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Abstract

The particles 'interaction in the 2 + 1 topologically massive gauge theories is

given. It turns out. that contrary to the usual case. two equally charged particles

(fermions or the non-Abelian topologically massive "ector bosons) attract each

other, not repulse. This attraction can lead in principle to vacuum instability, in

which we will use some trial wave function techniques. Possible applications are

briefly discussed.
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1. INTRODUCTION

The Topologically Massive Gauge Theories (TMGT) introduced in [1, 2, 3]

and their low-energy limit-the Chern-Simons (CS) theories are widely popular

now, because of the possible applications for some condensed matter problems

such as the Fractional Quantum Hall Effect (FQHE) [4] and may be the high Tc

superconductivity (see for example reviews [5, 6]), as well as for the 2-D Conformal

Field Theories [7, 8], and may be used for the three-dimensional formulation of

the off-shell closed string theory-the Open Topological Membrane theory [9,10].

Besides, the three-dimensional gauge theory has appeared naturally as the high

temperature limit of the usual four-dimensional theory, and the effective CS

term appears in the case of non-zero chemical potential. Thus, it can be seen

that TMGT theories are appearing in different regions of physics and it can

be obtained as new information about them, by studying the properties of the

TMGT.

It turns out that the particles interactions in these theories are rather unusual.

It was shown in [11] for the case of charged U( 1) fermions and in [12] for the case of

the 5U(2) gluons, that the two equally charged particles attract each other, not

repulse, as would be natural for any theory when the vector particles exchange

in the t-channel, This is the crucial difference between the usual gauge theory

and gravity. Due to the universal attraction in gra\'ity, there is the instability of

a sufficiently large amount of matter. In usual gauge theories the charged matter

is stable and at real values of the coupling constants. Only at imaginary values

of the last (or negative 0') is there the famous Dyson instahility jl S], reflecting

the asymptotic nature of the perturbation series. As far as it is known, there are

no other examples of the attraction between equally charged particles in gauge

theories. therefore the T~vfGT is the only example of a field theory where Dyson

instability can be realized in principle.

The paper is arranged as follows: In Section :2. the case of the Abelian U( 1)

theory will be discussed. extending the results in [11] to t hr- many flavor case. In
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Section 3, the case of the non-Abelian SU(2) TMGT will be considered and shown

that equally charged gluons on-shell will attract each other. In Sections 4 and 5,

it can be seen that the effective quantum Hamiltonians, which are corresponding

to the obtained scattering amplitudes, and use of the variational wave function,

makes an estimate of the average energy of the state. In Section 6, some possible

applications of the vacuum instability (if exists), the nature of the real-ground

state is summarized and the results obtained.

2. THE [TO) TOPOLOGICALLY MASSIVE
GAUGE THEORY vVITH lVf FLAVORS

Starting from the Lagrangian

(1)

where ~i has the dimension of mass and fermionic masses mj are arbitrary. In

the case of equal fermionic masses, the global U(Nf ) symmetry is obtained. For

simplicity, consider the case of equal fennionic charges, and put them equal to 1,

the real coupling constant is -/. To get the propagator of the gauge boson, it is

necessary to fix gauge. In Landau gauge it equals

(2)

where :.\1 = ~:; j4rr is the topological mass of the gauge particle (it shall be called

photon later). Integrating over the gauge field. the effective ferrnionic theory can

be obtained with the induced non-local four-fermion interaction, described by

the the interaction Lagrangian

Lint = L Jd\UPU[1JillttlJ,](X) GiW(.l' - !}}[~j/vWj](U)· (3)
I.)
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The next interest is the case where all fermions are on-shell, thus using the

Gordon representation for current

(Pt + P2)/L ,1',( )'T'( )= 2m '.I.' P2 '.I.' pt

(4)

Substituting (4) into (3), the two-into-two scattering amplitude (see Figure 1)

is obtained; which is the sum of two terms: diagonal and antisymrnetric. Later.

the interest shall be in the case of the nonrelativistic fermions, when all the

momenta are small when comparing the fermionic masses m. In this case. the

space component of current is small concerning the zero component. and the

main contribution, to the interaction, is derived from the zero component of the

currents. However, there is the infrared antisymmetric singular term (P-odd) in

the photon propagator (2), which can can seal the small momentum factor in the

space component of the current, thus leading to the same magnitude of interaction

./2JO as in the JoJo. This is nothing but the Pauli spin-magnetic interaction as

was demonstrated in [11], and this is the key for unusual interaction between

particles-attraction instead of repulsion. Substi tuting (2) and (4) into (3), and

using the nonrelativistic limit the scattering amplitude between i and j fermions:

i [( Ji) dlx -1+- --
if?' + Ail In in

(.j)
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Figure 1. Two Scattering Amplitude

Here m is the reduced mass for the two masses mj and mj and neglects the

differences between ~/Owand Ijtw due to the nonrelativistic approximation and

there is no summation over i or j. Due to the fact that all fermions are on-shell

there is no energy transfer-f.he elastic process only is dealt with here. The real

part of amplitude describes the local interaction in the limit of q small comparing

to M when the imaginary part describes the Aahoronov-Bohm type interaction

(see [2, 14]). It is easy to show ll I], that this amplitude generates the correct

potential III the two-body Schrodinger equation for the nonrelativistic spinor

particles.

It can be seen from (5) that if m < :1I. the sign of the real part is changed.

Because the first term in the parenthesis (which (~qt1al." to 1} describes the usual

repulsion between charges, it is seen that when the total sign is changed »re get

the attraction. This is realized if sufficient light fermions with the "good" sign

of the mass is available. This is not very surprising, because in 2 dimensions the

sign of fermionic mass is a sign of "spin," or what is' better to say is the si,e;n of

the Pauli interaction. because there is no usual kinematical spin of the fermion

in 2 + 1 dimensions.

Here, the radiative corrections shall not be discussed. which m.ay be very

significant in the case when Nf / k is not the small parameter and C;Hl be seen

later. this is the case when the possible vacuum instabilitv can r.akcs plan'. Take

(j



note, that due to the radiative corrections, it is impossible to have very light

fermions-due to corrections, the mass of the order of M/k will be generated.

3. THE NON-ABELIAN TOPOLOGICALLY IvIASSIVE
GAUGE THEORY: THE SU(2) TOY MODEL

In the preceding section it was noted, that due to the magnetic interaction,

it was possible to get the attraction between two equally charged particles, but

it depends on the sign of fermionic mass, comparing the sign of k or, which is

the same, the sign of the photon mass J1. In the non-Abelian theory there is

no such free parameter-therefore either repulsion or attraction unambiguously

can be obtained. It was shown in [12], there is indeed attraction on-shell. Here

the result is in more detail. Consider the Lagrangian of the non-Abelian TMGT

(work shall be in Landau gauge):

(6)

where

(7)

Now. contrary to the Abelian case, the CS coefficient k is to be a integer, if to pre­

serve the gauge invariance of the action under the large gauge transformations [3].

If normalization of the vector field is changed

(8)

the Lagrangian in the form of[3. 15] is obtained:

(9)

where. as in the Abelian ease. the gauge particles masses equal to ;1V! = k~i/4ir.

-
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Later consider the case of the SU(2) theory, the generalization to the case

of the arbitrary gauge group G is straightforward. It is convenient to use the

charged and neutral combination of the isotopical degree of freedom:

± 1 1 . 2 3
w~ = V2 (AIL ± zA~) , Z = A~ . (10)

Now consider the elastic amplitude of VV+W+ scattering, which is shown in

Figure 2. This amplitude, in general, is very complicated, because of the external

vector indices, and depends on the polarization vectors of the scattering particles:

A(lV+vV+ -+ vV+W+) = A/-Lvpu(Pl,P2; pi + Q,P2 - Q)q,t(Pl)e2v(P2)

x e3u(Pl + Q)e4p(P2 - Q). (11)

But if required, it only on-shell (and only then this amplitude is gauge invariant

and has sense) the massive gauge boson is described by the one degree of freedom,

the polarization vector ejt(p) equals to ll-l, 15]:

(12)

1

.... ... ...
~+Q ~-Q

<r­
/z~

(a) (b)

Figure 2. Elastic Amplitude of rV+Hr+ ScatteriIl~

(c)
TIP-01131



and it is easy to see, that (12) is transverse. To calculate the amplitude.it requires

the three- and four-point vertices (see, for example [15]). It is prepared here for

the case of ltV+W+ scattering, thus the isotopical structure is quite definite and

the fact that external lines are transverse can be used, because the polarization

vectors (12) and propagator (2) in the Landau gauge are transverse.

·ttp.\(Pl, -PI - Q,Q) = im EJAp), + 2gJ-LpPU - 2gp.\Qp. + 2g.\p.Qp

r to'pvu(Pl,P2,P3,P4) = (gJ,lpgV{T + gJ-Lugvp - 29J-Lvgpu) , (13)

where the additional € term in the three-point vertex is due to the CS term in the

Lagrangian. Compute the amplitude in the rest frame and choose the momenta

of the in-going particles in the x directions. Due to this, the outgoing particles

will have the momenta which are determined by the scattering angle 8. The

polarization vectors are

V2JIp
1

(

p2 ) 1 (P
2

)Ep e·) = Ep. '~V2Mp-

-nrrip Imp

1 ( p2 )
f::l = ----- -Epcos8 + impsin8

J}jlp
- Ep sin 8 -imp cos e

(

p2 )
-EpcosfJ - impsinfJ ,

-EpsinfJ + impcos fJ

(14)

and now to calculate the amplitude (11) use the propagator (2), vertices (13)

and polarization vectors (14). The total amplitude ..{ is the sum of the three

terms --ttl, + A.b + .-:l.e . which are determined by the corresponding diagrams at

Figure 2. This amplitude is sufficiently complicated and can be found in the

appendix. Here only the limit of the :->1113.11 momentum is presented. As ill the



case ofthe U(l) theory there is the infrared singular term, due to the Aaharonov­

Bohm interaction, manifesting itself as singularity of the scattering amplitude at

angles 8 = 0 and 8 = 1r. To take the limit of small momenta, fix the scattering

angle, and then tend momentum p go to zero, which also leads to the zero limit

of momentum transfer Q. Finally, the amplitude (at small angles 8) is obtained:

A( .... ........ Q.... .... Q.... ) 81rM ( i ) ( )p, -p; p + ,-p - = -k- 4 - (j + Op, q

81rlvi ( poQ 0)
= -k- 4 -i til Q/ + O(P,q) , (15)

and the sign of the real part corresponds to the attraction (it was checked during

the calculation, using the fact that the P-even part of the propagator's contribu­

tion to the real part of the amplitude is a repulsive one, thus it is only required

to know the relative sign of the total amplitude).

It is easy to see, that the same amplitude is obtained in the case of the rr-nr
­

scattering, and in the cases of the W+W- and rv+ or vV- Z scatterings, there is

repulsion and attraction respectively [12]. So the attraction in the channels with

the iso-spin projection equals to +2, +1. -1, -2 and the repulsion in the zero

iso-spin channel is obtained.

4. THE EFFECTIVE QUANTU:vI HAivIILTONIAN A~D

POSSIBLE VACUUM INSTABILITY IN THE ABELIAN T;'vIGT

Now the obtained elastic amplitudes can be used to construct the effective

quantum Hamiltonians for the charged degrees of freedom. Starting from the

U(l) case. What is the sense of the obtained amplitude (5)'? It describes the

fermion interactions at excluded gauge degree of freedom. This means in partie­

ular, that if this amplitude is iterated, the arbitrary ferrnionic amplitudes cannot

be obtained. only those which don' t contain the crossed photon lines (see Fii!;­

ures 3, 4(a) can be obtained, and (b) cannot ). This is evident. because rhe

LO
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retarding effects are neglected. This approximation is quite good for the non-

relativistic fermions and consider only the fermionic degree of freedom without

making a fault. The amplitude (5) describes the interaction part of the Hamil­

tonian and the fermionic quantum Hamiltonian can be written, which correctly

describes the quantum states where only nonrelativistic levels of energy are filled.

What can be done with the imaginary part of the amplitude which has a singular­

ity at small q? The answer is simple, the Hamiltonian is the hermitian operator,

the initial four-fermion operator the complex conjugate one must be added to:

(a)

Figure 3. Fermionic Amplitudes

(b) TIP-01128
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where the fact is used, that in the approximation, the amplitude is unchanged

when PI - P2 by q (the real part is constant and the imaginary part is not changed

due to the vector product of PI - pz and q) is shifted. The matrix elements of the

four-fermion operator standing behind the singular imaginary part will contain

the additional power of q and there will be no singularity in the matrix elements.

Substituting the standard plane wave representation, for the fermionic creating

and destroying operators, the following Hamiltonian is obtained:

( ~ +i i
€i p}a ~ ap­]J

1( +1 +j ::+i +i ) i j]X - a- ~a- --a~ - a- _a-Q_2 PI+q P2-Q PI q P2-Q PI P2

4trN[-/= --
I k

where 1/ is the area of the system (2-D volume) and

2 1 1-=-+-.
mij mi mj

12

(17)

(IS)



Later a consideration will be made in the case of equal masses, for the sake of

simplicity. The main question now is about the ground state of this Hamiltonian.

The standard vacuum has, by definition, zero energy and is the eigenfunction of

(17). However, if the probe wave function can be constructed with average energy

less than zero, this means, that the standard vacuum is unstable. Choose this

function in the form

NJ

IqS) f = II IqSi) f
i=l

..

l4Yi)f = II (Ui(p) + fiCD)a~+)lqSi) 1

p
(19)

where the correlation between the different flavors is neglected. The normaliza­

tion concli tions are

(~il~i) = IT (I U iL5)!2+ Ifi(pj!2) ;
P

The functions fl(P) describe the density of the ferrnions with momentum p

Ni(ji) = (dida;t a;rli>i) = Ifl(jJ')12

». = L Ni(fi) = L Ifi(P)12
,

p p

(20)

(21)

and N, are the total average numbers of the fermions. To calculate the average

energy. the matrix element must be known

P2

(oll(l;ta~21<?i) = 6p1 Pz IJi(PI )1 2 + IT (/ l l i(fi) 12 -IIi(p)I:"!)
fi=Pl

x ui (p~ )II (P2 )III ( Iii )it (151 )



•

(22)

where ~i(pip2) is the quickly oscillating function and can be chosen arbitrarily

small, if the functions f and u with the small overlapping regions are considered.

Consider now, the average energy of this probe wave function:

NJ

(<p/IHI<pt) = L L ti(p')IJi(P)1 2

i=l p

- k~V t "~"{C: -1) [1f;(Pl)I'lfJ(P2JI' ~q,O
'>J pl,P2,q

+ ~ (~i(pl + q,pd.6.j(P2 - q,Ih) + (if - 0)]
il\1 [(PI - ]J2)q] _ _ _ _ __

- -2 -') [.6. I (P I + q, pI).6.J(p2 - q, P2)
m q-

- ~i(jJr - q, pr}.6. j (j)2 + q,P2)]} . (23)

Note, that due to the Pauli principle there is no contribution from the scattering

of fermions with equal flavors, because the local interaction (in real part of am­

plitude) is restricted. As shown in [11], there is P-wave scattering for one flavor.

producing the BeS P-wave superconducting gronnd state at Fermi surface.

Now, to define the Ii functions. The simplest way is to define them as ;,;ho\V11

in Figure 4, is to obtain the Fermi-sphere like distribution with Fermi momentum

PF. It is obvious there is no infrared singularities in the imaginary part contri­

bution and choosing the overlapping regions as narrow as desired (thus getting;

the usual Fermi surface), the imaginary part contribution as well as overlapping

contribution in real part can be neglected. Choosing the Fermi momenta equal

for all flavors, the variational energy depending on one variational parameter is

obtained-the Fermi momentum PF

J
t-

( IH' I ') \T T' c -P / _., .) e I ::;'1
9f 0f = - I " (.)~~ V P" + rii- (PF - PI)

~Hj

14



x fJ(PF - jPll)fJ(PF - Ip;!) . (24)

...

Using the fact that the integral over the Fermi sphere equals to the fermionic

density

J d2p p'2
n = --. (j(PF - IPl) = .L

(21r)2 41r
(25)

and dividing energy (24) by the volume of the system V. the energy density as a

function of the density of the fermions is obtained (see Figure 5):

..
11f(P)1

1

o

E (n)

P
F

Figure 4. fi Functions

..
11~(P)1

..
I PI

TIP-Q1122

TIP-Q1123

O-+--------------.;lt-----+ n

Figure 5. Fermion Density
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Nf(Nf - 1) 7r
c(n) = Nfrnn - -

2 kJv! (
lV! ) 2--1 n
1'71

(26)

At critical density, n c , the energy density becomes zero

2 kmlv!
nc = 1l"(Nf-l) ~-1

(27)

and for larger densities, it becomes negative,which means that the standard vac­

uum is metastable, i.e. it is stable classically, but unstable quantum mechanically.

To be quite rigorous, the scenario is correct only for nonrelativistic electrons and

it is necessary for critical Fermi momentum to be smaller than fermion mass In.

The corresponding inequality is:

(28)

For large k: and sufficiently light fermions. it follows from this inequality, that the

number of flavors must be larger than k. It may he dangerous, because the per­

turbation expansion parameter will now he N J / k and the radiati W' corrections to

the amplitude may become large. However. there are SOllH~ situations when these

corrections are irrelevant. Consider the one loop corrections to the amplitude.

in which the Feynrnan diagrams are shown at the Figure G(a). (h). and (c). The

only dangerous diagram is the last, because the fermion loop is needed to get

the NJ factor. This renorrnalization of the photon propagator leads to the two

things: the renorrnalization of [. i.e. the photon mass ."\1. which is insignificant ,

and the renorrnalization of k which can change the complete picture. However,

consider the theory where there are an equa] (or approximately equal) number

of ferrnions with positive and uegat.ive signs of mass. the reuormalizatiou of l:

will be zero (or small) and all other corrections will he ill the order of 1/ k, ~O\V

consider the higher order diagrams with ferrnionic l()op~. for example the diagram



shown in Figure 6(d). Estimating this information. the magnitude by the order

of Nf / k2 is obtained, which is larger in comparison with the magnitudes of the

one-loop diagrams, but is small when comparing the value of the tree amplitude:

A= Ao (1 + ~ /I (~) + k\ 12 (~) + ... )

Then, if the parameters are:

(29)

(30)

then the perturbative region as well as the critical Fermi-momentum is small.

and the picture of the vacuum instability is self-consistent.

e e e e

e 1 I k

( a )

e

( b)

e

e Nf/k

( c)

e e

e

e

1 I k ( Nt I k) e

( d )
TIP-ol135

Figure G. High Ordt~r Fenlliollic Loop Diagram] s )
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.5. THE EFFECTIVE QUANTUM HAMILTONIAN
AND POSSIBLE VACUUM INSTABILITY

IN THE NON-ABELIAN 5U(2) TMGT

Now, use the obtained elastic amplitude for Tty bosons to construct the effec­

tive quantum Hamiltonian for the charged degrees of freedom in the non-Abelian

SU(2) TMGT. However, as in the Abelian case, it is impossible to get the total

Hamiltonian, even in the nonrelativistic approximation. The problem is that due

to the four-point vertices in the non- Abelian theory, there are new many-particles

amplitudes (see Figure 7). The calculation of this amplitude is rather compli­

cated and thus we did not accomplish it. Therefore, the reduced toy Hamiltonian

was constructed by using only the four-particle amplitude (15). Making this in

a complete analogue, with the Abelian case, the Hamiltonian is obtained:

tt; =."\1 L
/)

w+ W+

i [(pi - 112 }tJ1 (+ + ( _ _)) }_.) a _ , _ (l _ ~ - (J -+ -q a - a.,-q _ 1'1 ;-'(1 P2-Q 1 PI,.2 '

W+

(31)

w+ w+ W+

+

w+ w+ w+ W+

Figure I. .\'ew Particle Arnpli tudes
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where all the energies of the particles equal to mass M due to the nonrelativistic

approximation. Now choose the probe wave function in the simplest form:

(32)

where the variational parameters are the filling numbers

(33)

This wave function has the definite number of particles and when averaging the

Hamiltonian (31) over the (32), the only nonzero contribution will give the terms

with Q equal to zero, PI - P2, or P2 - Pl. The last two are equal to the first

orie. as a consequence of the Bose-statistics. The contribution of the imaginary

part of the amplitude to the average energy equals zero by the same reason, as

in the Abelian case, and the real part after the averaging over the (32), gives the

(6IHw )cp ) = j/J L lV(jJ) - k~;V L (N(PI )N(p2)
p ~,~

(34)

To ()bt <Lin this energy the next matrix element was used

where the first term is only for different momenta. Now consider t\VO different

types of the probe functions. The first one is the Bose condensate at some

moment um Po:

and the ellt'r~y density is

N(j5) = .v
;V(ji) = 0

~V

n= V'

P :;::: Po

p =f- PO
(36)



811" ( 1 )
E = l\;!n - kM n n - V .

The critical density n c in the thermodynamic limit equals

1 2
nc~ -kM .

811"

Consider instead, of (36) some constant distribution

(37)

(38)

,

the energy density will be

41rN
N(p::!\ - ­. '~) - V ~2

o
N(p) = 0

IPI < Po

1P1 > Po

(39)

(
8rr) 871" 'f ( 4rr )

E = 111n 1 + kJ.11'2V - k.iVJ n: 1 + FPX ' (40)

and in the thermodynamic limit. the critical density will be the same as in the first

case. Unfortunately, the contribution to the energy from the diagrams shown in

Figure 7, at these densities, become the same order of magnitude and the vacuum

instability cannot be proven. but consider it as the possibility. if the higher order

corrections do not destroy it. At the encl. the case of the general group G instead

of SU(2) was discussed. Choose some Cartun subgroup H examples and consider

the interaction of the "charged degrees of freedom," belonging to the coset G / H.

The gluons of the H subgroup cannot interact themselves, but interact. with

coset gluons. Thus the same picture as in SU(2) is obtained. hut with more

complicated laws of attractions-there are some charges 11m\'. the number equals

to the group rank r = dim H. However if this rank becomes large enough. the

strong coupling regime is obtained. because the perturbat ive expansion parameter

is r / k, In this region the radiative corrections are extremely significant and to

get the answer it is necessary to sum up all the leacling corrections. (neglecting

terms of order ,./ l/! ).

:W



6. DISCUSSION AND CONCLUSION

The vacuum instability (only hypothetical for gluons) is obtained, but what

is the nature of the ground state? If the density is larger, then what criticality

will stabilize the vacuum? To answer this question it is necessary to remember,

that attraction is obtained considering the vector particles ("photon" or "gluori")

exchange between the charges. However, when there is some charge density, the

propagator of the vector particle is changed and the attraction amplitude will

also be changed. In the self-consistent approximation, the energy density can

have a minimum at some 17,* (see Figure 8). Consider, for example, the simplest

suggestion, that this charge condensate is described by some effective Higgs field.

The propagator equals [15]

"

!' J1- 1 J r-») '»)m,±- = ni: + - ± - Jl-(JI- + 4m s- ;, 2 2

m~ = AI2
4" rn.~

rn:... :::: J12 ' (41)

where tn s is the Higgs lllilSS of the photon. 711; is by order of the density n.. The

elastic amplitude for the nourelativistic ferrnions equal to

and that at zero lllOUlentnm transfer. there is rqllllsiull. hut starrius; from

.',
.! In in; II

>171 .-"'-"'J-.
'J1 I.. j;

:n

(42)

(43)



..

/
n

/
/

TIP-01136

Figure S. Energy Density

the attraction, it appears again (see Figure 0). If density becomes extremely

large, then the attraction region disappears. Then the energy density will be

bounded below. However, because there is 110 attraction at zero momentum, use

the probe function like (20) with the large overlapping regions. The detailed

analysis of this situation will he published separately. This Higgs model is only

a rough approximation, of course. The detailed picture needs the calculation of

the polarization operator in the given ferrnionic background, using the average

of the two product currents over the probe wave function:

(44)

The same stabilization mechanism can work. and also in the non-Abelian case.

if the ins t abili tv will occur.
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Figure 9. Zero Momentum Transfer Repulsion

Now observe the possible application of vacuum instability. Besides the pos­

sible new phases in the planar condensed matter systems. there are two possible

applications in the field theory. One is connected with the Open Topological

Membrane (OTM) theory, which describes strings as low-energy excitations of

the open membranes [9]. The string propagation on some compact space is de­

scribed by the low-energy limit of some TMGT (may be a direct sum of such

models with different groups). If the standard vacuum in this model will be un­

stable. then the correct low-energy limit will have nothing in common with the

Chern-Simons theory, and the string interpretation will be loosened completely.

So, vacuum instability can be a serious constraint on possible types of compact­

ification. The second possible application is the high-temperature limit of the

usual four-dimensional gauge theories, after the effective 3-dimensional gauge

theory is obtained. Without the Higgs mass there is singular infrared behavior

and the standard loop expansion does not work [16,11]. The CS term allows the

rise of the standard expansion, but the question arises, is it possible to generate it

spontaneously. It appears. for example, there is a nonzero chemical potential for

ferrnions in the four-dimensional theory. If creating a new vacuum with the CS

term will be energetically fL'lVorable. then it is possibh.> to g('lwratp some nonzero

.,-)
~ ..



chemical potential to create the es term and after that to get the new vacuum

with the smaller energy. If this speculative idea will work, it provides some new

mechanisms of the creation of particles at high temperatures. These and other

possible applications will be considered in further publications.

In conclusion, it is necessary to emphasize that the problem of the ground

state in the TMGT is very important and require further investigations. Y. Ko­

gan would like to thank Prof. F. Gilman and all members of the Physics Research

Division of the sse Laboratory for the hospitality at sse, where this work was

finished.
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APPENDIX 1

Here is presented the explicit expressions for the vV+vV+ --+ vV+vV+ ampli­

tude A.

The diagram [Figure 2(a)] contribution is:

where

and f it' are as in (14).

The diagram [Figure 2(b)] contribution is

:!1 j

(AI)



and the last diagram [Figure 2(c)) contribution is

In the center of mass frame PI = -P2 the momenta transfers are

-2 _

(2 = (Q - 2f)2 = 2F 2 (1 + cos 11) .

Tu calculate (AI). (.-\2), and (.-\3) use the next f'quations:

.,v:
( er e-, )" = ((-:;'It" ,I = ­

~ -". 't' A[2

( e I C:l) = (('2 f.'I) = 2J
11'2

[p2 + (E 2 + J1 2
) COS (J - 2i JlE sin OJ

(.42)

(A3)

(.4.4 )

_ p2[E (1 - cos B) + d\1 sin 81
( e.r Q) = - (c2 Q) = (tl q) = ~ (tel (2) = r-:: "

V 2 J1p

(e.IP2)=(f\PI)= ;; [E(l+(·osfJl-1J1sinl1j.
V2.H

(A.6)

Substituting (:\.-1). (A,S) and (.\6) into (AI). (.-\2) ;111(1 (A:3) and taking tho limit

[;2 ----j O. Eq. (F)) is dniwd.

.,­- [


