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Abstract

An explicit normal form of the parameterized Courant-Snyder matrix is
obtained by symplectic factorization. The explicit calculation of the - (off-
momentum-) dependent tune u(é) and Twiss parameters 3(8),v(6), a(8) may
have applications in accelerator lattice design. Furthermore, being able to sym-
plectify a truncated parameterized Courant-Snyder matrix is a key step to fully

parameterized map studies in nonlinear dynamics.
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1. INTRODUCTION

An obtainable Courant-Snyder matrix parameterized for off-momentum
transverse propagation relative to the off-momentum closed orbit in an alter-

nating synchrotron can be expanded in the form

M(é) = Moy + 6M; +62M2+...+573Mn +U(§"+l),

where § = AP/PF) is a parameter for the off-momentum. The linear periodic

evolution of the transverse phase space coordinates are given by
;E-i-i-l - M(&)f' :

where the transverse phase space coordinates, Z*, are relative to the periodic
closed orbit which is a polynomial of é. In other words, the dispersion due to
off-momentum is contained in the §-dependent closed orbit. Note that 7' =
[zi, Lyt p;l} (or ' = [z:i, p'I] for non-coupled beam dynamics). The matrix My
is symplectic, but M{(é) is generally not. It is symplectic only up to the truncated
order 6", that is, MT (§)SM(6) = 5+ o(6™"*1), where S is the symplectic identity
given by

0 -1 )
S = for 2x2 matrices .
1 O

In this paper, a method for symplectifying the truncated parameterized
Courant-Snyder Matrix is presented. This method will simultaneously convert
a parameterized Courant-Snyder matrix into a parameterized normal form. A
single-parameter, 2x2 parameterized Courant-Snyder Matrix is considered. Ex-
tension to multi-parameter, 2n x 2n parameterized Courant-Snyder Matrix is

possible with the use of computer. The main task is to make a series of canonical



transformations such that

Ru(6) = cos u(6)  sin u(6)
T —sin p(6) cos u(8)
= A"N(E)M(§)A(6) + a(6™F))

so that neglecting terms with order higher than é®, a parameterized Courant-

Snyder Matrix M($) can be represented by a symplectic matrix given by

My(8) = A(8)Ra(8)A™2(6)

_ (cos ©(8) + a(8)sin u(6) B(6)sin u(8) )
—(8) sin p(6) cos u(8) — a(8)sin p(6) |

where the series of canonical generation matrices have been concatenated into a
single symplectic matrix A(é), and

u(8) = po + bpr + Ppa + - + 8 pn

BEY=Fo+ 6B+ 8B+ +8Bn+... + 6T By,

Y(6) =0+ ém + g4+ ...+ 6"("+])7n(n+1) ,

a(6) = ag + 6oy + Eas+ -+ o + ... + 5n(n+1)an(n+1) )

with

1+ a®(8) = B(6)1(6).

The parameterized tune () and Twiss parameters 8(6), a(6), and ¥(é) can

be explicitly calculated through the order-by-order normalization of the param-

eterized Courant-Snvder matrix.



2. NORMALIZATION OF THE 0‘® ORDER

We begin with the normalization of the Oth order and will consider stable
motion only. The main task is to find a symplectic generation matrix Ap and its

inverse A; ' (also symplectic) such that

cospp  sin yp _
Roz( _ ):AOIMDAO. (1)
—sin gy COS Ko

This has been well understood since the proposal of the alternating-gradient

Mﬂz (ao bo) ’
[¢1] do

with (a) agdo — bpcop = 1 for My to be symplectic and (b) ’%(ag + d0)| < 1 and

boco < 0 for stable motion. Then

synchrotron. [1] Let

1 1
Cos g = 3 Tr(Mp) = §(ag + dop) .
With a unique solution for yy by choosing
sin o = — 0 /1= cos? 10,
|col

the generation matrix Ay is generally given by

y(ao — cospp) —xsinpg  z(ag — cos o) + ysin pg
co/Bo co/fa

Ag =
¥ I
v Bo V8o
where
1
By = —C—(x2 +yH)singg >0
0



and r and y can be any real numbers. By choosing z

Land y = —(ap —

cos pp)/(sin o), we have the Courant-Snyder’s choice that [1]

where

Mg is then given by

My = AgRoAy?

where

VB 0

Ap = : (2)
—ag _1_
VB /B
1
0
VB
Al = ,
% v
0
- sin g
ag — do
Qg = :
2510 g

Bo sin pp

(cos 1o 4+ ap sin jo

—~o SIn o ) ’

COS o — Qup SIN Ko

Yo = A

The above solution can be easily checked by substituting Ag and My into Eq. (1).

3. NORMALIZATION OF THE 1** ORDER

We now proceed for the normaliztion of the first order by first making a

canonical transformation of M(¢) as follows:

\M(6) = AJTM(8)Ag = Ay ' MoAg + 6AT My Ag + - + 8" Ay My Ag + a(6™%1)
=Ro+ &6 M + 62 Mo+ -4+ 8" | M, + ("),

4



Since Ag and Ay 1 are symplectic, 1M(8) is symplectic up to order 6, the same

as M($8), that 1s,

\MT(6)S 1M(8) = S+ o(6").

This, together with Ry being symplectic (R} SRy = S), yields the following

necessary conditions:

61 :RES]Ml +1M1TSR0=0, (3)

6" RIS M, + \MTSRy+--- 15, =0

where

15, = 1MnT/2S 1M, 0 if n is even,
1Sn = 1M(1;__1)/2S 1M(n+1)/2 + IM(7;1+1)/2S 1M(n_1)/2 if n 1s odd.

The main task is then to find a §-dependent symplectic generation matrix
A](é) = I + 6A; such that

Ry(6) = ( cos(uo + éuy)  sin(po + éua) )

—sin(po + ép1) cos(po + bp1) (4)

= ATN(6)(Ro + 6 1 M1)A1(8) + 0(8%)

10
where | = (0 1) is the identity matrix and A; is independent of §.

There are two necessary conditions for A;(6) to be symplectic, i.e.
AT(6)SA(8) = S, which are

ATS 4+ 54, =0 Tr(4))=0



and

ATSA; =0 & det(A;]) =0

and so A1A; = 0. We will call such a matrix (A;) as a nil-potent matrix.

Therefore, the inverse matrix of Ay(é) is simply
A(6) =T —6A4y,

which is also symplectic. Let

with a constraint that (a; + dyj}cospp = (c; — b;)sin g since R{S 1My +
1M{ SRy = 0. Expanding Eq. (4) up to order é, we obtain

—singg  cos po
5#1( . ) = 6(RoA1 — A1 Ry + 1 My) + 0(8%)
—COS g — Sinpip

that is,

( —sinygg  COS lg
H1 .
—COS g — SIN Yo

) = RpA1 — A R + 1M, . {5)
With the given constraints on A; : Tr(A;) = 0 and det(A;) = 0 and on | M; :
(a1 + di)cos pg = (¢1 — b1) sin po, we obtain

_CTriMy) . a1t dy
2sinpg  2sinpg

g1 =

and

Ay

1 ( b + ¢ dl"ali\/h—l)

Cdsinpo \dy —ay TVRT —(b1 + 1)



where

hi = (a1 —dy)? + (b +1)°

_ [Mr—éldet(lM]).

sin po

The above solutions can be easily checked by substituting A; =I+6A, and
1M into Eq. (2). Note that the constraint that A; is a nil-potent matrix can

also be easily checked.

4. NORMALIZATION OF THE 2"¢ ORDER

Normalization of the second order begins with a canonical transformation of

1M({$6) as follows:

2M(8) = AT(8) 1M(6)A1(6)
=(I—641)1M(I +64,)
= (I —6A1)(Ro+ 6 1 M1)(I 4+ 6A1)+ 85I — 8A1) | Ma(I+6A1) +---
+ 6°(] — 6A1) 1 Mu(I + 64;) + o(67%1)

and so

2M(6) = Rl(é) + (522M2 + (532M3 4+ 6" M, + 0(6n+1) R

where R1(6) i1s given in Eq. (4). Similar to 1 M, oM is symplectic up to order §®,

since A1(6) and its inverse fil_l(é) are both symplectic, that is,
2MTS oM = S+ o(6™) .
This, together with Rf(é)S Ri(é6) = 5, yields one of the necessary conditions:

§2: RIS oMs + o MIS R =0 (6)

f



Let

a b
oMy = ( 2 2) .
¢y do

Similar to the constraint of | M1, Eq. (6) yields the following constraint for 2 Mj :
(az + da) cos po = (cz — bz)sin g .

The main task is then to find a symplectic generation matrix 4;(8) = (I +6%42)
such that

cos(pg + 61 + 6%u2)  sin(po + Suy + 62uz)
—sin(po + 6p1 + 8%u2)  cos(po + 6u1 + 6%uz)

Ry(6) = (
(7)

= A;1(8)(Ry + 6% 2 M) Az(6) + 0(6%) .

Similar to 41, two conditions for A; given by
AlS+ SA4, =06 Tr(A42) =0
and

A3 SAy =0 det(42) =0

are necessary for Ao(§) = I + 624, to be symplectic (A SA; = §). Therefore,

As is a nil-potent matrix, i.e. A242 = 0, and so the inverse of 43(8) is simply
A7 N(8) =T-84,,

which is also symplectic.



Expanding Eq. (7) up to order 62, we obtain

—Sinyy  COS tg
62#'2 ( . ) = 52(R0A2 — ARy + 2M2) + 0'(53) \
— COS fg — SIn Yo

that is,

—sinpug  COs U
H2

‘ ) = RoAz — A2Ro + 2 M, . (8)
—COS g — SHL 40

Note that Eq. (8) is similar to Eq. (5) and that A; and 2M> have similar con-
straints as A; and ; M, respectively. Therefore the solution for g2 and A, should

be similar to x; and A;, respectively. They are given by

_ Tr(eM,)  ar+d2

I

M2

2singo  2sinpg
and
1 b2+cz d2—(12:t\/h2
Ay = -
4sinpo \ dy — az F VR —(b2 + 2}
where

Tr(2 M>)

2
- ] - 4det(2M2) .
sin pg

hy = (a2 — d2)* + (b + c2)* = {

The above solution can be checked by substituting A2(6) = (I 4+ 6°Ay) and ;M>
into Eq. (7).

5. ITERATION FOR NORMALIZATION UP TO N*®* ORDER

The process (in section 4) of 2" —order normalization being similar to the
process (in section 3) of the 1%'-order normalization gives us little doubt that
we could follow the same process to normalize higher orders by iteration. The

solution can always be checked afterwards.

9



Let us assume that an (i ~ 1)*"—order generation matrix A,_1(8) = I +

81 4;_1 has been obtained and a canonical transformation has been made such

that
iM(8) = AZ1(8) i1 M(8)Ai-1(6)
= Ric1(8) + 8% Mi+ 6 Mgy + - + 6% M, + o(8™H)
where R;_1(6) is a rotation given by

Rir(6) cos(po + 6y + -+ 61 pin1)  sin(po + gy + -+ 67 i)
t—1 = . - - 4
' —sin(uo + &gy + -+ + 8 pic1)  cos(po + Spa + -+ + 67 i)

and
( " )
iM; = )
o d;

with a constraint that (@i + di)cospo = (¢i — b;)sin g, which is one of the
necessary conditions from the property that ;M is symplectic up to n't order.

The 7! order symplectic generation matrix A,(6) is then given by
Ai(8) =T+ 6A;,

where

| 1 by + ¢ d:'—aii\/h_l'
' 4 s1n pg d,~—a,‘$\/h_.‘ —(bi + ;) ’
and

Tr(; M;)

sin Yo

2
hi = (a; — di)? + (bi + ¢)* = [ } —4det(;M;) .

A canonical transformation can then be made to obtain ;4 M as follows:
i M(8) = (I — 8 A M(& (T + 8 A)
= (I — 8" AN Rio1(8) + & MOI + 8 A)
+ 8T ~ 8 A M (I + 61 A
doee b 6 = 8 A M + 8 A)) + o(8™T)
= Ri(8) + 6 Mipy + 87 Miga + -+ + 8" My + 08"

10



where the rotation R;(6) is given by

Ri(6) = cos(po + 6p1 + -+ + 6'u)  sin(po + 6pa + -+ + 8 )
' —sin(po + p1 + -+ 6'i)  cos(po + bpy + -+ + 8 psi)

and
~ToiMy) . aitd
2sinpug  2sinpg

pi =

The above process is then iterated until we obtain the n*! order symplectic gen-
eration matrix A,(6) = I +6™A, and make the (n4 1) canonical transformation

to obtain

(I = 8"Ap)nM(I+8"An) = Ro(6) + o(6™*).

6. THE PARAMETERIZED TWISS PARAMETERS
Tracing back the n+1 canonical transformations, we have
M(8) = Ao(I + 8A1)(I + 8% A3)--- (I 4 6" An)Rn(8)(I — 6™ Ap)
(I = 82 AR)(I — 6A1)AGY + o(6711)
where

Ru(6) = cos(po + bp1 + -+ -+ 6%un)  sin(po + bpr + - + 6%pp)
" —sin(pg + 6py + - -+ 6% un)  cos(up + bpuy + - + % py)

is a rotation (a rotation is always symplectic); Ao and its inverse Ay ! are the
usual Courant-Snyder generation matrix obtained from My (note: MZ SMy = S);
(I + 6'A;) and their inverses (I — §'A;) for i = 1,2,...,n, are the order-by-order
generation matrices, which are all symplectic.
In a practical case, a(6™*!) is usually negligible if § is small and n is large
enough, so that M(§) can be represented by the symplectic matrix
M(8) = Ao{I + 6A))(I + 6% Az)-- (I + 6™ Ap)Rn(8)(I — 6™ Ay)

10
(I = S AT - 6ANAY (10

One of the remaining interesting studies would be to find the parameterized

Twiss parameters. that is, to find 3(6), ¥(§), and a(é) in the form of power series

11



expansion of & to their required complete order §™™+1) such that

B(8) = Bo+ 661+ 8By + -+ 673 1,

V() =yo+ i+ 4+ 6y,

a(8) = ap + o + 8%ag + - + 5n(n+l)an(n+1)’

and

1+ a?(8) = B(6)v(8).

The parameterized Courant-Snyder matrix can then be expressed as:

M. = ( #(8) + o(8) sin (6) B(8) sin u(6) )
s —¥(8) sin p(6) cos p(8) — a(8) sin ()

_ (cos,u(ﬁ) + ag sin u(9) Bo sin p(8) )

—~vo sin u(6) cos p(8) — ag sin p(6)
(11)
a 3 o
+6sin,u(6)( : ' )+62sinu(6)( » P )+
—71 T —Y2 2
2 n nn
+6"(“+1)sin,u(6)( n{n+1) B (n+1) ) )
“Ta(r+1) T Cn(n+l)
To find §;, v, and a; for i=1,2, --- /n{n+1), one first reform Eq. (10) as
follows:
M, =AoRa(6)AF" + 6 Ao[A1Ra(6) — Ra(8)A1]Ay!
+ 6% Ag[A2Ru(6) — Ru(8)A2 — A1 Ra(6)A1]A;  + - . (12)

One then substitutes Eq. {2) for Ay and Aal and Eq. (9) for 4;,1=1,2,---, n, into
Eq. (12) and then compares it with Eq. (11). While 8;,v:, and a; for i=3, ---

1

12



n{n+1), are lengthy but staightforward and so left as an exercise for interested
readers, the first-order and the second-order perturbation Twiss parameters, are

given as follows:

_ Bolhy + 1)

br=—F—"
sin po

o _ao(h + c1) + (a1 — dy)
! 2sin pg ’

=a3(b1 +¢1) + 2a9{a1 — d1) — (1 + 1)
28 sin uq ’

71

_Bo(b2 + ca) 4 Bolh1 F (a1 — d1)v/hi]

2 sin po 8sin po

B2

Y

N _aplby + c2) +{ax — da) + (b1 + €1)vVh1 + agh1 F apla) — di)vhy
2= 2sin po 8 sin o ’

a%(b‘z + 02) + 2ap(agy — dz) - (bz + cz)
Y2 = :
2034 sin uo

+ (1 + a%)hl + (1 - ag)(al - d])\/ﬂﬂ: 2&0([)1 + C])\/E
8 sin g '

Note that ¢; =b; =¢; =d; = h; =0 for: > n.

7. SUMMARY AND DISCUSSION

Given a parameterized truncated Courant-Snyder matrix
M(8) = Mo + 6My + 6* Mo + -+ + 8" M, ,

a method has been proposed to normalize and symplectically factorize the matrix
M(6) (MT(6)SM(6) = S + o(6™11)) through n + 1 canonical transformations so
that neglecting orders higher than é", M(6) can be represented by a symplectic
parameterized matrix M{d) given by Eq. (10) or Eq. (11).

13



This proposed method of symplectically factorizing a truncated parameter-
ized Courant-Snyder Matrix together with a parameterized closed-orbit Tay-
lor map (obtainable with the program Zmap[2]|) will allow a fully parameter-
ized Dragt-Finn factorization (3], which can be performed with the software
available in ZLIB[4]. Note that previously Dragt-Finn factorization was semi-
parameterized in a sense that an extra phase-space dimension was included to
represent the canonical conjugate of the parameter (the off-momentum), during
the factorization process and that only the nonlinear part was parameterized

while the linear part was left non-parameterized. [5]

Note that the dispersion due to the parameter é is contained in the param-
eterized closed orbit while the chromaticity due to the parameter § is explicitly
expressed in the normal form R,(é), that is, 6u; + 6%pp + -+ 4+ 6™y, measures

the chromatic condition of the system, where g is the "chromaticity”.
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