
·- .~.

SSCL-271

Superconducting Super Collider Laboratory
.'.....,.

'\"'\"

'-... ......··..·······.7::·:·.·······
\"\ ..i/'

.-...:....

..'

l
s
-:

:: "..
..•.

".;.

• ' •• .. r ••

..'

../., ..' ~ ' ..
........, ' -/

.::::?::.- ......•..•.....\.
.>. ,.+"

,.r"
,.-

;:.....:"
./ .'

: :.

,;./" ;~

} ....
".: •••••••• -:...... 0'"

o ~••••••••••c-, .0"

• • ' .•:•.:-~:~::::.~.:: <.••••,' •..•,.~ .., .' .,. ..r
:~\:: • • : ,. .c-:

~~ j 1.

:;::

/::
.~. :

". :
,,' . .

.,'

A Dynamic Model for
Helium Core Heat Exchangers

w. Schiesser, H. Shih, D. Hartzog, D. Herron,
D. Nahmias, W. Stuber, and A. Hindmarsh

April 1990



-

-

.-,

-

SSCL-271

A DYNAMIC MODEL FOR HELIUM

CORE HEAT EXCHANGERS·

W. E. Schiesser
Lehigh University

Bethlehem, PA 18015
and

Superconducting Super Collider Labora.tory t
Dallas, TX 75237

H. J. Shih
Superconducting Super Collider Laboratoryt

Dallas, TX 75237

D. G. Hartzog, D. M. Herron, D. Nahmias and W. G. Stuber
Air Products and Chemicals, Inc.

Allentown, PA 18195

A. C. Hindmarsh
Lawrence Livermore National La.bora.tory

Livermore, CA 94550

April 1990

• Presented a& the International Industrial Symposium OD the Super CoUider, Miami Beach,
Florida, March 14-16, 1990.

t Operated by the Universities Research Asaociation, Ine., for the U.S. Department of Energy
under Contrad No. DE-AC02·89ER40486.



. ~

A DYNAMIC MODEL FOR HELIUM CORE HEAT EXCHANGERS

W. E. Schiesser

Lehigh University, Bethlehem, PA 18015
and

Superconducting Super Collider Laboratory," Dallas, TX 75237

H. J. Shih

Superconducting Super Collider Laboratory," Dallas, TX 15237

D. G. Hartzog, D. M. Herron, D. Nahmias and W. G. Stuber

Air Products and Chemicals, Inc., Allentown, PA 18015

A. C. Hindmarsh

Lawrence Livermore National Laboratory, Livermore, CA 94550

ABSTRACT

To meet the helium (He) requirements of the superconducting supercollider (SSC),
the cryogenic plants must be able to respond to time-varying loads. Thus the design
and simulation of the cryogenic plants requires dynamic models of their principal
components, and in particular, the core heat exchangers. In this paper, we detail
the deri vation and computer implementation of a model for core heat exchangers
consisting of three partial differential equations (PDEs) for each :fI.uid stream (the
continuity, energy and momentum balances for the He), and one PDE for each parting

sheet (the energy balance for the parting sheet metal); the PDEs have time and
axial position along the exchanger as independent variables. The computer code can

accommodate any number of :fI.uid streams and parting sheets in an adiabatic group.
Features of the code include: rigorous or approximate thermodynamic properties for
He, upwind and downwind approximation of the PDE spatial derivatives, and sparse
matrix time integration. The outputs from the code include the time-dependent axial
profiles of the fluid He mass flux, density, pressure, temperature, internal energy and
enthalpy. The code is written in transportable Fortran 77, and can therefore be
executed on essentially any computer.

• Operated by the Universities Research Association, Inc., for the U.S. Department of

Energy under Contract No. DE-AC02-89ER40486.
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·.
Introduction

The conceptual design of the SSC calls for ten liquid He refrigeration plants to be located
at one-tenth intervals around the 53-mile ring (Ref. I). A basic feature of the operation of
the refrigeration plants is related to the unsteady state or dynamic operation of the SSC;
typically it will go through transient periods of operation, such as cool down, operation as
a particle accelerator, then limited shutdown for maintenance and preparation for the next
experiments. Also, unexpected disturbances will occur, such as magnet quenches, tha.t must
be accommodated. Because of the low temperatures required for superconducting magnets,
several heat shields will be used which require coolant streams at different temperatures.
These streams interact through a series of heat exchangers in the refrigeration plants to
achieve desired coolant temperatures. The heat exchangers are therefore a major component
of the refrigeration plants, and the design of the heat exchangers is a central consideration
in determining the operating performance of the refrigeration plants. The dynamic nature of
the operation of the refrigeration plants to accommodate normal and unexpected transient
conditions within the sse therefore requires that the modelling and computer simulation of
the heat exchangers involve the solution of unsteady-state (time-dependent) partial differential
equations.

Core (or plate-fin) heat exchangers are used for the sse refrigeration plants, mainly
for their high heat transfer efficiency and relatively low cost. The heat transfer section of
the prototypical core heat exchangers consists of parallel flat plates of metal (called parting
sheets), with corrugated metal connecting the plates (called fins). He flows past the fins
parallel to the parting sheets, cocurrently or countercurrently. Figure 1 illustrates the stacking
of parting sheets and fins and a parallel flow pattern in a core heat exchanger. The passage
arrangement for the prototypical core heat exchangers is periodic, i.e., an adiabatic group
consisting of a small number of passages is repeated many times, and the adiabatic group has
a mirror symmetry about the .middle passage. Figure 2 illustrates the passage arrangement
within an adiabatic group consisting of four fluid streams. It also illustrates the indexing
convention in our model for streams and parting sheets, Le., the index increments toward the
symmetry passage. Our model for the prototypical core heat exchangers is focused on the
dynamic behavior of the fluid streams and parting sheets in an adiabatic group.

Figure 1: Stacking pattern of parting sheets and fins in a prototypical core heat
exchanger. The He streams are flowing parallel to the parting sheets.
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Figure 2: Passage arrangement within an adiabatic group consisting of four streams.
Stream 4 is the symmetry stream.

In Section 2 we derive the model PDEs from the conservation principles of mass, energy
and momentum. In Section 3 we detail the numerical method for solving the model PDEs,
the computation of various quantities, other than the dependent variables, that appear in
the model PDEs and the implementation of initial and boundary conditions. In Section 4
we present the simulation results for a particular core heat exchanger in a 4K refrigeration
plant. In Section 5 we discuss an approximate first-order model for speeding up the dynamic
simulation. Lastly, in Section 6 we give some conclusions.

Mathematical Model

The dynamic model consists of a system of partial differential equations (PDEs) which are
derived from the basic conservation principles of mass, energy and momentum applied to the
fluid He streams and that of energy applied to the parting sheets. The approach in deriving
these equations is to consider a section of length OZ of an exchanger in the axial direction in
which the fluid He flows. The conservation equations are written for this section, and then
6z taken to the limit of zero to arrive at the final PDEs. Since the equations are dynamic
(unsteady state) and distributive, time (t) and axial position (z) are the independent variables.
The dependent variables will be defined as each PDE is described.

Application of the mass, energy and momentum balances to one He stream gives

8p 8w
8t =- 8z ' (1)

8(pu) __ 8(wh) +Q (2)
8t - 8z S '

dv 8P.
Pdt =- 8z + Fer t , (3)

respectively, where p, w, U, h, v, and P are the density, mass tux, internal energy, enthalpy,
velocity a.nd pressure of the stream respectively, Q is the hea.t transfer rate to the stream
per unit length of the core, S the flow cross-sectional area of the stream, and Fer t the force
per unit volume acting on the stream in addition to the fluid pressure. Equation (1) gives
the time derivative of the He density p, Substituting Eq. (1) in Eq. (2), we obtain the time
derivative of the He internal energy u

(4)
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·.
Equation (3) is the momentum balance in Lagrangian form, whereas Eqs. (1) and (4) are

in Eulerian form. To have the momentum balance in Eulerian form, we apply the transfor­

mation between Lagrangian and Eulerian coordinates

dv 8v 8v
dt =: 8t + v8z

(5)8w = _ 8P _.!. (w
2

) +Fe::t .
8t 8z 8z P

to Eq. (3) and obtain, using the definition w = pv and Eq. (1), the time derivative of the He

mass flux w

In our model Fc::t includes friction and gravitation, and is thus given by

f Iw]w
Fe:t:t = -2D-p- - PO, (6)

where f is the friction factor, D the hydraulic diameter and 9 the gravitational acceleration.

Substituting Eq. (6) for Fe::t in Eq. (5) then gives

ow = _ oP _ .!. (w2
) _ Llwlw _PO.

at az oz p 2D P
(7)

The friction factor f is calculated from the Blasius formula for smooth pipes (Ref. 2), i.e.,

f
- 0.316
- R~.25 1

(8)

where f.' is the He viscosity. We apply a correction to f to account for the effect of the rough
corrugated flow passages.

Applying the energy balance to one parting sheet for longitudinal heat conduction, we
obtain the time derivative of the parting sheet temperature Tm

(9)

where Pm, e"" km, and 8m are the density, specific heat, thermal conductivity and cross­
sectional area of the parting sheet, respectively, and Qm is the heat transfer rate per unit
length to the parting sheet. The need for determining the temporal dependence of the parting
sheet temperature is obvious since streams of different temperatures exchange heat through
parting sheets.

Equations (1), (4), (7), and (9) are then the PDEs in our dynamic model for core heat
exchangers, and the He density P, internal energy u, mass flux. to, and the parting sheet
temperature Tm are the four dependent variables. Of course, t.he model PDEs must be
applied to each fluid stream and parting sheet in the adiabatic group of the core, and the
indexing convention, illustrated in Fig. 2, is used to distinguish them.

Computer Implementation

To obtain the numerical solution for our core heat exchanger model, we apply the Method
of Lines to the model PDEs. That is, we divide the entire core in the axial direction into
N Intervals of equal length, evaluate the spatial derivatives at the center of each interval
by finite difference approximations and integrate the temporal derivatives at the center of

4
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each interval by an ordinary differential equation integrator. Specifically we use the two­
point biased and three-point centered approximations implemented in the Fortran code DSS/2
(Ref. 3) to evaluate the tirst-order and second-order spatial derivatives, respectively, and the
sparse matrix integrator implemented in the Fortran code LSODES (Ref. 4) to integrate the
temporal derivatives. It is essential in the Method of Lines.that the temporal derivatives can
be determined at any instant (including the initial moment) to allow their integration, l.e., the
right-hand sides of the model PDEs must be computed. Thus we need to not only evaluate the
spatial derivatives, but also compute all quantities, other than the four dependent variables,
that appear in the right-hand sides of the equations. These quantities are h, P, JJ, Q, Qm,
D, 8, 8m, Pm, em, and km. In the following discussion, the calculation of these quantities is
detailed along with the specification of the initial and boundary conditions required to solve
the model PDEs. Note that a simplified fin structure, shown in Figure 3, is adopted in our
model to facilitate the analysis of heat exchange with the fins. As indicated in Fig. 3, hI
is the fin height, bf the fin thickness, and nJ the number of fins per unit width of the core.

_ill

(10)

~ SIMPLIFICATION

T
hJ

.-L..I-..J-L-..L.L...-L.-I--L....I...-I-....................,...,,-L-I---'-'-l
... 1 l­

n/

Figure 3: Simplification of the fin structure adopted in our model.

Geometrical Quantities

The flow cross-sectional area 8, hydraulic diameter D, and parting sheet cross-sectional area
8m. are geometrical quantities. In terms of the fin parameters bt, ht and nt, the flow cross­

sectional area 8 is given by

8= Went (:1 -bt ) hJ.

where We is the width of the core. The hydraulic diameter D is defined to be four times the
ratio of the flow cross-sectional area S to the flow cross-sectional perimeter C which, in terms

of the fin parameters, is given by

(11)

5



In general different streams in a core heat exchanger have different fin parameters and thus
different flow cross-sectional areas S and hydraulic diameters D. The parting sheet cross­

.sectional area Sm is given by

(12)

where bm is the parting sheet thickness. Sm is.constant for ea.ch parting sheet.

Other Thermodynamic Properties

Given the He density P and internal energy u from Eqs. (1) and (4), we use a He thermody­
namic model (Ref. 5) to obtain the He enthalpy h, pressure P and temperature T. The He
temperature T, as we will see below, is required to calculate the heat transfer rates Q and

.Qm' The He viscosity Jl- and the parting sheet density Pm and specific heat em are essen­
tially constant in the range of the He thermodynamic properties under which the. core heat
exchangers are operated; suitable values have been used for each of them in the model. The
parting sheet thermal conductivity k"" however, varies significantly with temperature. This
temperature dependence is taken into account in the model. Because of this, km is inside the
second derivative with respect to z in Eq. (9).

Heat Transfer Rates

Figure 4 indicates the various hea.t fluxes that contribute to the cooldown and warmup of the

jth stream and parting sheet: qt,j is the heat flux from parting sheet i to stream i: q2,j is
the heat flux from parting sheet j +1 to stream i: Q3,i is the heat flux from parting sheet j
to stream j -1; q.,j is the hea.t flux from the fins in stream j to stream jj qs,j is the hea.t flux
from pa.rting sheet i to the fins in stream i, and qS,j is the heat :flux from the fins in stream

j -1 to parting sheet i. If AI,j, A2,j, Aa,i, A.,i' AS,i' and AS,i denote the corresponding heat
transfer areas per unit length for these heat fluxes, the heat transfer rate per unit length to

stream j, Qj, and the heat transfer rate per unit length to parting sheet i, Qm,j, are given
by theefollowing equa.tions:

(13)

and

(14)

Note that the above heat fluxes Me directional, i.e., when their values are positive, the
directions of heat flow are indicated by Fig. 4 and when their values are negative, the directions
are reversed. With Fig. 4 in mind, the following equations can be written for the various heat
fluxes:

ql,i = hi(Tm,j - Ti)

q'J,i = h;(Tm,j+l - T i )

<J3,j := hi-l(Tm ,j - Tj - I )

q.,; := hjD.Tj

q . - -k . (!!!1i.)S,) - m,) ~

..s x=o

6

j = 1,2, ,M,

j = 1,2, , M - 1 ,

j = 2,3, ,M,

i = 1,2, ,M ,

j = 1,2, .. . ,M,

(15)

(16)

(17)

(18)

(19)
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q2
Tm.;+t

q.

qt. T·1

Tm,j
qJ q&
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Figure 4: Various heat fluxes that contribute to the cooldown and warmup of the
jth stream and parting sheet.

and

(20)j = 2,3, .. .,M,qa,j =-km,j ( dT;;:-1)
z = hf,j-l

where M is the number of different streams in the adiabatic group, hj . the heat transfer
coefficient of stream i, dTj the average temperature difference between stream j and the fins
within stream i, and Tf,j(z) the temperature ofthe fins between parting sheets j and j +1 at
position x along the fin height. In the next section we derive Tf,i(x) and define dTj. Periodic
arrangement of the adiabatic group in the core and mirror symmetry inside the adiabatic
group a.llow us to determine fJ3,j and qa,i for j = 1 and q2,i for j = M respectively,

(21)

and

Qa,i=1 = -QS,i=1 . (22)

The associated heat transfer areas (again, referring to Fig. 4) are given by the following
equations:

AI' =w »ts (_I_- 6f -) j =1,2, . . . ,M, (23),J e ,J ,J
nt"

A2,j =A1,i i =1,2, ... ,M, (24)

A3,j =We n i ,j - l (_1_ - bi,j-l) j = 2,3, ... ,M , (25)
nt.'-l

~,j =2wen j ,j h f ,j j =1,2, ... ,M, (26)

As,j =wenf,ibf,i i =1,2, ... ,M , (27)
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...
and

j = 2,3, ... ,M. (28)

Again, the periodic arrangement of the adiabatic group gives A3.j and As,j for j = 1,

A6,j=1 = AS•j : 1 • (29)

(30)

the total

u-h. - __J_
J - GjLnj ,

where Cj is given by Eq. (11) for stream j, L the length of of the core, and nj

number of stream j in the care.

Since we are given in the heat exchanger specifications the total hea.t transfer rates per degree
for each stream Uj (not the heat transfer coefficients hj), the following equation is used to
deduce hj,

Fin Temperature Distribution

Assuming that the fins between two parting sheets are in stea.dy sta.te at any instant, appll­
cation of an energy balance to the fins gives

(31)
rFTt 2h-
dz2 - bJk

m
(T! - T) = O.

In deriving Eq, (31) we have assumed km does not vary with z , The general solution of
Eq. (31) is

Tf =T +GI sinh(ax) +G2 cosh(az) , (32)

where a = J2h/bikm. Eqnation (32) should be applied to the fins in each stream. Using the
boundary conditions TJ(x = 0) = Tm,j and TJ (x = hi,j) = Tm ,j +1 for the fins in stream i,
we determine CI.j and C2,i as follows,

j = 1,2, ... ,M-l (33)

and

j =1,2, ... ,M . (34)

The mirror symmetry inside the adiabatic group gives CI,j for j = M,

C. _ (Tm,j-Ti)-(Tm,i-Tj)COSh(aht,i)!
I.J=M - . h(h )sin a f,j j = M

The fin-to-stream heat flux q. is determined from the following expression,

(35)

(36)
2wcn J (1011./ h(Tf - T)dx)

q. = ,
2wcnJh J

i.e., the ratio of the total heat transfer rate per unit length of the core to the total heat
transfer area per unit length. Since q. = h~T by definition, we have

1 111./6.T = - (TJ - T)dx ,
hJ 0

(37)
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which is the average of the temperature difference TJ - T over the fin height hJ' It is
straightforward to obtain the following expressions from Eq. (32):

and

1 .
.6.T= -h {Cl cosh(ohj) +C2smh(a:hj ) - Cl } ,

a: J
(38)

(39)

(~l) = Cla:cosh(ahf) +C2a sinh(a hf ) . (40)
Z z=hf

Equations (38), (39) and (40) are used in Eqs, (18), (19) and (20) to compute q4, qs and Q6,

respectively.

Initial and Boundary Conditions

For boundary conditions, we have chosen to specify the inlet temperature and pressure and the
outlet pressure for the He streams. Also we use the insulated (Neumann) boundary condition
at both ends of the parting sheets, i.e.,

( aTrn ) _ (aTrn ) _ 0
az z = 0 - {}z z = L - ,

to specify that the heat leak from the ends of the parting sheets is negligible. The inlet mass
flux is treated as another time-dependent variable whose temporal behavior is governed by the
momentum balance equation, Eq. (7). The spatial derivatives f)w/{}z, ah/a~, and 8(w2 / p)/8z
are approximated by two-point upwind finite differences, and thus the inlet conditions are
built into the approximations. The spatial derivative f)P/f)z is approximated by two-point
downwind finite differences, and thus the outlet pressure is built into the approximations.
In applying the momentum balance to compute the inlet mass flux, the spatial derivative
8(w2Ip)/8z at the inlet is assumed to be the same as that at the first grid point (the center
of the first spatial interval) downstream. If the adiabatic group has M different streams and
the length of the core is divided into N intervals, applying the Method of Lines to the four
model PDEs then requires integration of 4M N +M temporal ODEs.

To provide a consistent initial condition for the dynamic model, a steady sta.te calcu­
lation is included. This is done by setting the temporal derivatives in the model PDEs to
zero, a.pproximating the spatial derivatives by the same finite difference methods as used in
the dynamic model, and solving the resulting algebraic equations with the IMSL subroutine
DNEQNF (Ref. 6). If uniform mass flux is assumed, i.e., the temporal derivative in the conti­
nuity equation is automatically set to zero, only three temporal derivatives, i.e., f}u!8t, 8w!8t
and aTrnlat, are required to be zero. For Mdifferent streams in the adiabatic group and N
axial intervals in the core, we then need to solve 3M N +M nonlinear algebraic equations for
3M N +M unknowns which are p, u and Tm at the center of each spatial interval and the
stea.dy state mass flux or the outlet pressure for each stream.

A scaling factor 05 j is used to adjust the friction factor f to achieve realistic pressure drops
in the core heat exchangers, since the Blasius formula for friction factor, Eq. (8), which is
valid for smooth pipes, gives unrealistically small pressure drops. Typical values of the scaling
factor are about 10 from our simulation, which are well below 40, the upper bound for realistic
designs (Ref. 7). Beca.use the steady state mass flux, friction scaling factor and outlet pressure

9



are interrelated, our model allows that any two of these three variables can be specified in
the steady state calculation and the third will be determined by the !MSL nonlinear equation
solver. The scaling factor used or determined in the steady state calculation is assumed to
remain the same in the dynamic simulation.

Simulation Results

To check the code for our static and dynamic core heat exchanger models, we have simulated

heat exchanger R2 in a sse 4K prototype refrigeration plant (Ref. 8). The passage arrange­
ment of heat exchanger R2 is the adiabatic group BAB repeated 18 times where A is the high

pressure He stream flowing down and B the low pressure He return stream flowing up. Listed

below are the parameters for R2 required as input to the model:

Parameter

bf
hJ
nJ

U

L = 10 ft

We = 16.75 in
bm = 0.032 in

Stream A
0.010
0.281
20.2

96321

Stream B
0.008
0.380
14.7

96319

Unit
in
in
in-1

BTU/hI-oF

The following data on temperature, pressure and mass flux are used in the initial steady state

calculation:

Pa.rameter Stream A Stream B Unit

P;" 264.00 11.17 psia.

Ti" -315.69 -417.63 OF

Pout 263.96 10.94 psia
W -4361 1437 Ibjhr·ft2

where the subscripts in and out refer to the inlet and outlet streams, respectively. The friction
scaling factor, as determined from the IMSL nonlinea.r equation solver, is 8.685 for stream A
and 9.141 for stream B.

We simulated the unsteady state resulting from increasing the inlet temperature of stream
A by 10°F. The simulation results for 20 sec are shown in Figures 5, 6 and 7, i.e., the
axial profiles of mass flux, temperature and pressure, respectively. We see from Figure 5
that the mass flux of each stream varies from one uniform value to another as time passes,
indicating that starting with one steady state we approach another; Figure 6 indicates that
the temperatures of both streams increase at the inlet of stream A but do not change at
the inlet of stream B, as expected. It is interesting to note in Figure 7 that the pressure of
stream A decreases and then rises in the direction of the flow. This results from our inclusion
of the gravitational force in the momentum balance equation.

10
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Figure 5: Axial profiles of the strea.mmass flux. Each profile is 4 seconds apart. The
curve index increases with time.

-5.90

-5.75

N
::lE

b -5.80
I
~
~
r;

! -5.85
::I

STREAM A STREAM B

80

70

70

60

:lc: :lc:
• •
.. 60 U... ...
::I ::I.. ... 50III... ...
foI U
Q, Q,

~ 50
8
II.. ioo

40

40

30

30

0 1 2 3 0 1 2 3
Position. M Position, M

Figure 6: Axial, profiles of the stream temperature. Each profile is 4 seconds apart.
The curve index increases with time.
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Figure 7: Axial profiles of the stream pressure. Each profile is 4 seconds apart. The
curve index increases with time.

We found that it was important to restrict the order of the algorithm in the ODE in­
tegrator LSODES. Specifically, we have found that by restricting the maximum order of the
algorithm of LSODES to two (instead of the usual upper limit of five) the computer time
is greatly reduced (by two orders of magnitude). This suggests that the greatly increased
efficiency of the ODE integration by LSODES is due to the existence of nearly imaginary
eigenvalues of the ODE system. For the BDF (Gear) methods on which LSODES is based,
the order three and above algorithms have poor stability near the imaginasy axis (Ref. 9), and
will therefore take small steps if the ODE system has nearly imaginary eigenvalues; computing
the temporal eigenvalues of Out model ODE system indicated this is the case.

Reduced Model

Using the simulation results from our rigorous core heat exchanger model, we developed a.n

approximate low-order model representation (Ref. 10) which could be used when the execu­
tion times of the rigorous dynamic model are excessive, e.g., when several heat exchangers
are included in a. complete refrigeration plant simulation. The low-order model relates the
followinginputs and outputs:

12



Inputs: Inlet temperature Tin

Inlet pressure Pin

Outlet pressure Pout

Outputs: Inlet mass flux Win

Outlet temperature Tout

Outlet mass flux Wout

The procedure generally involves estimating the time constants of the inlet mass flux, outlet
temperature and outlet mass flux responses for each stream from rigorous static and dynamic
simulations, then approximating the transient response of these three state variables with
single exponentials (first-order model) for a series of step inputs. The details are illustrated
by the following example calculation for heat exchanger R2.

Let X denote one of the three output variables Win' Tout and Wout. From the steady
state calculation of our rigorous model, we obtain Xi and X/> the initial and final values of
X, for a given (arbitrary) step input. Assuming the transient X(t) is governed by a single
exponential with a time constant tc , we calculate the value of X at t = tc according to

From the rigorous dynamic simulation we obtain two consecutive times t. and t'+l (at =
tHl - t. should be reasonably small) such that X. < X; < X.+ 1 or X.+ 1 < Xc < X., where
X = X. at t = t. and X = X H 1 at t = tHl' The time constant t c is then obtained by linear
interpolation, i.e.,

(Xc - X.) )
tc = t. + (X_+

1
_ X.) (t.+l - t, .

Listed below are the time constants (in seconds) determined this way for heat exchanger R2
for a step increase in the inlet temperature of stream A of 10°F:

Stream A
Stream B

0.9
7.2

22.4 12.0
1.7 9.1

To compute the response of the first-order model to a general time-varying input, we
first approximate the input by a series of step functions, then we obtain the final steady
state for each step change from the steady state solution of our rigorous model. With the
time constants determined above, the transient response for each time step, denoted with a
superscript (8), is computed according to:

where t(-) is the time at the beginning of step (8). The above formula. is just the solution of

the following linear ODE:

13
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Thus each of the three outputs is described in the reduced model by a linear ODE. Figures 8,
9 and 10 show the transient responses of W,,'" TQUt and Wout from the first-order model for
a series of step changes in the inlet temperature of stream A: +5°F at t = 0 sec, +5°F at
t = 5 sec, and -10°F at t =15 sec. For comparison, the transient responses from the rigorous
model subject to the same input are also shown. In general this reduced model works rather
well considering it reduces a large number of aonlinear ODEs (4M N +M) to a small number
of linear ODEs (3M). It has the major advantage that it is always correct a.t steady state (by

. "correct," we mean tha.t it agrees with the rigorous model at steady state).

In principle, this model reduction technique can be applied to any of the core heat
exchangers, i.e., it appears to be a general methodology, although further testing is needed
to establish its general utility. Also, the use of the method presupposes tha.t the steady
state calculations can be done fast enough to compute the series of X J required along the
transient. This in turn assumes the itera.tive solution of the nonlinear algebraic equations by
subroutine DNEQNF will converge rapidly. This convergence will be enhanced by the fact
that for rela.tively small steps, XJ will not be too far from Xi, and therefore, Xi serves as a
reasonably good initial guess for DNEQNF. However, we cannot guarantee in advance that
the model reduction technique, or for that matter, the rigorous dynamic simulation code,
will produce a solution. Much depends on the success of the steady state calculation with
DNEQNF, and the solution of large systems of nonlinear algebraic equations is a notoriously
difficult computational problem. The choice of the initial estimate of the solution is critical
in this process.

STREAM A STREAM B

1.8lS
-5.70

• -5.18 •=- :::I UNI I
I 0•
~ ~

~
g -15.80 M

:IE iii::
I • 1.83• •::a •::I.. ...! -5.86 •S 1I

1.92

-15.90

0 10 20 30 40 0 10 20 30 .4Q
TIme. sec TIme, II8C

Figure 8: Transient responses of the inlet mass flux for a series of step changes in the
inlet temperature of stream A: +5°F at t = 0 sec, +5°F at t = 5 sec, and -10°F a.t
t = 15 sec. Curve 1 is from the rigorous model and curve 2 from the reduced model.
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Figure 9: Transient responses of the outlet temperature for a series of step changes in
the inlet temperature of stream A: +5°F at t = 0 sec, +5°F at t = 5 sec, and -lOoF
at t = 15 sec. Curve 1 is from the rigorous model and curve 2 from the reduced
model.
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Figure 10: Transient responses of the outlet mass flux for a series of step changes in
the inlet temperature of stream A: +5°F at t ::: 0 sec, +5°F at t := 5 sec, and -lOoF
at t ::: 15 sec. Curve 1 is from the rigorous model and curve 2 from the reduced
model.
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Conclusions

A detailed model for He core hea.t exchangers has been described in this paper. The associated
Fortran 71 implementation has a user-selected flag for the following options:

(1) A dynamic model consisting of a system of partial differential equations expressing the

conservation of mass, momentun and energy for the He and the conservation of energy for

the parting sheets. Time and position along the exchanger are the independent variables
of this model. The time integration is performed by a sparse matrix implementation of the
backward differentiation formulas; the spatial derivatives in the PDEs are approximated

by upwind and downwind finite differences.

(2) A steady state model obtained by setting the temporal (time) derivatives ofthe dyna.mic
model, (1), to zero. The resulting system of nonlinear algebraic equations is solved by

Newton iteration. In particular, this steady sta.te model provides a consistent initial

condition for the dynamic model, (1).

(3) An approximate, low-order model, for the dynamic model, (1), which can be used in

simulation and control studies.

Special features of (1) and (2) include: (a) a choice of rigorous and ideal gas He thermo­

dynamic properties (the latter ca.n often be used with good accuracy to save computer time),
(b) detailed analysis of the thermal circuits which leads to six heat flux term&in the He energy
balance, and (c) a modified Blasius pressure drop correla.tion with scaling computed by the

code to account for the complex flow patterns within the exchanger.

The output from the dynamic model, in particular, gives: (a) the He state variables,

e.g., temperature, pressure, density, enthalpy and internal energy, (b) the He mass flux, and
(c) the parting sheet temperature as a function of time and position along the exchanger.
Additionally, the six heat fluxes are available as a function of time and position which provide

insight into the point-to-point operating characteristics within the exchanger. These variables
can be calculated for any number offiuid streams and parting sheets within an adiabatic group;

therefore, we anticipate the model and code can be used to study the stea.dy sta.te and dynamic
performance of any of the heat exchangers in a sse refrigera.tion plant (Ref. 8).
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