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Abstract 

SSCL-340 

This report discusses the design philosophy of the new synchronization 

scheme for beam transfer from the Low Energy Booster (LEB) to the Medium 

Energy Booster at the Superconducting Super Collider. The fundamental princi

ple of controlling the LEB acceleration is discussed. A generalized mathematical 

model is derived to facilitate the design of multiple feedback loops to control the 

synchronizing phase and the radial position of the beam. Applications of state 

feedback, sliding-mode and model reference controllers are discussed. Although 

the state feedback controller is easy to design and implement, the simulation 

results show that the controller properties are not useful to handle disturbance 

due to field errors and variation in the system parameters. The sliding-mode and 

model reference controllers are shown to have more suitable properties. At the 

end, mention of the hardware used to establish the "proof of principle" is given. 
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1.0 INTRODUCTION 

For extraction purpose, the phase of the Low Energy Booster (LEB) must 

be adjusted to match the phase of the Medium Energy Booster (MEB) rf. The 

SCDR LEB rf sweeps from 47.5MHz to 59.776MHz in 50milliseconds. During 

transfer the MEB rf is designed to run exactly at the LEB extraction frequency. 

In the literature one sees two schemes1•2 for achieving synchronous transfer of 

bunched beams: the phase-locking and the phase-slippage schemes. In the phase

locking scheme, at a known time before injection to the next accelerator, the 

phase and frequency of the accelerating machine are locked to the extraction 

frequency. The time required to phase lock the two frequencies depends on the 

lattice parameters of the accelerating machine. 3 In the phase-slippage scheme, at 

a predetermined time before transfer, the frequency of the accelerating machine 

is offset a few cycles relative to the extraction frequency. As a result, the phase of 

the accelerating frequency slips relative to the fixed frequency, and several phase 

coincidence points of the reference wave occur at a beat frequency equal to the 

offset frequency. One of them is used to trigger the synchronous transfer of the 

beam. 

A more general approach for synchronization is to consider the "locking" 

of the phase of the variable frequency source with the phase of the fixed fre

quency source throughout the acceleration. Since the fundamental concept of 

this approach consists of maintaining control of the phase with a suitable feed

back mechanism, it is more appropriate to call it the "phase-control" scheme. 

In this scheme the rf wave (also called the reference rf wave) is forced to follow 

a pre-programmed "trip-plan" so that at the instant of transfer it will have the 

same phase as the MEB rf wave (except for constant phase offset). A feedback 

loop corrects for any deviation from the trip-plan. The trip-plan has at least one 

point at flat B-field region where the machines have exact phase for the purpose 

of synchronous beam transfer. With this scheme it is possible to synchronize two 

rf sources starting from a random phase difference. Since the approach consists 

of maintaining the longitudinal phase relationship to a known trajectory, the 



control of the transverse position is also necessary. We have emphasized here the 

need of a global feedback which not only provides the ·right accelerating frequency 

by keeping control of the transverse position, but also maintains a definite phase 

relationship with the next accelerator. By following this approach we would need 

to spend less time for cogging during extraction. With the existing schemes, the 

synchronization loops come into effect just before the extraction. 

We have analyzed an isolated case by considering the feedback loop for the 

longitudinal phase synchronization only. The discussion of the transverse feed

back, when included with the synchronization loop, becomes more involved and 

is not shown here. The feedback loop is analyzed with three different types of 

modern feedback controllers for the single-input single-output case (input as the 

rf frequency shift and the output as the phase difference between the designated 

rf waves of the two machines). A few comparisons are made using the simulated 

results. 

2.0 TRIP-PLAN 

As mentioned earlier, the trip-plan is the pre-programmed trajectory calcu

lated from the two reference rf waves, one from each machine. Since this is the 

ideal trajectory, the actual trajectory changes in the presence of field errors. We 

can calculate the time at which the two reference rf waves match under ideal 

circumstances as follows. The phase of the LEB reference rf wave from a given 

time during acceleration is equal to 

T 

27r J WLEB = h Rf(t)dt. 
0 

Similarly the phase of the MEB reference rf wave can be written as 

27rR1 
, 

WMEB = -;:;;-f T. 

(1) 

(2) 

The notations R and R' are the radii of the orbits, f and f' are the rf frequencies, 

and hand h' are the harmonic numbers of the LEB and the MEB, respectively; 
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T is the time interval over which the integration is carried out. The difference 

between Equations 2 and 1 is the "synchronizing phase",'' 'l!. That is, 

(3) 

For synchronous transfer, the synchronizing phase is equal to zero (ignoring the 

transfer line delays). Because the present discussion is for two circular machines 

with non-integer circumference ratios (22/3), the LEB reference rf wave will have 

completed several full turns and a semi-turn at the end of one MEB turn. If the 

two frequencies are the same, then the LEB reference rf wave completes 7 full 

turns and a semi-turn equal to one-third the LEB circumference, which is the 

case with flat B-field. The semi-turn is not one-third the circumference ratio 

when the frequencies are different. Equation 3 is plotted in Figure 1 for each 

MEB turn. The "+" marks represent the position of the LEB reference rf wave 

for each MEB turn away from the transfer point. The phase values are shown 

from 0 to 540 meters to cover the full circumference of the LEB. Path length 

representing full turns completed by the LEB reference wave is ignored, since it 

is of no significance for synchronization. Figure 1 shows three curves approaching 

constancy at 50 msec; this is due to the fraction "1/3" in the circumference ratio. 

The decay results from the narrowing of difference in frequencies as the transfer 

time approaches when the magnetic field is at its maximum. In this region every 

third point is on the same curve. This means the relative phasing between the 

two reference waves is constant every time the MEB reference wave completes 

three turns. 

The synchronizing phase as seen in Figure 1 is not zero for transfer purposes. 

Also, if the LEB reference wave is controlled to the trip-plan shown in Figure 1, 

there may be synchronization with the MEB reference wave, but transfer cannot 

be matched. Instead, if the trip-plan is offset by 111. 78 meters right at the 

beginning and an arbitrary rf wave is arranged to follow the new synchronizing 

phase, then there will be several transfer points. The new trip-plan is shown in 
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Figure 1. Synchronizing Phase During Acceleration in the LEB. Phase not adjusted. 

Figure 2, where the turn numbers, such as 3771 and 3774, have zero phase. We 

must remember at this stage that the trip-plan shown in Figures 1 and 2 were 

computed by changing the frequency at all times from injection to extraction. 

However, in an actual system, the acceleration takes place only at the rf cavity 

positions. Figure 3 shows the trip-plan when there is only one cavity in the 

SCDR lattice. 

3.0 SYSTEM MODEL 

3.1 Equation for Synchronizing Phase Error 

The synchronizing phase is a function of the beam orbit and the accelerating 

frequency. The errors in the beam orbit and frequency introduce errors in the 

synchronizing phase. The system model can be obtained by introducing error 

terms in the beam orbit and the frequency in Equation (1). Let AR(t) be the 
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Figure 3. LEB Trip-Plan. With one RF cavity and phase not adjusted. 
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total deviation in the radius of the orbit and 6.f(t) be the error in the master 

frequency; then the phase equation becomes 

27r J w'(t) = h [R + 6.R(t)] [f(t) + 6.f(t)] dt. (4) 

The sign of 6..R(t) depends on which side of transition the machine is operating. 

Because the control philosophy is to maintain the trip-plan discussed earlier by 

modulating the LEB frequency, an equation for the error in synchronizing phase 

in terms of the frequency is required. This phase error is equal to the offset in 

the path length covered by the LEB reference wave from the ideal path. Hence 

it is given by 

6\Jl(t) = W1(t) - WLEB(t) (5) 

Substituting Equations 1 and 4 in Equation 5 and taking the first derivative with 

respect to time, the following differential equation is obtained: 

d[cw(t)] 27r 
dt = h [6.R(t)J(t) + R6.f(t) + 6.R(t)6.f(t)]. (6) 

For small changes in the orbit shift and the frequency, 6.R(t) and 6.f(t) can 

be replaced by 6R(t) and 6f(t). Hence the product of 8R(t) and 8f(t) becomes 

negligible. However, at this stage we can retain the second order terms. Fur

thermore, the error in the radial orbit shift can be obtained as described in the 

following section. 

3.2 Equation for Radial Orbit Shift 

The error in the average shift in the beam orbit from the ideal orbit can be 

obtained from the momentum equation 

p(t) = eB(t)p(t), (7) 

where e is the charge in Coulombs, B the bending field in Tesla, and p is the 

effective bending radius of the particle in meters. When there is error in the 
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bending field, 6B(t), the effective bending radius of the off-momentum particle 

changes. Hence by using the partial fraction expansion, 

8p 8p 
bp(t) = aB 6B(t) + ap 8p(t), 

and dividing Equation 8 by Equation 7 and simplifying, we obtain 

bp(t) = 6B(t) + [-1- 8p bp(t)] . 
p(t) B(t) p(t) 8p 

The terms within the brackets can be argued to equal: 

_1_ 8p c ( ) _ 2 8 R( t) 
p( t) 8 p up t - IT R . 

(8) 

(9) 

(10) 

The momentum variation 8p(t)/p can also be expressed in terms of the orbit shift 

8R(t) and the frequency shift bf(t), as follows: 

8p(t) = 2( ) [6R( t) 8 f ( t)] 
p(t) I t R + f(t) . (11) 

From Equations 9, 10, and 11, 8R(t) is written as follows: 

bR(t) = [ 1
2
(t)R ] [8f(t) __ 1_ 8B(t)] . 

1}-12(t) f(t) 1 2(t) B(t) 
(12) 

This equation shows that the orbit shift 6R( t) can be minimized by shifting the 

frequency due to the field errors. Although a feedback loop to the magnet system 

would minimize the orbit shift, it is impractical to embark on this approach due 

to a long time constant of the magnet system. Thus, to minimize 8w(t) and 8R(t) 

in the presence of field errors, we would have to change 8f(t). From the point 

of view of feedback control, this amounts to a one-input [8f(t)] and two-output 

[8\Jl(t) and 8R(t)] system. To add more flexibility to the feedback system, we 

can include an additional input: the phase of the center of the beam bunch with 

respect to the zero cross over of the rf wave. That is, by shifting the rf relative 

to the beam by an amount 8¢>(t) we can minimize the radial orbit shift. System 

equation to accommodate this input is shown below. 
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3.3 Equation for RF Phase Shift 

If <P(t) is the phase of the center of the beam bunch with respect to the zero 

cross-over of the rf signal, 8f(t) is the additional phase shift imposed by moving 

the rf signal, and V(t) is the amplitude of the cavity voltage, then the energy 

gain per turn (assuming one rf cavity) is given by 

~E(t)lturn = eV(t) sin </>(t). (13) 

For a small increment in energy per turn, ~E(t) can be approximated to 8E(t) 

and hence can be replaced by the product of the incremental momentum change 

and the linear velocity, v(t). Thus Equation 13 is written as 

v(t) 8p(t)lturn = e V( t) sin</>( t), (14) 

or, more appropriately, 

8p(t) = eV(t) sin <P(t). 
8t 27rR 

(15) 

From Equation 8, the derivative of the momentum with respect to time can be 

written as follows: 

8p(t) op 8B(t) op 8p(t) 
ht = oB ht+ op -gt· (16) 

The time derivative of p(t) is assumed to be small for our control purpose. Af

ter approximation, Equation 7 is substituted in Equation 16, with the result 

compared to Equation 15. Hence we determine that 

V(t) sin <P(t) = 27rRp dB(t). 
dt 

(17) 

By taking the partial derivative of the left hand side with respect to V(t) and 

<P(t), and the partial derivative of the right hand side with respect to R, p and 
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dB/dt, and ignoring the incremental change in 8p, the following relationship for 

8</>(t) is obtained: 

8</>(t) = 2rr Rp d[8B(t)] _tan </>(t) [8V(t) _ 8R(t)] . (lS) 
V(t) cos </>(t) dt V(t) R 

Although the variables 8B(t) and 8V(t) can be measured, we can regard them 

as disturbances to the system. 

4.0 FEEDBACK CONTROLLER 

Equations 6, 12, and 18 constitute the system model. The system for the LEB 

is linear and time-varying. Our purpose at this stage is to minimize the error in 

synchronizing phase, while not perturbing the radial position to uncontrollable 

values. Using the system equations, we calculate the controller to generate the 

shift in phase and frequency. A simplified block diagram of a possible system 

is shown in Figure 4. The coefficients of the system equations are calculated 

with respect to time for the ideal case. The input to the controller consists of 

ideal. parameters such as the accelerating frequency, phase of the center of the 

bunch with respect to rf wave, cavity voltage profile, and magnetic field profile. 

The deviations of the cavity voltage and the magnetic field can be obtained by 

measuring their actual value and comparing them with their respective ideal 

values. They can be treated as disturbances to the controller. 

There are several types of controllers one can design to make the loop stable. 

For a linear time-invariant system and a single-input single-output feedback loop, 

there are number of frequency domain techniques available. Well-established 

controllers include the Proportional Integral, Proportional Integral Derivative, 

Phase-Lag, and Phase-Lead types. For a linear, time-invariant multi-input multi

output system, the inverse Nyquist array or decoupling method are widely used. 

Although these techniques can be applied by narrowing the problem to a small 

time-invariant region, the controller will not be adaptive and has no robustness 

to parameter variation and external disturbance. In this context the term "adap

tive" means the ability of the controller to adjust to changes in the parameters 
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Figure 4. Schematic Block Diagram of the Two-Input Two-Output Feedback Loop. 

such that the synchronizing phase and the radial beam position converge to a 

desired value. In other words the controller would be able to track the variation 

in the parameters. Some of the time-domain techniques based on linear state 

feedback theory cannot be applied to our problem since they are very sensitive 

to parameter variations. The nature of the system requires a more sophisticated 

and mathematically sound feedback controller. Controllers based on two different 

techniques may meet the requirement. One of them is known as Model Reference 

Adaptive Controller (MRAC), and the other as Sliding-Mode controller (SMC). 

In the MRAC, a reference model is chosen, the structure and parameters 

of which are well-defined to suit the desired radial position and synchronizing 

phase. The reference model output is compared with the system output. Error 

is then processed in the controller such that the output of the controller driving 

the system is able to produce the desired beam radius and phase. Sometimes, the 

presence of unmodelled process dynamics may induce instability in the control 

loop, leading to beam loss and loss of synchronization. An alternative could be to 

use an adaptive adjustment of the reference model or a sliding-mode controller. 

10 



In the sliding-mode controller, adaptive mechanisms are built into the feedback 

loop once the limits on the parameters are known. 

To understand the principle of advanced feedback controllers, we have simpli

fied the problem by not considering the radial position feedback loop. With this 

condition, the input end in Figure 4 will have no variation imposed by the con

troller to the rf phase. The feedback system will therefore simplify to single-input 

[of(t)] single-output [ow(t)] type. We have made an attempt here to acquaint 

the reader with the design of three controllers for the simple single-input, single

output case. The present report therefore contains the design philosophy of the 

simplified loop. The more complicated multiple-loop situation is not discussed 

here. The system equation for a single-input single-output case is obtained by 

using Equation 12 in Equation 6 above. The non-linear terms are retained, al

though they contribute very little to the phase error, 8'1>'(t). After simplification, 

the following equation is obtained: 

dow(t) = 27rR ( 'Yf ) of(t) + 27rR ( 'Y
2 

) 812(t) 
dt h 'Yf - -y2 hf 'Yf - -y2 

(19) 

27r R ( f ) 27r R ( 1 ) 
- hB 'Yf - -y2 8B(t) - hB 'Yf - 'Y2 8B(t)of(t) 

The system represented by Equation 19 has terms related to variation in the 

bending field. For the purpose of designing the controller we can ignore the field 

perturbations, i.e., 8B(t) = 0, and design the feedback loop, which generates the 

right amount of frequency shift such that ow(t) is minimized to zero. Once the 

controller is designed, we will simulate the loop performance by using Equation 20 

above as system with the effect of field variation included. We will also analyze 

the robustness of the feedback loop with disturbance at the input end. 

It will be convenient if we use Equation 19 in a general state-space form4•5 

with A, B and C as system matrices, u(t) the control signal, y(t) the output 
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signal, and x(t) the state variable. 

x(t) = A(t)x(t) + b(t)u(t) 

y(t) = C(t)x(t) 

Comparing Equation 20 with Equation 19, for hB(t) = 0, we obtain: 

x(t) = hw(t) 

A(t) = 0 
2 

b(t) = 'YT R 
'Yf - 'Y2 

C(t) = 1 

u(t) = .5w(t) + w~t) [ ~r .5w
2
(t) 

27r 
bw(t) = -,;:hf(t) 

w(t) = 27r f(t) 
h 

(20) 

(21) 

Although the system coefficients A(t), b(t), and C(t) are shown to be time

varying, only the coefficient b(t) has such property. Also note that Equation 19 

is now in the linear form which is obtained by grouping coefficients of bf(t) 

and bf(t)2 into the control signal u(t). In this particular case, since the con

trol signal is a quadratic in bf(t), it turns out that separating bf(t) will not 

be a problem once u(t) is known. Figure 5 shows the schematic system block 

diagram of Equation 20. The feedback connection will generate the desired con

trol signal u(t). Without the feedback loop, the system model (Equations 20 

and 21) shows that the phase error grows as a function of the error in the ac

celerating frequency. In view of the importance of the control problem, three 

types of feedback controllers were investigated. The design procedure is quite 

12 



involved and may appear complicated. On the other hand, the need for such 

techniques exists in the accelerator environment and· must be fully explored. 

u(t) 
[A(t), b(t), C(t)] 

y(t) .. 
~ 

TIP-01838 

Figure 5. Schematic Block Diagram of the System Represented by Equation 21 Without the 
Feedback. 

5.0 LINEAR STATE-VARIABLE FEEDBACK CONTROLLER 

5.1 Determining Feedback Gain 

In feedback control jargon, x(t) is called the state of the system. Since we 

are using the state variable to relocate the eigenvalue of the open loop system to 

achieve better response characteristics, it is called the State-Variable feedback. 

This is in fact the modern method of designing the proportional feedback. We 

will determine the feedback gain by assuming b(t), the system parameter, to 

be time-invariant. Since b(t) is varying adiabatically (see Figure 6), such an 

assumption would not introduce errors. With this assumption, we see that the 

open loop system has a characteristic equation with a single pole at the origin. 

With the negative feedback gain k as shown in Figure 7, the new state equation 

of the closed loop system becomes 

:i:(t) = -bkx(t). (22) 

Hence, the characteristic polynomial is equal to 

ac(s) = s +bk, (23) 

wheres is the Laplace parameter. Since our system is first-order we will have one 

eigenvalue to select on the left half of the s-plane5 to obtain a stable closed loop 
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response. The characteristic polynomial of the system with the new eigenvalue, 

say ai, is given by 

a(s) = s + a1. (24) 

In order to achieve the new system response as dictated by the eigenvalue a1, we 

must have Equation 24 made equal to Equation 23. By comparing, we obtain 

the feedback gain k. Thus, 

k = a1. 
b 

(25) 

300 

-=-200 
~ 

0.01 0.02 0.03 0.04 0.05 
lime (secs) 

TIP-01839 

Figure 6. Variation of Function b(t) with 
Respect to Time. 

(Disturbance) 
ud (t) · .--------:__x ... <t .... ) __,. 

x - b (t) u (t) 

TIP-01840 

-k 
._ __ ___,--- xd (t) 

(Measurement error) 

Figure 7. Schematic Block Diagram of the 
State Variable Feedback Loop. 

5.2 Analysis of the Loop Performance 

It will be easy to understand the stability of the loop by looking at the phase 

plane portrait of the system with and without feedback. Figure 8 is a plot of 

x against x for the system Equation 20 for the SCDR LEB with a frequency 

shift of 1 KHz step. The phase trajectories in the upper half of Figure 8 move 

right and those on the lower half move left. They grow with the frequency shift, 

and the trajectories .show no signs of meeting at the origin. This means that 

the time response of the open loop system is divergent. Figure 9 shows the plot 

of the phase trajectories for the new system represented by Equation 22, with 

k = 1 and 5. Here we see that the system is asymptotically stable whatever the 
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initial conditions on x are, since the trajectories are directed to the origin. The 

time response for Figure 7 is shown in Figure 10 for k = 2 and k = 20. Also, 

Figure 11 shows the corresponding plot of the frequency shift imposed by the 

feedback loop with respect to time. The state feedback loop will work very well 
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Figure 8. Phase Trajectories for the Open 
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when there is no disturbance on the system. Disturbance could be due to field 

error or measurement errors in the synchronizing phase. With the field error 

there is frequency shift, say ofd, disturbance is represented by Ud in Figure 12. 

A measure of the amount of disturbance can be obtained from Equation 12 for 

no orbit shift (i.e., fJR = 0). By substituting Equation 26 in Equation 21, ud is 

obtained. In Figure 12 we show the plot of the function ud for fJB / B of 5 x 10-4 . 

Since we worry about the robustness of the loop for about 8 ms 

(26) 

before the extraction, we can put a step of magnitude ud = 11 radians, hold it 

until the extraction time, and observe the time response of the state variable x. 

This is shown in Figure 13. It is clear that the system is not robust since the 

phase error is not held zero (or at least to a tolerable value) under external 

disturbances to the loop. When there is measurement error in the synchronizing 

phase (i.e., when xa is not equal to zero in Figure 7), the loop does not show 

desirable performance. Increasing the feedback gain would reduce the effect, but 

would invariably enlarge the control signal which leads to increased frequency 

shift. This will create beam oscillations. 

Another useful test is to study the sensitivity of the loop to variation of the 

system parameters within the operating limits. In our problem, the system pa

rameter is b(t) (see Equation 20) which is a function of the accelerating frequency. 

To estimate the effect of parameter variation on the phase error, we assumed a 

change of up to 1 % in b( t) in the system equation, and then closed the feedback 

loop. The loop response was not very different from the ideal curve of Figure 10. 

The simulation was also carried out with the system as Equation 19 instead 

of the simplified system Equation 20. fJB(t) was assumed to have Gaussian noise 

with a normal distribution such that 

fJB(t) = 5 x 10-4 Bmax [rand(normal)). (27) 
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The time response of the phase error plot is shown in Figure 14. Although the 

above figure shows a controlled minimization of the phase error, we have seen 

that the state feedback loop is not robust to external disturbance. Alternatively, 

one may argue to increase the gain of the feedback loop. As we saw earlier 

this may lead to beam oscillations due to large frequency shift. This suggests 

that from a practical standpoint the synchronization will not be accurate. Hence 

an adaptive and a robust controller may look more promising than the state 

feedback. We discuss at first the design of a sliding-mode controller followed by 

the model reference adaptive controller. 

6.0 SLIDING-MODE CONTROLLER 

6.1 Variable Structure System 

In the discussion related to linear state feedback, we had considered a negative 

feedback loop. The structure of the negative feedback is not the same as that 

of the system with positive feedback. If we now devise a mechanism to switch 

the negative feedback to positive feedback, we would end up with the phase 
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Figure 14. Time Response of the State when the Field Error of 5 x 10-4 is Considered in the 
System Equation 19. 

portraits in the I and III quadrants as shown in Figure 15. However, at this 

stage the point to emphasize is that by changing the sign of the feedback loop, 

we basically toggle the structure of the system from one state to another. Such a 

feedback control system, where the structure of the system is altered, is known as 

a Variable Structure System (VSS). The sliding-mode control is a subset of the 

Variable Structure System. Here we intentionally switch the sign of the feedback 

whenever a selected point in the x-x coordinates, called the representative point, 

crosses certain boundaries. The theory behind the .sliding-mode control is quite 

involved. The reader is urged strongly to refer to the only known book in the 

literature, by U. ltkis,6 for a detailed explanation of the basic principles of the 

subject. This book deals with a more classical sliding-mode controller design. 

More up-to-date information can be obtained from the research papers, and some 

of them are listed in this report.7- 9 The modern sliding-mode controller has been 

heavily modified to include additional features. 

The basic design of the sliding-mode control system is divided into the meth

ods of selection of the switching line and appropriate substructures of the feedback 
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Figure 15. Phase Trajectories. 

controller. In our problem we consider the switching line in the IV quadrant of 

Figure 15, such that the slope of the line a is under our control. Thus the 

following equation can be considered as the switching line: 

S(t) = x(t) +a J x(t)dt = 0. (28) 

In Equation 28 above, a is equal to the eigenvalue of the closed loop feedback 

system. By differentiating Equation 28, we obtain 

S(t) = x(t) + ax(t) = o. (29) 

For the feedback loop to have the sliding regime, we have to satisfy Lyapunov's 

stability condition, which is given by 

S(t)S(t) < o. (30) 

This condition must be satisfied under all circumstances. 

The Variable Structure Systems allow selection of control laws so that an 

unstable system can be stabilized by the controller. Another important property 
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is that for the correct selection of the control function u(t), the phase trajectory 

will converge to the switching line. When the representative point describing the 

initial state of the system (in this case the initial phase error, b'w(t)) reaches the 

straight line (Equation 28), then it will slide along the line until it hits the final 

steady state point (in this case the origin) on the phase plane. The behavior 

of the system will depend not on the system parameters but on the external 

parameter a shown in Equation 29 above. A suitable control law is 

u(t) = -(k1 lx(t)I + ko)sgnS(t), 

where sgn S ( t) function is given by 

S(t) ~ 0 

S(t) < 0 

sgnS(t) = 1 

sgnS(t) = -1 

(31) 

(32) 

By substituting the system Equation 20 in Equation 29, and then using Equa

tion 31 in place of u(t), we get 

S(t) = -[k1 lx(t)I + ko] sgn S(t) + ax(t), (33) 

where ko is a positive constant. Since the system parameter b(t) is a positive 

quantity, to satisfy the Lyapunov stability condition dictated by Equation 30 

above, we must select ki such that 

ki > sup cb~)I) , (34) 

where "sup" is pronounced as "supremum." It means the constant ki must be 

higher than the greatest value of the ratio of the eigenvalue a, to the absolute 

value b(t) of the system. Once the stability condition (Equation 30) is satisfied, 

the theory suggests that the sliding-mode exists and the feedback loop will be 

robust in relation to the change of parameters and load. The new feedback 
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controller comprised by Equations 28 and 31 is shown in Figure 16. The expanded 

view of the controller structure is shown in Figure 17. As we can see from these 

figures, there are three constants in the controller which play an important role 

in the existence of the sliding mode conditions for reaching the sliding regime. 

We have investigated the controller properties, and the motion of the system in 

the phase plane is described in the following section. 

x = b (t) u (t) 
x (t) 

s (t) ... x (t) + a Ix <t> dt 

u (t) "" -(k1 Ix (t)I + k0) sgnS (t) 

TIP-01849 

Figure 16. Block Diagram of the Feedback System for Digital Implementation. 

x = b (t) u (t) 
x (t) 

Figure 17. Block Diagram of the Feedback System for Analogue Implementation. 

6.2 Analysis of the Loop Performance 

At first the phase trajectories of Figure 15 are extended to include the control 

law described by Equation 31. The synthesis of the possible combination of closed 
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loop system equations are shown in Table 1 below. The new phase trajectories are 

shown in Figure 18 for ko = 10 and ki = 5. The phase trajectories are not exactly 

straight lines due to the time variation in the system parameter b(t). As we can 

see from this figure, the stable phase trajectories converge to a value bko on the 

x axis. Also, the unstable phase trajectories start moving away from (0, ±bko) 

points. The significance of ko will be made clear later in the discussion. Table 1 

shows all the modes of system equations we would encounter in the closed loop 

operation. If the constant ki is selected correctly, as dictated by Equation 34, 

then the stability of the closed loop system will be ensured. In the phase plane, 

a representative point set by the initial conditions will follow the family of the 

phase trajectories of the plane as in Figure 18 and would eventually converge to 

the origin. This point will be made clearer by using the simulated results shown 

in Figures 19 and 20. 

Table 1. Closed Loop System Equations. 

x(t) < 0 x(t) > 0 

S(t) > 0 x = bk1x - bko x = -bk1x - bko 
III Quadrant IV Quadrant 

S(t) < 0 x = -bk1x + bko :i; = bk1x + bko 
II Quadrant I Quadrant 

In the above figures we have plotted the variables x, :i; and S with respect 

to time for the first 8 ms with an initial phase error of 5 m. The curves shown in 

Figure 20 represent the phase trajectories; the arrows indicate the direction of 

motion of the representative point for the time response observed in Figure 19. 

The phase trajectories are shown up to 50 ms time period. The curves describing 

the motion of the system in the phase plane consist of two parts. The first part 

of the curve [point (a) in IV quadrant to point (b) in III quadrant in Figure 20] 

depends on the eigenvalue, a, feedback gain, ki, and the initial conditions of 

the representative point. The salient points are also shown in Figure 19. From 
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Figure 19. Variation of x, x and S for First 8milliseconds. 

point (a) to (b) in Figure 19 the sliding variable Sis positive and time derivative 

is negative. Hence the Lyapunov's stability condition (Equation 30) is valid. 

When the sliding variable S becomes negative [at point (b )] the representative 

point has reached the switching line (Figure 20), the state of the system is now 

in the sliding regime. Here, since S is negative, x becomes positive, and the 
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Figure 20. Phase Trajectories for the Time Response of the State Shown in Figure 19. 

representative point has moved to point ( c ). From hereafter the motion is sliding 

on the switching line (Equation 28). We can see the sign of S changing more 

often. Everytime there is a sign change in S while sliding on the switching line, 

the trajectories jump from the II quadrant to the III quadrant. Even though the 

trajectories are pointing away from the origin in the III quadrant, the net effect 

is sliding. This is because the condition dictated by Equation 30 is the sufficient 

condition and is fully satisfied all along the sliding regime. The motion of the 

representative point will eventually converge at point ( d). Thus the loop remains 

stable. Although :i; changes sign due to the control input u (the small frequency 

shift, of), the output of the system, x, would not alternate in sign. In other 

words, there will not be chattering in the output variable. Also, the decay of 

the output from the point when the switching takes place [i.e., from point (b) to 

( d)] is controlled by the eigenvalue, a, which is independent of the system time 

constant. 

In Figures 21 and 22 we have shown the plot of the decay of x and S with 

respect to time for a = 200 and 1500, ki = 3 and 20, and ko = 0.5 (fixed). In 

Figure 22, x is unstable for ki = 20, since it violated the condition shown by 

Equation 34. It is clear from these figures that the settling time is about 1/a. 

The frequency shift of generated by the feedback controller and the expected 

variation on the radial orbit shift are shown in Figure 23. Since the frequency 
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Figure 22. Decay of the State and the Sliding 
Variable, with a = 1500. (Note 
the system is unstable for k1 = 3.) 

2000 

1000 --N 

~ 0 ( -"° -1000 -
-2000 I I I I 

0 0.01 0.02 0.03 0.04 0.05 
a-200 k0 -o.5 

2 

- 1 k1 -20 -
E 
§. 0 
a: 
"° -1 -

-2 I I I 

0 0.01 0.02 0.03 0.04 0.05 
Time (secs) 

TIP-01856 
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shift is alternating during the sliding regime, it may create unwanted beam excur

sions. However, the magnitude of these frequency oscillations can be controlled 

by adjusting the external feedback constants ko, k1, and a:. We can see some 

advantages when k1 is allowed to vary with time without breaching the stability 

condition. However, the best value of k1 can be correctly selected by trial and 

error. 

The robustness of the controller can be seen by subjecting the feedback system 

to an external disturbance Ud of 11 radians/sec. Time response of the state 

variable x with state feedback controller and sliding-mode controller is shown in 

Figure 24. The state variable x is held small (of course, alternating to a small 

amplitude) by the sliding mode controller; hence it shows the robustness against 

disturbance. It is also important to note that ko must be set slightly higher than 

ud-the highest value of the expected disturbance (in this case, it was set at 11.8 

in Figure 24). When there is disturbance, the feedback controller generates the 

control signal, u, such that it opposes the external disturbance signal. Since the 

constant ko controls the magnitude of disturbance rejection, it would be useful 

to have it set very high (say as high as 60, for 1 KHz disturbance rejection) as 

in Figure 25( a). The effect is not very encouraging since the time response of 

the state becomes more oscillatory near extraction. The oscillations cannot be 

damped by varying the constants [see Figure 25(b) and Figure 25( c )] unless we 

increase the sampling time as seen in Figure 25( d). Thus x has to be measured 

at four times the MEB revolution or more, which means fast electronics, in the 

case of digital implementation. Only higher sampling can cure this problem. 

Figure 26 shows the time response of the state variable, x, for the system 

Equation 19, with the field error described by Equation 27, the disturbance signal 

of ud = 11 radians/sec about 8 ms before extraction, and with 20% measurement 

error in the state x (i.e., Xd = 0.2x ). 

If we use the sliding-mode controller of the type described above in the feed

back loop for an initial phase error of as much as 5 meters, Figure 23 shows a 
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sudden frequency shift of 2KHz. This is predominantly set by the constant k1. 

We can give a smooth change in the frequency shift by using time variation to k1 

such that it is initially small and then increases to a highest value. Also, the oscil

lations in the frequency shift after the sliding has taken place may be detrimental, 

since they may induce beam oscillations if the magnitude of the frequency shift 

is large. The alternative solution would be to design a more sophisticated sliding 

mode controller by dividing the control function u into two parts, a continuous 

part and a switching part. The continuous part holds the phase error to zero and 

behaves very much like the state feedback controller. Hence the frequency shift 

imposed by the feedback loop will not be oscillatory. The switching part intro

duces robustness into the loop and hence takes care of the disturbance rejection 

and problems related to measurement error. The oscillations in the frequency 

shift after the sliding has taken place will depend on the amount of disturbance 

rejection needed. Such a controller has been synthesized and will be reported 

elsewhere. However, it will be useful to study a simple model reference adaptive 

controller in the context of the single-input single-output feedback loop we have 

been discussing. 
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7.0 MODEL REFERENCE ADAPTIVE CONTROLLER 

7 .1 Selecting the Reference Model 

A fundamental difference of the adaptive control with the state feedback 

controller is the way the stability of the overall system is defined for all initial 

conditions. A thorough analysis of the stable adaptive feedback systems is shown 

in Reference 10. This reference is thought to be more up-to-date at the time of 

writing this report. As we mentioned earlier, in this method of feedback control 

a reference model is needed. Since we know the parameter of the system to 

be controlled it will be easy to decide on the choice of the reference model. A 

suitable reference model for our feedback control problem can be described by 

the first order differential equation 

(35) 

where the constant am < 0 and must be non-zero for reasons made clear later, 

km is another constant, and r(t) is the reference signal which has to be non-zero 

and time-dependent, and is chosen such that the output of the reference model, 

Xm(t), is close to the desired output from the system, x(t). Now let us select the 

adaptive controller such that 

u(t) = 8(t)x(t) + k(t)r(t). (36) 

The block diagram consisting of the reference model and the adaptive controller 

is shown along with the system in Figure 27. The unknown parameters 8(t) 

and k(t) are adjusted by the error signal obtained after subtracting the output 

of the reference model, xm(t), with the system output, x(t), so that the loop 

automatically drives the error signal to zero. If we select r(t), the reference 

signal, to be very small (say less than a centimeter peak) and time-varying, then 

the output of the system will be driven equal to Xm, since the error signal e(t) 

is held zero by adjusting 8(t) and k(t). The adjustment laws for 8(t) and k(t) 
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x = b (t) u (t) 
x (t) 

u (t) x (t) 
Error signal + 

Adaptation law 
e (t) 

u (t) = e (t) x + k(t)r 

Controller Reference model 

Reference signal 
TIP-01860 

Figure 27. Block Diagram of the Model Reference Adaptive Controller. 

are designed such that the goal of reducing the error signal to zero is met, and 

while doing so the entire system contains all signals within the limits. The design 

technique is shown below. 

While designing 8(t) and k(t), we assume that the system is time-invariant. 

Since the reference model output must generate the desired signal, the rule is 

to choose the controller parameters such that the combined transfer functions of 

the controller and the system are equal to the transfer function of the reference 

model for some values of k(t) = k* and 8(t) = 8*. By substituting Equation 36 in 

the system Equation 20, the combined controller and system equation becomes 

x(t) = b8(t)x(t) + bk(t)r(t). {37) 

Comparing Equation 37 with the reference model Equation 35, we obtain 

8(t) =a: = 8* (38) 

k(t) = k; = k* (39) 

where 8* and k* represent the parameters of the adaptive controller at which 

the combined controller and system equation is equal to the reference model. 
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Equations 38 and 39 will be valid as long as b > O; such is the case in our 

problem as shown in Figure 6. Since we need to determine adjustment laws for 

the adaptive controller parameters B(t) and k(t), let us define the error terms as 

follows: 

e(t) = x(t) - xm(t) (40) 

~(t) = B(t) - B* (41) 

t9(t) = k(t) - k* (42) 

Since B* and k* are some fixed values, their time derivatives are valid. 

~(t) = iJ(t) (43) 

J(t) = k(t) (44) 

Let us represent B(t) and k(t) in terms of the error signal e(t), state variable x(t), 

and the reference signal r(t), (since we know all these signals), and the system 

parameter b, and meanwhile satisfy the Lyapunov stability condition; then we 

would have completed the process of adjusting the controller parameters. Since 

we have three error equations, let the candidate for the Lyapunov function be 

1 
V(t) = -( e2 + e + 192

). 
2 

Differentiating the Lyapunov function with respect to time, we obtain 

V(t) = ee + ~~ + -aJ. 

(45) 

(46) 

For global stability of the loop and to achieve bounded signals for the controller 

parameters, Lyapunov stability theory requires the function V :::; 0 (must be 
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semi-definite) and the function V > 0 (must be positive-definite). To satisfy 

these conditions let us express the error signal e(t) as follows: 

e(t) = x(t) - xm. (47) 

Substituting Equations 35 and 37 in Equation 4 7 and making use of Equations 

41 and 42, we obtain 

e(t) = be(t)x + b8*x - amXm + fn9(t)r(t) + bk*r(t) - kmr(t). (48) 

Using Equation 40 for x(t) in Equation 48 and replacing am by b(J* and km by 

bk* from Equations 38 and 39, we obtain 

(49) 

Substituting Equation 49 in Equation 46, 

(50) 

By arranging 

e = -ebx = il(t) (51) 

J = -ebr = k(t) (52) 

and setting am < 0, we can guarantee that V $ 0. Also, Equation 45 suggests 

that V > 0. Hence Equations 51 and 52 become the adaptive laws for the 

controller. After including the adaptive laws, the new block diagram is shown in 

Figure 28. 
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Figure 28. Model Reference Adaptive Controller. 

7 .2 Analysis of the Loop Performance 

Simulations of the controller performance are carried out with the initial 

phase error of 5 meters and with am = -200, km = 1. The magnitude of the 

reference signal is chosen to be small and time-varying. The lowest frequency 

of the time-varying reference signal must be chosen at least about 10 times am. 

Figures 29 to 31 show different parameters of interest to the problem. 

The adjustment law to the parameters of the controller [B(t) and k(t)] depends 

on the state error signal e( t), the state x( t) and the internal reference signal r( t). 

The parameter errors (Equations 41 and 42) do not necessarily converge to zero 

(see Figure 30), but may change more slowly with time. 10 The error signal e(t) 

will converge to zero no matter what the controller parameter errors are. When 

the error signal is zero, we can say that the controller is adapting to system 

conditions. If we set the magnitude of the reference signal r(t) small, then the 

reference model output will be small and hence the output of the system will 

be small. Convergence of the controller parameter errors to zero depends on 

the choice of the relevant reference signal. The interested reader is referred to 

Reference 10 for further discussion. In our simulation we have selected r( t) -
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0.01 [sin(wt)+sin(2wt)]. The constant of the reference model, i.e., am, is selected 

close to the eigenvalue we used in our state feedback controller, which depends 

on the desired settling time of the state. Also, the constant km is selected based 

on the desired value of the steady state error. 

In Figure 32 we have shown the time response of the state to the steady 

disturbance signal of amplitude ud = 11 rad/sec imposed 8ms before extraction. 

The feedback loop is trying to adapt to input disturbance but is taking longer, 

depending on the time constant of the reference model and the type of reference 

signal. By comparing Figure 32 with Figure 13, we see no such adaptation 

taking place with a state feedback controller. If we increase the gain of the 

adaptation process, then there would be sufficient reduction in the phase error. 

This is shown in Figures 33 and 34. These figures were plotted by multiplying 

Equations 51 and 52 by a constant ka, which is set equal to 60. Since large 

adaptation gain increases the frequency shift (Figure 34), a suitable time variation 

to ka may become necessary. However, the controller is not robust as compared 

to the sliding-mode feedback in Figure 24. The time response of the state with 

errors is shown in Figure 35 for the model reference adaptive controller. Recent 

advancements in achieving robustness for this type of controller are discussed 

in Reference 11. The major disadvantages with this controller are due to the 

stability problems associated with unmodelled dynamics. A computer simulation 

with the accelerator lattice code would be a good way to test the controller 

performance for all the known conditions. Since it will be a long time before 

we see this type of synchronization working, we are considering the proposal to 

simulate the performance using lattice codes. 

8.0 PHASE MEASUREMENT 

An accurate detection of the phase error is important to guarantee the con

troller operation. The phase error can be detected for one or two MEB turns 

depending on the magnitude of the error. Waiting for much longer than one 

MEB turn to measure the LEB phase could lead to large error. The consequence 
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Figure 31. Decay of Frequency Shift with Figure 32~ Time Response of the State Under 
Respect to Time. Disturbance, ud. 

would be greater frequency shift generated by the feedback controller, which 

could lead to beam oscillations. The MEB completes about 3774 turns before 

it is ready to accept the beam from the LEB; if the phase is measured at every 

MEB turn, there will be 377 4 points in the LEB cycle where the frequency shift 

35 



5..-~---.-~~....-~---T~~"""T"""~--. 

4 
3 

2 
e1 
C1> 

I-~ 
)( -2 

-3 
-4 

-50 0.01 0.02 0.03 
Time (secs) 

0.04 0.05 

TIP-01866 

Figure 33. Time Response of the State Under 
Disturbance, ud. (Adaptive gain, 
ka = 60.) 
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Figure 34. Decay of Frequency Shift with 
Respect to Time. (Adaptive 
gain, k 0 = 60.) 

Sr-~-r-~-r~~~~-r-~--. 

4 
3 
2 

e1 
J!! 
~ 0 
- -1 
)( -2 

-3 
-4 
-5~~_.,~~-'-~--'....._~......L..~..........J 

0 0.01 0.02 0.03 0.04 0.05 
Time (secs) 

TIP-01868 

Figure 35. Time Response of the State with Field Error (Equation 27) with Disturbance of 
ud = 11 rad/sec and 20% Measurement Error in the State x. 

has to take place. This is possible if the hardware can extract the phase error 

from the measured LEB phase and then solve the controller algorithm within the 

available time. One of the ways the LEB phase can be measured approximately is 

by time-tagging the arrival time of the LEB reference wave from the instant the 

MEB reference wave completes the turn. In the development system considered 

here, a Time-to-Digital Converter (TDC) will be used to record the arrival time 
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of the LEB reference wave. Using this time of flight information, the phase of 

the LEB reference wave is calculated in terms of the path length by using the 

following equation: 

I f(t) + bf(t) / 
wmeasured(t) = 27r[R + hR(t)] h T (53) 

where r 1 is the arrival time of the LEB reference wave, bf(t) is the frequency shift 

of the LEB frequency in the previous MEB turn, and hR(t) is the average radial 

position offset during the time-tagging period. Equation 53 assumes no frequency 

shift while measuring the arrival time of the LEB reference wave. The phase error 

is calculated by subtracting the measured LEB phase values from those shown in 

the "trip-plan" earlier for a given MEB turn. We are considering the possibility 

of using a Digital Signal Processor to extract the phase error and compute the 

frequency shift. We have done the computer simulation of the above concept 

using two rf waves. The rf wave representing the MEB rf signal was running at 

the MEB injection frequency, and the other rf wave frequency was varied between 

47.518MHz and 59.776MHz in 50ms. We stepped through the time signals at 

1 nanosecond time interval with the initial LEB rf wave offset in phase equivalent 

to 5 meters in space. We extracted the phase information using Equation 53. 

The results of simulations are encouraging. 

9.0 CONCLUSIONS 

A scheme is outlined for locking the phase of a selected rf wave in the Low 

Energy Booster to a selected rf wave in the Medium Energy Booster. A mathe

matical model is derived to design the global feedback controller which is expected 

to adjust the relative phase of the selected rf waves in two rings and also to main

tain low radial orbit shift. The control parameters are (1) the rf signal frequency 

and (2) the phase of the beam bunch with respect to the zero crossover of the rf 

wave. The presence of field errors (both electric and magnetic) can be considered 

as disturbance to the controller. 
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The controller design problem becomes more complex when all the feedback 

loops affecting the synchronization are considered. ·To understand the problem 

clearly, we considered only the control of the synchronizing phase by varying 

the accelerating frequency and leaving the radial feedback loop open. In a final 

scheme, however, we need to include the radial steering loop. A linear state 

feedback controller is compared with the modern sliding-mode and model refer

ence adaptive controllers. From the disturbance rejection point of view due to 

field errors, it can be concluded that the sliding-mode controller is good, but it 

may introduce beam oscillations unless we modify the algorithm shown in this 

report. Although the model reference adaptive controller is undergoing adapta

tion, it does not guarantee local stability when we introduce the second feedback 

loop.10 Also, the model reference controller lacks ability to generate a good con

trol signal when the system is not accurately modelled. Furthermore, to alleviate 

the switching effects in the sliding-mode controller, we have identified a scheme 

which would combine the sliding-mode properties with the linear state feedback 

controller. This is done by superimposing the switching part on the state feed

back controller to achieve the robustness due to field errors. 
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