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SSCL-334

Recent Non-Linear Dynamics Studies for the sse

A. Chao

Abstract

This is a report on some recent nonlinear dynamics research activities for the Super

conducting Super Collider (SSC). These studies, mostly on-going, are accomplished not by

the author but by the many researchers mentioned in the references. The author is merely

a reporter of this active research area. Materials already covered in a previous review! are

not repeated here.
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1.0 NONLINEARITIES IN THE sse
The leading nonlinearity in the SSC comes from the multipole error fields in its

4000 dipole magnets. The field errors are specified by the error coefficients an and bn

where

/:)'By + is»; = e, L(bn + ian)(x + iyt,
n

(1)

with Bo the design bending field. These multipole errors depend on the dipole magnet

aperture. A typical set of multipole errors used in recent studies are listed in Table 1 for

the cases of 4 em and 5 ern apertures.f Observe that the nonlinearities are on the order of

10-4 , meaning that particle motion is approximately 99.99% linear. However, the 0.01%

nonlinearities can and will build up over many turns to harm the beam.

Table 1. A Typical Set of Systematic and Random Multipole Coefficients
for Dipoles with 4 ern and 5 ern Apertures. The units for an and b«
are 10-4 cm-n .

Random multipole errors (rms) 4cm 5cm

b2 0.4 0.272

b3 0.3 0.18

b4 0.7 0.35

a2 0.6 0.41

a3 0.7 0.41

a4 0.2 0.1

Systematic multipole errors 4cm 5cm

b2 -3.0 -1.9

b4 0.2 0.09

b6 -0.05 -0.017

In some studies, in addition to some relatively minor variations of the multipole values,

the systematic multipole coefficients listed in Table 1 are assigned the value of 0.05 units

up to n = 6 to represent a plausible situation for a 4 em aperture design, and scaled by

the factor (4/5)n for the 5 ern case.f

There is another source of nonlinearity in the SSC, namely that due to the beam-beam

interaction, which is not discussed in this report.



2.0 SURVIVAL PLOTS

Most of the recent nonlinear dynamics studies of the SSC is to determine the long

term single particle stability during injection in the nonlinear environment of Eq. (1). Here,

long-term means a real time of 30 minutes (for injection process), or 6 million revolutions

around the SSC. 4 Typically, this is done by particle tracking simulations. First, the SSC

is modeled with all dipoles assigned field errors according to Table 1 or its variations, an

orbit distortion with 1 mm rms added, chromaticities corrected, then a particle is launched

and numerically tracked for up to several million turns to see if the particle remains in

the vacuum chamber. The initial conditions (xo,x~,Yo,yb,zo,oo)are such that Xo = Yo
when scaled to the maximum ,a-function in a FODO lattice of the SSC arcs, zo is chosen

to be 3 times the rms bunch length, x~ = yb = 00 = O. Results are typically presented as

a "survival plot",5 such as Figure 12,6 ,7,8 and Figure 23, in which the number of turns a

particle survives is plotted as a function of Xo = Yo.

In Figure 1(a), it can be observed a sharp increase of survival turns as Xo = Yo is reduced

to 5.3 mm, which is somewhat loosely identified as the "dynamic aperture". Figures 1 and 2

quantatively allow a comparison of the 4 and 5 em designs, which has recently led to the

change of the SSC dipole aperture from 4 to 5 ern. 4

In performing the long term tracking as shown in Figures 1 and 2, tracking programs

were developed, particularly Ztrack6,7 and SSCTRK.9 Ztrack is a post-TEAPOTIO pro

gram that takes advantage of the supercomputing architecture and speed. SSCTRK gains

additional computing speed by concatenating elements (more on this later).

3.0 BEHAVIOR NEAR THE DYNAMIC APERTURE

What is the nonlinear dynamics mechanism that causes the particle to be lost after mil

lions of revolutions? This requires looking into details of particle motion in the immediate

neighborhood of the dynamic aperture.

Just inside the dynamic aperture, particle motion exhibits the behavior of bounded

chaotic motions, as illustrated in Figure 3. 11 Note in Figure 3(b) that a bifurcation occurs

after 15000 turns, indicating an abrupt occurence of chaotic behavior, but as shown in

Figure 3(c), the chaotic motion is bounded.

To study the behavior just outside the dynamic aperture, the particle which survived

nearly one million turns in Figure l(a) is studied in more detail. 12 Figures 4(a) and (b)

show the horizontal and vertical Courant-Snyder amplitudes of this particle in the last

512 turns of its life. Note that the significant increase of the amplitudes occur only in

the last 30 turns or so. The particle motion seems quite stable for 1 million turns and is

2
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Figure 1. Survival Plots for the sse Using Program Ztrack Assuming Errors in Table 1. (a) 4 em aperture.
(b) 5 em aperture. Same random number seed is used in both cases.
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Figure 3. Particle Motion Exhibits the Behavior of Bounded Chaotic Motions Inside the Dynamic
Aperture.

then lost quickly without any warning. For comparison, the first 8000 turns of the particle

motion is shown in Figures 4( c) and (d), indicating that nothing drastic has happened for

1 million turns.

Figure 5(a) shows the Fourier spectrum of the horizontal displacement of the particle

in the last 512 turns. The same is done for the next-to-last 512 turns in Figure 5(b). Some

of the low order resonances are indicated by dotted vertical lines. Hopefully, the difference

between Figures 5(a) and (b) will give a hint as to which resonance(s) is responsible for

the last surge of unstable motion. Details of this study is continuing.

It may be necessary to know the phase space structure in the immediate neighborhood

of the dynamic aperture (e.g. is there a "black hole" in the phase space causing the long

term particle loss? If so, how big is it?). To study that,12 the one-million-turn particle

is tracked backward in time for 2000 turns and the x displacement is varied by a small

amount and then tracked forward for 10 000 turns to see if/when it gets lost. Figure 6

shows some of the preliminary results. The vertical axis shows the growth rate defined to

he 10 000 / k . where k is the number of turns the particle survives. It also shows a complex

behavior just around the dynamic aperture. As the particle enters inside the dynamic

aperture, the noisy behavior presumably quiets down quickly. This study is continuing.
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4.0 ACCELERATOR MODELLING AND TAYLOR MAPS

The map concept is a familiar one. The idea is that there is no point knowing accel

erator details from location A to B, as the desired information is the map between them.

The Courant-Snyder matrix is a map for linear motion. With nonlinearities, expansion

around the closed orbit provides a nonlinear map which progressively loses accuracy as

one deviates from the closed orbit, but should in principle, be accurate if the deviation is

small enough.

This premise leads to the simplest representation of a nonlinear map, i.e. a Taylor map

of order AI (Courant-Snyder map is the special case for M = 1)

M

XI = I:,ckxf,
k=l

(2)

where Xi represents components of the initial coordinates and momenta of the particle

under consideration, X f represents their final values after completing one turn.

The main task of an accelerator theorist is to model the accelerator. His accelerator

model is invariably some form of a map. Given nonlinear magnetic fields, the effort is to

see if a particle motion is stable. Since each magnet is really a thick element, the way to

find the particle motion through it seems to be by ray-tracing with an infinitesimal step

size. But this is a bad model for the sse: there is no chance to study the problem this

10



way because there are 4000 such magnet elements-per-turn of the sse and the stability for

107 turns needs to be studied. Therefore, it is necessary to compromise, and to do it in such

a way that physics are not lost. This leads to the art of accelerator modelling. The difficult

job of preparing a tracking code is not so much of developing the code itself. Rather it is to

decide on the tradeoff between computing speed and the degree of simplification (therefore

risk of losing physics) of the accelerator model.

To model an accelerator, it is necessary first to model each magnet element. Perhaps

each magnet element can be modeled by a single thin-lens kick? If so, the tedious ray

tracing of each element can be much simplified. Perhaps field errors in the magnet ends can

be ignored for high energy accelerators? These are issues to be addressed. In the present

sse studies, it is assumed, the answers of the above questions are positive. Obviously

these assumptions have to be reconfirmed in more detail later.

There are several ways to represent a single element, linear or nonlinear, by a map.

Ray tracing is one way of representing the element. Thin lens approximation is another,

valid for short elements. One of the intermediate examples between these two extremes is

a canonical integration technique valid to 4-th order in the element length. 13,14

Figure 1 was obtained by an element-by-element tracking using thin-lens approxima

tion, i.e., each dipole is assigned a nonlinear kick in the middle according to the integrated

multipole strengths. The thin-lens model makes it possible to track the sse for a large

number of turns.

To speed up the simulations further, two approaches have been taken: by concatenating

elements and by one-turn maps. In one concatenation effort, which yielded Figure 2,3,9,11

the 10 nonlinear kicks in each FODO cell (containing 10 dipoles) are concatenated to 4.

This simplification is plausible, since the phase advance per kick, is only about 11"/8 after

concatenation.

This concatenation of neighboring elements can in principle be done for longer dis

tances. For example, consider an accelerator whose only nonlinearity is a thin-lens sex

tupole. In this case, X f for one turn can be written as a second order power series in Xi,

i.e. the entire accelerator can be concatenated into a 2-nd order Taylor one-turn map. In

case of 2 thin-lens sextupoles, the exact Taylor map will be 4-th order. In case of an sse
with 4000 dipoles, each containing a thin-lens sextupole, the one-turn Taylor map will have

to be 24000_th order. In case it is necessary to include up to an and bn in the dipoles, the

Taylor map has to be n4000_th order, which is impractical to say the least. Some drastic

truncation is needed. For sufficiently small amplitudes, one expects that a map of modest

order. say 12-th, will suffice. If so, the accelerator model is drastically simplified, i.e. an

11



accelerator with 4000 nonlinear elements is reduced to a single I2-th order Taylor map.

The concatenation length in this case is the accelerator circumference.

Now the question is how to generate a 12-th order map effectively. Relatively low order

maps were generated in programs such as TRANSPORT15 and COSy16, and have been

widely used in the past. These map generation processes involve explicitly defining the

Taylor coefficients in the program.

With the advent of the differential algebra (DA) technique.U map generation has been

made much simpler. A I2-th or even higher order Taylor map can be generated with ease.

Softwares are developed for this purpose and they are now extensively used in the SSC

studies and elsewhere. For example, the program ZMAp18 can be used to extract Taylor

maps up to I6-th order in 6-D phase space. The program ZLIB19 is a library that can

be used to perform various map manipulations. The capability of extracting Taylor maps

from SSCTRK using ZLIB has also been implemented.f"

Figure 7 shows the tracking result using one-turn Taylor maps of various orders for the

4 ern aperture case corresponding to Figure I(a).21 One observes that, for this case, the

ll-th order map reproduces the element-by-element result very well, up to 1 million turns,

including the sharp increase of survival time around 5.3 mm. However, this is not true if

the 10-th order map is used, although it reproduces the behavior beyond 5.3 mrn. Similar

map studies for the 5 em aperture case corresponding to Figure I(b) are shown in Figures

7(c) and (d) with 12-th and ll-th order maps, respectively. One notes that both maps

reproduces the element-by-element results well except that the ll-th order map predicts a

slightly larger dynamic aperture.

Figure 8 shows the turn-by-turn comparison of the ll-th order map tracking and the

element-by-element tracking results (two results superimposed) for the first 400 turns in

the x- and y-phase spaces for the 4 em aperture case. All 400 data points fall on top of

each other within the resolution of the figure. The agreements are very good.

To generate a survival plot using Ztrack for 1 million turns takes about 200 hours of

CPU on the CRAY. At present, an ll-th order Taylor map (a 6-D map but holding 8

constant) takes about 12 hours to generate, and tracking using the ll-th order map for

10 million turns takes about 5 hours. A 6-th order map takes about 1/2 hour to generate.

In addition to saving CPU time, maps have the advantage that the same map can be used

if one wishes to change the launching conditions. As will be mentioned next, maps also

allow analytical studies. On the other hand, one weakness of tracking using a map is that

one is never sure the truncation has not caused a loss of information. Occasional checking

against element-by-element tracking is necessary.

12
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5.0 A DIFFUSION MODEL
The concept of "survival plots" assumes that there is such a thing called the "lifetime as

a function of amplitude," i.e., it assumes the existence of the quantity r(A). An inspection

of the survival plots shows that there is a spread of t: for given amplitude A, so the concept

involves implicitly an average over the phase information. This assumption has important

implications, as discussed below.

Consider a particle launched with amplitude Ao . After n turns, the amplitude has

grown to A(n). For the concept to make sense, the lifetimes (measured in unit of number

of turns) at these two amplitudes must be related by

r(Ao) - r(A(n» = n. (3)

Condition (3) is simply a consequence of self-consistency, and is independent of the mech

anism of particle loss.

Given a nonlinear system and its survival plot, Eq. (3) can be used to give A(n). In

other words, knowing a particle's launching amplitude and knowing how long this particle

will survive, we can predict the time evolution of this particle's amplitude from launching

till its loss.

Take Figure 7(b)-for a 10-th order Taylor map-for example, the survival plot is

approximately represented by r(A) = 1.2 x 109- 0.77 A, where A is in mm and r is in number

of turns. Substituting into Eq. (3) gives A(n) = 1.3 [9.08 -logIO (1.2 x 109- 0.77 A - n)]. See

Figure 9.

As n approaches the lifetime values, A approaches 00 logarithmically. This is consistent

with the observation in Figure 4 that particle loss occurs rapidly only toward the very end

of its lifetime.

The above IS independent of the amplitude growth mechanism. We now consider

a particular mechanism, namely that due to diffusion. Whether diffusion can actually

explain phenomenologically the observed amplitude growth has to be tested carefully.V

To get a rough idea, we can perhaps define an "effective" diffusion constant as

D(A) = dA2/dn.

For a diffusion constant to be meaningful, it must be a function only of A, not of n or Ao .

The above definition satisfies this. In fact, it leads to the expression

D(A) = -2A/r'(A).
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For the above numerical example, Eq. (4) gives D(A) = 2.16 x 10-9+0.77 A, which is plotted

in Figure 9(a). Diffusion, if applicable, seems to increase with A exponentially in the case

studied.

6.0 LIE MAPS

An accelerator can be divided into sections, each represented as a map. One extreme

case is to have the whole accelerator as one section, thus the one-turn map. The other

extreme is to let each thick element be a section, thus the thin-lens model. However, there

is another reason to emphasize the one-turn maps more than other types of maps. This is

because the one-turn maps are especially useful for analyzing particle motion. To do so,

one first transforms the Taylor map (2) into a Lie algebraic operator form23,24

Xf = exp(-:F:)Xi, (5)

where F is a Taylor series in Xi of order M + 1, and :F: is an operator defined so that

:F:G means taking the Poisson bracket [F, G]. One could also obtain low-order Lie maps

directly, instead of transforming from the Taylor map, using the program MARYLIE. 25

Consider a system with time independent Hamiltonian H, the X f is related to Xi by

Eq. (5) with F = Ht. Since the function Fin Eq. (5) is time independent, it acquires the

significance of the "effective Hamiltonian" of the system. This is quite an accomplishment

because the original system contains only piecewise time-independent Hamiltonians in

4 000 pieces.

7.0 NORMAL FORM AND MAP ANALYSIS

To analyze the one-turn map, the representation (5) is further transformed into the

normal form26,27,28

(6)

where I is a function of action J only, and A( J, </» is a symplectic operator that transforms

the physical coordinates and momenta into normalized ones.

In the linear case, I = -I1J, and A transforms x and x' into the Courant-Snyder

variables. Tune information is contained in I, while the machine functions are contained

in A. In matrix representation,

[

COS 11
exp(:f:) = .

- sm l1

sin 11] ,
cos 11 [

I/VP
A-

-alV7J 5t] (7)

Equation (6) is the nonlinear generalization of the Courant-Snyder formalism (7).
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The normal-form one-turn Lie-map is ideal for analysis of the nonlinear dynamics of

the accelerator. Several dynamic quantities can be extracted from it:

(a) The new action I = A -lJ is an invariant. (In effect, the existence of the

form (6) assumes the existence of the invariants. It breaks down when mo

tion is chaotic.) This allows an explicit expression of the invariants in terms

of coordinates X. This procedure also yields information of the distortion

functions.I'' By averaging over <p, one also obtains the smear30,31,32 as a func

tion of betatron amplitudes.

(b) The quantity 8f(I)/81 gives the tune shifts as functions of betatron ampli

tudes and momentum deviation b = I::i.PjP.

(c) Information on specific resonances, e.g. the driving terms, can be extracted

from A when expressed in the Lie exponential form.

In a sense, the Taylor map is a "time domain" object, adequate for transport systems,

while the normal-form Lie map is a "frequency domain" object, better suited for circu

lar accelerators. However, the transformation from Taylor representation (2) to the Lie

representations (5) and (6) is unique and well-defined.

Manipulation of maps offers a useful way to analyze the nonlinear dynamics effects.

Figure 10 shows one such application.V In this study, the 3-rd and 4-th order detuning

terms are artificially removed from the map [by removing terms in f( J)] and the resulting

map is tracked. The result is slightly different from that of the original ll-th order map,

indicating some weak effect of the tune shifts with betatron amplitudes.

Similarly, one could study the effect of a specific resonance by artificially removing its

driving term in A.

Figure 11 shows another possible application.J" An explicit expression of the 6-th

order invariant is first obtained. The element-by-element tracking results are then used

to calculate the numerical value of this 6-th order invariant for each turn. The results

are plotted in Figure 11(a). For comparison, the 2-nd order invariant (i.e. the Courant

Snyder invariant) is plotted in Figure l1(b) using the same tracking results. The 6-th order

invariant is obviously more invariant than the 2-nd order one. By observing the invariant as

a function of time, this technique makes it easier to identify any slow diffusion, if it exists.

The case shown in Figure l1(a) plus a better choice of synchrotron tune, for example, was

judged to be close to being diffusive. 34

Effect of the betatron tunes on beam dynamics can be studied in the normal form in a

clean manner. The linear part of exp(:f:) is a simple rotation exp(: -ILJ:). Changing p. in
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this part of the map readily gives new maps for different tunes. Figure 12 shows a coarse

tune scan of dynamic aperture using this technique, showing the effect of resonances up

to 4-th order. This is also a clean way to study effects of tune ripples.

8.0 MAPS WITH EXTERNAL PARAMETERS

Yet another application of the maps is the inclusion of the parametric dependences

in the analysis. 35,36 To see this, note that the right hand side of map (2) does not have

to be a Taylor series only in Xi; it can also be in other external parameters (such as the

momentum error fJ, a particular multipole strength bn or an, or the strength of a particular

quadrupole) provided the total order of the power is :::; M, i.e.

M

x, = 2:C'mnXiC,
m,n

(8)

where ( represents any external parameter(s). Performing the normal form analysis, start

ing with Taylor maps (S), the following could be obtained:

(a) an expression of tunes in power series of fJ gives the linear and nonlinear

chromaticities.

:w
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Figure 12. A 12-th Order Taylor Map for the 5cm Aperture Case is Tracked for 1/2 million Turns to Obtain
the Dynamic Aperture.

(b) an expression of tunes as functions of a particular multipole corrector strength

bn gives one way to set its value.

(c) an expression of the ,a-function as a function of a particular quadrupole

strength can be used to perform linear lattice designs.

Applications along these lines are being pursued.

9.0 SYMPLECTICITY

One drawback of the Taylor map is that the map is generally not symplectic. The

leading linear terms do constitute a symplectic map, but the nonlinear part of a l\1-th

order map is symplectic only up to l\1-th order. This drawback is in fact quite serious in

practice, as illustrated below.

In Figure I. we noted tha t the 11-th order map accurately represents the 4 ern aperture

case of Figure l(a), while the 10-th order map does not. This means the terms of ll-th

power in the Taylor map are important. But there are two parts of those terms, one part

(kinemnr.ics ) is needed to make the 10-th order map symplectic, the other (dynamics) is
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the truly ll-th order driving terms. One may ask which part is more important? To

answer this question, a test run was done following these steps:33

1. The l l-th order map is first truncated to obtain a 7-th order Taylor map, the

map is then transformed into a 7-th order Lie map of the form (5).

2. The 7-th order Lie map is then expanded back into a Taylor map out to ll-th

order. This new ll-th order Taylor map is symplectic up to ll-th order, just

like the original l l-th order Taylor map, but has lost all its direct ll-th order

driving terms.

3. The new ll-th order map is tracked, yielding result shown in Figure 13(a).

One finds that Figures 13(a) and 13(b) agree very well with Figures 7(a) and 7(b)

respectively, while Figure 13(c) basically reproduces 13(a). This means the reason of

needing a map of order as high as ll-th is not so much to contain all those detailed

nonlinear driving terms up to the ll-th order, but to assure the symplecticity of the

map. To pursue this point, Figure 13(d) is when the original map was truncated to 5-th

order before symplectically re-expanded to ll-th order. One still observes a fairly good

agreement with Figure 7(a). What one learns here is that most likely one could model the

sse by a one-turn map of relatively low-order, provided it is symplectified. A relatively

low order one-turn map contains all the important nonlinear dynamics of the sse.

10.0 KICK MAPS

The steps contained in the previous section allows symplectifation of a Taylor map.

The resulting map, however, is not exactly symplectic; it is symplectic only up to the order

it is re-expanded into. There are other ways to symplectify a map and kick maps are one

example.

It can be observed that, although Taylor maps are in general nonsymplectic, a special

case of it is symplectic, namely one that corresponds to a kick,

XI = Xi

M
I I """"" C kXI = Xi + Z:: k Xi ,

k=l

(9)

where the map does not change the coordinates x, while the changes in momenta depend

only on the initial coordinates and not on the momenta.

Given an M -th order one-turn Taylor map, which has the form (2), it can be represented

as a number of nonlinear kick maps scattered around the accelerator, separated by linear
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maps.37 For an M-th order map, the number of kicks needed in this kick representation

is (M + 3)2/4 if M = odd and (M + 2)(M + 4)/4 if M = even. For a 9-th order map,

therefore, this representation requires 36 kicks. Such a kick representation gives the same

Taylor map as the original map up to order M, but its higher order contents automatically

makes it symplectic. Note that locations of the kicks do not have to correspond to real

accelerator locations. For instance, the horizontal phase advance from one kick location

to the next has no necessary relation to that in the vertical dimension.

Kick representation is not unique. Many parameters can in principle be chosen freely.

Efforts are made to find one representation that in some way is optimal. One example

of such efforts is to try to reduce the number of kicks. 38 Another example is to minimize

the kick strengths in some manner in the hope that the higher order spurious effects are

minimized.V This research is continuing.

As previously mentioned, Taylor maps could contain external parameters such as 8 in

the expansion. This allows the kicks in the kick map be given as explicit functions of 8.35

11.0 INTERPOLATION MAP AND INVARIANT

Consider a numerical tracking performed for P turns starting with a properly chosen

grid of initial values of J and </>. Represent the one-turn map as

(10)

where A is expressed as Fourier series L A m ( J)e im ¢ and similarly for B. The tracking data

for a given J are used to fit the Fourier coefficients Am and B m. Interpolation between

a grid of values of J's then gives the one-turn map in the action-angle coordinates. It

was suggested39 that this interpolation map representation will be more accurate than the

Taylor representation near the dynamic aperture.

A similar technique also allows the construction of the invariant.I'' Instead of the one

turn map, consider the canonical transformation

J = 1= oC/o</>, 'lJ = </> + sc/01, (11)

that transforms J into an invariant I. Tracking for relatively small number of turns and

fitting the data by proper Fourier components, the generating function C can be obtained,

together with the invariant I and tune shift with amplitude. Having constructed the

invariant, the long term diffusion effects can be estimated by observing the behavior of the

invariant with time, as approached in Figure 11.
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12.0 MAPS EXPANED IN NONLINEARITY STRENGTHS

Equation (8) indicates that a Taylor map does not have to be in terms of Xi only.

In fact, it does not have to be Xi at all. It is suggested41,42 that a more effective Taylor

expansion can be made in terms of the strength of the nonlinearities.

To be more specific, consider a multipole bn . A Taylor map in Xi will have to be at

least n-th order until this multipole is taken into account, while a first order map in bn

already does so. For the SSC with 4000 elements, each with multipoles up to a6 and b6 ,

a third order map in multipole strengths contains terms of order 63 = 216 in Xi. On the

other hand, this map does not contain all the X;16 terms; a 12-th order map in terms

of Xi, for example, contains terms proportional to b2
6 which are not contained in a third

order map in terms of nonlinearity strength. The two representations are simply different.

In a sense, the question is whether the b2
6 terms or the X;16 terms are more important

for the SSC.

An algorithm is being developed'r' to extract the one-turn Taylor map in terms of

nonlinearity strength from the maps of individual elements. The hope is that perhaps a

2-nd to 3-rd order map would be sufficiently accurate for the sse.
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