
SSCL-300

4'ZLIB"

A NUMERICAL LIBRARY FOR DIFFERENTIAL ALGEBRA

(A User's Guide for Version 1.0)

Yiton Van

Superconducting Super Collider Laboratory"

2550 Beckleymeade Avenue

Dallas, TX 75237

and

Chiung-Ying Van

1823 Beaver Creek Drive

Duncanville, TX 75237

December 1990

• Operated by the Universities Research Association. lnc., for the U.s. Department of Energy
under Contract ~o. DE-AC02-89ER40486.

SSCL-300

"ZLIB"

A Numerical Library for Differential Algebra

(A User's Guide for Version 1.0)

Yiton Van

Superconducting Super Collider Laboratory *

2550 Beckleymeade Avenue

Dallas, TX 75237

and

Chiung-Ying Van

1823 Beaver Creek Drive

Duncanville, TX 75237

December 1990

Abstract

Given an efficient numerical method and a supercomputer, differential alge
bra can be a powerful tool for the study of accelerator physics. "ZLIB", which
has a style similar to the numerical library "IMSL", has been developed to offer
efficient numerical routines on supercomputers for differential algebra. "ZLIB"
uses dynamic memory and is both vectorized and parallelized (multi-tasked) be
sides being scalarly optimized. There are two sub-libraries in "ZLIB", "TPALIB"
and "ZPLIB", with unique data structures for flexibility. The "TPALIB" is more
flexible in dealing with a different number of variables, and therefore is more suit
able for use in extracting maps. The "ZPLIB" is more flexible in dealing with a
different number of orders, and therefore is more suitable for use in analyzing a
map. Use of "ZLIB" in a scalar computer is also recommended.

• Operated by the Universities Research Association, Inc., for the U.S. Department of Energy
under Contract \0. DE-AC02-89ER40486.

1. INTRODUCTION

With limited computer memory, and limited computational speed, differential

algebra should be treated as the algebra of truncated power series. The algebra

of low order truncated power series can be easily accomplished with a simple data

structure. However, in most cases, high-order truncated power series is desirable.

Therefore, a special data structure is necessary to optimize both the allocation

of the computer memory and the numerical speed.

"ZLIB" has been developed for differential algebra, mainly for use on su

percomputers. The use of "ZLIB" is similar to the use of the "IMSL" library.

Routines in "ZLIB" are vectorized, multi-tasked and use dynamic memory. There

are two sub-libraries in "ZLIB", the "TPALIB" and the "ZPLIB", with unique

data structures. The "TPALIB" is more flexible in dealing with a different num

ber of variables, and therefore is more suitable for use in extracting a one-turn (or

one-period) map for a storage ring such as the sse. The "ZPLIB" is more flex

ible in dealing with a different number of orders, and therefore is more suitable

for use in analyzing a map. The two sub-libraries can be used simultaneously

through a structure-translation routine. Although "ZLIB" is developed mainly

for supercomputers, the authors have simultaneously tried to optimize the rou

tines for scalar computers and therefore the use of ~'ZLIB" in scalar computers

is also recommended.

It is not the authors' attempt to describe the data structure of the two sub

libraries, but rather to introduce the use of "ZLIB" to the users. In Section 2,

the truncated power series is briefly introduced. Readers who are familiar with

differential algebra should skip this section and go to Section 3, where a brief

general description is given for the "ZLIB". Available routines in each of the

sub-libraries, the "ZPLIB" and the "TPALIB", are discussed in Section 4 and in

Section 5, respectively.

2. THE ALGEBRA OF TRUNCATED POWER SERIES

In this section, the authors are not trying to be mathematically rigorous.

Once a variable, a function, or an operation is mentioned, its existence is assumed.

(a) Symbolic convention

Let z be an n-dimensional vector, i.e. its transpose can be expressed as

where Zi, for i = 1, ... , n, are scalar variables. For example, we can consider

as the transpose of a vector representing the 6-dimensional phase space coordi

nates for an accelerator.

Let U be a function of i. This means U is a function of Zl, Z2, . . . ,Zn. Its

truncated power series (TPS) expansion up to an integer n order is expressed as

n
U(i) = L u(k)zk ,

k=O

where

n

and
r!

L == summation over all k's for k = 0,1, ... , n .
k=O

2

Note that U(z) is called an n-variable TPS, of order n. The number of

monomials for an n-variable TPS, of order n, is given by

(n + f.1)!
TJ = n!n!

A unit TPS is defined as

n
l(z) = L i(k)zk = 1 ,

k=O
i.e.

and

i(k) = 1

i(k) = 0

for k = 0,

for k > o.

Let D(z) be an m-dimensional vector TPS (VTPS), of n variables, and of n
order. It is expressed as

n
U(z) =L u(k)zk ,

k=O

n
(i.e, U,(i) = LUi(k)ik, for i = 1,2, ... , m) where the transpose of ii(k) is given

k=O
by

-T - - - -
u (k) = IUl(k), u2(k), .. . 1 um(k)] .

One can consider U(i) as a map in accelerator physics.

A unit n-dimensional, n-variable VTPS of order n, is defined as

n
I(i) = L f(k)zk = z.

k=O

Its transpose is given by

Numerically, u(k), i(k), ii(k), f(k) are used for representing U(k), I(k), U(k),

I(k), respectively.

(b) TPS Operations

Addition:

so

Subtraction:

so

Wei) = U(i) + V(z)

n n n
L W(k)zk = L u(k)zk + L v(k)ik

k=O k=O k=O

n
= L(u(k) + v(k»ik

k=O

w(k) = u(k) + v(k)

Wei) = U(i) - V(i)

n n n
L w(k)ik = L u(k)ik - L v(k)ik

k=O k=D k=D

n
=L(u(k) - v(k»ik

k=D

w(k) = u(k) - v(k)

4

Multiplication:

So

Partial derivative:

so

W(z) = U(z) * V(i)

=E(E(U(k) * v(r - k») iJ .
j=O k=O

n
w(I) = L u(k) * v(J - k) ,

k=O

with (I - k); ?: 0 for i = 1,2, ... ,n .

Wei) = (8j8zj)U(i), where i = 1,2, ... , or n

0+1
= L kj * u(k)ik-i,

k=l

n
= L (ji + 1) * u(I + 1;)#

j=O

where L is a unit vector in the i t h dimension.

Partial integration: W(z) = JU(Z)dZi, where i = 1,2, ... , or n

5

so

wei) = 0 for i, = 0 ,

- (1) --w(j) = ji * u(j - li)for i. > 0 .

Using the above fundamental operations for the TPS, weI) can be obtained for

the following basic TPS operations:

Square:

Inversion:

Division:

Power:

Square root:

Exponentiation:

Logarithm:

Trigonometry:

Poisson bracket:

Wei) = U2(i),

Wei) = l/U(i),

Wei) = U(i)/V(i),

Wei) = UP(i), where p is an integer.

Wei) = sqrt(U(i»,

Wei) = exp(U(i»,

Wei) = In(U(i»,

Wei) = sin(U(i», or Wei) = cos(U(i»,

Wei) = [U(i), V(i)].

(c) VTPS Operations

With the fundamental and the basic TPS operations ready, weI) can be

obtained for the following basic VTPS operations.

Concatenation: Wei) = V(D(i»,

where, in the usual case, U is an n-dimensional n-variable VTPS, V and W are

m-dimensional, n-variahle VTPS, m and n mayor may not be equal.

6

Inversion:

Given an n-dimensional, n-variable D(z), an n-dimensional, n-variable

V-lei) can be obtained such that

All the above basic TPS or VTPS operations have been implemented in "ZLIB" .

(d) Tracking:

Z' = U(z)

In conjunction with the implementation of the fundamental and basic TPS

and VTPS operations, substitution of a numerical vector z into a VTPS (or a

map) is implemented in the "ZLIB".

3. THE "ZLIB"

"ZLIB" is a member of the Z-family programs which include (other than

Z1IB): Zmap (a map extraction program), Ztrack (a veetorized and parallelized

post-Teapot tracking program), Zremcl and Zremc2 (1~ - and 2!- dimensional

relativistic electromagnetic particle simulation programs), and Zpcomp (a macro

precompiler for fortran). Similar to the routines in the IMSL library which per

form linear algebra through matrix operations, routines in "Z1IB" perform dif

ferential algebra through the operations of expanded power series, truncated at

a pre-set order, to include nonlinear effects. Unlike linear algebra which has a

domain idealized to be unlimited, differential algebra has a narrow domain where

the power series converge at a reasonable rate, that is, the scope of differential

algebra is restricted to problems for which an interest region (domain) can he

identified to have a reasonable convergent rate for the power series expansion of

the governing equations. Presently "ZLIB" finds its application in accelerator

7

physics, since particles in an accelerator can only be stable in a region where the

expanded power series of the nonlinear equations governing the system converge

with a reasonable rate. Applications of "ZLIB" to other branches of physics, such

as optics, should be possible.

Since "ZLIB" uses dynamic memory and includes most fundamental oper

ations for differential algebra, a binary "ZLIB" is generally adequate for users.

Users are welcome to contact the authors for free implementation of a binary

ZLIB in their computers. Users are also encouraged to make suggestions and

comments.

The general convention of the names of the subroutine arguments (the term

"argument" instead of "parameter" is used to avoid the possible confusion be

tween parameters in a parameter statement and in a subroutine statement) are:

nv: number of variables, an input integer; nv > O.

nvw: number of variables actually used in the subprogram, an input inte

ger; 0 < nvw ~ nv,

no: order of a TPS or a VTPS, an input integer; no ~ O.

no?: such as "nou" or "now", order of a TPS or a VTPS actually used in

the subprogram; an input integer; 0 ~ no? ~ no.

nm: number of monomials of a TPS, i.e. nm = (nv + no)!/(nv!no!).

nmw : number of monomials of a TPS actually used in the subprogram, an

input integer; 0 < nmw ~ nm.

np: number of vectors (or number of particles in accelerator physics), an

input integer; np > O.

c : an input scalar (such as c = 5.5).

d: an input scalar.

x: an input vector or vectors (particle phase space coordinates in ac

celerator physics), usually an array x(nv) or an array x(nx,np).

8

y: an output vector or vectors (particle phase space coordinates in ac

celerator physics); usually an array y(nv) or an array y(ny,np). Note

that the user may (if desired) let "y" share the memory with IIX '"

within a subprogram that has both "x' and 44y" as its subroutine

arguments.

u: an input TPS, it is the coefficients of a TPS U(i)j usually an array

u(nm).

v: an input TPS, it is the coefficients of a TPS V(i); usually an array

v(nm).

w: an output TPS, it is the coefficients of a TPS Wei); usually an array

w(nm). Note that the user may (if desired) let tt w" share the memory

with either "u" or "v" within a subprogram that has "w" and either

"u" or 'tv" or both as its subroutine arguments.

uu: an input VTPS (or a map); usually an array uu(nm * nu), where

nu is the dimension of the VTPS uu, which is either specified in the

subroutine parameter or implicitly assumed to be nu = nv.

nu : dimensions of the VTPS uu, an input integer; nu > O.

vv: an input VTPS, usually an array vv(nm*nw), where nw is the di

mension of the VTPS VV, which is either specified in the subroutine

parameter or implicitly assumed to be nw =nv,

ww: an output VTPS, usually an array wwmm-nw), where nw is the di

mension of the VTPS ww, which is either specified in the subroutine

parameter or implicitly assumed to be nw = nv. Note that the user

may (if desired) let "ww" share the memory with either "uu" or "vv"

within a subprogram that has "ww" and either "uu" or "vv" or both

as its subroutine arguments.

nw: dimensions of the VTPS's vv and/or vrv«, an input integer; nw > O.

nou: order to be used for the TPS u or the VTPS uu, an input integer;

o S; nou S; no.

nov: order to be used for the TPS v or the VTPS vv, an input integer;

o S; nov < no.

now: order desired for the TPS w or the VTPS ww, an input integer;

o< now ::; no.

nok: actual order for the TPS w, an input integer; 0 ::; nok ::; now.

nd: sets of canonically conjugate variables, an input integer;

0< nd ::; nv/2.

npwr: power to be performed for a TPS (such as u ** npwr), an input

integer; -00 < npwr < 00.

Some of the above subroutine arguments might be commented again upon

its appearance. Subroutine arguments which are not described above will be

commented upon when they appear.

4. THE SUB~LIBRARY "ZPLIB"

To use the "ZPLIB" routines, users must obtain the compiled "ZLIB" from

the authors so that their program can be loaded with the routines in the "ZPLIB".

Before any subroutine using the data structure of the "ZPLIB" is called, the user

should include the following statement (assuming ZLIB 1.0 is used)

"call zpprepfnv.no.nrn.npm),"

where "nv ' and "no" are the number of variables and the maximum order

the user desires; "nrn", is a returned value for the number of monomials, i.e.

nm =(nv + no)!/(nv!no~), is returned for the user; "npm" is the maximum num

ber of particles. The user should set a small integer or 0 for npm if tracking is

not desired. Occasionally, the user may wish to use routines in the sub-library

"ZPLIB" to perform initialization (reading in a VTPS) and tracking only. In

10

such a case, he may replace the statement "call zpprepinv.no.nm.npm)," with

the calling statement "call zptrkp(nv,no,nm,npm)," to save computer memory.

Once the statement, "call zpprep(nv,no,nm,npm)," is executed, all the TPS's

(u, v, and w) are assumed to be nv-variable TPS's of order smaller than or equal

to "no", and all the VTPS's (uu, vv, and ww) are assumed to be nv-variable

VTPS's of order "no", although operations can be performed up to orders that

are lower than "no".

The subroutines available in the "ZPLIB" are as follows.

(a) TPS Operation

Initialization:

(1) subroutine zpzro(w,nmw)

for performing W(z) = 0

(2) subroutine zpconst(c,w,nmw)

for performing We z) = c

if c = 1, W(z) = l(z) = 1

(3) subroutine zpcpy(u,w,nmw)

for performing W(z) = U(z)

(4) subroutine zpsgn(u,w,nmw)

for performing W (z) = - U(i)

(5) subroutine zpokl(w,c,iv,nmw)

for performing Wei) = c * Ziv

iv: an input positive integer; iv ~ nv

(6) subroutine zppok(w,c,js)

for performing Wei) = c * zk
js: an input nv-dimensional array;

js(i) = k, for i = 1,2, ... , nv

11

Addition and subtraction:

(7) subroutine zpadd(u,v,w,nmw)

for performing Wei) = U(z) + V(i)

(8) subroutine zpcadd(c,u,w,nmw)

for performing Wei) = c + U(i)

(9) subroutine zpsub(u,v,w,nmw)

for performing W(i) = U(i) - V(i)

(10) subroutine zpsubc(u,c,w,nmw)

for performing Wei) = U(i) - c

(11) subroutine zpcsub(c,u,w,nmw)

for performing W(i) = c - U(i)

Multiplication and division with scalars:

(12) subroutine zpcmul(c,u,w,nmw)

for performing W(i) = c *U(i)

(13) subroutine zpdivc(u,c,w,nmw)

for performing Wei) = U(i)jc

(14) subroutine zplin(u,c,v,w,nmw)

for performing Wei) = U(i) + c *V(i)

(15) subroutine zpblin(d,u,c,v,w,nmw)

for performing Wei) = d * U(i) + c * V(i)

** As an example: "call zpblin(3.3,u,-1.1,v,w,nm)"

Multiplication and division:

(16) subroutine zpmul(u,nou,v,nov,w,now,nok)

for performing W (i) = U(i) * V (i)

(17) subroutine zpdiv(u,nou,v,nov,w,now)

for performing Wei) = U(i)jV(i)

(18) subroutine zpinv(u,nou,w,now)

for performing W (i) = 1j U(i)

12

(19) subroutine zpsq(u,nou,w,now,nok)

for performing W (z) = U(i) * U(i)

(20) subroutine zppwr(u,nou,npwr,w,now)

for performing Wei) = Uti) * * npwr

** As an example to show that "w" can share memory with "u", one

can have a statement such as "call zppwr(u,3,-4,u,5)"

Derivative and Integral:

(21) subroutine zpdrv(u,nou,w,now,iv,nok)

for performing Wei) = (djdziv)U(i)

iv (~ nv): an input integer.

(22) subroutine zpintg(u,nou,w,now,iv,nok)

for performing Wei) = JU(i)dzj v ,

iv (S nv): an input integer.

(23) subroutine zpbrac(u,nou,v,nov,w,now,nok,nd)

for performing Wei) = [Uti), V(Z)],

the Poisson bracket of U and V.

nd: sets of the canonically conjugate variables; nd S nv /2.

Functions:

(24) subroutine zpsin(u,nou,w,now)

for performing Wei) = sin(U(z»

(25) subroutine zpcos(u,nou,w,now)

for performing W (i) = cos(U(i))

(26) subroutine zpexptu.nou.w.now)

for performing Wei) = exp(U(i»

(27) subroutine zplog(u,nou,w,now)

for performing W (i) = In(U(i))

(28) subroutine zpsqrt(u,nou,w,now)

for performing W (i) = sqrt (U (i))

13

(b) VTPS Operations:

Initialization:

(29) subroutine zpunit(ww,now)

for performing Wei) = I(i) = i

ww: an nv-dimensional, nv-variable VTPS of order "no", but only up to

order "now S; no" is operated; array ww(nm *nv).

(30) subroutine zpmok1(ww,nw,now,c,iw)

for performing Wiw(i) = CZ i w

ww: an nw-dimensional, nv-variable VTPS of order "no", but only up to

order "now S; no" is operated; array wwf nmsnw}.

Note: Only the iw th dimension is initiated.

(31) subroutine zpmpok(ww,nw,now,c,js,iw)

for performing H'iw(i) = cik

js: an input nv-dimensional array;

js(7) = k, for i = 1,2, ... , nv

ww: an nw-dimensional, nv-variable VTPS of order "no", but only up to

order "now S; no" is operated; array wwt nmenw).

Note: Only the iwt h dimension is initiated.

(32) subroutine rdmaptpa(ww,nwb,nw,now,nomap,imap)
n

for initializing Wei) = L w(k)zk
k=O

Initialize an nw-dimensional VTPS of order "no" from its nwbth

dimension to nw'" dimension up to order "now" by reading a

"TPALIB" structured VTPS (of order "nomap") file (specified by

the number "imap") where data are stored from the nwbt h dimen

sion to the nw t h dimension.

14

(33) subroutine rdmapzp(ww,nw,now.irnap)
n

for initializing Wei) := :Ew(k)ik

);=0

Initialize an nw-dimensional VTPS of order "no" up to a desired

dimension "nw" and a desired order "now" by reading a "ZPLIB"

structured VTPS file (specified by the number "imap") where data

are stored to any dimension and to any order.

Writing out the VTPS:

(34) subroutine wrmapzp(uu,nub,nu,nou,imap)
(1

output the coefficients tiCk) in a file for U(i) = L ti(k)zk
);=0

Write out an nu-dimensional VTPS, uu, of order "no", from its nubth

dimension to nut h dimension up to order "nou" in "ZPLIB" form to

a file (specified by the number "imap"),

(35) subroutine wrmapzpl(uu,nub,nu,nou,imap)
(1

output the coefficients u(k) in a file for V(i) = Lii(k)zk
k=l

Write out an nu-dimensional VTPS (a map), uu, of order "no" from

its Dubth dimension to nuth dimension up to order "nou" in "ZPLIB"

form to a file (specified by the number "imap"), Note that the zeroth

order is assumed to be 0 and is Dot written in the file.

Concatenation of VTPS's:

(36) subroutine zpcnct(uu,nou,vv,nov,ww,now,nw)

for performing W(i) = V(U(i»

uu: an input nv-dirnensional VTPS of order no; uu represent U(i)

vv: an input nw-dirnensional VTPS of order no; vv represent V(z)

ww : an output nw-dirnensional VTPS of order no; ww represent W(i)

15

nou: order to be used for the VTPS uu; nou ~ no

nov: order to be used for the VTPS vv; nov ~ no

now: order desired for the VTPS ww; now ~ no

* * * An example: "call zpcnct(uu,14,uu,14,uu,15,4)"

Inversion of a VTPS:

(37) subroutine zpmapinv(uu,nou,ww,now)

for performing Wei) = V-lei)

uu: an input nv-dimensional VTPS of order no; uu represent D(i)

ww: an output nv-dimensional VTPS of order no; ww represent

nou: an input; order to be used for the VTPS uu; nou ~ no

now: an input; order desired for the VTPS ww; now ~ no; usually now

=nou.

(c) Tracking

Single-particle tracking:

(38) subroutine zpmtrk(uu,nub,nu,nou,x,y)

for performing y = V(x)

uu: an input nu-dimensional, nv-variable VTPS of order no, although

only up to order nou (~ no) is operated; uu represent V(x).

x : an input vector of dimension nv.

y: an output vector of dimension nu.

actual operations are for Yi = UUi(X) for i =nub, nub + 1, ... , nu.

16

Multi-particle tracking:

(39) subroutine zpmtrks(uu,nub,nu,nou,np,x,nx,y,ny)

for performing jP = U(iP), p = 1,2, ... , np

UU: an input nu-dimensional, nv-variable VTPS of order no, although

only up to order nou ('S no) is operated; uu represent Vex).

x : array x(nx,np) where nx ~ nv, an input; users should consider it as

np particles, each with nx-dimensional phase-space coordinates.

y: array y(nx,np) where ny ~ nv, an output; users should consider it

as np particles, each with ny-dimensional phase-space coordinates.

actual operations are for yf = uuliP)

for i = nub, nub + 1, "', nu, and p = 1,2, ... , np.

(40) subroutine zpmtrkq(uu.nub.nu.nou.np.x.nx.y.ny)

for performing yP = U(xP) , P = 1,2, ... , np

uu: an input nu-dimensional, nv-variable VTPS of order no, although

only up to order nou (:5 no) is operated; uu represent V(i).

x: array x(nx,np) where nx 2: nv, an input; users should consider it as

np particles, each with nx-dirnensional phase-space coordinates.

y: array y(nx,np) where ny 2: nv, an output; users should consider it

as np particles, each with ny-dirnensional phase-space coordinates.

actual operations are for yf = UUi(xP)

for i = nub, nub + 1, ... , nu, and p = 1,2, ... , np.

** Note that the internal structures in "zpmtrks" and in "zpmtrkq" are

different. Vectorization is over particles in "zpmtrks" while vector

ization is within a particle and parallel (multi-tasking) computing

can be chosen over particles in "zprntrkq."

17

(41) subroutine zpmtrkw(uu,nub,nu,nou,np,npm,x,y)

for performing yP = V(xP), P = 1,2, ... , np

uu: an input nu-dirnensional, nv-variable VTPS of order no, although

only up to order nou (::; no) is operated; uu represent Vex).

x: array x(npm,nv) where npm :2: np, an input; users should consider it

as npm particles, each with nv-dimensional phase-space coordinates.

y: array y(npm,nu) where npm :2: np, an output; users should consider

it as npm particles, each with nu-dimensional phase-space coordi

nates.

actual operations are for yf = UUi(XP)

for i =nub, nub + 1, ... , nu, and p = 1,2,.,., np.

(42) subroutine zpmtrkp(uu.nub.nu.nou.np.npm.x.y)

for performing yP = V(xP), P = 1,2, ... , np

uu: an input nu-dimensional, nv-variable VTPS of order no, although

only up to order nou (:S; no) is operated; uu represent Vex).

x: array x(npm,nv) where npm :2: np, an input; users should consider it

as npm particles, each with nv-dirnensional phase-space coordinates.

y: array y(npm,nu) where npm :2: np, an output; users should consider

it as npm particles, each with nu-dimensional phase-space coordi

nates,

actual operations are for yf = uUi(iP)

for i = nub, nub + 1, " " nu, and p = 1,2, ... , np.

** Note that the internal structures in "zpmtrkw" and in "zpmtrkp" are

different. Vectorization is over particles in "zpmtrkw," while vector

ization is within a particle and parallel (multi-tasking) computing

can be chosen over particles in "zpmtrkp."

18

Scaling:

(43) subroutine zpmsc1e(uu,nw,now,ww,s)
n n

for performing Wei') = Lw(k)z'k = 'O(i) = Lii(k)ik,
k=O k=O

where Zi = zi * sCi) for i = 1,2, ... , nv

uu, ww: nw-dimensional, nv-variable VTPS's of order "no", but only up to

order "now" (now~no) is scaled; uu represents U(i), ww represents

Wei).

s: an input nv-dimensional vector.

(d) Structure translation between "ZPLIB" and "TPALIB"

(44) subroutine zptpa(uu,nw,now,ww,iflag)

Translate an nw-dimensional, nv-variable VTPS of order "no" be

tween its "ZPLIB" structure and its "TPALIB" structure.

now: desired order to be performed; now~no.

iflag: an input integer;

iflag = 1 : translate the VTPS from its "ZPLIB" structure, uu, to its "TPALIB"

structure, ww;

iflag =1= 1: translate the VTPS from its "TPALIB" structure, uu, to its

"ZPLIB" structure, ww; setting "iflag = 0" would be good.

5. THE SUB·LIBRARY HTPALIB"

Similar to the use of the sub-library "ZPLIB", to use the "TPALIB", the

user has to obtain the compiled "ZLIB" and make a calling statement "call tpa

prpmv.no.nm.npm)" before any subroutine using the data structure of TPALIB

is called. Note that slightly different from the ZPLIB, "no" is the order (not

the maximum order) while "nv" is the maximum number of variables the user

19

desires. The same as in the ZPLIB, "nm", is a returned value for the number of

monomials, i.e, nm=(nv+no)!/(nv!no!), is returned for the user; "npm" is the

maximum number of particles desired for tracking.

Once the statement "call tpaprptnv.no.nm.npm)" is executed, all the TPS's

(u, v, and w) and the VTPS (uu,vv, and ww) are assumed to be order of "no"

(although operations may be performed up to orders lower than "no"), but not

necessarily to be of nv variables. Usually they are nvw-variable TPS's or VTPS's,

where nvw (smaller or equal to nv) is specified as one of the subroutine arguments.

The routines available in the "TPALIB" are as follows.

(a) TPS Operations

Initialization:

(1) subroutine tpazro(w,nmw)

for performing W (i) = 0

(2) subroutine tpaconst(c,w,nmw)

for performing W (i) = c

if c = 1, Wei) = lei) = 1

(3) subroutine tpacpy(u,w,nmw)

for performing W (z) = U(i)

(4) subroutine tpasgn(u,w,nmw)

for performing W(z) = -U(z)

(5) subroutine tpapokl(w,c,iv,nmw)

for performing W(Z) = C * Zjv

iv: an input positive integer; iv ::; nv

Addition and subtraction:

(6) subroutine tpaadd(u.v ,w ,nmw)

for performing W (i) = U(i) + V (i)

(7) subroutine tpacadd(c,u,w,nmw)

for performing W (i) = c + U(i)

20

(8) subroutine tpasub(u,v,w,nmw)

for performing W (z) = U(z) - V (z)

(9) subroutine tpasubc(u,c,w,nmw)

for performing W (z) = U (z) - c

(10) subroutine tpacsub(c,u,w,nmw)

for performing W (z) = c - U(z)

Multiplication and division with scalars:

(11) subroutine tpacmul(c,u,w,nmw)

for performing W(z) = c * U(z)

(12) subroutine tpadivc(u,c,w,nmw)

for performing W(z) = U(z)/c

(13) subroutine tpalin(u,c,v,w,nmw)

for performing W(i) = U(i) + c * V(i)

(14) subroutine tpablin(d,u,c,v,w,nmw)

for performing

W(i) = d * U(i) + c * V(i)

Multiplication and division:

(15) subroutine tpamul(u,v,w,nvw)

for performing W(Z) = U(z) *V(i)

u,v,w: "nvw'l-variable TPS's of order "no"; nvw ~ nv.

(16) subroutine tpamulo(u,v,w,now,nvw)

for performing W(i) = U(i) * V(i)

u,v,w: "nvw'l-variable TPS's of order "no"; nvw ~ nv.

now: order involved in the operation of the TPS's U,V,W; now ~ no.

(17) subroutine tpadiv(u,v,w,nvw)

for performing W(Z) = U(i)/V(i)

u.v.w: "nvw'I-variable TPS's of order "no"; nvw ~ nv.

21

(18) subroutine tpainv(u,w,nvw)

for performing Wei) = lIV(i)

u.w: "nvw'i-variable TPS's of order "no"; nvw :s: nv.

(19) subroutine tpasq(u,w,nvw)

for performing W(i) = V(i) * V(i)

u,w: "nvw'l-variable TPS's of order "no"; nvw :s: nv.

(20) subroutine tpapwr(u,npwr,w,nvw)

for performing Wei) = U(i) * * npwr

u.w: nvw-variable TPS's of order "no"; nvw ~ nv.

npwr: an input integer for the power to be performed for the TPS U.

Derivative and Integral:

(21) subroutine tpadrv(u,w,nvw,iv)

for performing Wei) = (djdziv)V(i)

iv (:s: nvw): an input integer.

u.w: "nvw'i-variable TPS's of order "no"; nvw :s: nv.

(22) subroutine tpabrac(u,v,w,nvw,nd)

for performing Wei) = {U(i), Vein,

the poison bracket of U and V.

u.v.w: "nvw'i-variable TPS's of order "no"; nvw :s: nv.

nd: sets of canonically conjugate variables; nd :s: nvw/2.

Functions:

(23) subroutine tpasin(u,w,nvw)

for performing Wei) = 8in(V(i))

(24) subroutine tpacos(u,w,nvw)

for performing Wei) = cos(U(z))

22

(25) subroutine tpaexp(u,w,nvw)

for performing Wei) = exp(U(i»

(26) subroutine tpalog(u,w.nvw)

for performing Wei) = In(U(i»

(27) subroutine tpasqrt(u,w,nvw)

for performing Wei) = sqrt (U(i»

u,w: nvw-variable TPS's of order "no"; nvw $ nv.

(b) VTPS Operations

Initialization:

(28) subroutine tpaunit(ww,nvw)

for performing W (i) = I(i) = i

ww: nvw-dimensional, nvw-variable VTPS of order "no".

(29) subroutine rdtpamap(ww,nwb,nw,nvw,imap)
o

for initializing W(z) = L w(k)zk
k=O

Initialize an nw-dimensional, nvw-variable VTPS from its nwbth

dimension to nwth dimension by reading a "TPALIB" structured

VTPS (order of "no") file (specified by the number "imap") where

data are stored from the nwbth dimension to the nwth dimension.

Writing out a VTPS:

(30) subroutine wrtpamap(uu,nub,nu,nvw.irnap)
o

output the coefficients u(k) in a file for U(i) = LU(k)ik
k=O

Write out an nu-dirnensional, nvw-variable VTPS from its nubt h

dimension to nu th dimension up to order "no" in "TPALIB" form to

a file (specified by the number "imap").

23

Concatenation of VTPS's:

(31) subroutine tpacncat(uu.vv,ww.nvw)

for performing Wei) = V(U(i))

uu, vv, ww: nvw-dirnensional, nvw-variable VTPS's of order no; uu represents

V(z), vv represents V(z), ww represents Wei).

(00) subroutine tpacnct(uu,vv,nov,ww,nvw)

for performing Wei) = V(U(i))

uu, vv, ww: nvw-dimensional, nvw-variable VTPS's of order no; uu represents

V(i), vv represents V(i), ww represents Wei).

nov: order of vv actually used in the operation; nov::; no.

(00) subroutine tpacnctw(uu,vv,ww,now,nvw)

for performing W(i) = V(V(i»)

uu, vv, ww : nvw-dirnensional, nvw-variable VTPS's of order no; uu represents

V(i), vv represents Veil, ww represents Wei).

now: order of ww actually desired; now S no.

(32) subroutine tpacncto(uu,vv,nov,ww,now,nvw)

for performing Wei) = V(V(i»

uu, vv , ww: nvw-dimensional, nvw-variable VTPS's of order no; uu represents

V(i), vv represents V(i), ww represents Wei).

nov: order of vv actually used in the operation; nov 5 no.

now: order of ww actually desired; now:; no.

Inversion of a VTPS:

(33) subroutine tpaminv(uu,ww,now,nvw)

for performing Wei) = 'O- 1(i)

uu, ww: nvw-dirnensional, nvw-variable VTPS's of order DO; uu represents

U(z), ww represents W(z).

24

now: order of ww actually desired; now $ no.

(c) Tracking

Single-particle tracking:

(34) subroutine tpamtrk(uu,nu,nvw,nou,x,y)

for performing y = (j(x)

uu: an input nu-dimensional, nvw-variable VTPS of order no, although

only up to order nou (:$ no) is operated; uu represent Vex).

x : an input vector of dimension nvw.

y: an output vector of dimension nu.

actual operations are for Yi = UUi(X) for i = 1,2, ... , nu.

(35) subroutine tpamtrko(uu,nu,nvw,x,y)

for performing y = V(x)

uu: an input nu-dirnensional, nvw-variable VTPS of order no and up to

order no is operated; uu represent Vex).

x: an input vector of dimension nvw.

y: an output vector of dimension nu.

actual operations are for Yi = UUi(X) for i = 1,2, ' ", nu.

** Note that subroutine tpamtrko is faster than subroutine tpamtrk.

However tpamtrko cannot be used for tracking up to an order nou

smaller than no.

Multi-particle tracking:

(36) subroutine tpamtrks(uu.nu.nvw.nou.np.x.nx.y.ny)

for performing yP = U(xP) , P = 1,2, ... , np.

uu: an input nu-dimensional, nvw-variable VTPS of order no, although

only up to order nou (:::; no) is operated: uu represent Vex).

25

x: array x(nx,np) where nx 2: nv; users should consider it as np input

nx-dimensional vectors.

y: array x(nx,np) where nx 2: nv; users should consider it as np output

ny-dirnensional vectors.

actual operations are for y; == uuJxP)

for i = 1,2, ... , nu, and p = 1,2, ... , np.

Scaling:

(37) subroutine tpamscle(uu,nw,nvw,ww,s)
n n

for performing W(Z') = L w(k)z'k = U(z) = L ii(k)zk ,
k=O k=O

where Zj = z~ * s(i) for i = 1,2, ... , nvw

uu, ww: nw-dirnensional, nvw-variable VTPS's of order no; uu represents

U(z), ww represents W(z).

5: an input nvw-dirnensional vector.

6. SUMMARY AND SUGGESTION

The fundamental and basic operations for the algebra of truncated power se

ries (TPS) have been numerically programmed and gathered in a library entitled

"ZLIB". There are two sub-libraries in "ZLIB", the "ZPLIB" and the "TPALIB",

with different data structures to provide more flexibility in dealing with a dif

ferent number of variables and orders simultaneously. The style of the library

"ZLIB", being similar to the library "IMSL", may offer the advantage of famil

iarity to some users. Sample programs using "ZLIB" are available, which could

help beginning users. Occasionally, users may need specific operations that can

not be performed with the available routines described in Section 4 and Section 5.

Under such a circumstance, users are welcome to call the authors for help.

Beginning users are advised to concentrate on one of the sub-libraries. An

~ERSC ()''1FE) Cray computer user who wishes to use routines in the "ZPLIB"

26

of "ZLIB 1.0" should follow the steps below or its equivalence (assuming the

user's file name is "map").

Step 1 : Obtaining "ZLIB" (use one of the following commands)

efs get zlib:/yan/zlibl.O/zlib for Cray-2

cfs get zlib:/yan/zlibl.O/zlibd for Cray-2 double precision

cfs get zlib:/yan/zlibl.O/zlibe for Cray-XMP

cfs get zlib:/yan/zlibl.O/zlibed for Cray-XMP double precision

Step 2 : cft77 i = map,b = bmap, ...

Step 3: ldr b = bmap.lib = (zlib.imsl,...), x =xmap

An example of using the routines in the sub-library "TPALIB" is the pro

gram "Zmap" which was programmed to extract Taylor maps in a beam line.

In particular, "Zmap" can extract one-turn maps from a post-Teapot tracking

program "Ztrack".

An example of using the routines in the sub-library "ZPLIB" is the sub

program "OPSMAP" which one (YY) of the authors and his colleagues Ken

Kauffman and David Ritson programmed to extract one-turn maps in a tracking

program "SSCTRK".

"ZLIB 2.0", which includes routines for the performance of Lie algebraic

treatment of beam dynamics such as Dragt-Finn factorization (subroutine zp

dragt and zpfinn), nonlinear norm form (subroutine zpforest), etc. will be re

leased once it is well tested.

27

ACKNOWLEDGEMENTS

The authors wish to point out that there is a "de-package" developed by

M. Berz, which also performs differential algebra. Besides the difference in data

structure, there are two major differences between "ZLIB" and "da-package":

(a) Optimization for "ZLIB" is primarily on vector and parallel com

puting while optimization for "da-package" is primarily on scalar

computing.

(b) "ZLIB" uses dynamic memory while "da-package" uses decks of

memories.

One of the authors (Yiton Yan) thanks E. Forest for many valuable sugges

tions, J. Irwin for many valuable conversations, and K. Kauffman, T. Sen, and

R. Talman for valuable comments. He thanks Alex Chao for continuous support

and encouragement.

28

APPENDIX A

MEMORY PREPARATION SUBPROGRAMS FOR "ZLIB 1.1"

A-I

Ocasionally, users would like to prepare ZLIB working memory themselves

just as they prepare working memories for some of the ~'IMSL" routines. In

that case, "ZLIB 1.1" instead of "ZLIB 1.0" should be used. In order to reduce

errors that might occur due to inappropriate preparation of working memories,

the author has written suitable working memory preparation subprograms for

the "ZLIB 1.1". To use the routines in "ZLIB", users must load their programs

with "ZLIB" just as the "IMSL" library is loaded when "IMSL" routines are

used. Users must include at least one subprogram allocating the working memory

needed for "ZLIB 1.1" in their program, and must assign suitable integers for

four parameters in the parameter statement, of the working memory preparation

subprogram(s). The four parameters are:

"nvm": the maximum number of variables.

"nom" : the maximum order.

"nmm": the maximum number of monomials;

nmm = (nvm + nom)!j(nvm!nom!).

"npm": the maximum number of particles.

A user program must have a statement that calls the working memory prepara

tion subprogram(s) before the corresponding routines in "ZLIB" are called. For

example, to use "ZPLIB" of "ZLIB 1.1", the following statement should be in

cluded in the user's program at the very beginning of the executable statements.

"call zpprep(nv,no,nm,np),"

where "nv", "no", and "np" are the number of variables, the order, and the

number of particles, which should always be equal to or smaller than "nvm",

" " d"" ti I " ". t d al r th b fnom, an npm respec rve y; nm, IS a re urne v ue lor e num er 0

monomials, i.e. nrn = (nv + no)!/(nv!no!), is returned for the user. At this stage,

if the user makes a mistake in assigning the integer numbers for "nvm", "nom", or

"nmm", "ZLIB" will provide messages that will help the user make corrections.

The parameter "nkpm" is calculated in the parameter statement that is guar

anteed to be large enough for the corresponding working memories. However, if

A-2

both "nvrn" and "nom" are large, "nkpm" may become unnecessarily too large.

Under such a circumstance, a warning message will be provided but the execution

continues. To save computer memory, the user may choose to stop the execution

to assign a number suggested by the message for "nkpm" in the parameter state

ment directly. The user can also look up the table given in Appendix B where

"nrnm' and "nkpm" are given for given sets of "nvm" and "nom" to assign suit

able integer numbers for "nmm" and "nkpm". For a beginning user, try not to

be bothered by the warning message.

The following subprogram "zpprep" prepares the working memories for rou

tines in the sub-library "ZPLIB" of "ZLIB 1.1".

subroutine zpprep(nv,no,nm,np)
implicit double precision(a-h,o-z)
parameter (nvm == 6 ,nom== 9,nmm == 5005, npm = 6,

+ no1 == nom « 1•
+ nov= (nom+ 2) *n01 * nvm,
+ nvno =nom * nvm,
+ njv =(nvm + 1) * nmm.
+ nikpm == nol * (nmm -1) ,

+ navgm == nom/nvm,nrm =nom - navgm*nvm,
+ nkpmx == (navgm + 2) **nrm * (navgm + 1) **(nvm - nrm) ,

+ nkpm =nmm * nkpmx ,
+ nj dm == nvm * nmm *nom/ (n vm ... nom) ,
+ nvmsq == nvm * nvm,
+ nmmnp= max(nmm,nvm *npm) ,
+ nmw =nmm *nvm + 6,
+ nmwnp == max (nmw ,nmm *npm)
common /strc!/ nmo(n01)
common /strc2/ nmob(nol)
common /strc3/ nmov(nov)
common /strc4/ jv(njv)
common /strc5/ js(nvm)
common /strc6/ nmvo(nvno)
common /strc7/ ivp(nmm)
common /strc8/ jpp(nmm)
common Izptps/ jtpa(nmm)
common Imulp1/ ikp(nikpm)

A-3

common /mulbl/ ikb(nikpm)
common /mulp2/ kp(nkpm)
common /mulp3/ Ip(nkpm)
common /drvpl/ jd(njdm)
common /conpl/ jpc(nmm)
common /conp2/ ivpc(nmm)
common /conp3/ ivppc(nmm)
common /conp4/ mp(nov)
common /conloc/ noc(nvm)
common /rdtpal/ jjp(nmm)
common /mulwk/ wkmul(nmmnp)
common /divwk/ wkdiv(nmw)
common /conwk/ work(nmwnp)
common /mtrxl/ aa(nvmsq)
common /mtrx2/ bb(nvmsq)
common /ccsqrt/ csqrt(nom)
common /ccinvs/ cinv(nom)
common /ccclns/ cln(nom)
common /ccexps/ cexp(nom)
common /csccoe/ csc(nom)
call zpprp(nv,no,nmm,nol,nov,njv,nikpm.nmw,nkpm,njdm,nm)
return
end

The following subprogram "tpaprp" prepares the working memories for rou

tines in the sub-library "TPALIB" of "ZLIB 1.1".

SUbroutine tpaprp(nv.no,nm,np)
implicit double precision(a-h,o-z)
parameter (nvm=6 ,nom=9 .nmm =5005.

+ nj pm = nmm * nvm ,
+ navgm=nom/nvm ,nrm =nom - navgm* nvm,
+ nkpm = nmm * Cnavgm + 2)**nrm * (navgm + l)**(nvm - nrm) ,
+ nmw =nmm * nvm + 6)
common /pmull/ nklp(nmm)
common /bmull/ nklpb(nmm)
common /pmuI2/ kpCnkpm)
common /pmu13/ IpCnkpm)
common /pmu14/ iop(njpm)

A-4

common /pdrv1/ jd(njpm)
common /pdrv2/ jp(njpm)
common /pdrv3/ jo(njpm)
common /mulwk/ wkmul(nmm)
common /divwk/ wkdiv(nmw)
common /conwk/ work(nmw)
call tpa626(nv.no,nmm,nmw,nkpm,njpm,nm)
return
end

Occasionally, the user may wish to use routines in the sub-library "ZPLIB"

to perform initialization (reading in a VTPS) and tracking only. In such a case,

he may choose to use the following working memory preparation subprogram

"zptrkp" to save computer memory.

subroutine zptrkp(nv.no.nm,np)
implicit double precision(a-h,o-z)
parameter (nvm=6 ,nom=9,nmm. = 5005. npm = 1,

+ no 1 =nom + 1 ,
+ nov =(nom+ 2) * no1 * nvm,
+ nvno =nom * nvm,
+ njv= (nvn-e i) *nmm.
+ nvp = nvm * npm,
+ nmw =nmm * npm)
common /strc1/ nmo(no1)
common /strc2/ nmob(no1)
common /strc3/ nmov(nov)
common /strc4/ jv(njv)
common /strc5/ js(nvm)
common /strc6/ nmvo(nvno)
common /strc7/ ivp(nmm)
common /strc8/ jpp(nmm)
common /rdtpa1/ jjp(nmm)
common /mulwk/ wkmul(nvp)
common /conwk/ work(nmw)
call trkprp(nv,no,np,nmm,npm,no1,nov.njv,nvp,nmw,nm)
return
end

A-5

APPENDIX B

PARAMETERS FOR THE PREPARATION
OF "ZLIB" WORKING MEMORY

B-1

~~ZLIB" WORKING MEMORY PARAMETERS

n"", no" nlMl l\I;?\II .w", nOlII n_ nlr.pIll nV1ll n_ n.. nkl* nVII !lOll ~ Illr;~ Il.va nDIII - ntplll
:') , - 21 4 : . 9 2 1 3 5 I 1 2 3 1 91 92 4278.,.,

6~ 231 4 2 15 45 2 2 6 15 1 2 3 6 1 92 93 4371
iU 2H 1111 ~ 3 35 165 2) 10 35 1) 4 10 1 93 94 4465
: C 100! 10626 • 4 70 495 2 4 15 70 I 4 5 15 1 94 95 4560
;r 300) 53130 4 5 126 1287 2 5 21 126 I S 6 21 1 95 96 4656
:r; .,. telOe 230ne 4 " 210)003 2 6 28 210 1 6 7 28 1 96 97 4753
~ ~ 1..448 8ee030 • 7 330 (4)5 2 7 H 3)0 I 7 8 36 1 97 98 4851
:~ 4)75e 3106105 • e 495 12e70 2 e 45 495 1 8 9 45 1 98 99 495C'

d 92Jn lOC15C05 , 9 715 24)10 2 <;I 55 715 1 9 10 55 1 99 100 5050
:. (' 1" 184756 30045015 4 10 1001 43758 2 10 66 1001 1 10 11 (i6 1 100 101 5151
:v U 352716 e4672315 4 11 1365 75582 2 11 78 1365 1 11 12 • 78 1 101 102 5253
~ ~l) 1"' f 12 le2~ 125970 2 12 91 1820 1 12 13 91 1 102 103 535~
~ 55 I~O 4 13 2380 203490 2 13 105 23110 1 13 Ii lOS 1 103 104 5460
~] 220 1330 4 14 3060 319770 2 14 1:10 3060 1 14 15 14:0 1 104 105 5565

" 4 715 7315 4 15 3e76 490314 2 15 136 31176 1 15 16 -136 1 105 106 5671
~ 5 2002 33649 4 16 4845 7J5Hl 2 16 153 4145 1 16 17 153 1 106 107 5778
Q 5005 134596 4 17 59B5 1081575 2 17 171 59115 1 17 18 171 1 101 108 5886
• 11440 410700 4 18 7315 1562275 2 18 190 1315 1 18 19 190 1 108 109 5995
Q e 24310 1562275 4 19 8855 2220075 2 19 :210 11155 1 19 20 210 1 109 110 6105
'1 • 48620 4686825 4 20 1062'; 3108105 2 20 231 10626 1 20 21 2)1 1 UO III 62H, 1(" Q2J?8 13123110 4 21 12650 4292145 2 21 253 12650 1 21 22 253 1 111 112 6325
~ 11 167960 34 59 7290 4 22 14950 5852925 2 22 276 14950 1 22 23 276 1 112 113 6441
~ 12 293930 86493225 4 23 17550 7llll II725 2 23 100 17550 1 23 24 lGO 1 113 114 6555
8 I t) 17 4 24 20475 10518300 2 24 325 20475 1 24 25 U5 1 114 115 U70
~ 2 45 153 4 25 23751 131184156 2 25 351 23751 1 25 26 351 1 115 116 6786
~ 3 165 969 4 26 21405 111UUO" 2 26 118 17405 1 16 27 371 1 116 111 6903

4 495 4845 4 21 31465 23535820 2 21 406 11465 1 27 28 406 1 117 11e 7021
5 1287 20349 4 ae 35960 30260340 2 28 435 35960 1 :lIlI 29 435 1 1111 119 7140

t e 300) 14613 " 29 "0920 lUOll020 2]9 465 ,,0920 1 29 10 US 1 119 120 7260
8 7 64J5 245157 4 30 46376 48903492 2 10 496 46376 1 30 31 496 1 120 121 7381
e 8 ; 287" 7350:) 1 4 7 2 11 528 52360 1 31 32 528 I 121 122 7503
e <j 24310 20U97S 3 2 10 211 2 32 561 51905 1);l II 561 1 122 123 7620
8 10 43758 5311735 3 3 20 114 2 33 595 66045 1 J) 34 595 1 123 124 7750
e 11 75582 130318"5 3 4 35 210 2 34 630 73815 1 34 35 630 1 124 125 7875
e 12 125910 ~0411155 l 5 56 462 2 35 666 82:151 1)5 36 666 1 125 126 800:
8 1] 203490 6786H15 3 ~ 84 924 2 36 703 91390 1 36 31 703 1 126 127 8128
1 e 15 3 7 120 1716 2 37 741 101270 1 37 38 741 1 127 128 825f

• 36 \2()) C 165 3003 2)!l 780 111930 1 38 39 780 1 128 129 838:
7 3 120 6ell 3 Q 220 5005 2 39 820 123410 1 39 40 820 1 129 130 851~
7 4 330 3060 3 10 286 8008 2 40 861 135751 1 40 41 861 1 130 131 8646
'1 ~ 1~2 1162e 3 11 364 12376 2 41 903 148995 1 41 42 903 1 131 132 817e
7 6 1716 ~8760) 12 455 18564 2 42 946 163185 1 "42 4) 946 1 132 133 8911
7 7 3432 11628() 3 13 560 27132 2 43 990 171365 1 41 .. 990 1 133 134 91)'::'
1 e 6435 J19711l 3 H 6e~ 31H60 2 44 1035 194510 1 44 45 1035 1 134 135 9180
7 ') 11440 e i 7190 3 15 516 54264 2 45 1081 2111176 1 45 4' 1081 1 135 136 9316
7 10 1944e 1961256 3 16 969 74613 2 46 1128 230300 1 46 47 IU8 1 136 131 9453
1 11)ll'.24 4457'00 3 17 1140 100947 2 41 1176 24"00 1 47 48 1176 1 137 138 9591
1 12 sane 9657700 3 Ie 1330 U4596 2 48 1225 2707:15 1 41 49 1225 1 1311 139 9730
7 13 77520 J00511100 J 19 1540 177100 2 49 1:175 2U1l25 1 49 50 1:175 1 13'J 140 "'0
7 H 116)eO ~01l6600 3 20 1771 230230 2 50 1326 316:151 1 50 51 1326 1 140 141 10011
7 15 170544 77558760 3 21 2024 296010 2 51 137. 341055 1 51 5::1 1378 1 141 142 10153
6 1 7 13 3 22 2300 376740 2 52 1431]612'0 1 52 51 1431 1 142 143 10296
f,) 2e 'I 3 23 "2600 475020 2 53 1415 395010 1 53 54 lUS 1 143 144 10440
ti 3 84 455 3 24 2925 593775 :2 54 1540 424:110 1 54 55 1540 1 1"" 145 10585
e 4 no 1820 3 25 3216 736281 2 55 1596 4'5126 1 55 56 1596 1 145 146 10731
6 5 462 6188 J 26 "3654 906192 :2 56 1653 481635 1 56 57 1653 1 146 147 10878
6 6 924 18564 3 27 4060 1107568 2 57 1711 5nll55 1 57 51 1711 1 147 1411 11026
6 7 1716 501ee 3 211 4495 1344904 "2- 58 1110 557845 1 58 59 1170 1 In 149 11175
6 e 3003 125970 3 29 4960 1623160 2 59 lll30 595665 1 59 60 1130 1 149 150 11325
6 s 5005 29)930 3 30 5456 1947792 2 60 lllU U5376 1 60 U 1191 1 150 151 11476
6 10 80011 646646 3 31 5984 2324184 2 61 1'53 611040 1 61 62 1953 1 151 152 11628
6 11 12376 1352078) 32 6545 2760681 2 62 2016 730730 1 62 6l 2016 1 152 153 117111
6 12 11564 :270U56 3 33 7140 326:3623 2 63 2080 766410 1 6l 64 2010 1 153 154 11935
6 1~ 27132 5200300 J 34 1710 3Ullli0 2 64 1145 114315 1 U 65 2H5 1 154 155 12090
6 14 31160 9657700) 35 8436 4496388 2 65 24111 ""01 1 65 66 2211 1 155 156 12246
6 15 54264 173U86() J 36 9139 5245786 2 " 4I2711 '161" 1 66 n 221. 1 156 157 12403
6 16 74613 30421755 3 1'7 9880 6096454 ::I 67 2346 9'71635 1 n 61 2346 1 157 15' U56l
6 17 100'47 5a'5'35 3)11 10660 7059052 2 611 2415 10287'0 1 611 69 41415 1 158 159 141720
6 18 134596 86493225 3 39 11480 8145060 2 69 241' 10lSnO 1 69 70 248' 1 159 160 121180
5 1 6 11 3 "0 l:l141 '0661119 2 10 2556 1150626 1 10 11 :1556 1 160 161 UOU
5 2 21 66 3 41 13244 10737573 2 71 2628 1215450 1 71 72 2621 1 161 162 13203
5 3 56 286 3 42 14190 12271512 2 7:1 2701 1282975 1 72 7l 2701 1 162 163 13366
5 " 126 1001 3 "3 151&0 13'1ne16 2 13 2775 135:3275 1 73 74 2775 1 163 164 13530
5 5 252 3003 3 44 16215 15190700 2 74 21"0 1UIU5 1 74 75 2850 1 164 165 13n5
5 6 462 800e 3 45 17296 11009460 2 75 2926 1502501 1 75 76 29416 1 165 166 131161
5 1 1'12 1'l4U 3 \6 Ul4H 20J'U20 2 76)003 15111580 1 76 77 3003 1 166 167 14028
5 8 1287 43758 3 47 19600 22957480 2 77 lO81 16413740 1 77 78 3011 1 167 168 14196
5 Q 2002 '237e 3 4e 20825 25827165 2 78 3160 1749060 1 78 79 31150 1 168 169 14365
5 10 10(1) 18""56 J 4') 2::1100 289119675 2 79 n40 11137620 1 79 80 3240 1 169 170 145)5
5 11 4368 352716 3 50 23426 324611436 2 110 3121 1929501 1 80 III 3321 1 170 171 14106
5 12 61ee 646646 3 51 24804 36288252 2 81 3403 2024785 1 81 82 3403 1 171 1'72• 1487e
5 D 1156e IH40ilil) 52 26235 40415J5B 2 82)486 2123555 1 82 83 34116 1 172 173 15051
S 14 1162e 1961256 3 53 27720 45057474 2 8) 3570 22251" 1 13 84 3S70 1 173 174 15225
5 15 t5504 121\8760 3 54 292';0 50063860 2 84)655 2331890 1 84 85 3655 1 174 115 15400
~ 1b 20)49 5)1l'l35 3 55)Oe5~ 555253'72 2 B5 3741 2441626 1 85 86 3141 1 175 176 15576
5

. , 26334 e4362115 ~ 56 32509 61474519 2 86 3828 ·2555190 1 86 87 3828 1 176 177 15753
S 111])64<1 DunlO 3 57 34220 6"45521 2 87 3916 2672670 1 87 88 3916 1 177 118 15'))1

lQ 4250~ ~~l'>3001 ") Sf 35990 7497436e 2 ee 4005 2794155 1 88 89 4005 1 118 179 16110-- 5): ~ -)004501: 5~ 37e2C 1125911880 2 119 4095 2919735 89 90 4095 1 119 leo 16290L -
". 65 ?el) .4J~2lt-5) ~O HL 1 soese76e '2 90 4186 304')501 90 91 USb 1 lllO 181 16411

B-2

