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Constant of ~\Iotion and Dynamic Equations for One Dimensional
Autonomous System, and Radiation Damping

G. Lopez
Accelerator Division

Superconducting Super Collider Laboratory"
2550 Beckleymeade Avenue

Dallas, Texas 75237

Abstract

The dynamic equations for a one-dimensional au
tonomous system, along with their dynamic transforma
tions, are expressed in terms of the Constant of Motion
of the system. The relation between Hamilton's equations
and the Constant of Motion is studied. This approach
is applied to the radiation damping suffered by a proton
inside the beam circulating around the Superconducting
Super Collider (SSC) ring.

I. INTRODUCTION

order to understand the theoretical problem presented by
these types of systems, a new approach will be formulated
based on the Constant of Motion for the ADS (2). In this
paper, a constant of motion is associated to (2) and the dy
namics equations and Hamilton-like's equations are given
in terms of it. The changes in these expressions because
of a "dynamical transformation" are also studied in con
junction with the requirements to have an action-angle-like
transformation. Finally, this approach is used to study the
classical radiation damping suffered by a charged particle
that is in a circulating beam of a collider ring accelerator.

• Operated by the Universities Research Association. Inc .. for
the l,'. S. Department of Energy under Contract :'\0. DE-AC02
89ER40486.

It is well known that any motion of a single particle mov
ing in one-dimensional space can be described by Newton's
equation

where the mass of the particle has been included in the
definition of the external force, F, "s" is the position of
the particle, and "t" represents the time. If F does not
depend explicitly on time, we say that the system is "au
tonomous," and Equation (1) can be written as the follow
ing "Autonomous Dynamical System" (ADS):

(3)dK/dt = 0 .

A constant of motion is a function, K, defined in the
space {x, v} which satisfies the following expression

dpjdt =v (opjox) + F(x, v) (opjov). (6)

Let p be an arbitrary function defined in the space {x, v},
and assume K is the constant of motion of the system (2).
The time variation of p is given by

but from Equation (4), the function F can be expressed in
terms of the partial derivatives of the constant of motion
1\'as

F(J.·.l'l=-(fJJ\'j[}x)/(OJ\jov), (7)

II. CONSTANT OF MOTION

According to (2), this means that the following Partial
Differential Equation of First Order (PDFO) is satisfied:

v (oKjox) + F(x, v) (ol<jov) =0 . (4)

This equation can be solved by the characteristics method
[2], where the equations for the characteristic curves are
given by

dxjv = dvj F(x, v) =dK jO . (5)

The last term in (5) means that the function K is an ar
bitrary function of the characteristic curve obtained from
the solution of the two first terms of (5). This function
ality may be selected in such a way that the constant K
represents the usual expression for the energy, if the func
tion F(x,v) reduces to a function F(x) when one parameter
reaches a specific value [1]. This last statement will be
clear when the radiation damping example is seen.

III. DYNAMIC EQUATIONS USING K

(1)

(2b)

(2a)

dxjdt = v ,

dvjdt = F(x, v)

and

where v is the velocity of the particle.
The first integral of motion of this system represents the

first constant of motion, which is associated with the to
tal energy of the particle. It is in close relation with the
Hamiltonian and Lagrangian of the system [1] which, in
turn, allows us to represent the motion of the particle in the
phase space. This space is the natural space in accelerator
physics, and it is used to see what happens with a beam
of charged particles (or a single charged particle) traveling
in the accelerator. Many dissipated systems (in particular
synchrotron radiation damping) can be expressed in the
form (2); these systems represent a challenge for a con
sistent Hamiltonian and Lagrangian formulation and have
interest in Classical Mechanic, Electrical Network Theory,
Statistic Mechanics, and Quantum Mechanics as well. In
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L'sing these relations in (12) and using some algebra. the
following condition is obtained:

Wll'-'f'-' WP must have i [}!\'/i"h-I :f:: 0: otherwise. the const ant
"f motion cannot ddln,> a rclat ion between 1: and 1". t"s
in~ (7) in ((j). the variation of f' with respect to time 15

"x"rf·,,~,:,d hy

and

dP/dt =0 (14b)

(8)
(15)

where {po !\' }x.v is the following Poisson-like bracket:

{p, !{}x.t = (Op/Ox)(o!{/Ol') - (op/ol')(oK/ox) . (9)

Taking p as the functions z and t', respectively, in (8),
the dynamic equations in terms of the constant of motion
are

dx l dt =v (lOa)

This result means that the action-angle-like transforma
tions are allowed only in the Hamilton-like systems. Fur
thermore, if the constant of motion of the au tonomous svs
tern (2) is not of the form (11), an action-angle-like trans
formation is not a consistent approach. In the following
section, the approach presented above will be illustrated
by the well-known phenomenon called radiation damping.

and

[/ )Q + f aQ] ~k + [v ap + fOP] ok =0 (13)ax 01' dQ ox ov ap

dji uJQ,P {- p} ( 2)
di = £Q &k + &P &k p, \ Q,P 1

au &Q - at' &P

where flo is the circular synchroton frequency that is given
in terms of the revolution time, To; energy of the syn
chronous particle, E.; change of the energy of the parti
cle with respect the synchronous particle, edV/ dT; and a
constant, 0: 0 (which depends on the magnetic guide field),
as fl~ = (dV/dT)eO:o/ToE.; and 0: is the damping rate
coefficient that can be given in terms of the variation of
energy lost per turn with respect to the energy of the par
ticle. dU/dE, as 0: = (dU/dE)/2To . Equation (16) can
be written as the following one-dimensional-autonomous
dynamical system:

IV. RADIATION DAMPING

When a beam of charged particles (electrons or protons)
is moving around its orbit in a stored ring accelerator, it
suffers many electromagnetic perturbations produced by
external sources (magnets, rf-cavities). These perturba
tions shape, transport, and accelerate the beam along its
orbit, and induce oscillation in its motion (betatron, syn
chrotron oscillations). The charged particles emit electro
magnetic radiation any time they are accelerated (tangen
tially or orthogonally to its motion). This emitted radi
ation reduces the energy of the beam and that of the in
dividual charged particles in it. The energy lost by the
beam can be compensated using a little bit more rf-power
to maintain the beam in its designed orbit. The motion of
the individual charged particles of the beam is damped rel
ative to the synchronous particle in the beam [3], bringing
about a reduction on the beam phase space size (emit
tance). This is called radiation damping.

The damping effect in the charged particles of the beam
can be studied at first approximation as a simple har
monic oscillation in their relative energy, x = E - E s ,
with E the energy of the charged and Es the energy of the
synchronous charge, damped by a friction term propor
tional to the rate of change in the relative energy per turn,
v = dx/dt, That is, this phenomenon can be described
by

d2x/dt2 + 20: (dx/dt) + fl~x = 0 , (16)

(11 )

dul dt = -v (oK/ox) / (oK/ov) (lOb)

where JQ,P represents the Jacobian of the transformation,
the functions p and k have been defined as p(Q, P) =
p(x(Q, P), 1'(Q. P)) and [{(Q, P) = l\(x(Q, P),l'(Q, P)).

The expression (12) expresses the fact that Constant of
Mot ion is invariant under dynamical transformations. We
must notice that the constant of motion, k, can also be
obtained from the equation dk [dt =O. If the constant of
motion is of the form (11), Hamilton-like's equations are
obtained to describe the dynamics of the system, and from
the relation (12), it is clear that asking for JQ,P = 1 is
enough. in order to have invariance of the Hamilton-like's
equations under dynamical t ransformat ions. 0111" t ransfor
milt ion of particular interest to the physicist is the action
angle transformation. This one is charact erized by the
fnllowing relations

and

where V(x) is an arbitrary function. This expression is the
usual total energy of the system when the force does not
depend on the velocity, Consequently, for this particular
case, the concept of constant of motion, total energy, and
Hamiltonian can be used indistinguishably. Equations (4)
and (8) are transformed under a change of variable, x =
x(Q, P) and v = v(Q, P), as

The Hamilton-like's equations can be obtained from (8)

and (10) if the condition v/(oK/ov)= 1 is chosen, but

this means that the constant of motion must be of the form

dC)/dl =~. =CO/I.'11/1I1 ( J·I/I ) dif dt = -(Q~ x + 20:11) (17 a)
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drl dt = !

The const ant of motion associated with this system is

the electrostatic repulsion of the charges and the quantum
fluct uat ions of the radiation [3]. These effects require more
elaborate study.

IdI,t:) = ~(l'2 + n~I2 + 2on) exp [20G(a, 0.0' ~)]' .
. - (18)

where G is defined as

and Ll is defined as Ll = 0- 2 - 0.~. This constant of motion
has three cases: strong dissipation case (0.2 < 0-2

) , criti
cal dissipation case (0.2 = 0- 2 ) , and weak dissipation case
(0.2 > 0- 2) , For very weak radiation levels, 0-2/n~ «: 1, and
using the relations (18) and (19), the constant of motion
can be given at first order of approximation in 0- as

«i«. v) = ~(v2 + 0.~x2)+

20- [xv + _1_ (v2+ 11~x2) arctan( 11 oX)] . (20)
211 0 v

Thus, even with a very small dissipation term, the au
tonomous system (1i) does not correspond to a Hamilton
like system, and an action-angle-like procedure would be
inconsistent.

The curve, K = constant, has a gap per cycle in the
phase space when the velocity is zero, v =O. This is orig
inated due to the "arctan" function that appears in the
constant of motion, The gap size is a measure of the en
ergy lost per cycle-of-oscillation by the charge; it can be
calculated by taking the limit on the constant of motion
when the velocity goes to zero from both sides. Observe
first that since the curve J( = constant must be continu
ous when t' =0, there is a change by 71' in the argument
of the "arctan" function phase, The limits from the right
and the left can now be calculated. For the very weak ra
diation level case and where x > 0, these limits produce
the following expression:

I wish to thank to Dr. R. Schwitters and Dr. Don
Edwards for their support at the SSC Laboratory.
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In order to understand the Hamiltonian formulation
problems presented by dissipative systems, a new approach
has been formulated based on the Constant of Motion for
an Autonomous System. The dynamics equations are ex
pressed in terms of this constant of motion, and the ef
fect of a dynamical transformation on these equations was
studied along with the action-angle transformation. This
approach is reduced to the "standard" formulation (En
ergy, Hamiltonian, Poisson bracket, and canonical trans
formation) when the constant of motion is of the form
~v2 + V (%). When this approach is applied to radiating
damping, it brings about a constant of motion which has
the right nondissipative limit when the dissipated coeffi
cient goes to zero. Using the simplified weak-dissipation
case, the variation in the energy per cycle of synchroton
oscillation of the particle in the beam was calculated for
the SSC. The basic theoretical answer given here is that
the radiation damping phenomenon does not correspond
to a Hamilton-like system. Thus, an action-angle transfor
mation is not a consistent procedure for this phenomenon.

if 0.~ < 0
2;

if 11~ =0- 2
;

[( 0 +n2 L ) _~]I L . o.
2J:i' og (o+n~ e)+VA '

I
-~l

0+'-'=
I' [o+n;f]

~Arctan .;=K' ,

G( 0 x -0, "0. -) -
v

(6x) = I [ 1 - 671'0-/11 0
- 1] ,

1 + :371'0- 111 0

(21 )

For very weak dissipation limit, 0-/11 0 « 1, it can be
written as (6;:) = -I (3:ro-/0. 0 ), and it is not difficult
to see that in I he case x < 0, the jump is given by
(t,r) = 1: O:ro/0.,,). The numerical value of 0-/0. 0 for the
Jlp-sse accelerator at 20 Tev [4] is on the order of 10-8

This means that it will take on the order of 108 cycles
of oscillat ions for" proton beam to shrink about G3o/c of
i1~ 1I111i;11 "llIlllall',',- ill the sse accelerator. This shrink
III,:.!. .'fr.·,,! ill Iii,· I..-ruu 111<1)' not cont inue longer because of

3


