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NUMERICAL STUDIES OF THE SSC INJECTION PROCESS: LONG TERM
TRACKING

T. Garavaglia, S. K. Kauffmann, R. Stiening, and
D. M. Ritson

Superconducting Super Collider Laboratory*
2560 Beckleymeade Avenue, Dallas, TX 75237

Abstract

Results are presented for tracking protons within the Superconducting
Super Collider during the injection phase for up to seven million turns.
The results for the 4 cm and the 5 ¢cm aperture machines are compared.
X and y invariant amplitude and phase space information are given
which are characteristic of bounded chaotic motion. The present long
term tracking results were obtained using SSCTRK for groups of four
particles started at four different equally spaced injection points on
eight different machines, each characterized by a different random seed.
A qualitative interpretation of the dynamical behavior of the protons
is given in terms of some simple models using nonlinear differential
equations.

INTRODUCTION
SSCTRK was developed by D. M. Ritson to address the question of the dy-

namical behavior of the proton beams in the Superconducting Super Collider
(88C) during the injection period. Long term tracking studies where initiated
using SSCTRK in late 1989 in order to determine the suitability of the 4 cm
magnetic aperture design. As a result of these and related studies decisionas
were made to recommend a change in the basic design of the Collider so that
the magnetic aperture would be increased to 5 cm. Defining bounded chaotic

* Operated by Universities Research Association, Inc., for the U.S. Department of Energy
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dynamical motion as dynamical behavior which is sensitive to small differences
in the initial injection conditions and which results in chaotic motion within a
restricted domain, one can see from the studies reported in this paper that the
SSC is characterized by bounded chaotic behavior. The dynamic aperture is
the spatial region throughout which the beam operates and beyond which par-
ticle motion becomes unstable and results in unacceptable particle loss. The
agreed recommended safe dynamic aperture radius for the Collider is 4 mm.
This represents a distance of 10 standard deviations of the rms beam radius at
injection. It is seen from these studies that the 4 cm magnetic aperture design
is unsafe with respect to plausible magnetic multipole errors which lead to
erratic dynamical motion as a result of the nonlinearities they introduce into
the magnetic field.

During the injection period into the Collider the proton beams must be
stable for up to 7.0 x 10% turns. This corresponds to approximately 40 min-
utes. Numerical simulations of this process have been performed to observe
the dynamical behavior of particles tracked through the Collider. In this pa-
per, three long term tracking runs are described and their results are reported.
A particle is determined to be lost if its distance from the closed orbit exceeds
V2 15 mm during a drift between thin elements. The number of turns before a
particle is lost has been recorded against initial injection amplitude, and these
graphs are shown. In addition, the maximum values of the z and y invari-
ant amplitudes averaged over 10% turns are presented. The results have been
cbtained using the code SSCTRK. Plausible muitipole errors have been intro-
duced to simulate the expected realistic levels which can be measured. These
errors and other assumptions regarding the plausible machine have been de-
scribed in these proceedings by T. Garavaglia, K. Kauffmann and R. Stiening
in Ref. 1.

SSCTRK

SSCTRK is a FORTRAN 77 code for the numerical simulation of particle
. tracking within the SSC lattice. There are versions which can be run on
Sun workstations, IBM, Cray, and 5X-2 supercomputers. The supercomputer
version for the Cray is a vectorized code with inner DO loops written in as-
sembly language to enhance the running speed. The Cray version can track
up to 84 particles simultaneously. It has been used to track particles in a
plausible machine of 4 cm aperture for seven million turns and in a plausible
machine of 5 cm aperture for three million turns. Data on the |iz|, |iy| val-
ues, and (Jiz|? + ii,]z)llz values where fiz| = (22 + (az + Bz8)%)Y/? and where
ligl = (¥ + (ay + 13,,9)2)1/2 for the usual @ and 8 of betatron oscillations
can be extracted at each element. Also information regarding the lifetime of
a particle as well as smear information can be obtained. Typically data are
taken and averaged over 10,000 turns for runs of more than 3 million turns.
In addition, the values of z' and y' have been used to make phase space plots.
In a typical long run, four particles are injected with equal z and y values
on four different grid points for one of eight possible random seeds, each seed



representing the simulation of a different machine, which represent the various
random errors associated with the multipoles.

LONG TERM TRACKING

The results for three cases, Figures 1 through 5 (RUNS0), Figures 6 through
10 (RUNG58), and Figures 11 through 13 (RUNG68), are presented. The first
and last are simulations of the SSC with a 4 ctn magnetic aperture, and the
second is a simulation with a § cm magnetic aperture.

RUNS0: 4 cm Magnet

Chromaticity corrections in z and y have been made; however, a 3.75% error
is introduced in the setting of the chromaticity sextupoles. This is equivalent
to an error of about 5 units. Systematic multipole errors appropriate for a
4 cm magnet have been assumed. The quadrupole persistent current duode-
capole error has heen suppressed. All multipoles have a systematic value of
(.05 units except the regular sextupole, the regular quadrupole, and the skew
quadrupole. This level is viewed as the limit of measurement. No ripple has
been introduced, and a momentum error of 5 x 10~* has been used. The mo-
mentum error is achieved by injecting with no dp/p but with a 16.4 cm error
in zo. Four particles where started on a grid of 2, 3, 4, and 5 mm in eight
different machines. This run had the same input information as a previous
10° turns simulation, RUN25 of Ref. 1; however, particles where tracked for
7 x 108 turns. As is usual, when a particle is lost another is started at a grid
point that has been stepped in by one grid unit from the starting position of
the one which was lost.

The results of this run can be seen in Figure 1 where a dynamic aperture of
between 3 and 4 mm is seen. This is to be compared with the result of RUNG8
in Figure 11 where a finer grid was used, This figure indicates an aperture of
approximately 3.5 mm. Graphs for particles started at four different equally
spaced grid points are given for the z and y invariant amplitudes as a function
of turns for two representative random seeds. The results for RUNSD are given
in Figures 2 through 5. It is clear that nonlinear dynamical behavior is seen
at 3 mm and above. In addition, one can see in comparing the graphs for
the £ and y invariant amplitudes, e.g. Figures 2 and 3, a clear cross coupling
where the y behavior is an approximate reflection symmetry of the = behavior;
however, the z and y invariant amplitudes can be driven to different maximum
values.

RUNS8: § em Muognet

This is an example where the multipoles have beea chosen which are appro-
priate for a 5 cm magnet. The quadrupole persistent current duodecapole has
been suppressed. All multipoles have a systematic value of 0.05 units except
for the regular sextupole, regular quadrupole, and skew quadrupole. This level
is viewed as the limit of measurement. The momentum error associated with
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synchrotron oscillations is 5.0 x 10~%. This has been achieved with dp/p = 0
and a 16.4 ¢m z, error. This is the same as RUN36 which is discussed in Ref. 1;
however, it has been run for 3 x 10% turns. Particles where injected at 2.5, 4.0,
5.5, and 7.0 mm into eight different machines. Figure 6 shows an aperture of
approximately 5.2 mm. In addition, the z and y invariant amplitude graphs
for this run, given in Figures 7 through 10, show particles running stably at
4 mm. Here one sees the usual zy coupling and the presence of nonlinear
effects beyond 5.5 mm.

RUNG68: { em Magnet

Particles where tracked in this run for 3 x 10% turns with the multipoles ap-
propriate for the 4 cm magnet. This is basically the same as RUNS50; however,
particles were injected into the eight machines on a finer grid at the points 2.5,
3.0, 3.5, and 4.0 cm. It is seen from Figure 11 for the number of turns before
a particle was lost that the dynamical aperture is approximately 3.5 mm. In
addition, and inspection of the graphs for the z and y ipvariant amplitudes
as a function of turns, Figures 12 and 13, demonstrates the usual irregular
nonlinear behavior of the amplitudes.

BOUNDED CHAOTIC MOTION: Figures 14 through 16 (RUN681)

RUNG681 has the same run card as Figures 14 through 16 (RUNG68); however,
two particles where started at nearby points and tracked using seed 1 for
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10% turns on a Cray 2 machine. Particle one was started at 3.5 mm and
particle two was started at 3.5 + 10~ mm. Graphs where made of the value
of the modulus, (Jiz}2 + Ii,,lz)lf2 of the two particles as a function of turn
number. These are shown in Figures 14 and 15, respectively. The Euclidean
distance between the two particles as a function of turn number is given in
Figure 16. It is clear from Figure 14 that a bifurcation takes place after
15,000 turns. Figure 13 shows that bounded chaotic motion persists for the
full 10® turns. Furthermore, Figure 16 shows that the long term growth of
the Euclidean distance between the points,/(Jiz2| = [iz1])% + (Jig2l — lig1])?,
is neither Lyapunov exponential nor diffusive, i.e. growing as (Vtime).

In addition to the z and y invariant amplitude figures already discussed,
one can see the nature of the chaotic behavior of the dynamical motion of
the particle injected at 3.5 mm from phase space figures for both (z,z') and
(v,¥"). These are seen in Figures 17 and 18 where the phase space points are
filling an annulus. The skew symmetry between these two figures is the result
of z and y coupling. :

QUALITATIVE BEHAVIOR

A certain qualitative understanding of the results presented above for the
nonlinear dynamical behavior of the particles during the long term tracking
simulations can be obtained from the study of a simple model using nonlinear
differential equations of the type

2" +wir = d;;:::2 + d.|,::3 + ey + eu:l:y2 + etc. + Frandom
y" +wly = dsy® + day® + frizy + frazy® + ete. + Frondom

which are solved numerically using the CERN Programme Library Runge-
Kutta integration routine RKSTP. For this system, z space and phase space
plots show how a particle can be lost when it is near the separatrix. Also
one can see how a random force can cause particle loss. Furthermore, one
can study the effects of coupling, and one can simulate the behavior seen in
Figure 2 for the long term tracking study where the invariant amplitude can
make transitions between large and small average values.

For stable motion, with w = 2 and with only d4 nonzero, the amplitude as
a function of time behaves as shown in Figure 19. The associated phase space
portrait shown in Figure 20 determines the separatrix for this system. If the
parameter in this system is changed from d¢ = 8.0007910 to the value dy =
8.0007911, the result can be seen in Figures 21 and 22 for the amplitude and
phase space behavior where the particle becomes unstable uvpon crossing the
separatrix. This represents a dynamical behavior that can account for particle
loss. As a further illustration, a Gaussian random force has been applied to
this equation and the results on stable motion can be seen in Figures 23 and
24 for the amplitude and phase space behavior respectively. Here one clearly
sees how a random force can cause the particle to cross the separatrix and

11
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become lost. In addition, Figure 23 shows that the random force has an effect
on the magnitude of the amplitude, and Figure 24 shows chaotic motion in
phase space before the separatrix is crossed. It is possible to simulate the cross
coupling behavior similar to that seen in the long term tracking results when
the system of nonlinear differential equations for the z and y amplitudes are
solved numerically and when this system is cross coupled with terms of the
form zy, z%y, y®z, etc., which occur in multipole expansions. If both the z
and y systems are started with the same initial conditions, one can see how a
simple zy coupling introduced in the equation for z can drive the y amplitude.
These results are represented in Figures 25 and 28 where y1 and y2 denote the
z and y amplitudes, respectively. In this example there is no random force,
and the nonzero parameters have the values w = 2, d3 = 0.5, dy = 7.000791,
and f1;3 = 1.

As a final remark, it is worth noting that behavior where the amplitude
makes a transition between different values after a large number of turns is a
characteristic of nonlinear driven differential equations. This results when the
amplitude becomes a multivalued function of the driving frequency. This can
result in a transition in the value of the ampiitude. An example of this behavior
is seen in Figures 2, 3, 27, and 28. The first two figures result from SSCTRK,
and the last two figures are found from the first differential equation of the
system already considered. The nonzero parameters have the values w = 2,
and dq¢ = 0.1, and the random force has been replaced with the driving force
0.909 sin(4t + 0.08¢2). The amplitude transition seen in Figure 27 occurs after
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a large number of cycies, and the phase space graph in Figure 28 shows chaotic
motion and transition regions. A further discussion of this phenomenon can
be found in Refs. 3 and 4.

Although the system of differential equations used to produce the above
results is much simpler than the tracking code SSCTRK, it does provide a
qualitative understanding of the origin of the dynamical behavior seen in the
long term tracking studies. Furthermore, the inclusion of random multipole
errors in the tracking code does appear to have the effect of producing random
forces characterized by mixtures of harmonics which can drive particles across
a separatrix or produce transitions in the magnitude of oscillation amplitudes.
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