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Abstract

The dynamic equations for a one-dimensional autonomous system along with

their dynamic transformations are expressed in terms of the Constant of Motion

of the system. The relation between Liouville's theorem and Hamilton's equations

with the Constant of Motion is studied. This approach is applied to the radiation

damping suffered by a charged particle inside the beam circulating around a

collider-ring accelerator .
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1. INTRODUCTION

It is well known that the motion of a single particle moving in one-dimensional

space can be described by the Newton's equation

(1)

where the mass of the particle has been included in the definition of the external

force, F, acting on the particle, "x" is the position of the particle, and "t"

represents the time. If F does not depend explicitly on time, it is said that

the system is "autonomous," and equation (1) can be written as the following

"Autonomous Dynamical System" (ADS):

dv
- = F(x v)
dt '

and

dx
dt = v ,

where v is the velocity of the particle.

(2a)

(2b)

One of the principal objectives in physics is to find the first integral of mo­

tion of this system, because it represents the first constant of motion which is

associated with the total energy of the particle, and is in close relation with

the Hamiltonian and Lagrangian of the system [1] which, in turn, represents the

motion of the particle in the phase space. This space is the natural space in accel­

erator physics to see what happens with a beam of charged particles (or a single

charged particle) traveling in the accelerator. [2] Many dissipated systems (in par­

ticular synchrotron radiation damping) can be expressed in the form (2), these

systems represent a challenge for a consistent Hamiltonian and Lagrangian for­

mulation and have interest in Classical Mechanic, Electrical Network Theory, [3]

Statistic Mechanics and in Quantum Mechanics as well. In order to understand



the problem presented by these types of systems, a new approach will be formu­

lated on the basis of the Constant of Motion for the ADS (2). In this paper, the

constant of motion is given with the criterion to select it, having this constant

of motion, the dynamics equations, the Liouville-like's theorem, Hamilton-like's

equations are given in terms of it. The changes in these expressions because of a

"dynamical transformation" is also studied in conjunction with the requirements

to have an action-angIe-like transformation. Finally, this approach is used to

study the radiation damping suffered by a charged particle in a beam that is

circulating around a collider-ring accelerator.

2. CONSTANT OF MOTION

A constant of motion is a function, K, defined in the space {x, v} which

satisfies the following expression:

(3)

or according to (2), this means that the following Partial Differential Equation

of First Order (PDFO) is satisfied:

oK oK
v-+F(x,v)-=O

Ox ov (4)

This equation can be solved by the characteristics method, [4] where the equations

for the characteristic curves are given by

dx dv
-

v F(x,v)
dK
o (5)

The last term in (5) means that the function K is an arbitrary function of the

characteristic curve obtained from the solution of the two first terms of (5). This

functionality may be selected in such a way that the usual energy expression can

be obtained, if the function F(x, v) reduces to function F(x) when one parameter

reaches a specific value. [1] This last statement will be clear when the radiation

damping example can be seen.
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3. DYNAMIC EQUATIONS USING THE CONSTANT

OF MOTION, K

Let p be an arbi trary function defined in the space {x, v} and assume K is

the constant of motion of the system (2) then, the time variation of p is given by

dp op op
dt = v Ox + F( x, v) ov ' (6)

but from equation (4), the function F can be expressed in terms of the partial

derivatives of the constant of motion K as

where

oK
ov #0 ,

(7)

(8)

otherwise the constant of motion would be a simple real number. Using (7) in

(6), the variation of p with respect to time is expressed by

dp _ v { K}
dt - (~~) p, X,v,

where {p, K}x,v is the following Poisson-like bracket

{
K} _ opoK _ opoK

p, X,v - Ox ov ov Ox

(9)

(10)

Taking p as the functions x and v respectively in (9), the dynamic equations in

terms of the constant of motion are

and

dx
-=v
dt

3
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4. HAMILTON-LIKE AND LIOUVILLE-LIKE'S EQUATIONS

The Hamilton-like's equations can be obtained from (9) and (11) if the fol­

lowing condition is chosen:

v

but this means that the constant of motion must be of the form

(12)

(13)

where V(x) is an arbitrary function. This expression is the usual total energy of

the system when the force does not depend on the velocity so, for this particular

case the concept of constant of motion, total energy, and Hamiltonian can be

used undistinguishly.

Now, it is clear from (2), (4) and (6) that ifthere exists an autonomous system

of N noninteracting particles moving in one dimension under the same external

force, F, and choosing p (density) as an arbitrary function of the coordinates and

velocities of these particles, the evolution with respect to time of this density is

given by

N
dp _ '" Vi K
dt - 6 (8K) {p, }Xi,Vi ,

.=1 8Vi

where the constant of motion, K, is given by

N

K = I: k(Xi, Vi)
i=1

(14)

(15)

and k( Xi, Vi) satisfies equation (4) for each i-coordinate. The density p will be a

constant of motion if and only if

{p, K}x;,v; = 0

4
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and this, in turn, implies that

p = p(K) . (17)

This is the Liouville-like's theorem expressed in terms of the constant of motion.

5. DYNAMICAL TRANSFORMATIONS

The problem to address now is the dynamical transformations and their effect

in expressions (2), (9), and (4). A dynamical transformation is a change of the

variables which transforms the old variables, {x, v}, to new ones, {Q, P}, such

that the transformation is invertible, that is, the variables x and v are given by

x = x(Q,P)

and

v = v(Q,P) ,

and the Jacobian of the transformation, Jx,v is given by

(18a)

(18b)

_ ( o(x, v) ) _ ( go
Jx,v - det o(Q,P) - det gQ 2.£)&P

&v
&P

= (:~) (:;) - (:;) (:;) # 0 (19)

Using the following relations:

dx ax dQ Ox dP
dt = oQ di + oP di '

dv OV dQ OV dP
dt = oQ di + oP di '

5
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and condition (19), the dynamical system (2) is expressed in terms of the variables

Q and P, in the following form:

~~ = { (;; )f(Q, P) - (;;)v} / Jx,v

and

where the function i. has been defined as

f(Q,P) = F(x(Q,P),v(Q,P))

To see the changes in the dynamic equations, use the relations

a oo a oP a-=--+-- ,ax ax oQ ax oP

a oo a oP a----+--ov - ov oQ ov oP ,

and the condition

(
O(Q, P)) (?if~)

JQ,P = det o(x, v) = det ~~ ~~

(21a)

(21b)

(22)

(23a)

(23b)

= (~~) (~:) - (~~) (~:) 1= 0 (24)

in (9) and (10). After making some rearrangements, the result is

dp vJQ,P {_ Y}
dt = ~aK + apaK P, '\. Q,P

8v 8Q 8v 8P

and

[
aQ aQ] oi: [ap ap] eic

v ax + f av aQ + v ax + f av ap = 0 ,
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where the functions p and K, have been defined as

p(Q, P) = p(x(Q, P), v(Q, P)) ,

and

K(Q,P) = K(x(Q,P),v(Q,P))

(27)

(28)

Expression (25) expresses the fact that Constant of Motion, as well as the Lioville­

like's theorem, are invariant under dynamical transformations. It must be noticed

that the constant of motion, K, can also be obtained from the following PDFO:

~ ~

(
dQ ) etc (dP) etc
dt oQ + dt oP = 0 (29)

with dQ/dt and d.Pl dt given by (21a) and (21b), but it can be demonstrated that

equations (26) and (29) are equivalents by using (22) in (29), equaling coefficients

with (26), and arriving at the following identities:

ov oo ov 0P
oQ OV + 0P OV = 1 ,

ov eo ov 0P
oQ ox + oP ox = 0 ,

ox oo Ox oP
8Q 8v + 8P 8v = 0 ,

and

ox no ox oP
oQ Ox + oP ox = 1

In this way the results obtained are consistent.
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If the the constant of motion is of the form (13), it has been observed that

in this case a Hamilton-like's equations can be obtained to describe the dynam­

ics of the system, and from relation (25), it is clear that JQ,P = 1, in order to

have invariance of the Hamilton-like's equations under dynamical transforma­

tions. The symplectic transformation is a stronger condition which comes from

the invariance of the symplectic metric, [5] characterized by the matrix S, given

by

that appears in the definition of the Poisson-like bracket

( ) (
8K)8p 8p 0 1 ax

{p, K}x" ~ (ax' av) -1 0 ~lf,

6. ACTION-ANGLE-LIKE TRANSFORMATION

(31)

(32)

The next problem to address is the conditions required to obtain the following

type of transformation:

and

dQ
dt = w = constant

dP
-=0
dt

(33a)

(33b)

which are the "action-angie-like transformation" for system (2). Using these

conditions in (9), (20), and (24), the following results can be obtained:

P = P(K) ,

v = w(:~) ,

8
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f =w(:;) ,
and

8P
JQ,P = {Q, K}x,v 8K i- 0

Assume now that JQ,P i- 1, then using (33) in (25),

8K =0
8Q

and

Making use of (36) in (37b) and rearranging terms, it follows:

w(~~) + v{Q,P}x,v (;;) (~~) = 0 ,

(35b)

(36)

(37a)

(37b)

(38a)

using now equation (9) as well as expression (33a), the above Poisson-like bracket

can be written as

w(8K){Q, P} z ,v =;- ov '

which can be substituted in (38b) to obtain the expression

(38b)

(39)

but this implies that (~~) = O!, thus, the assumption that the Jacobian is

different from the unit is wrong. Assume that JQ,P = 1 and use the expression

- - ~etc oQo« oP etc (OP) etc----+--- --
ov - ov oQ ov oP - ov oP

9
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in (37b) to obtain, after some rearrangements, the following expression:

[ or ] etc
w OV - v oP = a , (41)

so, the term inside the square bracket must be zero, and the resulting equation

can be solved by the following expression:

1(1 2 )P = w '2v + V(x) (42)

This result means that the action-angle-like transformations are only allowed

in the Hamilton-like systems; furthermore, if the constant of motion of the au­

tonomous system (2) is not of the form (13), an action-angle-like transformation

is not a correct approach (which is evident if the motion is not periodic). The ap­

proach presented above will be applied to the radiation damping in the following

section.

7. RADIATION DAMPING

When a beam of charged particles (electrons or protons) is moving around its

orbit, in a stored ring accelerator, it suffers many electromagnetic perturbations

produced by external sources (magnets, rf-cavities). These perturbations shape,

transport, and accelerate the beam along its orbit, also induce oscillation in its

motion (betatron, synchrotron oscillations). The charged particles emit electro­

magnetic radiation any time they are accelerated (tangentially or orthogonally to

its motion). This emitted radiation reduces the energy of the beam and that of

the individual charged particles in it. The energy lost by the beam can be com­

pensated using a little bit more rf-power to maintain the beam in its designed

orbit. The motion of the individual charged particles of the beam is damped

relative to the synchronous particle in the beam [6] bringing about a reduction

of the beam size and in its emittance which is called "radiation damping." This

damping effect is an important parameter to consider in high-energy accelera­

tors. The "luminosity" [7] in these accelerators is inversely proportional to the
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emittance of the beam, and represents a measure of the probability to have a

specific event (creation of the desired particle) during the collision of two beams;

thus, an increasing or decreasing in the luminosity parameter means a good or

bad chance to "see" what is wanted in a collision experiment.

The damping effect in the charged particles of the beam can be studied at

first approximation [6,8] as a simple harmonic oscillation in their relative energy,

x = E - Eo, E being the energy of the charge and Eo the energy of the syn­

chronous charge, damped by a friction term proportional to the rate of change

in the relative energy-per-turn, v = dxjdt, that is, the equation which describes

this phenomenon can be given by

(43)

where no is the circular synchroton frequency that is given in terms of the revo­

lution time, To, energy of the synchronous particle, Eo, change of the energy of

the particle with respect the synchronous particle, edVjdT, and a constant, a o ,

which depends on the magnetic guide field as

(44a)

and a is the damping rate coefficient that can be given in terms of the variation

of energy lost per turn with respect of the energy of the particle, dU j dE, as

1 dU
a=--

2TodE
(44b)

Equation (43) can be written as the following one-dimensional-autonomous dy­

namical system

and

dv 2
dt = -(no x + 2av) ,

dx
-=v
dt

11
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The constant of motion associated with this system can be found using equa­

tion (4) with the function F(x, v) given by the right hand side of equation (45a).

From the first two terms of (5) and after some arrangements, the following dif­

ferential equation can be obtained for the characteristic curve:

dv (2 X )-=- n -+2a
dt 0 v '

(46)

which can be set in an integrable expression by choosing a new variable, e, given

by

e=:. .
v

The differential equation in terms of this variable is

(47)

(48)

and as the result of its integration, [9] the following characteristic curve is ob­

tained:

(49a)

where G has been defined as

1 I [(Q+n~;)-~]
2VQLn~ og (Q+n~;)+JQ2-n~ ,

(49b)

The constant of motion which has the correct limit (usual energy expression),

when the dissipated coefficient Q goes to zero, is given by [1]

.r: 1
]1..=2"exp(C) ,
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and can be chosen as the constant of motion for the autonomous system (45)

which is given in terms of the variables "x" and "v" as

K(x,v) = ~(v2 + D~ x
2+ 2axv) exp [2aG (a,Do' ; ) ] (51)

This constant of motion is divided into three cases, strong dissipation case (D2 <
( 2), critical dissipation case (D2 = ( 2), and weak dissipation case (D2 > ( 2). The

qualitative behavior in the space {x, v} of these cases can be seen in Figures 1,

2, and 3.

For very weak radiation levels,

(52)

and using the relations (51) and (4gb), the constant of motion can be given at

first order of approximation in a as

Thus, it can be seen in sections 4 and 6, even with a very small dissipation term,

the autonomous system (45) does not correspond to a Hamilton-like system and

an action-angle-like procedure would be not consistent.

It can be seen from Figure 3, the curve, K = constant, has a gap per cycle

in the phase space when the velocity is zero, v = 0, this is due to the "arctan"

function that appears in the constant of motion which brings about the spiral

behavior in the phase space. The gap size is a measure of the energy lost per

cycle by the charge and can be calculated taking the limit on the constant of

motion when the velocity goes to zero from both sides. Estimate this size for the

very weak radiation level case. Assuming x > 0, these limits are given by

K l' }.'( ) 1 ...2 2 'iT ... 2\. = im '\. x, v = - H o X2 + - a ~~ox2
v->O+ 2 2

13
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v

-4 -2
x

TIP-01324

Figure 1. Strong Dissipated Case fl;/ a 2 = 1/32 , J{ = 10.

5

v
15

-+-~'C"'"---I-------+-------I---~~-+-X

TIP~1325

Figure 2. Critical Dissipated Case fl; = a 2 = 25, J{ = 10.
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v

4

2

-2

-4

Figure 3. Weak Dissipated Case 0,;/0'.2 = 32/(0.015)2, K = 10.

and

(54b)

where Xl and X2 are the points of intersection in the respective limits. Equaling

both expressions and making arrangements, the following relation between both

points is obtained:

Assume X2 is of the form

2 2 7ra (2 2)
X2 - Xl + no X2 + Xl = 0

X2 = Xl + (8xd ,

(55)

(56)

and substitute this expression in (55) to obtain finally the algebraic equation

(57)
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The roots of this polynomial are

(58a)

and

(58b)

but only the first root, (58a), has the correct limits when the dissipated pa­

rameter, a, goes to zero (if a = 0, the result will be (8xI) = 0 too). Using

condition (52) in (58a), the size of energy lost is given by

(59a)

and it is not difficult to see that in the case Xl < 0, the jump is given by

(59b)

For illustration, the numerical value of 1rajf1o for the pp-sse accelerator at

20 Tev [10] is of the order of 10-8 , meanwhile for the e" e+ - LEP accelerator at

55 Gev [8] is above 1.55 x 10-2 • This means it will take the order of 108 turns for a

proton beam to shrink about 63% of its initial emittance in the sse accelerator

(the order of 65 turns for the electron beam (or positron beam) in the LEP

accelerator). This shrinking effect in the beam can not continue long because

the electrostatic repulsion of the charges and the quantum fluctuations of the

radiation. [11] These effects will require a more elaborated study.

8. CONCLUSIONS

Dissipated systems (in particular, Synchrotron Radiation Damping) repre­

sent a challenge for a consistent Hamiltonian and Lagrangian formulation. In
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order to understand the problems presented by these systems, a new approach

has been formulated on the basis of the Constant of Motion for an Autonomous

System. This approach is reduced to the "standard" formulation (Energy, Hamil­

tonian, Poisson bracket, canonical transformation and Liouville's theorem) when

the constant of motion is of the form tv2 + V (x).

This approach was used to study the radiation damping of a proton in a

bunch which is traveling in the orbit of the SSC accelerator. Guided by the

Nondissipated limit, that is, the condition imposed in the solutions to have "the

usual expressions" when the dissipated coefficient goes to zero, the approach

brings about a constant of motion for the dissipated model, (52). This one can

be simplified even more in the limit of very weak radiation levels, (53). Using

this constant of motion, the relation was obtained (59) which represents the

variation in the energy-per-cycle of the charged particle in the beam traveling in

the accelerator ring. This dissipated system does not correspond to a Hamilton­

like system and an action-angle-like transformation is not a consistent procedure.

The change of the emittance with time and its relation with the luminosity require

a more careful analysis since Luminosity depends on other parameters which

change with time too. [12]
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