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Abstract

The dynamic equations for a one-dimensional au-
tonomous system, along with their dynamic transforma-
tions, are expressed in terms of the Constant of Motion
of the system. The relation between Hamilton’s equations
and the Constant of Motion is studied. This approach
is applied to the radiation damping suffered by a proton
inside the beam circulating around the Superconducting

Super Collider (SSC) ring.
I. INTRODUCTION

It is well known that any motion of a single particle mov-
ing in one-dimensional space can be described by Newton’s
equation

(1)

where the mass of the particle has been included in the
definition of the external force, F, “z” is the position of
the particle, and “t” represents the time. If F does not
depend explicitly on time, we say that the system is “au-
tonomous,” and Equation (1) can be written as the follow-
ing “Autonomous Dynamical System” (ADS):

d*zfdt?’ = F ,

dv/dt = F{z,v) (2a)
and

dr/dt=v | (2b)

where v is the velocity of the particle.

The first integral of motion of this system represents the
first constant of motion, which is associated with the to-
tal energy of the particle. It is in close relation with the
Hamiltonian and Lagrangian of the system [1] which, in
turn, allows us to represent the motion of the particle in the
phase space. This space is the natural space in accelerator
physics, and it is used to see what happens with a beam
of charged particles (or a single charged particle) traveling
in the accelerator. Many dissipated systems (in particular
svnchrotron radiation damping) can be expressed in the
form (2); these systems represent a challenge for a con-
sistent Hamiltonian and Lagrangian formulation and have
interest in Classical Mechanic, Electrical Network Theory,
Statistic Mechanics, and Quantum Mechanics as weil. In
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‘order to understand the theoretical problem presented by

these types of systems, a new approach will be formulated
based on the Constant of Motion for the ADS (2). In this
paper, a constant of motion is agsociated to (2) and the dy-
namics equations and Hamilton-like’s equations are given
in terms of it. The changes in these expressions because
of a “dynamical transformation” are also studied in con-
junction with the requirements to have an action-angle-like
transformation. Finally, this approach is used to study the
classical radiation damping suffered by a charged particle
that is in a circulating beam of a collider ring accelerator.

I11. ConsTaNT OF MOTION

A constant of motion 1s a function, K, defined in the
space {z, v} which satisfies the following expression

dK/dt=0 . 3)

According to (2), this means that the following Partial
Differential Equation of First Order (PDFO) is satisfied:

v (K /0z) + F(z,v) (0K/v) = 0 . (4)

This equation can be solved by the characteristics method
[2], where the equations for the characteristic curves are
given by

dzfv=dv/F(z,v) =dK /0 . (5)
The last term in (5) means that the function K is an ar-
bitrary function of the characteristic curve obtained from
the solution of the two first terms of (5). This function-
ality may be selected in such a way that the comstant A
represents the usual expression for the energy, if the func-
tion F(z,v) reduces to a function F(z) when one parameter
reaches a specific value [1]. This last statement will be
clear when the radiation damping example is seen.

1II. DynaMic EQuaATIONS USING K

Let p be an arbitrary function defined in the space {z, v},
and assume K is the constant of motion of the system (2).
The time variation of p is given by

dp/dt = v (0p/0z) + F(z,v) (9p/8v) , (6)

but from Equation (4), the function F can be expressed in
terms of the partial derivatives of the constant of motion

kI as
F(z.v) = —(61\'/(')1-)/(61\'/81)) (7)



where we must have iGR iy 2 0: otherwise. the constant

f motion cannot define a relation between r and v. Us-
ing (T} in (6). the variation of p with respect to time 1s

expressed by

[y &)
~—

dp/dl = v {p.]\'},_.,/((?!\'/@t') , {
where {p. N}, , 1s the following Poisson-like bracket:

(9)

Taking p as the functions z and v, respectively, in (8),
the dynamic equations in terms of the constant of motion
are

{9 K} e = (9p/02)OK [Bv) — (9p/Ov)(OK /Bx)

dz/dt = v

—v (0K /0z) / (aK/au)

The Hamilton-like’s equations can be obtained from (8)
and (10) if the condition v/ (61\"/3!}):
this means that the constant of motion must be of the form

(11)

where V(z)is an arbitrary function. This expression is the
usual total energy of the system when the force does not
depend on the velocity. Consequently, for this particular
case, the concept of constant of motion, total energy, and
Hamiltonian can be used indistinguishably. Equations (4)
and (8) are transformed under a change of variable, ¢ =
r(Q, P) and v = v(Q, P), as

(10a)

and

dv/dt = (10b)

1 is chosen, but

K =v?/24V(z) ,

dﬁ vJQ P

dai - _Q_ah +6Pal\ {p, } (12)
dv 8Q v &P
and
0Q  ,9Q) 8K [ aP K _
[a f_}—Q_ { t av]ap‘o' (13)

where Jg p represents the Jacobian of the transformation,
the functions g and K have been defined as pQ,P) =
p(z(Q, P),v(Q, P)) and K(@Q, P) = K(z(Q, P),»(Q, P)).

The expression (12) expresses the fact that Constant of
Motion is invariant under dynamical transformations. We
must notice that the constant of motion, ];', can also be
obtained from the equation di /dt = 0. If the constant of
motion is of the form (11), Hamilton-like’s equations are
obtained to describe the dvnamics of the system, and from
the relation (12), it is clear that asking for Jgp = 1 1s
enough. in order to have invariance of the Hamilton-like's
equations under dynamical transformations. One transfor-
mation of particular interest to the physicist is the action-
angle transformation. This one is characterized by the
following relations

dQ/dt = & = constant {14a)

and

dP/dt =0 (14b)

Using these relations in (12) and using some algebra. the
following condition is obtained:

pP= (v?/z+ V(z)) Jw (15)
This result means that the action-angle-like transforma-
tions are allowed only in the Hamilton-like systems. Fur-
thermore, if the constant of motion of the autonomous sys-
tem (2) is not of the form (11), an action-angle-like trans-
formation is not a consistent approach. In the following
section, the approach presented above will be illustrated
by the well-known phenomenon called radiation damping.

IV. RaDIAaTION DAMPING

When a beam of charged particles (electrons or protons)
is moving around its orbit in a stored ring accelerator, it
suffers many electromagnetic perturbations produced by
external sources (magnets, rf-cavities). These perturba-
tions shape, transport, and accelerate the beam along its
orbit, and induce oscillation in its motion (betatron, syn-
chrotron oscillations). The charged particles emit electro-
magnetic radiation any time they are accelerated (tangen-
tially or orthogonally to its motion). This emitted radi-
ation reduces the energy of the beam and that of the in-
dividual charged particles in it. The energy lost by the
beam can be compensated using a little bit more rf-power
to maintain the beam in its designed orbit. The motion of
the individual charged particles of the beam is damped rel-
ative to the synchronous particle in the beam [3], bringing
about a reduction on the beam phase space size (emit-
tance). This is called radiation damping.

The damping effect in the charged particles of the beam
can be studied at first approximation as a simple har-
monic oscillation in their relative energy, x = E — Eg,
with E the energy of the charged and Eg the energy of the
synchronous charge, damped by a friction term propor-
tional to the rate of change in the relative energy per turn,
v = dx/dt. That is, this phenomenon can be described
by

d’z/dt? + 2a (dz/dt)+ Q2z =0 , (16)

where €, is the circular synchroton frequency that is given
in terms of the revolution time, T,; energy of the syn-
chronous particle, E;; change of the energy of the parti-
cle with respect the synchronous particle, edV/dT, and a
constant, a, (which depends on the magnetic guide field),
as Qg = (dV/dT)ea,/ToE,; and a is the damping rate
coefficient that can be given in terms of the variation of
energy lost per turn with respect to the energy of the par-
ticle. dU/dE, as o = (dU/dFE)/2T,. Equation (16) can
be written as the following one-dimensional-autonomous
dvnamical system:

dv/dt = —(Q2 z + 2av) (17a)



. |
LR RN
drjdt = (17h)
The constant of motion associated with this system is
. . 1 ) 2 2 ; |" rJ
Rlr.vy=5{v"+ Q-r- + 2arv)exp l2oG(o.Qo, ?)

where G is defined as

1 (a+ﬂ £ VAN ¢ Q:-’ < )
WZLog [(°+ﬂ")+\/K] y My < atyg
1 2 . 2
Gla, 9,2y = { ~TraE it Q2 = a
2
s Arctan [2E] - if 02 >Z,29,)
1

and A is defined as A = o2—Q2. This constant of motion
has three cases: strong dissipation case (Q? < a?), criti-
cal dissipation case (2° = e?), and weak dissipation case
(Q? > a?). For very weak radiation levels, o?/Q2 <« 1, and
using the relations (18) and (19), the constant of motion
can be given at first order of approximation in a as

(v2 + Qz:cz)+

B[ b

K(z,v) =

2a |lzv +

20, (v* + Q%z?) arctan(szi)] . (20)
Thus, even with a very small dissipation term, the au-
tonomous system (17) does not correspond to a Hamilton-
like system, and an action-angle-like procedure would be
inconsistent.

The curve, K = constant, has a gap per cycle in the
phase space when the velocity is zero, v = 0. This is orig-
inated due to the “arctan” function that appears in the
constant of motion. The gap size is a measure of the en-
ergy lost per cycle-of-oscillation by the charge; it can be
calculated by taking the limit on the constant of motion
when the velocity goes to zero from both sides. Observe
first that since the curve R = constant must be continu-
ous when v = 0, there is a change by 7 in the argument
of the “arctan™ function phase. The limits from the right
and the left can now be calculated. For the very weak ra-
diation level case and where z > 0, these limits produce
the following expression:

L _ 6ra /2, _
(b} =z [Vl 1+ 37a/Q, 1}

For very weak dissipation limit, a/Q, <« 1, it can be
written as (62) = —r (37a/9Q,), and it is not difficult
to see that in the case £ < 0, the jump is given by
(éry = r (370/9Q,). The numerical value of a/Q, for the
pp-SSC accelerator at 20 Tev [4] is on the order of 1078.
This means that it will take on the order of 10® cycles
of oscillations for a proton beam to shrink about 63% of
its initial emittance in the SSC accelerator. This shrink-
g effect in the beam may not continue longer because of

(21)

the electrostatic repulsion of the charges and the quantum
fluctuations of the radiation {3]. These effects require more
elaborate study.

V. CONCLUSIONS

In order to understand the Hamiltonian formulation
problems presented by dissipative systems, a new approach
has been formulated based on the Constant of Motion for
an Autonomous System. The dynamics equations are ex-
pressed in terms of this constant of motion, and the ef-
fect of a dynamical transformation on these equations was
studied along with the action-angle transformation. This
approach is reduced to the “standard” formulation (En-
ergy, Hamiltonian, Poisson bracket, and canonmical trans-
formation) when the constant of motion is of the form
-1._;v2 + V(z). When this approach is applied to radiating
damping, it brings about a constant of motiom which has
the right nondissipative limit when the dissipated coeffi-
cient goes to zero. Using the simplified weak-dissipation
case, the variation in the energy per cycle of synchroton
oscillation of the particle in the beam was calculated for
the SSC. The basic theoretical answer given here is that
the radiation damping phenomenon does not correspond
to a Hamilton-like system. Thus, an action-angle transfor-
mation is not a consistent procedure for this phenomenon.
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