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Abstract

Tune modulation effect on nonlinear beam dynamics is studied. Different tune

modulation conditions will lead to different motion properties. Boundaries on

modulation condition are found to distinguish qualitatively different motions. The

motion in resonance island with tune modulation is modeled by a driven

pendulum. Its nonlinear property is analyzed, and investigated by simulation.

Experiments have been done to observe the phenomena predicted by the theory.

Many interesting results provide evidence for it
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1.0 INTRODUCTION

This note reports the recent progress of a part of E778 experiment, which is a
nonlinear beam dynamics experiment performed in the Fermilab Tevatron. This experiment
was motivated by the desire to reduce uncertainties in the design of the Superconducting
Super Collider (SSC), and to determine if the nonlinear effects are predictable from
calculation. Observations were made which are applicable to areas of physics much
broader than accelerator physics.

For this experiment, the Tevatron can be regarded as a linear system. Controlled
nonlinear elements, 16 strong sextupole magnets, added in the Tevatron, created the
nonlinear environment anticipated in the SSC. The basic experimental procedure starts
with a "needle beam;" the size of the beam was reduced by a collimator. Then, a pulsed
kicker is fired to induce coherent betatron oscillation. The displacement of the centroid of
the beam is picked up and recorded by two sets of beam position monitor. These
measurements are used to generate phase space plots, or other analysis.

Up to now, E778 has had three runs, in May 1987, February 1988, and June 1989.
Experiments included of smear-tune shift measurement, injection experiment, dynamic
aperture measurement, resonance island-tune modulation experiment, and two­
degree-of-freedom resonance experiment. This note describes the resonance island-tune
modulation experiment. New theory is developed, and interesting agreement with
experiments is shown. Applicable fields reach beyond accelerator physics.

This note only describes what has been done in this part of the experiment. The
purpose is to provide a document for later experiments. Any discussion and comments are
welcome.

2.0 TUNE MODULATION THEORY

[1]
(

(2J) 1/2 sine<1» J =
(2J) 1/2 cos(<1»

Tune modulation has an important role in nonlinear beam dynamics because it is
related to many problems such as resonance, chaotic motion, dynamic aperture, and decay
mechanism. As a part of the E778 experiment, tune modulation was investigated
theoretically and experimentally. Theoretical study shows that tune modulation could be
represented as a simple driven pendulum, or a Josephson Junction. In other words, it is a
general nonlinear problem.

2. 1 Five Unperturbed Islands-The Single Resonance Hamiltonian, H5

First, it is necessary to develop a vocabulary for the one dimensional motion near
the 2/5 resonance which is observed in E778. The convenient action angle variables,
(1,<1», are related to the horizontal displacement and angle, (X, X'), at a fixed point, by

1 0

~~(s)
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where a and f3 are Twiss parameters. That is, J behaves much like the betatron amplitude,
while <I> is the betatron phase of a trajectory under study. If the base tune Qo is close to
2/5, motion is well approximated by the the single resonance Hamiltonian:

t

H5 = 21t (Qo - ~) J + V4012 - V55 15/2 cos(5<1> + <1>5).

This is just shorthand for the five-tum difference equations of motion:

_aH5

a<l>

aHs
dJ

[2]

[3]

demonstrating that t is an integer divisible by five.

The meaning of the three terms in HS becomes clear when the partial
differentiations in Equation [3] are performed. The first term leads to a small constant net
phase advance of 107t (Qo- 2/5), but the second term causes an advance of 10 V40I,
linearly proportional to the action. That is, the amplitude dependent tune is

Q(J) = Qo + (V:) 1,

consistent with the experimentally observed variation:

Q = Qo - 7 x 10-4 a2

[4]

[5]

when Qo 1t0.42, and the amplitude a is in millimeters. The resonance action 11 is found by
solving Equation [4] with Q(II) = 2/5. It is now convenient to rewrite H5 as an
expansion around II:

H5 = ~ U 12 - V cos(5<1»,

where

I = 1 - h, U = 2 V40 ,

[6]

[7]

and the value of <l>s has been arbitrarily set to zero.

Substitution of Equation [6] into Equation [3] (with 1 replaced by I) shows that
(1,<1» =(0,0) is a fixed poim-a trajectory launched there is stationary. In a region close
enough to I = 0, then, HS may be considered as representing differential equations of
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motion, continuous in t, which agree well with the difference motion whenever t divides by
five. In this approximation,

dI
dt

= = [8]

[12]

or, in terms of a single second order equation of motion,

d2
<1>dt2 + 5 VU sin(5<1» = 0, [9]

which is equivalent to the equation of a free pendulum. The small amplitude motion is

(
I J= <1>0 ( 5 (~)1/2 Sin(21t

Q1t)]
[10]

<1> cos(21tQIt)

where the islandtune QI is given by

QI = 2.. (U V) 1/2. [11]
21t

Figure 1 shows the presence of five resonance islands (in normalized X,X' space) under
simulated E778 experimental conditions.

The apparently continuous sequence of dots which follow a single trajectory in
Figure 1 are represented in the theory by contours of Hs, which describe a parabolic valley
along the I-axis, modulated along the o-axis by the cos(5<1» term. This leads to five local
minima separated by five saddle points, corresponding to five stable and five unstable fixed
points. The island half-width is found by equating the saddle point elevation with the
elevation at <1> = 0:

IW = 2(~)1/2.

2 . 2 The Island Tune, QI

According to the previous simplified theory, a nonlinear resonance is determined by
principle parameters-U and V. They come from multipole terms and their cross terms.
In principle, they can be calculated by high-order perturbation theory, but, as we know, it
is difficult to get useful results from higher order perturbation theory. Also, the effects
from other resonances are hard to calculate. In order to test and improve the theory, some
measurements are planned in E778.

The island tune QI and island width IW are important parameters of resonance.
They can be derived from U and V directly, and they are measurable. By measuring these
parameters, the agreement among the measurements can be checked with theoretical
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knowledge. U is the detuning term; it can be found through the measurement of the
detuning function Q(a). The island width IW is related to the fraction of particles captured
on the resonance islands. Because QI is a frequency signal, the measurement of QI is
supposed to be easier and more accurate.

Unfortunately, the Qr signal is not easily found in experimental data. When a single
particle is captured close to the center of an island, a Fourier transform of its amplitude or
phase reveals a peak at QI. This has been proved by simulation. In the real experiment,
one cannot do a single particle launching; a bunch of particles will occupy a part or the total
area of the island and its surrounding area, so that the signal becomes quite complicated.
Because the island tune depends on the particle amplitude from the center of the island, the
multi-particle effect blurs the Qr peak.
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Figure 1. Poincare Plot Generated by Numerically Tracking Particles
of Various Amplitudes.

A test program was written to investigate the frequency domain situation of a signal
with many frequencies. This program, calledjakeisl, generates ideal phase-modulated
signal with damping:

<l> = 21t ( 'If + 'Ires t ),

t2
where 'If =exp(-2t

2
) AcI> sin21tQlt and

4

[13]

[14]



qres is the resonance tune (e.g., qres = 2/5) .

Then the amplitude is calculated as

a = ~ 2(lr + Iwcos <\I)

The data outputs simulate position signals from two BPMs:

xl = a cos(f-f!)

[15]

[16]

The output format is compatible with TEVEX, so that the data can be analyzed by TEVEX.
Figure 2 shows the signal and spectrum from TEVEX. Even the damping term makes the
peak broader, the peak is still clear.

The multi-frequency case, like the real situation in a resonance island, was
introduced by taking the sum of position signals with different island amplitudes and
frequencies. For example,

QI, j = QIOG/lO)

AW, j = AWO(l.l - jllO)

j =1, 2, ..., 10

so that the QI will vary from 0.1QIO to QIO, and Aw will vary from AwOto O.lAwO' The
output "signals" are the sum

Xl =LXl,j

x2 = L X2,j.

As the result, the QI peak becomes ambiguous (Figure 3). This is similar to tracking
results shown in Figure 4. The conclusion is that the effect of particles with different
tunes will give a flat spectrum, even though the signal in the time-domain has a visible
wave. Actually, the spectrum will fall down at QI, as shown in the pictures. The edge
should provide the information of QI' Unfortunately, a clear edge has never been found in
experimental data so far. According to the author's experience in simulation, the following
improvements should be made to look for the edge in experiment. Increase the capture
fraction by reducing beam emittance, and/or choose a sextupole configuration which
provides a larger island size. In addition, one should reduce noise from the environment
and other electronic modules.
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2.3 Five Islands With Tune Modulation

If a set of quadrupoles is perturbed by a small sinusoidal current, the base tune is
modulated according to

co = Qoo + q sin(21t QM t), [17]

[18]

where q and QM are the tune modulation amplitude and tune. Tune modulation is included
in the resonance Hamiltonian by adding a single term to Equation [6], giving

H5 =:: 21t q sin(21t QM t) 1 + ~ U 12 - V cos(5~).

[19]
(

- 5V sin(5~) )

21t q sin(21tQMt) + VI '
=

Now H5 is time-dependent, so it is no longer conserved, and it is no longer possible to
picture the motion by plotting its contours. The two first order equations of motion are

dI
dt

while the single second order differential equation in f,

d2~ (2 ("\T)2 sin(5~)dt2 + 1t '<1 5 = (21t)2 qQM cos(21t QM t) [20]

is explicitly analogous to the driven pendulum equation

d28
dt2 + (21t QI)2 sin(8) = D cos(21t QM t), [21]

with 5~ replacing 8. There is a family of possible solutions periodic in QM:

00

5 ~ = k 21t (QM t) + L Cn cos(n 21t QMt).
n=1

[22]

The tune of the k-th solution

Qk= 2 1 del>- + -<->
5 21t dt = ~ + k QM

5 5 [23]

demonstrates the possibility of a family of stable sidebands. Each sideband has five

k
21t QM

islands, at an action Ik given by Q(lk) =Qk, so Ik = 5 V . [24]
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If solution k is stable, then persistent signals should be observed at Qk when a beam is
kicked on top of one of the sideband islands.

The small angle approximation can be made on Equation [20]:

I

The solution is illuminatinf It is given, for all QM, by
QM --'L

<I> = QI2 _QM2 QM cos(27t QMt)

QI2 21t q
= -- sin(27tQMt).

QI2 _ QM2 U

[25]

[26]

[27]

At constant q, the action amplitude goes to (27tq)1U for small QM, while the phase
amplitude goes to zero. So we call the slow modulation region "amplitude modulation."
The action amplitude goes to zero, but the phase amplitude goes to qlQM for large QM, so
that the fast modulation is called "phase modulation."

This is valid only for the case of small angle oscillation; that is, far away from QM =
QI resonance. Here we define the small angle condition as 5~ < 1, where ~ is the
amplitude of <1>. Because sin(5<1» is approximated to 5<1> when Equation [20] becomes
Equation [25], sin(5<1» must be smaller than 1. From Equation [26], we get the small
angle condition

1
= 5" [28]

Other approximations can be applied to explain the mechanism.

If the tune changes adiabatically, it is reasonable to approximate the rate of change
as constant, at its global maximum. The Hamiltonian in Equation [18] then becomes

H5 = (27t)2qQM t I + ~u 12 - V cos(5<1», [29]

which corresponds to a pendulum with constant torque. This is still time-dependent, but
now a canonical transformation is possible from (I,<I>,HS) to (1,<I>,H5), making Hs time­
independent. Specifically, the generating function

F3(I,~,t) = - I ~ er~ - i£2 t3, [30]

where £ = (27t)2 qQM
U

= 25V qQM
QI2 '
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gives, by its definition Equation [6],

aF3I _--=I+Et,
aq;

[31]

= i UI2 - V cos(5q;) - E q;. [32]

While the old and new phases are identical, the new action drifts relative to the old action at
a constant speed. The Ecj) term in the new Hamiltonian has serious consequences for the
stability of the k = 0 fundamental island chain. Pictorially, this non-periodic term
corresponds to a constant slope along the quadratic Hamiltonian valley. If this slope is
steep enough, there areno longer any local minima. There are no stable islands at all if lei>
5V, that is, if

[33]

In the slow limit, this corresponds to the small angle boundary in Equation [28] .

We now consider the case where tune modulation occurs rapidly, i.e., QM » QI.
In this region, a time-independent Hamiltonian is found by first applying the generating
function

F3(I,q;,t) = - I q; - cfM cos(21t QMt) I,

which gives

H5 = ! UI2 - V cos(5q; + ~ cos(21t QMt»

= ~ UI2 - V l){~) cos(5q; + i 21tQMt),

1

[34]

[35]

where the Ji are integer-order Bessel functions. The Hamiltonian is made time-independent
by concentrating on the vicinity of the k-th sideband, near the action Ik, and averaging the
sum in Equation [35] over one modulation period, to give

[36]

(without overbars, and with a shift of origin). This differs from the simple form in
Equation [6] by the Jk factor, which determines whether the k-th sideband is significant.
As a rule of thumb, Jk(A) ::::: 0 i IAI < Ikl, so sideband k is significant if

q > Ikl~ . [37]
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[38]

The right-hand side of Equation [37] is the separation of the sideband tune from the
fundamental resonance tune, corresponding to the sensible physical condition that says, for
the resonance to be felt near an action Ik, the tune must be modulated far enough to cross
the fundamental.

The sidebands are isolated from each other if their separation in action, given by
[23], is larger than the sideband width, given by [12] with hV replacing V. Chaos appears
if the sidebands overlap, spanning the action range of sidebands of significant size. It is
easily shown by further approximating h, that sideband overlap is expected if [37] is true,
and if

QM 3/4 (5 q) 1/4 < ~4 QI
x

Because of the casual Bessel function approximation, sidebands overlap a little earlier or
later than this semi-quantitativecondition suggests.

Figure 5 shows the four dynamical phases in the (q,QM) parameter space. The
solid line with the pole in the figure,

IQ12q~M21 =!
is the small angle boundary below which Equation [26] applies. Rigorous analysis
(below) shows that this is the stability boundary for the k = 0 solution in the slow
modulation limit. Rigorous analysis in the large QM limit shows that, although the k '* 0
sideband islands are stable, their size is insignificant below the small angle boundary. The
other boundary is the nearly vertical solid line in Figure 5, which is based on
Equation [36]. Roughly speaking, on the right-hand side of the boundary there appear
multi-sidebands. On the left-hand side L the chaotic region appears because of the
overlapping of sidebands.

2. 4 Iteration

It is necessary to rely on numerical iterative and simulation solutions when QM== QI
From Equation [20], an iteration formula can be established:

d2epnew 2.... 2 sin(5epold>
dt2 + COl "'new = COl (epold - 5 ) + B cos(2x QM n, [39]

where COl =2x QI, B =(2x)2 qQM. Substituting Equation [22] into Equation [39],
the left-hand side becomes:

00

left side = (co12 - (n 2x QM)2) L cn ne w cos(n 2x QMt).
n=1

12

[40]
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Figure 5. The Dynamical Phases in E-Qrn Space.

Ifone does an FFf on the right-hand side expression, one gets a Fourier expansion:

00

L Cnold cos(n 21t QMt).
n=1

For iteration, put Equation [40] equal to Equation [41], so that

1
Cnnew = 2 2 Q 2 Cnold.

(OI - (n 1t M)

[41]

[42]

An iteration program, iter, was written based on the previous formula. The number of
terms expanded in FFf can be 32 to 128. The solution's stability is checked by the
program. For the k =0 case, the boundary of stable solution agrees with the boundary
defined by Equation [28] for QM < QI (Figure 6). On the other side, QM > QI . the
solution is stable everywhere. When k ~ 0, all solutions are unstable for QM < QI + E,

where E is a small number, and depends on k. Above QI + E, all solutions are stable.

2.5 Simulation

Simulation was done using the tracking code EVOL. A single particle is launched
into the center of the islands, and then the motion in phase space is observed. It is easy to
distinguish the stable island case from chaotic motion, so that the boundary can be found.
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Figure 7 shows the result. In the region of QM close to QI, simulation and the prediction
by Equation [26] agree well.

When~ is far away from QI, the small angle solution, Equations [26-28], can be
used. The phase motion consists of two parts: one is its normal phase advance, the other is
the phase modulation, which could take the form of the solution of Equation [26]. The
phase motion can be expressed as

The related particle position is

x = (ao + B~ cos(21tQMt» cos( 21t Qat + ¢> cos(21t QMt)+ q>o)·

By applying Bessel function identities, x comes out like

00

x = L (ao + kBA'/¢» Jk( ¢> ) cos( 21t (Qo + kQM)t + q>o ).
k=-oo

[43]

[44]

[45]

The amplitude oscillation can be derived from the action motion ofEquation [27] with M =
~ QI2~I2QM2' where Qo' =~ can be found by tracking. So, Equation [45] becomes

00

x= [46]

k=-oo

The k = ±1 sideband strengths can beextracted:

QI2 qQ
A± = ±( ao ± , ) J1(Q 2 ~ 2'

Qo QM I - M
[47]

Figure 8 shows the variation of sideband strength with QM' Simulations are done by
EVOL; the data were analyzed by TEVEX. The results are shown in Figure 8; a very good
agreement can be seen in this picture.

It is important to mention that the sidebands discussed here are totally different from
the sidebands in the upper right region of Figure 6. The former is from signal processing,
the frequency spaces between sidebands are lIQM' But the latter is a high-order nonlinear
resonance phenomenon; its frequency spaces between sidebands are 1/NQM' where N is
the resonance order. For 2/5 resonance here, N = 5.
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In principle, this is helpful in measuring QI. But the problem is that Equation [47]
is only valid when the particle is launched at the center of islands, otherwise, the results can
be much more complicated. More studies are needed on this subject.

Several pictures (Figures 9(a) through 9(f) are created to explain what happens in
the different phases of Figure 6. The simulation was done by EVOL. The tune was set
close to the 1/6 resonance, and nonlinear sources are beam-beam interaction and
sextupoles. Figure 9(a) shows the boundaries of different phases and tune modulation
conditions for every simulation case with point 1-5 in (a) corresponding to Figures 9(b)­
(f). Figure 9(b) is in the stable amplitude modulation region; six islands are clear.
Figure 9(c) is obviously chaos. When QM becomes larger, some sidebands become stable
and others become unstable. In Figure 9(d), a few sidebands appear among the chaotic
motion. Figure 9(e) is in the multi-sidebands region, and many sidebands can be seen. In
the phase modulation region, the stable fundamental islands appear again, the sidebands are
suppressed. Chaotic motion does not exist any more (Figure 9(f».

2 . 6 Mechanical Model

According to Equation [20], tune modulation can be easily modeled by a simple
rigid gravity pendulum driven by a sinusoidal torque. It is helpful to understand the
complicated tune modulation by considering the motion of a simple mechanical mode1.

Image that the pendulum has no free oscillation at the beginning, and that it is
driven by a very slow torque. Because the pendulum's free oscillation frequency is much
faster than the torque's frequency, the pendulum's response is fast enough to follow the
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torque, so that the pendulum will move together with the applied torque. This is the case of
amplitude modulation.

If the torque has a very fast frequency-much higher than the pendulum's free
oscillation frequency-the pendulum will not be able to follow the torque in phase, but out
of phase. From Equation [26], it is easy to see that the amplitude of C\> motion qQM/(QJ:2 ­
QM2) is positive when QI > QM , but it is negative when QI < QM; that means out of

phase. This is similar to the "phase modulation."

In the case of very strong torque or when the torque's frequency is very close to the
pendulum's free oscillation frequency, the amplitude of the pendulum's oscillation will be
quite large; it may even tum around. This is a very nonlinear case, and the motion is very
complicated. Because the pendulum's free oscillation frequency strongly depends on the
amplitude of oscillation, it is hard to synchronize the motion of the pendulum and torque.
The future motion of the pendulum depends not only on its position and momentum, but
also on the torque's strength and direction. These conditions change with time without
periodic regulation, so that the motion is chaotic. In some very special cases, periodic
motion can reappear. For instance, if the initial condition of the pendulum is fast rotation,
and if the torque's period happens to be nearly some integer number of turns of the
rotation, the pendulum will continue its periodic motion. This is just the sideband case,
and the number of turns completed in one modulation period corresponds to the sideband
order number.

Besides mechanical model, an electronic model, Josephson Junction with an AC
bias, has the same behavior. The understanding of tune modulation and driven pendulum
could be very helpful to the research of Josephson Junction and general nonlinear
dynamics.

It may be better to build a mechanical model pendulum to demonstrate the
phenomena, because a simple mechanical model can be understood more easily. It was
also proposed to build an electronic model by conventional electronic devices, and it will be
convenient to observe the behavior under various conditions. The data taken from the
electronic model can be compared with theory computation, and the boundaries can be
verified.

2 •7 Driven Pendulum and Digital Model

Since the driven pendulum is not only a model for tune modulation, but a general
nonlinear problem as well, it is worth further study.

First of all, write down the equation of motion of a pure driven pendulum:

d:~ + ro02sin'l' = Esin(Qt), [48]

where roO is the frequency of small oscillation, Q is the driven frequency, and E is the
amplitude of the driving torque. Those parameters are related to QI, QM and q in tune
modulation. A program DPEND was written for simulation. This program integrates the
pure driven pendulum equation and plots the result in phase space.
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The motion of a driven oscillator consists of free oscillation and driven motion.
The driven motion part is more important because it dominates most properties of the
motion. The following study will concentrate on driven motion only.

The driven motion is the motion with frequency identical to the driving frequency.
To find a possible solution with this condition, assume the solution has the form of

\jI(t) =exsin(Ot).

Substitute it into the equation of motion (Equation [48]), and use the identity

00

sin[exsin(Ot)] =2 L,J2k+1(ex) sin[(2k+ I)Ot].
k=O

An equation of ex is found:

-aW2 + 2 J1(a) W02 = E.

[49]

[50]

[51]

This equation can be solved by numerical method, but simplifying it by expending the
Bessel Function to cubic term will be helpful to get a clearer idea. Under cubic
approximation, Equation [51] becomes:

-aW2 + awQ2 [1- i a2] = E. [52]

According to our knowledge, this equation usually has three real solutions, but under some
conditions, there are only one or two solutions. The solutions of the equation indicate
where the island center is, this has been proved by a good agreement with simulation of
DPEND for small ex (Figure 10). In the simulation, the stable solution is the center of a
stable island, and the unstable solution is a point where the solutions around it are
divergence.

Notice that two stable solutions existed at the same time in the middle range. In this
case, there are two stable islands, both of them k = 0 mode. Figures II(a) through II(e)
are a series of simulation results with QM increasing. The upper island becomes weaker
and weaker, then disappeared when QM increases, but lower island becomes stronger.

This fact introduces a new concept of driven oscillation. We knew that the
amplitude of driven oscillation has a resonance peak at its free oscillation frequency, but it
is suppressed when the driven frequency is far from its free oscillation frequency. Now
we know that there are two different solutions for the driven motion, with driven frequency
below and beyond free frequency oscillation frequency, respectively. One of the solutions
is positive, the other is negative. This means that the driven motion is in phase or out of
phase, comparing with driven force. It is comparable with the case of electrical oscillation
circuit, which may be resistive, inductive, or capacitive.
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Figure 10. Solutions of a Changing With ro (= n /roo) £1 = 0.1.

It is easy to conclude that the boundary between chaotic motion and stable island
should correspond to the condition where the two positive solutions meet. Simulation
provides the answer. Figures 12(a) and 12(b) show the boundary points. In
Figure 12(a), the simulation results agrees with the theoretical boundary very well. With
the same data marked in Figure 12(b), some of them appear at the position where two
positive roots meet. But for the case with large E, or large q, this theory does not work.
More study is needed for strong modulation.

22



'; ...... .." ....

. '° 0

,', .......
• "0' " •

, ~.

of•

",. _. - ....
' ... ~~~~::. ,'0, 00 ."

, '.

~. , , .:':'~:':':;;':'::':':':':':':'~::~.:. ' .~
':' .' • ..........-........_ • , ...: ,0'.:.- .... -........ ..~,

,'/ ./ " 0.:,
.: I' I, '"

''',' .......~~ .. ~'
•: i " • ~.
I' , I • 'I

.~ : l • ; :.
'·.1 Q .:».', .... 0 r :»

• •• \ .,. .. '. '" .' -," I'

o • 0: •:._, '\'I.'.. '-... ' ~ 0' , '_''••:"
'\0 ~'" ._ .

. ...... "... . .. -.. ".'.' '.,;' ~ , \":" .
• • ''':; ", 00 '~W' ..: •• ;. : Jt' '0'''' ",.#,0.·

.'.

.?." ,
.. :

• '"0 ;- I

':."!o ,

0.05
~:g
Q)

>
~ 0.00nl
3
Ol
c::«

- 0.05

OM = 0.00610

-2 o
Angle

2

TIP·01019

. .
.: ."

:·r~:.: .
• • t

."0 •

. -':".:
~.

"0 '0.". ""

•..........•..._-......
'O" "

,I" ...._ .... ' ....

"I , ",. -, ".. , , .
.' '/---------..., \ "
i ,'(I"-----------'~ " :
:. I•. ' ,--- " I)}': .: .
\ , \ • I;i' , .r: '.

\ '0... \ , <:» ••'. -, '-,\\ ,0:, ,/, ... , .\' '.: .
·.... ~··,·)·)?·.::: ...-.:...::.~..:..~~.~..~(r'· ,,:'".......:..

.
::,. '..

:;.. '.. ' ;.',

·i.
t

.~ ....:.

... '"., .
• "I •

~:.': ,0 ••••

0.05
>.

~
Q)

>
~ 0.00
nl
3
Ol
c::-c

- 0.05

.....
OM = 0.00590

- 0.10 .........'--1.---'---'---'--"'-...........-...1...--'--"--.1....-..........---'----'

-2 o
Angle

2

TIP-01018

Figures 11(a) and 11(b). Phase Plot by DPEND.

23



0.05
>.

'g
Q)

>
"- 0,00
ctl
"5
Clc::-c

- 0.05

·-or.:,,_,_
• • • 0 0 ° .0- •••

" to ..... ',.0 •••• "0 to .0,

...::":0 '.~ ..." .. r > 0:•••
._ .'.'",.. ... °ot " • :'.

to: to' .' '"\:f'~ ···Y--··~'~ ",'0..
• to' iI'~__ ,_~...: .'.

to .' .: ,.~.,~, ,. "~",'o 0° •

• •••• .t',,- \, " .,;." ~: to 0:. ,:: '..,' '~ -:t.: •• ~ -... ~ ',' !
': l "0" / .... \: \'

"~:: "'.... --,' :.

:::: .C.\.. ;~ :I/f:'-:.
... '~~'.'" ...... ~.,:::< ......

'" ':~::~'.: ';-::'-':':~.- ::.~.~;:.. -
........ ~ ... ~ ..: OM =0.00550

-2 o
Angle

2

TIP-01017

0.05

~:s
Q)

>
Co 0.00
"5
Clc::-c

- 0.05
.: .-.. - "

.' ,..' ..

" 0°

• I to.... . ."...

~. .. ... , .
• ,. . r ' •

OM = 0.00510

-2 o
Angle

2

TIP-01016

Figures 11(c) and ll(d).

24



., ... ",

•• _ .:. • eo

" '.' "

0.05

~
'u
.2
Q)

> "
"- 0.00

"

nl
"3 "

01
r::::-c , ;

- 0.05

.......

'" '. ",

, ,.
: ....

-2

.' ."..

o
Angle

Figure 11(e).

25

OM =0.00460

2

TIP·OtOSt



10-4 10-3 10-2 10-1

Modulation tune, OM TIP-01020

Figure 12(a). The Chaotic Boundary from DPEND Simulation Agrees With Theoretical One.

1.5

TIP-01021

1.2510.75

ro
0.50.25

21- __

-2

a. 0~F===========~~~---:::::===~

Figure 12(b). The Chaotic Boundary is Where the Stable and Unstable Solution of a. Meet.

26



3.0 TUNE MODULATION EXPERIMENT

As a part ofE778, the tune modulation experiment was carried out in a similar way.
The nonlinear source is still the 16 special sextupoles located at F and C section. A
collimator was used to reduce the beam size. The tune modulation was introduced by some
quadrupoles excited by sinusoidal power supply. At the beginning of each shot, a kicker at
E17 kicked the beam into a certain amplitude. Two horizontal BPMs (at F42 and F44)
picked up the turn-by-turn signal, and the data acquisition system recorded them. The data
would be read by computer. Some codes, like TEVEX and RESAN, were written for
analyzing them, generating phase space plot, doing FFT, etc. The purposes of this
experiment are to compare the results with theory, by observing sidebands, chaos motion,
and their boundaries, and to measure QI.

The data was taken from the BPMs which are used in the other parts of the
experiment; 64 K turns of data can be recorded per shot. Actually, two data sets were
taken for each shot through different instruments. One is the original BPM resonance
amplifier (CAMAC 5), the other is a newly developed peak-detector amplifier
(CAMAC 9). The CAMAC 5, linear but noisy, is necessary for quantitative analysis.
The CAMAC 9 is cleaner and more sensitive, but its output is nonlinear and hard to
calibrate. CAMAC 9 data is helpful to observe weak sidebands in frequency domain.

The major tool used for analyzing data is RESAN. This program was developed
with shared memory, so that it can load 64 kB data. The analysis is based on Fourier
Transform. The time domain data are transformed into frequency domain period by period,
and then the persistent signal strength can be measured versus time. The spectrums are
arranged in a "mountain range" picture. One observe the frequency domain variation with
time going on and looking for sidebands.

3. 1 Results of the Experiment in February 1988

3.1.1 Persistent Signal Decay Rate and Chaos Boundaries

The persistent signal comes from the particles trapped in the 2/5 resonance islands.
Its strength indicates how many particles are trapped in the islands. The persistent signal
decay rate considers only the particular resonance signal decay after the decoherence
period. It's a long time scale phenomenon. The decay rate is related to the stability of the
islands. It is easy to imagine that there will be a large decay rate in the chaotic region
because the islands are not stable there. Based on this idea, the decay rate was observed
for finding the chaos boundary.

The persistent signal strength is related to the spectrum amplitude of the frequency
which exactly presents the tune of 2/5. RESAN calculates the spectrum values
periodically, and finds out its decay rate.

During the experiment, the 16 sextupoles are excited by 25 ampere current.
Horizontal emittance was reduced by collimator to 21t (mm mrad). The horizontal basic
tune was set to be 19.442 (which may be different from real value due to non-zero closed
orbit at sextupoles). Three groups of data were taken with kicker voltage 9.5 kV, 8 kV,
and 6.5 kV, respectively. In each group, tune modulation frequency and amplitude scan
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the q-QM phase space, and data sets are recorded under different tune modulation
conditions.

Figures 13(a) and 13(b) show the results with 9.5 kV kick. Figure 13(a) is the
decay rate versus QM where a different symbol means different q. Their tune modulation
conditions are plotted on Figure 13(b). In these scans, only the diamond scan rises
rapidly; that is, this scan goes across the chaos boundary. By varying QI to fit the chaos
boundary to where the decay rate begins to rise, QI is found to be 0.0085. Under this
value, the experimental results can be explained very well. The scans with square and plus
symbols stay inside the amplitude modulation and phase modulation region, respectively.
Both of them are stable, so that they have low decay rates. The diamond scan goes through
the boundary and gets into the chaos region, and the decay rate rises rapidly. A dramatic
result is the cross (x) scan. Figure 13(b) shows that one data set is inside the chaos dip,
and Figure 13(a) shows this data set has a much higher decay rate compared with the other
data sets. This is a very good agreement, but, unfortunately, only one data set fell in this
region. One could argue that this is an accidental data set.

Figures 14(a) and 14(b) give the 8 kV kicker voltage results. In this group, the
scans with square and diamond symbols are just across the chaos boundary, and
corresponding decay rates tend to rise. But the plus (+) scan is still inside the phase
modulation stable region. None of them has a large decay rate.

Figures 15(a) and 15(b) show the 6.5 kV kicker voltage results. Unfortunately,
no sets fell in the chaos region, so there is no rising decay rate.

In the previous analysis, QI has an uncertain value. It is adjusted to explain the
experimental results. On the other hand, this provides a method to measure QI, even
though it is not quite precise.

3.1.2 Modulation Sidebands

According to the theoretical analysis, there will be a sideband system caused by the
phase and amplitude modulation. These sidebands will be spaced by the modulation
frequency, and their strengths, if the particle sits in the island center, could be found by
calculation. These sidebands clearly show up in the data analysis, and Figure 16 gives an
example of the sidebands observed in data analysis. It is not clear how to compare the
sideband strength with calculation because this is a multi-particle case. Only the sideband
strength of the single particle sitting at the island center can be calculated and agrees with
tracking result. For the multi-particle case, even the off-center single particle case, more
work is necessary. But anyway, the experimental data show that the sideband strengths
line up. Figures 17(a) and 17(b) show the result of the 9.5 kV kick data.

The lines in this picture are theoretical calculations from the single centered particle
model. QI and Q' are adjusted to make the line fit the data. At the low modulation
frequency region, changing QI means changing the slope of the lines, but changing Q'
means changing their vertical position. For a better match between the data and calculation
results, QI is taken as 0.012. This value may not make sense, and more understanding on
the sideband strength is needed.
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Figure 17(b). Measured Modulation Sideband Strength with 8kv data.
Theoretical results are fitted to the data by changing Qrn.

3.1.3 Synchro-Betatron Sidebands

Another important phenomenon expected to be found in the experiment is the "synchro­
betatron sideband." In phase space, the sidebands are some stable islands if they are
observed every modulation period. Particles trapped in these islands generate signals with
special frequencies. These frequencies are equally spaced around the main resonance
frequency, similar to sidebands. The frequency space is integer numbers of modulation
frequency divided by the order of the main resonance. The frequencies can appear
independently, because particles trapped in a particular island will generate one of the
frequencies, unlike the modulation sidebands, which are usually generated as symmetrical
pairs.

In q-QM space, the strong synchro-betatron sidebands appear at the top-right
corner, but experimental hardware limits the experiment at the bottom-left corner. The
dotted line in Figure 13(b) gives the approximate region available for the experiment.
This means that the experiment so far did not provide data in a good condition to observe
the sidebands. To improve the situation, either upgrade the hardware for a higher
frequency and stronger modulation, or find a sextupole configuration with a lower QI.

At any rate, the existing data was analyzed to look for the sidebands. Two events
have been found. One of them, data file number tape15.178, shows a clear sideband at
k =+I position. Figure 18 is its mountain-range spectrum picture; each spectrum line
corresponds to one time slice, and the spectrum lines are plotted with vertical shift
according to their time sequence. In the center of the picture, a series of sharp peaks
presents the 2/5 resonance. The series peaks at the right side have an exact frequency space
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from the 2/5 resonance as theoretically predicted. This is important evidence of the
existence of synchro-betatron sideband.

The file tape15.179 is from the same experiment shot, but taken from a different
CAMAC station-CAMAC9, which is more sensitive and clearer. Figure 19(a) shows the
result of this data file. The sideband looks clearer. At the very left and right side of the
spectrum, the modulation peaks can be seen. Their frequency spaces from 2/5 resonance
are tune modulation frequency, 5 times larger than the synchro-betatron sideband.
Figure 19(b) is the time variation of the spectrum amplitude at every frequency where the
sidebands are supposed to be found. The line at the top is the 2/5 persistent signal. Its
slope indicates the decay rate of the persistent signal. The line in the middle is the
amplitude of the sideband. It is obviously much higher than the others (note that the
vertical coordinate uses log scale). Figure 19(c) shows the sideband phase versus time. If
the signal has a certain frequency, it should be phase-locked; that is, its phase shouldn't
vary with time. The straight line in the picture is the phase of 2/5 signal, and it is well
locked. The other line is the phase of the sideband at the right side of the 2/5 peaks. It is
also locked, so that the sideband is proven to be a real signal.

The experimental conditions of this data set are: tune modulation frequency (in tune
unit) QM = 0.0189, modulation amplitude q = 0.00052, horizontal emittance generated by
collimator is 67t, the basic tune settled to the machine is Qx = 19.439 and, kick voltage is
8 kV. The position in Figure 14(b) is the second + from left. It is in the phase
modulation region, where the sidebands are weak because they are suppressed by the
Bessel function. It is difficult to say how strong a sideband can be observed in the
experiment.
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The other event where the sideband appears is tape16.169. The interesting thing is
that in this shot, there is no 2/5 persistent signal, but a clear signal appears at the frequency
which has a 3/5~ shift from 2/5. Figure 20 shows the results. Similar to the first event,
another file, tape16.170, same shot but taken by CAMAC 9, shows a clearer signal
(Figure 21). In this picture, one more series of peaks appears at 2/5 - 2/5 QM.

Because it has a frequency space of QM from the sideband, it can be explained as the
modulation sideband of the synchro-betatron sideband shown in this data set.

This particular case can be explained in the following way. The beam was kicked
into the particular sideband island, but not in the 2/5 resonance island. Under this
condition, this sideband island is stable, but others are unstable. According to the
condition, QM =0.00525, q =0.004, this shot is in the chaos region. Its position in q­
QM space is shown in Figure 15(b) as a star. In this region, the motion is chaotic because
of overlapping sidebands. It is possible that the kernel of some sidebands do not overlap
completely, as shown in Figure 9(d).

3.2 Results of the Experiment in June 1989

In the 1989 run of E778, we planned to do the experiment of 2-D resonance,
diffusion, mockup SSC, and resonance island (tune modulation). In the resonance island
experiment, the sextupole configuration is different from the one used in the 1988 E778
run. The difference: all the power supply polarities of the opposition section are inversed,
i. e., the polarities in F section are (+ + + + ), but in C section are ( I + + +). This
so-called 891 configuration provides much larger 2/5 resonance islands than the 88
configuration, During the run, because of machine condition and equipment problems,
some experiments were shonened or cut, and some data were lost. Following is the data
analysis of the island experiment.

3.2.1 Data Structure and Calibration

During this E778 run, data was recorded by 8 channels. H_44A, H_44B, V_45A,
and V_45B are taken through CAMAC station 5, and H_42A, H_42B, V_43A, and
V_43B are taken through CAMAC station 9. The length of each object can be 16K, 32K,
or 64K. The two horizontal beam position signals are calculated by:

H 42A-H 42B
x, = H_42A+H_42B x CC9

H 44A-H 44B
X2 = H_44A+H_44B x CC5,

where CC5 and CC9 are calibration factors.

To calibrate the equipment. a few dipoles are used to generate a ±1 0 mm
bump at BPM's position. Data shots were recorded during the bump ramping. Figure 22
shows the recorded bump. The top and bottom of the ramp should correspond to ±10 mm
beam position deviation, respectively. Table 1 gives the results of the calibration data.
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Because the calibration factors are so different under different conditions, the result is not
good enough to apply them in data analysis.

Table 1. Results of Calibration Data.

shot I Intensity CC9 CC5

(1010 p)
16 0.7 888.9 108.5
17 0.8 294.1 52.2
18 348.4 48.3
19 0.5 95.8 72.2
20 1.4 1626.0 40.5

In practice, the calibration factors are chosen as CC5 = 266.7, CC9 = 333.3. The
reason for choosing these numbers is that they put the value of x1 and x2 in a reasonable
range, and make the phase space look reasonable. In fact, the data analysis is mainly
concentrated in Fourier transform of x; the absolute value is not important in this sense.

The chirping experiment has a different data acquisition arrangement. There are
two channels in CAMAC 5, recording H_44A, H_44B, 256 K turns each. The second
channel of CAMAC 9 recorded the chirping signal, i.e., the a.c. current applied to the tune
modulation quadrupole. Because there is only one BPM signal recorded, it is impossible to
work out the phase space. However, we just need the Fourier transform of one beam
position signal, and its absolute value is not important.

3.2.2 Frequency Scan Experiment

In this experiment, a dipole kicker driven by an alternative current "shakes" the
beam. The driven frequency scans around the fractional tune. Its effects on resonances are
going to be observed. Some other resonances-for example, 5/13 resonances-are
expected to be excited.

In this experiment, the persistent signal dropping down a little when the exciting
frequency scans across v = 0.4 has been observed. After the frequency passes the
resonance point, the persistent signal maintains its amplitude. Figures 23(a) and 23(b)
show the persistent signal amplitude versus turn number of two data shots. In
Figure 23(a), the frequency scans from 18.0-18.8 kHz, or 0.383-0.4 in tune unit. In
Figure 23(b), the frequency scan range is 18.4-19.2 kHz, 0.391-0.409 in tune unit. In
both shots it is observed that persistent signal amplitude drops and stays constant. Because
the start values of frequency scan are different, the dropping time (or tum number) is
different.

The 5/13 resonance can be observed in most data shots. Figure 24 shows the
mountain range spectrum of beam position signal. A series of peaks at 0.3846 is obvious.
Although the 5/13 resonance signal is much weaker than 2/5 resonance, the figure also
shows that its amplitude is much higher than noise, and its phase is locked.
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By observing the amplitude spectrum, many shots show a peak at v = 0.00635. It
may be a sign of QI, because the island size of this sextupole configuration is much larger,
and the pencil beam can circulate inside the island. But it is not strong enough to be
evidence; only the peak's consistency in frequency rises concern.

3.2.3 Chirping Experiment

The purpose of this experiment is to measure QI, and to prove tune modulation
theory. The idea is that if changing tune modulation frequency and amplitude are ramped
right after the kick, as soon as the modulation conditions reach the chaotic boundary, the
persistent signal should drop down very fast. QI should be found by matching the
boundary to modulation conditions when the persistent signal drops down.

The tune modulation conditions, q and QM, are achieved by Fourier analysis of driving
signal. Consider that the frequency change can be ignored during the period for doing
FFT, and QM can be calculated directly, but modulation amplitude q needs calibration. As
we know, 25-ampere current applied to this particular quadrupole gives a tune variation of
0.0083. In the experiment, the current was ramped from 0 to 25 amp, but in fact the
current is not ramped linearly because of frequency response. There are two frequency
ramping ranges used in the experiment, 0-30 Hz and 0-300 Hz. The 300 Hz ramp
shows a serious amplitude suppress for high frequency, but 30 Hz looks good. Suppose
the 30 Hz ramp reaches 25 amp at the end, making the recorded data amplitude, 10.29,
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which is calculated by FFr, equivalent to 25 amp current. So, 10.29 FFf amplitude is
equal to 0.0032 tune modulation depth.

The experimental data performs very well. Figure 24 is a typical result from one of
the data shots. In the mountain range picture, the peaks at 0.4 disappeared in the middle.
In the amplitude versus turn number (or time) picture, the amplitude dropped down rapidly.
At the mean time, its phase was unlocked. These phenomena demonstrate that the
persistent signal is gone. The resonant island is not stable anymore. In other words, the
modulation conditions hit the chaotic boundary.

Table 2 lists the modulation conditions when the persistent signal is gone.

Table 2. Modulation Conditions.

Shot No. Qxo q Qn Q

shotO 0.428 0.00354 0.00195 0.00619
shot2 0.428 0.000526 0.00464 0.00581
shot3 0.428 0.00204 0.00244 0.00555
shot4 0.428 0.00681 0.000488 0.00411
shot5 0.428 0.00146 0.00439 0.00716
shot8 0.426 0.000533 0.00464 0.00582
shot9 0.426 0.00260 0.00220 0.00578
shotlO 0.426 0.00683 0.000488 0.00411

Shot-1 has the persistent signal during the time the data was taken. The reason is
the modulation conditions do not reach the chaotic boundary.

Shot-5 had a very fast ramping of 0.1 second. Even in this short period, it is
observed that the persistent signal dropped in 4500 turns. This shot may have a big error
bar because of fast changing of frequency, but it provides more evidence for the chirping
experiment. Figure 25 is the plots of shot 2.

Put the data results in q-QM plot, and give a proper QI by which the boundaries are
plotted to fit the data points. Figure 26 is the plot. The QI selected here is 0.006. QI can
also be calculated by using the boundary condition

[53]

The results are also listed in Table 2. Average QI is 0.00557, with an error of ±
0.001. This is the first time we obtained a proper value of QI by measuring it in
experiment.

There are still some problems about the results. The measured QI, 0.006, is about
half of EVOL simulation result. The reason is under study. The other problem is that as
the basic tune Qxo was changed by 0.002, there should be a change in QI. EVOL tracking
results show that if basic tune changes from 19.41 to 19.412, QI will change from 0.0115
to 0.0148. This is an obvious change, but it doesn't show in the experiment result.
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4.0 SEXTUPOLE CONFIGURATIONS IN E778

The nonlinear resonances, especially higher-order resonances, are strongly dependent on
the phase relation and polarities among sextupoles, because sextupoles drive 3rd order resonance
directly; but their cross terms drive 4th and 5th order resonances. It is very hard to find a simple
parameter which describes the driven strength to any particular resonance. And it is hard to
calculate the higher order resonances by perturbation method. In this case, tracking is more
effective. As the phase advances between sextupoles are fixed, the polarity configurations
significantly effect detuning, island size, Q[. etc. The polarity configurations of sextupoles are
investigated for the June 1989 run ofE778.

The 16 sextupoles are set in F and C sectors of the Tevatron. They are powered in pairs by
8 power supplies. Table 3 lists some possible configurations investigated.

Table 3. Possible Configurations of Sextupoles.

Config. no.

00
090
091
092
093
094
095
096
097
090

F

+-+-+-+­
++++++++
+-+-+-+­
+--++--+
++--++-­
+--++--+
++++++++
++--++-­
++----++
++--+-+-

C

+-+-+-+-

-+-+-+-+
-++--++-
--++--++
+--++--+
++++++++
++--++-­
--++++--
-++-++--

The two important resonances in E778 are 1/3 and 2/5. The phase advance between two
adjacent sextupoles is 68°. For 3rd order resonance, 3'1'=204°, which is not too far from 180°.
As a result, if two adjacent sextupoles have the same polarities, the two vectors will almost cancel
each other. But if they have opposite polarities, the two vectors will add up, so that a strong 1/3
resonance will be driven.

The phase advance between F and C sector is 9.7 x 360°. To consider the 5th order
resonance, the fractional part of 5'1' is just about 180°. To drive the 2/5 resonance, the two
sextupoles that have the same station number, but in F and C sectors, respectively, should have
opposite polarities.

The chromaticity caused by the special sextupoles is proportional to the dispersion function
at the sextupole locations. The dispersion function is almost the same in the F sector as in the C
sector, but it is not regularly distributed within the sectors. Therefore, to minimize the chromaticity
produced, the polarities of the sextupoles with the same station number, but in F and C sectors,
respectively, should be opposite.
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The features just described for the sextupole configurations considered are shown in
Table 4. The resonance excitation is seen in the phase-space tracking results shown in Figure 27,
for the Tevatron tuned to 19.41, 19.46.

Table 4. Features of Sextupole Configurations.

Config. no. Drive 1/3 Drive 2/5 Chromaticity

88 Strong Weak: -5.56/1.57
890 Weak ? -0.65/0.26
891 Strong Strong 0.20/-0.04
892 * * 0.86/-0.53
893 Weak Strong -0.33/-0.04
894 * * 27.65/-9.2
895 Weak Weak: 140.1/-46.4
896 * * -18.4/5.88
897 Weak Strong -2.15/0.49
898 ** ** -13.7/3.70

* Qx increases with amplitude.
** Symmetry lacking.

Following are some suggestions for this E778 run.

1. Island experiment

The configuration 891 drives the 2/5 resonance and provides large islands. It is good for
island experiments to measure the capture fraction, island position and width, etc. Since the
island is much larger than in the configuration used in the 1988 run, the particle motion inside
the island could be observable, and QI or decoherence in islands might be measurable. From
tracking, QI = 0.0115.

The configuration 897 also drives the 2/5 resonance. Although the island size is not as
large as in 891, the islands are distributed almost on a circle and are evenly spaced. This is
good for comparing measurement results with computing results: resonance amplitude, and
island size, for example.

Some configurations drive other resonances. For example, 890 provides large 1/3
resonance islands, and 894 gives 7th order resonance islands. They could be used for other
resonance investigations.

2. Mocking up SSC

The tune shift versus smear curve is chosen as the criterion for mocking up the SSC.
From tracking, we know that the SSC has relatively small tune-shift and large smear. The
large smear is attributable to coupling resonances. Figure 28 shows that the 892 tune shift
versus smear curve approaches that for the SSC when the basic tunes are moved closer
together. Thus, adjusting the horizontal-vertical coupling can provide a tune-shift vs. smear
curve similar to that of the SSC.
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Most of the configurations have higher tune shift versus smear curve than the sse. To
get a lower curve, a fancy configuration--898 was found. Figure 29 shows the results.

3 . Two-dimensional resonances

To study what can be observed about 2-D coupling resonances, some 2-D tracking
calculations were performed, and betatron phase 'l'y vs. 'l'x plots were displayed.

Figure 30 illustrates the case in which there is resonance in the x plane only. Islands are
observed in the x-plane, but not in the y-plane.

Figure 31 shows similar plots for the Qx - Qy , and 2Qx - Qy resonances. The bands
show that the two phases are correlated. No islands can be observed.

Figure 32 is a special case: qx = 0.2, qy = 0.4, so that the particle is involved in three
resonances: 5qx = 1, 5qy = 2, and 2qx - qy = O. In'l'y vs. 'l'x space, there are intermittent
bands. And islands can be observed in both planes.

Generally, it is advantageous to observe 'l'y vs. 'l'x space to find the coupling resonances.
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5.0 DYNAMIC APERTURE

The study of magnet aperture is the most important topic in the SSC conceptual
design. To determine the linear aperture, E778 has included some experiments for smear,
tune shift, and decoherence time. The results have shown good agreement between
measured and computed values. However, the experiment on dynamic aperture shows
only qualitative agreement between measured and computed values. For example, the
tracking result shows that the dynamic aperture is 12.5 mm at HC48 flying wire under
25 amp sextupole strength, but the measured value is 10 mm. More long-term behavior
has to be investigated. So far, this is limited by computer capacity.

EVOL, even though it is not an element-by-element tracking program, is an
acceptable model, and a very efficient code. By using EVOL, it is possible to compute
over times which normal tracking programs cannot reach. To determine the long-term
dynamic aperture ofE778 experiment, up to 5 x 1()6 turns were tracked. That means more
than 100 seconds of Tevatron running time. Comparatively, that means about 25 minutes
of SSC running time. Another advantage to using EVOL is that it is easy to include tune
modulation effect (or so called ripple effect). This is important in long-term beam dynamic
study.

EVOL was modified to do the long-term tracking. The memory space was
enlarged, and an output file, lost.out, which records the amplitude and turn number when a
particle gets lost, was provided. Particles are launched from large amplitude to small
amplitude, one by one. The program will stop when 10 consecutive stable panicles are
found. The dynamic aperture versus turn number can be plotted by using the data in
lost.out file.

In order to compare the computing value and experimental measured value, it is
necessary to find out the relation between launched amplitude and full width at flying wire
HC48. This relation is not simple because of the substantial non-linearity of the phase
space. This relation is found by tracking. Figure 33 shows the result.

Figure 34 is the dynamic aperture versus turn number with different amplitude of
tune modulation. The solid line indicates the case without tune modulation. The dynamic
aperture at the HC48 flying wire is 12.5 mm in full width, which agrees with TEAPOT
tracking result. There is almost a vertical line at the dynamic aperture when the turn
number increases. It therefore appears that long-term behavior will not shrink the dynamic
aperture much. More investigation is needed. For example, does the more precise element­
by-element tracking show the same result? Does this result depend on sextupole
configurations, which resonance the tune is close to, coupling between two planes, or tune
shift, smear, etc.

The dashed line and dotted line describe tune modulation. The larger the
modulation amplitude, the smaller the dynamic aperture. Notice that many particles get lost
within the first period of tune modulation. Although the dynamic apertures are smaller,
they do not quite depend on turn number. In other words, dynamic aperture does not
shrink significantly as turn number increases. If this is proven, it would give more
confidence to the SSC design.
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The study of two-degrees of freedom has also been investigated. By "two-degrees"
here, we mean that initial amplitudes in both x and y plane are non-zero. Note that there is
no coupling field in EVOL. Figure 35 compares the dynamic apertures of the particle
launched in x plane only and in both x and y plane. The figure shows that the dynamic
aperture is reduced by 2-D motion, but the long term behavior remains good. Figure 36
gives the results of two-degree motion with tune modulation. The dashed line is the case of
two-degree motion with tune modulation in one plane. The dotted line is the case where
tune modulation is introduced in both planes. The one-degree result is plotted by a solid
line as a reference. The dynamic aperture is reduced again by two-degree motion and tune
modulation, and it decreases as the turn number increases in the range of 1()4 to lOS turns,
which is the range a normal tracking program can reach. But dynamic aperture does not
change much beyond lOS turns.
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Figure 35. Dynamic Aperture for One-Dimension Motion and Two-Dimension
Motion Without Tune Modulation.

A similar experiment was done on SPS. Studies for that experiment also show the
important effect of tune modulation (or ripple) and coupling. Figures 37 and 38 show a
tracking result for SPS experiment. One is from EVOL, the other from SIXTRK, which is
used in SPS experiment studies. The results agree very well. This could provide evidence
that E778 and the experiment on SPS are comparable.

Based on these tracking results, there are at least two explanations for the
experimental value that can be drawn. First, the reason that the measured value is smaller
might be the two-degree motion in the real machine. Figure 35 shows the difference
between I-D and 2-D motion. But this difference is a little bit too small to explain the
measured value. The other reason might be the effect of tune modulation. From
Figure 34, it can be found that if the tune modulation with amplitude of 0.005 is included,
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the computed dynamic aperture agrees with the experimental value, 10 mID. It is hard to
find out the exact value of tune modulation amplitude in the experiment; however, 0.005 is
not a ridiculous value.

The reason that the dynamic aperture is reduced by tune modulation is being
studied. At dynamic aperture, the amplitude is too large to compute the nonlinear behavior
by perturbation method. The amplitude-dependent tune will not follow quadratic curve at
large amplitude, dropping (or rising) much faster. Usually, dynamic aperture appears
where the slope of the tune shift versus amplitude curve becomes very large. At that point,
the phase advance, or the tune, is extremely sensitive to the amplitude. Any little nonlinear
force, like resonance-driven perturbation, will drive the particle out of tuning, and losing it
quickly. So, it is assumed that a critical slope of the tune shift versus amplitude curve
determines dynamic aperture.

The tune shift versus amplitude curve depends not only on the nonlinear field, but
also on the basic tune. A small change of basic tune may cause significant change of the
tune shift versus amplitude curve. The critical curve slope will appear at different
amplitude, so that the dynamic aperture changes. Figure 39 shows the detuning curve with
different basic tunes. The curves end at dynamic aperture.
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Figure 39. Tune vs. Amplitude with Different Basic Tunes.

Actually, tune modulation changes basic tune continuously. Sometimes, the tune
change makes dynamic aperture smaller than original dynamic aperture, i.e., without any
tune modulation. Ignoring the time dependence, the particles between the original dynamic
aperture and the smallest dynamic aperture achieved when tune modulation reaches its peak
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value will get lost eventually. Note that in Figure 34, with tune modulation, most particles
are lost within one tune modulation period.

In Figure 39, the dashed line and the dotted line have tune shifts of 0.001 and
0.005, respectively, with respect to the solid line case. The tune shifts have the same value
of the tune modulation depth in Figure 34. Comparing Figures 34 and 39, one concludes
that detuning curves stop at the amplitudes in corresponding cases. In other words,
dynamic apenure with tune modulation is about the same as dynamic aperture without tune
modulation, but basic tune changes as much as the tune modulation amplitude in the
direction of making the dynamic aperture smaller.

This might explain the 28% smaller experimental result. It also suggests that the
effect of tune modulation on dynamic apenure can be estimated by calculating dynamic
aperture with basic tune shifted by the amount of projected tune modulation amplitude. To
confirm the analysis, more investigation is needed on this subject. I suggest that the
dynamic apenure be measured with intentional tune modulation in the next run, and the
results compared with Figure 34. More understanding on the effect of tune modulation
might be found. More tracking is also necessary to provide evidence. Two-degree
dynamic aperture measurement could be included on the E778 agenda.
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