetset -00 50 973 32.2 14.8 

-00-g 51 1030 32.2 14.8 
-01 69 860 26.8 17.8 
-02 -Olimit 2000 511 810 18.8 25.4 
-02 -Olimit 2000 -g3 512 867 18.9 25.3 
-03 -Olimit 2000 466 794 18.7 25.l 
-02 -Olimit 2000 -static 520 867 19.1 24.9 

Isajet -00 -static 104 1245 120.8 14.3 
-02 -Olimit 2000 -static 524 1011 88.l 15.3 
-02 -Olimit 2000 -static -g3 516 1138 88.9 15.2 

The option -02 is the default optimization for the MIPS compiler, and -03 is 

a global optimization which can be done only on a complete program. Since the 

benchmark version of Isajet is built from a library, -03 cannot be applied to it. The 

-g switch turns on debugging; some limited debugging is possible with optimization 

using the -g3 switch. (For example, dummy arguments of subroutines may not be 

accessible.) As can be seen, going to the "highest" level of optimization (03) does 

not improve speed for Pythia or Jetset, and optimization increases compilation time 

substantially. Using the -static option does not change the running time for Pythia 

or Jetset, likely because many variables are in common blocks. 
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The IBM listing is shown in Table 5. 

Table 5. Effect of Compilation Options on IBM RS 6000. 

Program options Compile file size time (s) SSCUPs 
time (s) (kBytes) 

Pythia - 64.1 885 50.9 12.1 

-g 64.1 1120 50.2 12.3 

-0 435. 651 25.3 24.4 

Jetset - 65.3 515 33.6 14.2 

-g 65.6 632 33.4 14.3 

-0 413. 398 20.7 23.0 
Isajet - 108. 811 119.4 14.4 

-g 107. 1360 119.2 14.5 

-0 392. 633 78.6 17.1 

Note that the IBM compiler xlf has one level of optimization and does not permit 

debugging with optimizing. 

4.4 Other Tests 

Other tests were run to evaluate special aspects of the systems, as described below. 

4 .4 .1 Double vs. Single Precision. In the computer industry, there is a tendency to 

equate scientific FORTRAN programming with 64-bit precision; the default floating­

point precision for C is 64-bit. This is implemented in most current systems with 

64-bit floating-point, and 32-bit integers. However, HEP code currently emphasizes 

32-bit reals and integers; the ZEBRA package requires that integers and reals be the 

same length. One may expect some evolution in this area, as demand for accuracy 

increases in the HEP community. 

For most RISC-Unix systems, FORTRAN single precision means 32-bits reals 

and integers, and double precision means 64-bit reals. Most systems also support 

64-bit floating-point hardware, but there are differences in detail. The most striking 

one is that the IBM RS6000 series is optimized for 64-bit precision, while allowing 

32-bit operations in the 64-bit FPU. The IBM RS6000 FPU supports the operation 

A x B + C, so matrix operations optimize very well. 
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To give an independent evaluation of :floating point operations for various options, 

we used two pairs of programs: 

LINPACK This pair consisted of 32-bit and 64-bit versions of the 300 x 300 LIN­

PACK benchmarks. It is·intensive in arithmetic operations and indexing. 

foura This pair is a synthetic benchmark which does a Fourier transform (of a Gaus­

sian wavepacket), using FORTRAN sine and cosine functions. It is a 1024-point 

discrete transform, but is not an FFT. It is intentionally written to consume 

CPU power. 

For both these benchmarks, the rating is taken relative to the optimized VAX times. 

Tables 6 and 7 provide the LINPACK performances for various systems. 

Table 6. UNPACK Performances. 

Systein compiler Mflops Mflops double/single SP SSCUPs 

option SP DP time ratio 

IBM RS6000/530 - 2.2 2.3 0.97 10.1 

IBM RS6000/530 -0 7.3 11.3 0.65 33.6 
SGI 40/380 -00 2.6 1.8 1.46 12.1 
SGI 40/380 -02 5.3 2.9 1.83 24.6 
DEC3100 -00 1.1 0.73 1.53 5.13 
DEC3100 -02 2.4 1.2 2.02 10.9 

The IBM system has an impressive performance in Mflops; however, it does not 

translate proportionately into performance on HEP programs. 

The foura performance is listed in Table 7. 

Table 7. FOURA Performance. 

System compiler SP time DP time double/single SP SSCUPs 
option (s) (s) time ratio 

IBM RS6000/530 - 36.6 32.3 0.89 20.3 
IBM RS6000 /530 -0 33.2 26.8 0.81 22.32 
SGI 40/380 -00 31.0 41.9 1.35 23.9 

SGI 40/380 -02 26.3 35.8 1.37 28.3 
DEC3100 -00 63.0 85.1 1.35 11.7 
DEC3100 -02 56.1 73.2 1.31 13.2 
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Because of the intensive use in foura of FORTRAN functions (it spends 25% of the 

CPU time in the sine routine), the times do not improve much with optimization. 

The speed for single precision is faster than for double, with the exception of the IBM 

system, where it is slower. 

4.4.2 File and Mixed-language Compatibility. The Facility specifications included 

the requirement that FORTRAN unformatted sequential and direct access files be 

Big-Endian in structure (for character, 32-bit and 64-bit data items), so the ":fio" test 

was included. The "fio" group of tests also included an evaluation of FORTRAN/C 

compatibility issues, since many routines interfacing with the system need to be 

written in C. 

5.0 FORTRAN FOR RISC-UNIX 

Early RISC systems were optimized on C and Pascal programs, but F77 does have 

features that can be used by RISC optimizers. The major example is the ability to 

support automatic variables. These are variables which are used only as temporary 

working variables, in subprograms for example, in contrast to static variables which 

are assigned permanent memory locations. Automatic variables are allocated storage, 

in registers or stacks, when the subprogram is invoked, and the the storage is de­

allocated when leaving the routine. This is a permissible interpretation of the F77 

standard, but it is not required by the standard. 

Some Unix F77 compilers will make variables automatic by default (this is true 

also of non-RISC Unix), and will assign them to registers or stacks. This default can 

be overridden {for a variable, a common block, or all variables in the module) by using 

the F77 SAVE statement, a DATA statement in the subprogram, or a compiler switch 

which makes every variable in the routine static (i.e., having a permanent memory 

location). Note that, unlike C and Pascal, F77 may not make COMMON blocks 

static by default; an explicit SAVE statement may be needed in every subprogram 

where that common block is declared. If a program mostly manipulates COMMON 

blocks, there may not be much improvement in allowing automatic assignment. 

Other Unix FORTRAN compilers (e.g., Sun and IBM) have a different mechanism. 

All variables are static by default, but, as an extension to FORTRAN, AUTOMATIC 
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and STATIC declarations are provided to allow the programmer to set the treatment 

of variables. These compilers basically ignore the SAVE statements and have no 

compiler switch. So programmers wishing to take advantage of automatic variables 

would need to edit each routine. 

Much HEP code depends on assumptions about storage mechanisms. For example, 

subroutines frequently are written assuming that they have a history: they "know" 

if they have been called previously. Also, some code may be sufficiently obscure 

that an optimizing compiler may move statements outside a loop that should not be 

moved. Taking full advantage of RISC technology will require careful rewriting of 

code. Examples of changes that will be helpful are: 

Automatic variables Write the program to allow as many as possible variables to 

be "automatic"; make explicit use of the SAVE statement (or the AUTOMATIC 

statement); do not use array or COMMON block quantities in intermediate 

calculations. 

Optimization Do not use hardware- or compiler-dependent tricks; write loops in 

such a way that standard optimizing steps leave the code correct; use arguments, 

rather than common blocks, to pass data 

6.0 CONCLUSION 

The Simulation Facility is divided into two parts: a back-end compute server, 

called the Batch Ranch, consisting of three SGI 4D /380 systems; and an front-end 

interactive compute server, consisting of 30 Sun Sparcstation 2 systems. The Suns 

are located in a computer room, without displays and keyboards; it is intended that 

they be accessed over the network. All systems share a file server. 

Using standard SSCUPs, the Batch Ranch will have a performance of 24 times 

13.5, or 324, with the front-end group having 354, for a total of 678. Using optimized 

SSCUPs, the total is 1010, in either case exceeding the goal. Multiprocessing and 

network loading are expected to reduce the overall numbers, but likely less than 20%. 

The rating in CERN units is a total of 232. 
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APPENDIX A. NOTES AND DETAILS OF SYSTEMS EVALUATED 

The hardware, operating system, and compiler are listed for the various systems 

in this section, as are the compiler options used. All systems had at least 16 MB of 

memory. 

Generally, the use of 64-bit hardware with 32-bit reals may mean that fl.oating­

point exceptions may be treated in non-standard ways, especially if optimization is 

used. If it is important to know about such exceptions, some compiler option may be 

needed. That issue has not been addressed for the benchmarks. 

A.1 DEC VAX-6420 

The DEC VAX-6420 is a symmetric multiprocessor machine with 2 CPUs; only 

single-CPU performance was evaluated. 

System 

Compiler 

Non-optimizing options 

Static option 

Optimizing options 

DEC VAX-6420 running VMS V5.3-1 

DEC FORTRAN V5.4 

/NOOPT/NOCHECK/NODEBUG 
Not an option 

/OPT/NOCHECK/NODEBUG 

The DEC VAX was used only to normalize the benchmarks. 

A.2 SGI 4D /380 

The SGI 4D /380 is a symmetric multiprocessor machine with 8 CPUs. 

System 

Compiler 

Non-optimizing options 

No optimization with debugging 
Static option 
Optimizing options 
Optimization with debugging 

SGI 4D/380 running IRIX release 3.3.2. 
fl7, MIPS release 2.0 

-00 

-00 -g 
-static 

-02 -Olimit 2000 
-02 -Olimit 2000 -g3 

On the Silicon Graphics systems with the MIPS compiler, variables are automatic by 

default. The -Olimit option increases compiler table sizes for optimization. The -g3 

option allows limited debugging with optimization. 
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A.3 SGI 4D /35S 

The SGI 4D/35S is a single-CPU workstation (Personal Iris). 

System 
Compiler 

Non-optimizing options 

SGI 4D/35S running IRIX release 3.3.2. 
fl7, MIPS release 2.0 

-00 

No optimization with debugging 

Static option 

-00-g 

-static 

Optimizing options 
Optimization with debugging 

-0 (same as -02) 
-O-g3 

On the Silicon Graphics systems with the MIPS compiler, variables are automatic by 

default. The -g3 option allows limited debugging with optimization. 

A.4 IBM RS6000/530 

System 

Compiler 
Non-optimizing options 

IBM RS6000/530 running AIX release 3.1 

xlf 

-qextname -qrndsngl -qxflag=dd24 -NQ40000 
No optimization with debugging 
Static option 

-g 

no option 
Optimizing options 

Optimization with debugging 
-0 -qextname -qrndsngl -qxflag=dd24 -NQ40000 
not recommended 

The various options are described in Table A-1. 

Table A-1. Options. 

Option Description 

-qextname appends underscore to the names of FORTRAN routines; 

needed for compatibility 
-qrndsngl forces all 32-bit real results to be rounded to single 

precision; needed to give consistent results 
-qxflag=dd24 required to fix a bug when using the above option 
-NQ40000 increases compiler table size; -NT40000 may also be useful 

-g generates debugging information 
-0 turns on optimization 

On the IBM, xlf makes all FORTRAN variables static. There is no compiler op­

tion to allow automatic variables; the AUTOMATIC and STATIC (and IMPLICIT 

AUTOMATIC) declarations are available to allow programmers to tailor code. 
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A.5 Sun Spare 2 

System 

Compiler 

Sun Sparcstation 2 running SunOS 4.1.1 

F77 1.3.1 

Non-optimizing options default 

No optimization with debugging -g 

Static option 
Optimizing options 
Optimization with debugging 

no option 

-cg89 -dalign -fnonstd -02 
not allowed 

On the Sun, F77 Vl.3.1 makes all FORTRAN variables static. There is no compiler 

option to allow automatic variables; the AUTOMATIC and STATIC (and IMPLICIT 

AUTOMATIC) declarations are available to allow programmers to tailor code. The 

optimization options tailor code to specific hardware, and also result in non-standard 

handling of floating-point exceptions. 

A.6 DECstation 3100 

System 

Compiler 
Non-optimizing options 

No optimization with debugging 
Static option 

Optimizing options 

Optimization with debugging 

DECstation 3100 running Ultrix 4.1 

fl7, MIPS release 2 .1 

-00 
-00 -g 

-static 

-02 -Olimit 2000 

-02 -Olimit 2000 -g3 

On the DECstation with the MIPS compiler, variables are automatic by default. The 

-Olimit option increases compiler table sizes for optimization. 

A. 7 DECstation 5000 

This was a DECstation 5000-200 run with options similar to the DECstation 3100, 

above. 
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A.8 HP/ Apollo DNlOOOO 

The Apollo used had two CPUs (four are possible); only single-CPU programs 

were run for evaluations. 

System 

Compiler 
Non-optimizing options 
No optimization with debugging 
Static option 
Optimizing options 
Optimization with debugging 

HP/ Apollo DNlOk running 
DOMAIN/os 10.3 (BSD) 
f77, PRISM release 10.7 
-WO,-opt,0 
-WO,-opt,O -g 
-WO,-save 
-WO,-opt,4 

On the Apollo, variables are automatic by default. 
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APPENDIX B. WHY DON'T THE BENCHMARKS AGREE? 

Even though all but one of the benchmarks discussed here are explicitly standard­

ized to the VAX architecture (and the two industry ones, MIPS and SPECmarks, to 

the venerable VAX-11/780), there is no precise scaling between one benchmark and 

another. Reasons for differences in relative performance include program type, choice 

of compilation options, program size, floating point unit, cache size, etc. For example, 

one of the SPECmark programs ( matrix300) fits entirely in the HP Apollo 700 series 

cache and gives a rating of about 250 on that program, pulling the mean rating up 

about 20%. One or more of the CERN benchmarks may also fit entirely in the cache. 

Other reasons are less "physical": the vendor may not use standard benchmarks. 

For MIPS, this can include the quoting of "native" MIPS (million instructions per 

second)-RISC machines can often do up to five instructions per clock cycle-instead 

of Dhrystone.MIPS. For the LINPACK benchmarks, there are a variety of special 

optimization techniques. In the case of SPECmarks, it is permissible to use unreleased 

compilers and undocumented compiler options. In fact, at least two of the vendors 

for the SSCL PDSF used one or more of these techniques on the Initial Physics 

Benchmark Suite. Thus the best defense is to use one's own benchmarks, run under 

controlled conditions. 

Here we describe the various benchmarks in a little more detail, which shows 

obvious differences, then we list some hardware information. First we note that the 

SSCL initial benchmark programs are moderate-sized (0.8-1.3 Megabyte executables) 

programs, in single (32-bit) precision FORTRAN, which use a lot of floating-point op­

erations and branches. They are run with a mix of optimization and no optimization. 

(VAX6420 = 7.0) 

MIPS This is an integer performance benchmark based on the Dhrystone syn­

thetic benchmark. The ratio between integer and floating-point performance 

is architecture-dependent. (VAX-11/780 = 1.0) 

Mflops This is a floating-point benchmark based on LINPACK matrix-manipulation 

routines, usually double precision using 100 x 100 version. The executable is 
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small and is subject to special optimization techniques. Further, it is double 

precision (64-bit) compared with our mostly single-precision programs. 

SPECmarks A benchmark using ten application programs from a variety of sources. 

Four are in C," the other'six in double precision FORTRAN. Hence the manu­

facturer's decision on how to implement single versus double precision will be 

important. (VAX-11/780 = 1.0) 

CERN units The CERN benchmarks are edited to allow full optimization, and they 

are smaller than the SSCL benchmarks: on one machine the executables range 

from 0.3 MB to 0.5 MB. (VAX8600 = 1.0) 

These benchmarks are usually optimized to attain the highest possible rating. 

To assess the effect of choosing double over single precision, we used two pairs of 

programs: the 300 x 300 LINPACK benchmark, and "foura," a synthetic benchmark 

which does a Fourier transform (of a Gaussian wavepacket), using FORTRAN sine 

and cosine functions. It is not an FFT. It is intentionally written to consume CPU 

power. Table B-1 gives the double to single precision execution time ratios for the 

two programs for various systems, and the double optimized to single non-optimized 

ratios. The relevance of this last ratio is that the SPEC and Mflops benchmarks are 

DP optimized, while the standard SSCUP benchmark is closer to SP non-optimized. 

Table B-1. Ratios of Execution Times for Linpack and Foura. 

compiler Lin pack four a Lin pack four a 
System option DP/SP DP/SP DPopt/SPnon DPopt/SPnon 

DEC3100 -00 1.53 1.35 0.92 1.16 
DEC3100 -02 2.02 1.37 - -
HP Apollo 720 - 1.14 1.14 0.35 1.22 
HP Apollo 720 -0 1.61 1.10 - -
IBM RS6000/530 - 0.97 0.89 0.19 0.73 

IBM R.86000/530 -0 0.65 0.81 - -
SGI 4D/380 -00 1.46 1.35 0.90 1.36 
SGI 4D/380 -02 1.83 1.37 - -

As can be seen, the relative times are quite architecture- and optimization-dependent. 
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APPENDIX. C. RATING OF DEC VAX-11/780 

Following a query about the relation between SSCUPs and VAX-11/780 units of 

performance, the SSCL benchmarks were run on such a machine, courtesy of the 

Computer Science Department. at Temple University. 

The specific configuration was a VAX-11/780 with "F" floating-point unit, 32 MB 

of main memory, and RM05 disks (with plenty of free space), running VAX VMS 5.2 

and FORTRAN version 5.1. The "Initial Physics Benchmark" programs on this 

machine were run at a lightly-loaded time, using FORTRAN options /NOCHECK 

/NODEBUG (besides the optimization options shown), Table C-1. 

Table C-1. Options. 

FORTRAN Reference Reported Rating 

Program option time (s) time (s) SSCUPs 

Isajet OPT 7.*192. 1232.4 1.09 
Pythia NOOPT 7.*88.3 555.5 1.11 
Pythia OPT - 385.1 1.61 
Jetset NOOPT 7.*68.1 437.6 1.09 
Jetset OPT - 358.3 1.33 

The performance on the LINPACK 300 x 300 double precision (64-bit) benchmark 

was 0.145 Mflops. 

The final rating of a VAX-11/780 is 1.10 unoptimized SSCUPs (or alternatively a 

SS CUP is 0.91 VUPs) and 1.33 optimized SSCUPs. (Remember that benchmarking 

is not a precise science-the specific configuration and loading can affect performance 

at the 10% level, though I have made an effort to run the benchmarks on all machines 

under lightly-loaded conditions so that the ratings in SSCUPs are internally compa­

rable at a more precise level.) From the above data, the raw rating of the PDSF, as 

it stands and using the (standard) options above, is 620 VUPs. 
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APPENDIX D. CACHE SIZES, ETC. 

Table D-1 lists clock frequencies and cache sizes for various systems. The cache 

to main memory data path width is also listed, if known; some machines fetch data 

in "lines" of up to 128 Bytes. ~ote that caches can be for instructions, data, or both. 

The data come from various sources. 

Table D-1. Clock Frequencies, Cache Sizes, and Cache-Memory Path Width 
for Various Machines. 

Clock Common I Cache D Cache Path 
frequency cache width 

System(s) (MHz) (kB) (kB) (kB) (bits) 

DEC 5000/200 25 64 - - ? 

IBM RS6000/320,520 20 - 8 32 64 

IBM RS6000/530,730,930 25 - 8 64 128 

IBM RS6000/540 30 - 8 64 128 
HP Apollo 720 50 - 128 256 ? 
HP Apollo 730 66 - 128 256 ? 
HP Apollo 750 66 - 256 256 ? 

SGI 40/380 33 - 64/cpu 320/cpu ? 
SGI 4D/25S 20 - 64 32 ? 
SGI 40/35 35 - 64 64 ? 
Sun Spare 2 40 64 - - 32 
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APPENDIX E 

CERN RESULTS FOR VARIOUS MACHINES (FROM CERN) 

Table E-1. 

C~mputer CERN units 

Cray YMP 6ns 11 

HP9000/720 10.5 
DEC9000 9.1 

IBM3090/400E 6.6 

SGI 4D/310 6.2 

IBM RS6000/530 5.9 
HP/ Apollo 10000 4.9 
IBM RS6000 /320 4.7 
DEC 5000/320 4.4 
SGI 4D/25 3.5 
DEC 3100 2.8 
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