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1.0 INTRODUCTION 
There are two physical pictures that describe the beam-beam interaction in a storag{. 

ring collider: the weak-strong and the strong-strong pictures as shown in Figure 1. Both 

pictures play a role in determining the beam-beam behavior. This review addresses only 

the strong-strong picture. The corresponding beam dynamical effects are referred to as the 

coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. 1 

To be specific, two beams of opposite charges are considered. 

Ne Ne 

weak-strong strong-strong 

TIP-01609 

Figure 1. Weak-strong and Strong-strong Beam-beam Interaction. 

In the weak-strong picture, the strong beam is unperturbed by the weak beam. It 

is regarded as a rigid nonlinear lens at the beam-beam interaction points (IP). Beam 

dynamics in this picture is that of an incoherent single-particle motion in the presence of a 

static nonlinear lens. The beam-beam problem is reduced to a nonlinear mapping problem. 

In the strong-strong picture, both beams are perturbed. To study the coherent beam

beam effects, the procedure in principle is as follows: 

(a) Let the steady-state distribution be Wo. For example, Wo may be gaussian m 

the absence of the beam-beam interaction. With strong-strong perturbation, w0 must be 

solved in a self-consistent manner and in general is no longer gaussian. 

(b) Given the perturbed, generally non-gaussian Wo, consider distributions of the 

± beams that de\·ie1:te from Wo, i.e., 

1lt+=wo+6w+ 

qi_= wo + 6w_ (1) 



The + beam sees the beam-beam force from the - beam, which is related to w_, while 

the - beam sees a beam-beam force similarly related to W+· The beam-beam force thus 

provides the coupling between 6. W±. The question is then: are infinitesimal perturbations 

6. W ± stable under their mutual interaction? Stability of 6. W ± determines the stability of 

the beam-beam system. 

However, neither of the above steps is straightforward. Although much progress has 

been made, studies on coherent beam-beam effects so far have covered only pieces of the 

complex problem. This paper is a summary of some of these studies. 

2.0 THE DYNAMIC-BETA MODEL 

This is the simplest model in the strong-strong picture.2 To proceed, consider a lin

earized beam-beam force (linearized with respect to the coordinates x and y of the particle 

which is experiencing the force). In this case, the perturbed steady-state Wo is gaussian 

if the unperturbed one is gaussian. The linear beam-beam force of one beam perturbs 

the other beam in such a way that the betatron phase advance between IPs µxo,yo, the 

beta-functions at the IPs (3* xo,yo, and therms beam sizes at the IPs. O'xO,yO are perturbed 

to become µx,y, (3* x,y, and ux,y respectively. The perturbed quantities are given by 

cos µx,y = cos µxo,yo - 27r(x,y sin µxo,yo 

(3* xO,yo/ (3* x,y = sinµx,y/ sin µxo,yo 

where (x,y is the beam-beam strength parameter 

(x,y = N ro (3* xO,yo/27r/O'x,y (ux + uy) 

(2a) 

(2b) 

(3) 

with I the relativistic factor, N the number of particles-per-beam bunch, and ro = e2 /mc2 

the classical radius of the particle. Note that it is the unperturbed beta-functions and the 

perturbed beam sizes that appear in the expression of (x,y, Eq. (3). 

Stability of the beams under linearized perturbations requires I cos µx,yl < 1. This 

means, using Eq. (2a) and dropping subscripts x and y for abbreviation, 

( :::; cot(µo/2)/27r. (4) 

Figure 2 shows the region of stability in the ( (, vo) space, where vo, defined as µo /27r, is the 

tune advance between IPs. The diagram repeats with a period of vo = 1/2. Sometimes, 

it is referred to as the sawtooth diagram because of its appearance when illustrated with 
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a wider range of vo. Note that when vo is close to but slightly below a multiple of 1/2, 

the stability region shrinks to zero. In other words, near 1/2-integer resonances, when 

v0 = m/2, even a weak beam-beam perturbation makes the beam unstable. 

0.3 

Unstable 

0.2 

0.1 

Stable 

0 
0 0.5 

TIP·01610 

Figure 2. Stability Diagram of the Dynamic-beta Effect. The incoherent weak-strong case has the same 

diagram if ( is replaced by ( 0 . The behavior repeats with period 110 = 1/2. 

In the incoherent case, the weak beam is perturbed by the strong bf>arn. If the beam

beam force is linearized, the perturbed quantities of the weak beam are also given by 

Eq. (2), except that the beam-beam strength parameter (r,y is given by the strong-beam 

values which are always unperturbed. The incoherent stability condition is 

(o ~ cot(µo/2)/27r. (5) 

Although similar, Eqs. ( 4) and ( 5) have very different contents. In particular, Eq. ( 5) can 

be violated if one increases the beam intensity JV, but it will be shown later that Eq. ( 4) 

is ahvays satisfied for any value of N. 

3 



In solving Eqs. (2) and (3) for the strong-strong case, we note that the perturbed 

beam sizes scale with the perturbed beta-functions (the dynamic-beta), i.e., ax,y ex ~' 

not .J {3* xo,yo, assuming beam emittances are unchanged due to beam-beam interaction. 

Further noting that (3* x,y depend on the perturbed beam-beam parameters (x,y, which in 

turn depend on <7x,y, we conclude that <7x,y, (3* x,y, µx,y , (x,y and luminosity L need to be 

found self-consistently for a given value of N. The luminosity is given by 

(6) 

where f is the revolution frequency of the beams around the storage ring, and M is the 

number of bunches in each beam. 

As an example, consider the case of round beams axo = ayo = ao and µxo = µyo = 
µ0 • Squaring both sides of Eq. (2b) and eliminating sin2 µx,y using Eq. (2a) give a self

consistency expression for (3* / (3* o: 

(
/3* ) 2 f3* ((3* ) 2 
{3*

0 
= 1 + 2po cot µo {3*

0 
- po 

2 
/3*

0 

where po = 27r(o has been defined. Beam intensity N is contained in po. 

Equation (7) can be solved to give /3* //3* o in terms of the unperturbed quantities: 

/3* 
-= 
/3*o 

1 + (~)
2 

- pocotµo. 
smµo 

Ratios of other quantities follow from Eq. (8): 

(7) 

(8) 

(9) 

Figure 3 shows the dependences of the dynamic-beta, the perturbed beam-beam parameter, 

and the luminosity on beam intensity N for various values of vo. As far as the dynamic

beta effect is concerned, the luminosity would benefit from having vo slightly above a 

1/2-integer and would suffer if it is slightly below a 1/2-integer. 

As N increases, the beam-beam parameter approaches a constant value from below as 

shown in Figure 3(b). The constant value is that of the stability condition, Eq. (4). This 

means that for round beams, ( -+ constant, CT -+ V!J, and L -+ N as N -+ oo, to be 
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Figure 3. Dynamic-beta Behavior of f3" / p• 0 , ( and L as Functions of N for Various Values of v0 (the 

Unperturbed Tune Advance between IPs, Modulus 1/2). Dashed curves in (b) and (c) are the 

unperturbed case. '.'lumber~ are normalized so that Lo = 1032 cm- 2s- 1 . Po = 0.05 when 

N = 10 12
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compared with the weak-strong case which predicts ( -+ N, u -+ constant, and L -+ N 2 

as N -+ oo. More significantly, this means that as N is increased, the beam size always 

expands sufficiently to avoid violating the instability condition ( 4). The two beams are 

always stable. 

Although the system is always stable, it still suffers from resonances. The beams blow 

up and L levels off faster when vo is just below an 1/2-integer. 

Figure 3 is true for a round beam. In case of a flat beam, a different scaling is obtained 

with N. As N-+ oo, dynamic-beta model gives (z -+ N (provided it stays well below the 

instability condition), Uz -+ constant, (y -+ constant, Uy -+ N, and L -+ N. Compare 

with Figure 26 later. 

3.0 FLIP-FLOP EFFECT 

The dynamic-beta model discussed in the previous section can be generalized. Still 

consider round beams and linearized beam-beam forces, but now allow the two beams to 

behave differently. Using a similar derivation to Eq. (7) but keeping track of the fact that 

the perturbation of one beam is due to the beam-beam force from the other beam, we 

obtain (let Po+ =Po- =po) 

/J 0 0 2 
( 

R* ) 2 /J* 
fJ* + = 1 + 2po cot µo fJ* _ - po (;:~) 2 

( 
/J* )2 fJ* 0 0 2 
fJ* _ = 1 + 2po cot µo fJ* + - po ( /3*0)2 

f3*+ 
(10) 

One obvious solution is f3* + = fJ* -, i.e., Eq. (7). The other set of solutions with f3* + =/= {3* _ 

is found to be 

/3* 0 1 { - - pocotµo ± /3* ± - po2 - 1 
po2 cot2 µo (po 2 - 3) + (po2 - 1)

2
} 

po2 + 1 · 
(11) 

In case the beams remain in this solution, one beam is statically blown up (/3* + ), while 

the other pinches (f3* -). Equation (11) constitutes a bi-stable state of the beams because 

switching the roles of the blown-up beam and the pinched beam is also a solution. This 

situation can be a model for the "flip-flop" phenomenon3- 6 observed in storage ring collid

ers. Note that this is only the simplest possible explanation of the flip-flop effect. Another 

possibility will be mentioned later. 
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Figure 4 shows the steady-state dynamic-beta solutions as functions of po. The equal

beam solution (8) always exists for all values of po. The flip-flop solution (11) exists only 

over a finite range of po: 

µo 
cot 2 >po> 

cos2 µo + .J cos4 µo + 8 cos2 µo 
1 + 2 (12) 

At the lower end of the range, the equal-beam and the flip-flop solutions coincide. At the 

higher end, the blown-up beam in the flip-flop solution has infinite beam size. The pinched 

beam in this case sees no beam-beam force from the blown-up beam, and its beam size is 

unperturbed, i.e., a- = ao. 

'00 

t3 
II 

10 

~ 1 b---cr~+-= __ cr __ --"7"""~~----~=::;:::::;;:-----~--~-cr-+ __ = __ cr __ ___ 

1 2 3 

TIP-01612 

Figure 4. The Dynamic-beta Steady-states. 

Note that not all steady-states are stable. In particular, in region (12), it will be shown 

later that the equal-beam steady-state is in fact unstable; any infinitesimal perturbation 

will force the beam either to converge into the flip-flop state or to become unstable. 

4.0 STEADY-STATE WITH NONLINEAR BEAM-BEAM FORCE 

In the previous section, we assumed a linearized beam-beam force. With this as

sumption, the perturbed steady-state remains gaussian, and only the rms beam size has 



changed. However, if the beam distribution is indeed gaussian, the beam-beam force cannot 

be strictly linear. (Only a uniform elliptical distribution gives strictly linear beam-beam 

force, and even then, only inside the elliptical region of the distribution.) Therefore an 

inconsistency exists here. One could consider two ways to proceed: 

(a) Include nonlinear beam-beam force for gaussian beams, but insist that the beam

beam force acts only on the second moments of the beam distributions in such a way that 

the distributions are describable by gaussians. This is still not self-consistent, but hopefully 

provides useful insights. Additional information on this approach will be provided later. 

(b) In general, beam-beam forces and beam distributions are to be found self

consistently. Assuming flat beams for simplicity, the two b~am distributions are coupled 

through the Vlasov equation 

aw+ , aw+ _ F ( ) aw+ _ 0 os + y oy - y, 8 oy' -

aw_ , aw_ ( ) aw_ 
---a;-+Y 7i;j-F+ y,s ay' =0 (13) 

where 

F-,+(y,s) = K(s)y +BB force 
27rNro +oo 

BB force = L 8p(s)J_
00 

dy H(y - y) P-,+ (y) 
xi 

_ 27rNro J+oo _ _ J+oo -; _ -; - L 8p(s) _
00 

dy H(y - y) _
00 

dy W-,+ (y, y, s). 
xi 

(14) 

The external focussing force provided by the accelerator is given by the term K( s )y in 

Eq. (14). The beam-beam force occurs only at the IP as described by Op(s), the periodic 

b-function with period given by the distance between IPs for equally spaced IPs. In a flat 

beam case, the beam-beam force is obtained by folding the beam distribution p(y) with 

the function H(x) = 1 if x > 0, and -1 if x < 0, as Eq. (14) describes. 

The equal-beam, steady-state self-consistent distribution satisfies 

8\J!o/8s + y18\J!o/8y - Fo(y,s)8\J!o/8y' = 0 (15) 

where 

Fo(y, s) = I<(s )y +BB force 

8 



27r N ro 
1

+00 
1

+00 - -
BB force = L 8p(s) _

00 
dy H(y - y) _

00 
dy' \J!o(y, y'). 

x'Y 
(16) 

In the dynamic-beta analysis, it is assumed 

BB force ex 8p( s )y . (17) 

With this assumption, the beam-beam problem is soluble, as discussed in the previous 

section. 

It turns out that there exists another soluble case. Consider two relativistic, un

bunched, round beams of opposite charges penetrating each other. Let both beams have 

a distribution that is gaussian in the transverse momental x' and y1
, and algebraic in 

coordinates x and y as follows: 

(18) 

where >.o is the line density of the two beams, and cr'2 = >.oro/1. It can be shown7 using 

the Vlasov equation (15) that if the two beams have the distribution (18) with an arbitrary 

beam size A, they will pinch each other with their beam-beam forces in such a way that 

they both maintain the steady-state (18). 

Example: 

(a) Generalize Eq. (18) by including a uniform, linear external focussing in the 

derivation. 

(b) Find the counterpart of Eq. (18) for the case of flat beams. 

In the dynamic-beta model, it was noted that a localized linear beam-beam force (17) 

drives half-integer resonances vo = m/2. Now note that in the case where the beam-beam 

force is nonlinear but smooth (nonlocalized, independent of s ), as in the case of two self

pinching unbunched beams, a steady-state can be found without indication of resonances, 

i.e., a nonlocalized nonlinear beam-beam force does not drive resonances. 

In general, unfortunately, the beam-beam force is both nonlinear and localized, i.e., 

BB force ex 8p ( s) x (nonlinear function of y) . (19) 

In this case, like the case in single-particle nonlinear dynamics, the problem becomes very 

difficult to solve. In particular, resonances are driven when vo is close to a rational number 

9 



m/n. A self-consistent strong-strong distribution is yet to be found in this case. The 

closest soluble problem is that of the weak-strong case when there is only one prominent 

resonance playing a role. 

Drawing analogy with the longitudinal potential-well distortion due to coherent wake 

fields in a storage ring, it may be stated that in the present case the steady-state solution 

'Wo is "transverse potential well distorted" by the beam-beam force at the IP. 

Assuming the problem is solved, the preceding analysis provides only the equal-beam 

solution. One could also consider the nonlocal, nonlinear beam-beam forces, and unequal 

beams, just like we did in the dynamic-beta consideration. This will then give other flip-flop 

steady-state solutions with nonlinear beam-beam forces. These solutions will be sensitive 

to the proximity of the tune vo to rational values m/n just like the flip-flop solution in the 

dynamic-beta model is sensitive to vo = m/2. 

5.0 DYNAMICS ABOUT THE STEADY-STATE 

Assuming the steady-state, whether the equal-beam or flip-flop solution, is known, the 

next question to ask is whether the beam motion is stable against small perturbations 

from it. This is another difficult problem. To approach this problem, consider the steps, 

arranged in order of complexity, given in Table 1. 

Table 1. Steps Taken in Studying the Coherent Beam-beam 
Dynamics. 

Step Steady-state Perturbation 

1 Unperturbed center-of-mass motion 

2 Unperturbed rms beam-sizes 

3 Dynamic-beta (equal-beam) rms beam-sizes 

4 Unperturbed higher order modes 

5 Dynamic-beta (equal beam) higher order moments 

6 Potential-well distortion repeat 1-5 

(equal beam) 

7 Flip-flop states repeat 1-5 

Steps 1-4 have been addressed, at least partially, m the literature; some of them are 

discussed below. Steps 5-7 are yet to be studied. 

10 



6.0 RIGID DIPOLE MODEL 
As mentioned before, the dynamic-beta effect is the simplest strong-strong model, 

which involves static beam distortions. The simplest coherent beam-beam model that 

involves dynamics (moving beams) is the rigid dipole model.8- 15 In this model (step 1 of 

Table 1 ), each beam is assumed to have the unperturbed distribution rigidly except that 

their centers-of-mass are allowed to move in accordance with the beam-beam forces. To 

illustrate the model, assume the unperturbed beam distribution Wo is round at the IPs. 

Let the center-of-mass coordinates of the two beams be designated by Y±. For Y± smaller 

than the beam size so that the beam-beam force can be linearized, the centers-of-mass 

exert beam-beam kicks on each other according to16- 19 

~y~ = - G(Y+-Y-) 
f 

~y~ = - ~(Y- -Y+)· (20) 

In Eq. (20), f /G is the focal length of the center-of-mass motions, where f = /3*o/47r(o is 

the focal length for incoherent motion and G is a form factor obtained approximately by 

averaging the single-particle beam-beam kicks over the rigid distribution 'll'o(r): 

G= f0
00

r:Wo2(r) ={1/2 forroundgaussian. 

'll'o(O) f0 r dr 'll'o(r) 1 for round uniform disk. 
(21) 

Equation (21) applies only for round distributions, but it has been shown18 that G = 1/2 

even for an elliptical gaussian. 

Consider the case of one bunch per beam. The transformation for the vector 

[Y+, vi, Y_, Y~] from IP to IP is 

1 0 0 0 
G 1 G 0 -7 7 xR, (22) 

0 0 1 0 
G 0 G 1 7 -7 

where R is the transformation through the storage ring arcs, 

cosµo /3* o sin µo 0 0 
1 . cosµo 0 0 

R= 
- f3•o sm µo 

(23) 
0 0 cosµo /3*o sin µo 

0 0 1 . 
- f3•o sm µo cosµo 

11 



The transformation matrix (22) can be analyzed for eigenvalues. The four eigenvalues form 

two complex conjugate pairs: each corresponds to a coherent beam-beam dipole mode: the 

0- and the 71"-mode. 

In the 0-mode, the two beams move up and down (or left and right) together, i.e., 

Y+ = Y-, at the IP. The coherent beam-beam forces on the centers-of-mass vanish [see 

Eq. (20)]. The motion is as if unperturbed and is therefore always stable regardless of the 

beam intensity. The 0-mode coherent frequencyµ is equal to the unperturbed frequency µo. 

In the 71"-mode, the bunches move out of phase with Y+ = -Y- at the IPs. The effective 

coherent beam separation is therefore 2G times that in the incoherent case ( G from the 

form factor, 2 due to both beams moving). The 71"-mode frequency µ therefore satisfies 

Eq. (2a) with the replacement ( --+ 2G(o. This beam-beam system is stable if the 71"-mode 

is stable, i.e., 

(o < cot(µo/2)/47rG. (24) 

In the unstable region, except when ( is very close to the stability boundary, the 

instability growth rate obtained from the imaginary part of the eigenvalues of the 71"-mode 

is fast, which means it would be difficult to fight this dipole instability by a typical feedback 

system. 12
•
20 

According to Eq. (24), resonance occurs when µo = 71", or vo = 1/2, just like the 

incoherent and the dynamic-beta cases. Furthermore, for the case of one bunch per beam 

assumed so far, the stability conditions (4), (5) and (24) all look similar, especially for 

gaussian beams for which G = 1/2. Figure 5, however, illustrates one important difference 

among them. 

Similar analysis can be carried out for M bunches per beam in a storage ring with 

2M IPs. In this case, the transformation matrix will be 4M x 4M and there are 2M 

coherent dipole modes. Stability of the system requires all modes be stable, i.e., all eigen

values have I.XI = 1. 

For multiple bunches per beam, the coherent dipole instability distinguishes itself from 

the incoherent and the dynamic-beta effects in the resonances it excites. In the M = 1 

case, all three cases excite only the vo = m/2 resonances. For multiple bunches per beam, 

the difference comes from the fact that the superperiodicity suppresses incoherent effects, 

but not coherent effects. Let the total tune of the storage ring be v = 2Mvo. (Throughout 

this paper, the notations µo = phase advance between IPs, vo = tune advance between 

IPs, and v = total tune of the storage ring are used.) Coherent dipole instability occurs 

12 
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Figure 5. Distributions in Phase Space of Two Colliding Beams for Four Cases: (a) Incoherent Weak-strong 

Case, (b) Dynamic-beta Effect, ( c) Coherent Dipole 0-mode, and ( d) Coherent Dipole 7r-mode. (b ), 

(c) and (d) are Strong-strong Cases. The solid and dashed curves indicate the unperturbed and 

the beam-beam perturbed distributions, respectively. The perturbed distribution moves with 

time in (c) and (d) but are static in (a) and (b). The beam dynamics behavior are very distinct 

in all cases, even though their stability criteria look similar. 
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when v = m, while the incoherent and dynamic-beta resonances occur at a much sparser 

density, i.e., when 11 = mM. Coherent effects thus impose stricter limit on beam stability 

for M > 1, and the stability condition no longer look the same as the incoherent and· 

dynamic-beta effects. Figure 6 shows the sawtooth diagrams for the cases of M = 1, 2, 3 

and 4. 
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Figure 6. Stability Diagrams (when G = I/v'2) for ;\,f = 1,2,3,4 Bunches per Beam. v = "2Mv0 is th.; 

total tune. The figure repeats with a period of v = M. The dashed curves give the stability 

region for the weak-strong case for comparison. 

Coherent beam-beam dipole modes have been observed in storage rings such as 

SPEAR,21 PETRA22
•
23 and TRISTAN. 24 - 26 Figure 7 shows the observation of the 0-

and the r.-modes in PETRA with M = 1.22 The peak at the lower frequency corresponds 
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to the 0-mode, the one at higher frequency is the 7r-mode. In Figure 7(b ), the 7r-mode 

frequency is slightly shifted because, although separated, the beams still couple slightly. 

Figure 8 shows the observation in TRISTAN with M = 2.24 The parameters are such that 

all four modes are stable and these modes are observed by external driving. 18 With proper 

filtering, selected modes are observed. 

Vertical eigenfrequencies of two colliding bunches. 

{a) 

Vertical eigenfrequencies of two separated bunches. 

(b) 

Figure 7. Observation of the 0- and rr-modes in PETRA with One Bunch per Beam: (a) Beams Colliding and 

(b) Separated. 
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(a) 

(b) 

(c) 

32 .26 .28 .30 

Figure 8. Observation of Coherent Dipole Modes at TRISTAN with 2 Bunches per Beam. (a) Beam spec

trum with four modes superimposed. With proper filtering, (b) the 0-mode, and (c) an intermedi

ate mode could be observed. 
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The dipole instabilities have been studied in the literature more extensively than the 

other coherent beam-beam effects. Several extensions of the basic model described so far 

have been worked out. 27 These include: 

unequal beams ( N + # N _ )27 

unequal tunes ( v+ # v_ )27 

error in phase advances between IPs28 

unequal circumferences (C+ # C-)29·30 

four compensating beams20 

coherent beam-beam synchro-betatron resonances31 

spontaneous beam separation29·32 

long-range beam-beam interactions. 33- 37 

One is fact makes the observation that for each incoherent beam-beam effect, there is most 

likely a coherent counterpart, and vice versa. Some of these extensions are reviewed below. 

6.1 Unequal Beams 

Consider the case when the two beam bunches have different intensities, P+ # p-, and 

the two beams are in separate storage rings with different phase advances between IPs, 

J.l+ # µ_, The eigenmode frequencies µ1,2 are determined from 27 

2 cos µ 1,2 =cosµ++ cosµ_ - Gp+ sinµ+ - Gp_ sinµ_± JQ (25) 

where 

Q = (cos fl+ - cosµ_ - Gp+ sinµ++ Gp- sinµ_ f + 4G2 P+P- sinµ+ sinµ_ . 

::'\ote that this analysis allows other differences in the two beams, e.g. differences in N±, 

Af±, ;3* ± and (j± can all be incorporated into P±· 

Example: Show that Eq. (25) reduces to Eq. (2a) whenµ+ = µ- = µo and P+ = P- =po. 

Example: When P+ = 0, show that the - beam is unperturbed, while the + beam fre

quency shift = G x (the incoherent shift). This is the coherent dipole mode in the weak

strong limit. 

17 



Example: When µ+ = µ_ = µo but P+ =J. P-, show that the two eigenmodes are still 

described by a 0-mode and a 7r-mode, and that the mode frequencies are given by 

cosµ= cos µo - [ ~] G(p+ + P-) sinµo. (26) 

6.2 Unequal Tunes 

Equation (25) also includes the effect of unequal tunes. Figure 9 shows the stability 

region in the (110 +, 110 _) plane.27 A new set of sum resonances 110 + +Vo- =mis introduced, 

where 110 ± = µ 0 ±/27r are the tune advances between IPs in the two storage rings. Strictly 

speaking, only these sum resonances are true coupled-beam modes. Coherent beam-beam 

modes are strongly excited by the sum resonances. 

In passing, it can be noted that splitting 110 + and 110 _ did not improve the instabil

ity. The possible expectation that splitting the tunes introduces Landau damping, and 

therefore stability, to the system is incorrect. 
" 

6.3 Phase Advance Errors 

Consider again the case with one bunch-per-beam. In the previous analysis, the two 

IPs in the storage ring are separated by two arcs with equal betatron phase advances. 

The analysis can be extended to unequal phase advances parametrized as µo ± 8µ. 9 The 

result is shown in Figure lO(a). The most pronounced new feature is the introduction of a 

stopband when the total tune 11 = 2110 is close to 1/2. The stopband edges are found to be 

cot µo 1 ± sin8µ 
(o = --- -----

2G7r cos2 8µ 

The sawtooth part of the stability boundary becomes [Cf. Eq. (24)] 

(o = smµo 
4G7r( cos 8 µ - cos µ 0 ) 

(27) 

(28) 

Equation (28) reduces to (24) if 8µ = 0. For multiple bunches per beam, the results 

resemble Figure 6, except that new stopbands of complicated structure are created around 

half-integer resonances 11 = m/2. Figure lO(b) shows the result obtained numerically for 

the case of JV! = 2. 28 
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6.4 Unequal Circumferences 

Consider the case when the two beams are stored in separate storage rings of different 

circumferences C±. 

spacing C+/ !{+ = 

The number of bunches K ± are chosen so as to have a fixed bunch 

C-/K-. The system has a superperiod = K+C-

total tune advances per superperiod of the two storage rings are K+v0 _ and K-vo+· 

coherent dipole beam-beam resonances in this system are given by 

The 

The 

K+Vo- m/2 (29a) 

K-Vo+ m/2 (29b) 

K+Vo- + K-Vo+ m. (29c) 
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Figure 10. Effect of Phase Advance Errors in the Storage Ring Arcs on the Sawtooth Diagram. (a) M 1, 

fiµ/2;r = 0.02. (b) M = 2, bµ/2;r = 0.03. The form factor is taken to be G = 1. 
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The consequence is that there are now many more resonances, which makes it undesirable 

to have unequal circumferences for the two beams. 30 

Figure 11 shows the result for the case K+ = 2, K_ = 3.29•30 Note particularly the 

three coupling resonances of the type (29c), which are strongly driven by the beam-beam 

coupling. In comparison, the single-beam resonances of types (29a) and (29b) are driven 

only when Vo± = m/2. 

-beam +beam 
TIP-01619 

Figure 11. (a) Unequal Circumferences for the Case K+ = 2, J(_ = 3. 

6.5 Four Beam Compensation 

One method to compensate for the beam-beam effect-therefore greatly increasing 

the luminosity-is the four-beam idea of DCI.38•39 In this idea, two beam bunches +Ne 

and -Ne are made to collide with two other beam bunches +Ne and -Ne, as shown in 

Figure 12(a). The colliding bunches have neutral net charges and thus presumably produce 

no beam-beam forces. Unfortunately, this idea had not worked at DCI. 

The problem is that what has been eliminated is the incoherent beam-beam force. 

Coherent beam-beam forces are not dealt with, because infinitesimal deviations from the 

steady-state can still grow as coherent modes. In fact, this four-beam combination has 

worsened the coherent beam-beam effect. The net result is that one problem has been 

traded for another-better incoherent effects for worse coherent effects. 

Figure 12(b) illustrates the sawtooth diagram for the four-beam case. 20 The stability 

boundary consists of two segments, separated at v = 1/2. The segment below v = 1/2 

turns out to be close to what would be obtained with colliding -Ne and -Ne (or +Ne and 
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Figure 11. (b) Maximum Stable ( 0 Value Plotted in the (v0 +, v0 _) Plane, Showing Three Coupling 
Resonances of Type (29c). 
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(b) 

Figure 12. (a) Schematic of the Four-beam Compensation Arrangement. 

(b) Stability Diagram for the 4-beam Scheme. 
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+Ne), while the segment above v = 1/2 is close to that for colliding +Ne and -Ne. The 

coherent dipole instability therefore is a result of the worst of the two possible combinations. 

The situation would change if the four colliding beams are provided by linac colliders 

instead of storage rings, in which case the beams are discarded after collision. There will 

be no coherent beam-beam effects (at least not the multi-turn resonant type of interest 

here), and the four-beam idea could still be applied to avoid beamstrahlung, which is one 

of the main limiting effects of high energy linac colliders. In fact, only three beams are 

needed to come from linac colliders; one beam can still come from a storage ring. 

Also, analyses have been carried out for the four-beam scheme for higher order modes 

using Vlasov techniques.40- 45 One such analysis41 yields the result shown in Figure 13. 

Additional information on the Vlasov technique for higher order modes is provided later. 

6.6 Synchro-betatron Resonances 

Finite dispersions at the IP or the rf cavity excite coherent beam-beam synchro

betatron difference resonances 1113 - nvs = m. Similar to the single-particle case, the 

sum resonances are stable above transition. 

The analysis has been done when the beam-beam force is linearized,31 in which case 

only the linear resonances ( n = 1) are excited. The dynamics can be described by 8 X 

8 transformation matrices. Eigen-analysis of the system gives the stability region in the 

(v(J, vs) space as shown in Figure 14, where Vf3 and Vs are the total betatron and synchrotron 

tunes. The synchro-betatron resonances occupy small regions in the tune diagram even 

with exaggerated values of dispersion at the IP and the rf cavity as used in Figure 14, and 

are therefore not a very significant concern in practice. 

6. 7 Spontaneous Beam Separation 

So far in analyzing the coherent dipole effects, we have linearized the beam-beam 

force. This is valid only for center-of-mass motions small compared with the beam size 

a. It suffices if one is interested only in the beam-beam effect on luminosity because even 

small beam motion must be avoided for luminosity purposes. The rigid dipole motion in 

the presence of nonlinear beam-beam forces has been simulated numerically. Figure 15 

shows one such result. 14 

With a nonlinear beam-beam force, the magnitude of center-of-mass motion saturates 

when beam separation becomes comparable to a. In fact, as beams separate far enough, 

they can find a steady-state separation to stay in. For example, in case of 1 bunch per 

beam with round, gaussian, equal beams, the steady-state beam separation is zero in the 

linearly stable region 27r(o < cot(µo/2), while in the unstable region, the steady-state beam 
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Figure 13. Stability Region in (vx, vy) Space for DCI with ( 0 = 0.05, According to a Mode Analysis. 
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due to synchro-betatron resonances as indicated by arrows. 
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Figure 15. The Value of ( 11 as a Function of the Total Vertical Tune 1111 and Fixed 11;,, = 0.2 for the Case of 

M = 3. Rigid center-of-mass motions are simulated with nonlinear beam-beam forces. Solid 

and dotted curves represent the minimum and average values of ( 11 over 200 turns simulated. 

Sawtooth curve is that predicted by a linear theory. 

separation . .6. is determined by 

? 2 t J:.9.. 
~CJ ( - -t:..2 /2<72) - ~ 
.6. 2 1 e - 27r(o < 1 . (30) 

With beams separated, the luminosity is reduced by a factor exp(-.6. 2 /4a2 ). Figure 16 

shows the behavior of .6./ a and luminosity reduction factor as functions of the stability 

parameter x = 27r(o/ cot(µo/2). 

It may be desirable to study the behavior of small perturbations around a separated

beam configuration. The analysis will yield the corresponding mode frequencies and the 

stability conditions. The case of unequal tunes has also been studied. It was found that the 

behavior of beam separation becomes complicated near a sum resonance v 0 _ + v 0 + = m. 29 •
32 
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Figure 16. Steady-state Beam Separation due to Nonlinear Beam-beam Forces. (a) !:J./u as a function of 

x = 2;r(0 / cot(µ 0 /2). (b) Luminosity reduction as function of x. 

7.0 QUADRUPOLE MODES 

In the dipole model, the beam distribution is assumed to be rigid; only center-of-mass 

motions are allowed. In general, coherent beam motion is to be described as a superposition 

of all modes, not only dipole modes. The dynamics of these modes altogether will determine 

the stability of the beam. When proceeding to higher order modes, more resonances will 

play a role, as shown in Table 2. 

Table 2. Coherent Beam-beam Modes 
and Their Driving Resonances. 

Mode 

rigid dipole 

quadrupole 

sextupole 

etc. 

Driving Resonances 

total tune v = m 

v = m/2 

v = m/3 

Consider two bunches colliding head-on (i.e., no dipole motion), but their beam sizes 

oscillate (i.e .. they execute quadrupole oscillation). Define the L:-matrix by the second 
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moments as 
(x2) (xx') 0 0 

(xx') (x'2) 0 0 
(31) E= 

0 0 (y2) (yy') 

0 0 (yy') (y'2) 

There is a E-matrix for each beam. Designate the two E-matrices by E±. The transfor

mations through the arcs are: 

(32) 

where the matrix R is the same as that defined in Eq. (23), if {3* xO = {3* yO = f3*o and 

µxo =µyo = µo. 

As indicated by Table 2, nonlinear dynamics plays a fundamental role in the coherent 

beam-beam dynamics. Unlike the single-particle nonlinear dynamics, however, even a 

linearlized beam-beam force is capable of driving nonlinear resonances because the focal 

lengths depend on the beam sizes. The transformation of the E-matrices through the IP 

due to a linearized beam-beam force is given by 

(E+)out = TBB-(E+)in TBB

(E-)out = TBB+(E-)in TBB+ . 

TBB± are the beam-beam matrices 

1 0 0 0 
1 1 0 0 

TBB± = 
-fz± 

0 0 1 0 

0 0 1 1 - fy± 

(33) 

(34) 

which gives the effect on the beam size of one beam at IP due to the oscillating size of the 

other beam. The focal lengths fx± and fy± depend on O"x± = (x2)112 and O"y± = (y2)112 

which are the instantaneous, oscillating beam sizes of the two beams. 

Consider small perturbations around a steady-state :Eo: 

(35) 

To simplify the analysis, assume the unperturbed beams are round. Next linearize the 

system of equations (32)-(34) with respect to the infinitesimal elements in the matrices 

29 



D.~±· Since each beam has six elements b.(x2 ), b.(xx'), b.(x'2 ), b.(y2 ), b.(yy'), and 6.(y'2 ), 

the dynamics of the system can be described by 12 x 12 transformation matrices. Eigen

analysis of the system then gives 6 modes. The result46 is that four of the twelve eigenvalues 

are identically unity. They correspond to the two constants of the motion (x2 )(x'2 )-(xx')2 

and (y2)(y'2 ) - (yy') 2 . The remaining four dynamic modes have frequencies47 

cosµ= cos2P, + 

2 

1 

-1 

-2 

. -po sm µo cos µ 

cos µ = cos µo - po sin µo . (36) 

This result resembles Eq. (2a), although the dynamics is very different. The sawtooth dia

gram of the system is shown in Figure 17( a). Quadrupole instabilities are most pronounced 

near resonances v = m/2. 

Similar analysis has been carried out for multiple bunches per beam, in which case 

there are 4M dynamic modes. Figure l 7(b) gives the sawtooth diagram for the case of 

M = 3. Again, resonances occur when the total tune is half-integral. 

Just like the dipole case, it is possible to extend the basic model described above for 

the quadrupole modes.47 For example, one could include in the analysis the phase advance 

errors to obtain Figure 18. One observes that the phase errors introduce new resonances 

at v = m/4. Similar procedure can be extended to the case Vx =/= Vy to yield Figure 19, 

which shows structures near the coupling sum resonances Vx +Vy= m. 

8.0 QUADRUPOLE MODES AROUND DYNAMIC-BETA 

The previous section addresses the quadrupole oscillations around the unperturbed 

state. One may also investigate quadrupole oscillations around the dynamic-beta steady

state, i.e., that shown in Figure 4. This will give information on whether the beams will 

choose to stay in the equal-beam, the flip-fl.op, or neither state. There have been two 

investigations in this direction using two models, as discussed next. 48 

8.1 The First Model 

In this model, 49- 51 the dynamics of the second moments is still given by Eqs. (32)-(34) 

and the beam-beam force is still linearized, but this time the infinitesimal quantities D.~± 

are not introduced and the problem is not linearized with respect to them. The problem 

is then studied by numerical simulation. Figure 20(a)49 shows the equal-beam and the 
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Fig11ri> I 7. Sawtooth Diagrams for Coherent Quadrupole Modes. Unperturbed beams are assumed to be 

round. (a) 1'v! =I. (b) M = 3. Resonances occur around v = m/2. 
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figure 18. Quadrupole :Vfode Sawtooth Diagram when Phase Advance Errors ±2;r x 0.05 are Introduced in 

the Storage Ring Arcs. Stopbands are created near v = m/4. 
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Figure 19. Quadrupole !\lode Stability Region in the (vx, vy) Space for the Case M = 1 and Round Beams, 

for Two Values of (o = 0.02 and 0.06. Resonances occur when Vx = m/2, Vy = m/2, and vx+vy = 
m. No phase errors in arcs are included. 
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Figure 20. Stability of the Dynamic-beta Steady-state Solutions for the Case of Linearized Beam-beam Force. 

(a) Period-I fixed points. Regions stable and unstable against small perturbations are plotted 

as solid and dotted curves respectively. (b) More complicated motions of second moments are 

indicated by higher order periods and chaos. 
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flip-flop solutions, like Figure 4 but slightly different (e.g. a small radiation damping has 

been included). Solid and dotted sections in Figure 20(a) indicate stable and unstable 

regions of the steady-states. Note that the equal-beam steady-state is unstable when the 

flip-flop state exists. In the region p less than approximately 0.25, the equal-beam solution 

is stable. In the present model, p = 0.25, which corresponds to a beam-beam strength 

of ( = p/27r = 0.04, may be associated with the beam-beam limit observed in colliding 

beam storage rings. Beyond this region, the equal-beam solution is unstable except for 

a very small region around p = 0.5. Between approximately p = 1 and p = 2, there 

are regions where the flip-flop state is stable, meaning the beams will choose to have one 

beam statically blown-up and the other beam pinched. In the rest of the regions, both the 

equal-beam and flip-flop steady-states are unstable. 

Figure 20(b) shows more details of what is happening to the beams. First, the steady

states are found when they are stable; these agree with Figure 20(a) and are indicated as 

period-1 states in Figure 20(b ). In addition, states with higher periods are found. In a 

period-2 state, for example, the beams have two states (two sizes) to stay in, and they 

occupy these two states alternately from one IP to the next. Similarly there are period-3 

and -4 states as indicated. In the region approximately between p = 0.25 to 0.4, the motion 

of the second moments is apparently chaotic. Figure 20(b) thus shows a rather complex 

dynamics of the quadrupole modes. 

8.2 The Second Model 

As mentioned before, linear beam-beam force is inconsistent with gaussian distribu

tion. Insisting on linear beam-beam force in the previous model has violated the Maxwell 

equations. 

Below we introduce another simplified quadrupole mode model52- 54 in which (a) beam 

distributions are gaussian, (b) the beam-beam force is that for gaussian distributions, 

therefore nonlinear, but ( c) the beam-beam force affects only the second moments in 

such a way that the beam distribution remains always gaussian. Effects of the nonlinear 

beam-beam force on higher moments are ignored. Obviously this model is still not self

consistent because of step ( c). Although step (b) has rescued the Maxwell equations, 

step ( c) makes the system nonsymplectic, thus violating the Hamiltonian feature which 

might be important when studying stability of the dynamical system. 

One then proceeds as before, i.e., to obtain the dynamic-beta and the flip-flop solutions, 

and the quadrupole mode dynamics around them. This model has been extensively studied. 

One interesting result of the study is Figure 21 which shows the steady-state solutions and 

their stability. 54 Note that although the qualitative behavior of the equal-beam and flip-
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Figure 21. Dynamic-beta Steady-states and Their Stability for a Nonlinear Beam-beam Model. No compli

cated behavior as Figure 20(b) is observed in this model. 

flop states looks similar to that of Figure 20(a), their stability behavior is quite different. 

In Figure 21, there is always a stable steady-state for the beams to stay in. Below ( ~ 0.05, 

the beams stay in the equal-beam state, while they stay in the flip-flop state above ( ~ 0.05. 

The behavior is much simpler than that of Figure 20(b ). Table 3 is a comparison between 

the two models. 

Table 3. Comparison Between the Two Simplified 
Quadrupole Mode Models. 

First Model Second Model 

Self-consistency 

l\faxwell equations no yes 

i\'onlinear dynamics yes no 

Dynamic-beta yes yes 

Flip-flop yes yes 

Chaos yes no 

First instability encountered chaos flip-flop 

It is not \·ery useful to ask which of the two models is more correct because neither 

is. each ha,·ing \·iolated something fundamental. HO\vever, they do provide information on 

\vhat to Pxpect in the ultimate analysis. 
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9.0 HIGHER ORDER MOMENTS 
To improve beyond the two models discussed in the previous section, it becomes nec

essary to deal with nonlinear beam-beam force, and allow this beam-beam force to distort 

the distribution from gaussian. It is clear that a self-consistent treatment that takes into 

account all moments is needed here.40- 45,55- 62 In other words, we have to consider, in 

addition to the dipole and quadrupole modes, also the sextupole and octupole modes, etc. 

A proper treatment will simultaneously be symplectic, and satisfy the Maxwell equations, 

at least in principle, at the cost of a more complicated analysis. 

Use the octupole mode as an example. It can be unstable due to the beam-beam 

interaction according to the mechanism shown in Figure 22. Let Figure 22(a) be the 

unperturbed beam distribution in the phase space (y, y') for the two beams. To investigate 

the coherent octupole mode stability, perturb one of the beams slightly in an octupolar 

manner as shown in Figure 22(b ). This perturbation will couple to the other beam through 

the beam-beam interaction. For example, the octupolar modulations of the two beams 

may interlace each other at the IPs as one possible mode pattern. If the motion is stable, 

the coupled octupolar motion will remain small, as shown in Figure 22( c). However, if 

the total betatron tune is sufficiently close to a quarter-integer, i.e., v ::::::: m/4, the small 

perturbations will grow exponentially as shown in Figure 22(d), resulting in an octupole 

mode instability. 

In general, instability occurs near resonances v ::::::: m/n, as in the incoherent case. 

However, analogous to the situation shown in Figure 5, there is one important difference 

in phase space. The cases of incoherent effect, the dynamic-beta effect and the octupole 

mode effect when v::::::: m/4 (tune per superperiod::::::: m/8) are illustrated in Figure 23 for 

one bunch per beam. Note that the dynamic-beta state mentioned in Figure 23 is not 

that of Figure 4 with linearized beam-beam force, but that mentioned in the discussion 

following Eq. (19). 

The Vlasov equation (13-14) provides a tool for the general treatment of higher order 

modes (assuming flat beams). Below, we will mention the analysis of Ref. 58 as an illus

tration of the technique. To proceed, let the beam distributions be written as infinitesimal 

perturbations on top of a steady-state 'llo as Eq. (1). The Vlasov equation is then linearize 

in D. '11 ± and the resultant equations are transformed from the Cartesian variables (y, y') 

to the action-angle variables ( J, </> ). The beam-beam force is localized in this analysis. 

The problem becomes soluble if we assume a water-bag model of the unperturbed 

steady-state distribution 

'llo = (1/7rc:) H(c:/2 - J) (37) 
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Figure 22. Coherent Beam-beam Octupole Mode Instability. 

where Eis the unperturbed beam emittance; H(x) = 1 if x > 0 and 0 if x < O. 

The choice of \Vater-bag model makes the solution of the problem particularly simple, 

but this is not without cost. The imposed distribution Eq. (37) is inconsistent with the 

steady-state condition, Eqs. (15)-(16). The problem is therefore solved but not self

consistently. 

Coherent beam-beam instability is pronounced near resonances 

v = 2vo ~ m/n (38) 
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Figure 23. Beam Behavior in Phase Space of Two Beams for (a) Incoherent Strong-weak Case, (b) Dynamic

beta Effect, (c) One of the Coherent Octupole Modes; (b) and (c) are Strong-strong Cases. The 

solid and dashed curves indicate the unperturbed and the beam-beam perturbed distributions, 

respectively. The perturbed distributiun moves with time in (c) but is static in (a) and (b). 
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m which case the most perturbed mode is the n-th mode (n - 1, 2, 3 ... for dipole, 

quadrupole, sextupole ... modes, respectively), 

~\JI ,..., exp( irnp) . 

For the water-bag model, the perturbed mode frequency is given by58 

cosµ = cos(27rnv) ± ~n ( sin(27rnv) 
4n -1 

(39) 

( 40) 

where ± refer to the in-phase or out-of-phase mode patterns (the 0- and the 7r-modes ). 

Instability results from having I cos µI > 1, which occurs when I cos(27rnv)j is close to 

unity, or when Eq. (38) is satisfied. Around the resonance (38), there is a stopband within 

which the beams are unstable. From Eq. ( 40), one obtains the stop band width around the 

resonance: 

8 ( 16 
Vn = 27r 4n 2 - 1 · (41) 

Figure 24 is the sawtooth diagram for 2 bunches per beam. As more and more modes 

are included, higher and higher order resonances become involved. When the maximum 

mode number is n, resonances up to order n near v = m/n are excited. Figure 25 shows 

the dependence of the sawtooth diagram on the number of bunches. The higher order 

resonance behavior can be rather complex. 

In analogy to single-particle nonlinear dynamics, the Chirikov criterion may be applied 

by summing the stop band widths of all resonances. The total width is L,n8vn which diverges 

if Eq. ( 41) is used. This means that, for the water-bag model, no region in tune space is free 

of resonance effects. However, the water-bag model does not provide any tune dependence 

with amplitude because all dynamics occur at one amplitude only, namely the amplitude 

corresponding to the edge of the bag. This means there is no consideration of Landau 

damping effects, which is a deficiency of the water-bag model. 

It is important to keep in mind one special feature of the beam-beam interaction. Un

like nonlinear fields due to magnet imperfections, the beam-beam effect is intrinsically sta

ble in the sense that it perturbs only particles in the beam core and not particles with large 

amplitudes. As a core particle becomes unstable, it necessarily grows out of the instability 

as its amplitude increases. This detuning effect plays an important role in determining the 

characteristics of the incoherent beam-beam effects. The same physical feature will also 

play an important role in the coherent beam-beam effects by manifesting itself through 
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Figure 24. Sawtooth Diagrams for the Ca.se of M = 2 and Varying Maximum Mode Number = 2, 4, 6, 

and 8. 

Landau damping. A complete analysis of coherent beam-beam effects will have to consider 

Landau damping effects. When Landau damping is included, the difference between co

herent and incoherent effects blurs. 

Higher order modes can also be studied by numerical simulations. Although not em

phasized in this review, a remark is to be made consistent with previous discussions. To 

study the coherent beam-beam effects, it is important in the simulation to allow the beam 

distribution to deviate from gaussian so that higher order modes are allowed to grow. Re

stricting the beam distribution to gaussian shape is equivalent to simulating each beam by 

two macro-particles even when a thousand particles are used. The approach of allowing 

for nongaussian distortions has been taken by the more recent simulation codes.63 - 66 

10.0 COHERENT BEAM BLOW-UP MODEL 

The coherent beam-beam instability provides a possible description of the observed 

beam-beam limit. 6 i For a given choice of tune away from resonances, consider the situation 

as the beam intensity N is increased from zero. At first, the beams are stable, beam sizes 

are given by their unperturbed \·alues. beam-beam parameter is proportional to N, and 
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Figure 25. Sawtooth Diagrams for Different Number of Bunches M = 1, 2, 3, 4; (a), (b) and (c) are Three Sets 

for Varying Maximum Mode Number = 2, 3 and 4, Respectively. 

luminosity is proportional to N 2 . As N is increased to reach the boundary of the sawtooth 

curve, the beams become unstable, the beam sizes grow. However, they grow only by so 

much as to make ( stay just under the sawtooth curve. In other words, as N is increased 

beyond a certain threshold, ( is saturated at a certain critical value (the beam-beam 

limit). ':Lhe beam size and the luminosity then behave as shown in Figure 26 for the flat

and round~beam cases. 

This coherent blow-up model i:s analogous to the bunch lengthening phenomenon ob

served in electron storage rings. Observe that a similar situation has been encountered 

when the dynamic-beta effect was discussed, in which the beams continue to blow up as 

N is increased in such a way that instability ( 4) is always avoided. 
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Figure 26. Behavior of Beam-beam Parameter, Beam Size and Luminosity as Functions of Beam Intensity 

for Three Cases: (a) Unperturbed, (b) Round Beams, (c) Flat Beams. Dotted lines indicated a 
beam-beam threshold. 
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