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CHARGE TO THE WORKING GROUP 

The assignment of the Correction Element Working Group (CEWG) is to 

advance the designs of various candidate correction schemes to a point where they 

can be compared and distilled down to a single plan. Choosing among the options 

often involves consideration of incommensurate factors such as cost, practicality, 

and theoretical performance. Except for minor issues, the CEWG purpose is to 

gather and array the facts in a form from which these decisions can be rationally 

made, but not to make the decisions. The present report analyses various schemes 

for compensating nonlinear multipole errors in the main arc dipoles. Emphasis 

is on comparing lumped and distributed compensation, on minimizing the total 

number of correction elements, and on reducing the sensitivity to closed-orbit 

errors. 
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1. Introduction and Some Salient Points in the Report. 

This report summarizes much of the work performed by the Correction Ele

ment Working Group (CEWG) during the last half of 1988. Because the cost of 

the sse is dominated by the main arcs, and because the optical defects of those 

arcs are dominated by field errors in the superconducting dipoles, this study 

focused on compensating for those field errors, both systematic and random. 

The study consisted of many small investigations, some flowing from one to 

the next and others more independent. The general plan of this report is to 

describe the former, sequential material, in the body of the report and describe 

the latter, more independent material, in appendices. In both cases an effort 

has been made to make the individual sections self-contained; that has led to a 

certain amount of duplication. Worse, there is a certain amount of inconsistency 

among different sections, resulting from the large number of variables and from 

refinements introduced as the study progressed. This makes the report have 

somewhat of the character of a chronicle with the early sections describing the 

plan of the study, formulated in advance, and later sections its execution. At 

no small cost in overall comprehensibility this preserves the motivation and the 

chronology and permits concentration on specific topics. 

The most extreme example of this "historical" approach relates to remote 

compensation. In Section (6) the great "break-through" of remote correctors 

for the very satisfactory and economical compensation of systematic errors is 

described; later in Section (10) it is learned that closed-orbit errors makes re

mote compensation not necessarily such a great bargain after all. Since remote 

compensation has been a part of all existing accelerator designs it is important 

to clarify this, but this history is not yet complete-to complete it is a natural 

candidate for the continuation of these investigations in the future. 

A similar and closely related adventure, described in Appendix E, had to do 

with the lattice modifications needed to make room for remote compensators. At 

first it was found that non-uniform cell lengths led to unacceptable deformation 
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of the lattice functions. But the lattice modifications needed to overcome this 

problems were soon found, as is described in the appendix. 

The next two sections, (2) and (3) were written as the study commenced, 

and describe the plan; it has largely been adhered to. In the present section 

some of the salient features which have been uncovered will be mentioned. There 

is however no point in attempting to enumerate all that has been learned as 

there are far too many details. The only help to be offered here is the mention 

of our convention of usually choosing units such that the maximum tolerable 

deviation from the norm, according to the CDR specifications, is 10 units. In 

interpreting the innumerable tables in this report then, entries are good or bad 

depending on whether they are small or large compared to 10. That leaves only 

the problem of figuring out what is being recorded and what are the values of 

the relevant parameters. Jargon used but not explained in this section is more 

clearly explained in later sections. Salient points of the report are indicated in 

the following enumeration, general conclusions are in the concluding chapter. 

(1.) Many schemes, lumped and distributed, local and remote, have been found 

to be capable of compensating systematic multipoles of the expected strengths, 

provided those errors are the only errors present. The worst errors of this sort 

are due to persistent currents in the superconducting magnets. These results are 

mainly contained in Section (5). Remote compensation results are described in 

Section (6). 

(2.) Lumped compensation schemes have been found which are entirely satis

factory; they all share the requirement that at least one corrector in half-cell 

interiors is required. With the expected systematic field errors it is not pos

sible to control the large amplitude tunes to the required accuracy using only 

correction elements situated in the spool-piece elements beside the regular arc 

quadrupoles. Our best efforts at doing this are described in Section (8). 

(3.) The same schemes, again both lumped and distributed, that yielded ac

ceptable systematic compensation, have been shown to be capable, within the 
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"needed aperture", of reducing the "smear", present after random errors are in

cluded, to acceptable levels of about 5%, after "binned compensation" of just the 

erect sextupole errors. These result are mainly contained in Section (9). 

(4.) Closed orbit errors have been included in the later simulation studies. In 

theory, the r.m.s. orbit error after correction will be ±O.4mm. In our study, 

however, we have regarded it prudent to insist on being able to tolerate errors 

great enough to lead to an r.m.s. orbit error of ±lmm. The main deleterious ef

fect of these orbit errors is that the systematic multipoles, carefully compensated 

up to this point, now act as random multipoles through feed-down effects. At 

the level of simulating SSC performance in the computer this first makes itself 

known by causing difficulty in decoupling the lattice. For local compensation 

schemes, of both the distributed and lumped varieties, this extra difficulty has 

been judged acceptable. For remote schemes this problem is more serious, and 

furthermore the smears resulting from this new source of randomness are getting 

to be marginal. These results are described in Section (10). 

Since effects like quadrupole errors and intersection region complications are 

being intentionally left out, it is only a kind of "best-case" analysis to which the 

accelerator is being subjected. Of effects studied so far, inclusion of closed-orbit 

errors has given the most difficulty; for the same reason the observed sensitivity 

to these errors has given the greatest selectivity among the competing schemes 

considered. In item (6) below, this sensitivity is quantified to give a "figure of 

merit", based on this consideration alone, for assessing accelerator parameters. 

Of course, one can never be sure that problems such as this are not being over

rated, owing to insufficient sophistication in the correction procedures, and it is 

important that they be attacked analytically. 

A recommendation following from this is that sensitivity to closed-orbit er

rors continue to be regarded as an essential criterion in proceeding toward a final 

correction package. This amounts to just one more step toward the acknowl

edgement that the inter-relationships are sufficiently complicated that the design 
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cannot be reliably frozen without at the same time simulating the realistic and 

successful operational use of the elements included in the design. Another illus

tration of this "operational simulation" philosophy is contained in Section (8); 

it demonstrates the relative ease of compensating small-amplitude tunes opera

tionally, but the accompanying large amplitude behavior is unacceptable. 

(5.) It is important to keep in mind the fact that all statements which are 

to be made hinge on the actual field errors assumed. Significant deviation of the 

actual magnet field quality could obviously have important consequences, such 

as forcing re-design and re-optimization of the correction schemes. Section 4 de

scribes the magnet field error values used in the study. Appendix D(a) contains 

up-to-date estimates of the field errors. It also contains comparisons between 

theoretical values and values obtained by measuring early magnets and proto

types. As such these data can be used by the reader in assessing the reliability 

of the multi pole errors which have been used. Of the systematic errors, b2 and 

b4, due to persistent currents present at injection time are the most important. 

The most important random error is b2 • 

(6.) For this study the lattice parameters were mainly held frozen at their 

CDR values (some exceptions being 90° cells and studying lumped corrector 

schemes not contemplated in that report). There was no systematic investiga

tion of what could be "bought" by more favorable choices of main parameters 

like bore size and injection energy. As mentioned above though, the degree of 

difficulty we found in our narrow investigations can be quantified to give our 

input to important issues such as that. Two possibilities that can be considered 

are doubling the injection energy, and increasing the dipole bore diameter, say 

from 4 cm. to 5 cm. The field multipoles which would accompany those changes 

are given in Appendix D(b). Some projections as to the improvements which 

would result follow: 

(i) Doubling the machine energy would reduce the systematic injection val

ues of b2 and b4, the leading offenders, by factors of 3.0/7.4 = 0.40 and 
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0.20/0.64 = 0.31 respectively. The latter factor could be applied directly, as 

an improvement factor, to the "worst thing found" in this study, which was 

mentioned in item (4) above; since the closed-orbit errors would presum

ably be independent of injection energy, only the absolute error multipole 

value would enter into the calculation of the feed-down. 

(ii) The small term b4 was deemed more important than the large term b2 in the 

previous point only because the large b2 term was assumed to be already 

compensated. This would still be necessary after doubling the injection 

energy, though naturally it would be much less critical. 

(iii) Similar statements about systematic errors could be made about increasing 

the bore diameter by 25%; the b2 and b4 ratios would be 4.7/7.4 = 0.63 and 

0.30/0.64 = 0.47 respectively. The fact that a 25% increase in bore diameter 

yields more than a factor of two improvement in this particular aspect of 

transverse behavior can be ascribed to the unhappily slow convergence of 

the multipole series. 

(iv) As regards dynamic aperture, it is the r.m.s. b2 value which is of greatest 

importance; the "linear aperture" can be expected to vary inversely with 

that quantity. Increasing the bore diameter yields an improvement factor 

of 2.0/1.36 = 1.47. Doubling the injection energy reduces the "needed 

aperture" by a factor approaching ~ = 0.71, but actually closer to 0.8 

because of the closed-orbit requirement not changing, and possibly not even 

that good, depending on the assumptions made about injection steering 

errors. 
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2. Some General Considerations Regarding 

Compensation of Lattice Defects. 

Much progress has already been made (as noted earlier, this and the next 

two sections were written as the study commenced in August, 1988) on nonlinear 

compensation and the schemes still to be analysed already represent a distillation 

of the original possibilities. Some of the recently completed work is reviewed in 

Ref. 3; that will not be repeated here, except that known merits and demerits 

will be included in the verbal description of each scheme. 

Degradation due to nonlinear field errors has been quantified mainly by tune 

shifts and by "smear". In analysing the sse the following approximate "princi

ples" have repeatedly been found to be valid: (i) systematic bend errors cause 

tune shifts and not much smear, and (ii) random bend errors cause smear and 

not much tune shifts. Recent studies (described below) have eroded this sepa

ration a bit, since random orbit errors, in combination with systematic magnet 

errors are found to contribute significantly to smear. For that reason, though 

we will concentrate primarily on compensating dipole nonlinear field errors, we 

cannot neglect closed orbit errors, which conspire with other errors to degrade 

performance. Quadrupole field errors in the dipoles also have a deleterious effect. 

For this study the main lattice quadrupoles will be treated as perfect. 

Ideally the dipole fields would be perfect, and next best would be compen

sation coils precisely superimposed on the errors they are correcting. Both of 

these are unrealistic, and the compensation elements will always be somewhat 

remote from the errors. We will, however, use the term "remote" in a much more 

exaggerated sense to imply correction elements which are displaced by at least 

one, and typically"many, cells from the error they are compensating. "Local" will 

mean "in the same half-cell." It is hard to make a similar distinction for the term 

"lumped compensation". In the past this term has been restricted to coils of 

essentially zero length, and has been contrasted to "bore-tube" correctors which 

run an appreciable fraction of the length of the dipole they are part of. In studies 
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already completed, and discussed further in Appendix C, it has been found that 

bore-tube coils are dynamically lumpy unless they are full length or unless they 

are centered in the dipole. Also, an option introduced as possibly leading to 

manufacturing simplification has short correctors built on the bore-tube at the 

dipole ends. For these reasons the adjectives "lumped" and "bore-tube" are no 

longer mutually exclusive. 

There are two attitudes which can be taken toward error compensation, one 

more conservative than the other. The conservative approach could be called 

"dead-reckoning" or "simple-minded" -this is not pejorative; it means the in

tentional choice not to be committed to the use of information which may not be 

available-and it assumes that correctors settings are based purely on measured 

errors in the individual components, with no dependence on accelerator beam 

measurements. For small, and especially for historically-early accelerators this 

was the natural approach. The intention, not necessarily successful, was to assure 

first-time operation. The other approach, which assumes that beam measure

ments will be used for setting correctors, can be called "operational." The best 

example of the historical evolution from dead-reckoning to operational compensa

tion is closed-orbit flattening. Early, small accelerators were constructed with an 

accuracy assuring an acceptable closed orbit upon turn-on; but for modern large 

rings it is impractical to hold tight enough tolerances to keep the closed orbit 

in the machine. For the SSC other operations, such as chromaticity control and 

decoupling, will also require operational compensation, both because tolerances 

cannot be held to small enough values to assure successful operation without 

such compensation, and because some measurements on which "dead-reckoning" 

is based will be imprecise enough as to necessitate further correction using beam 

measurements (90% of the dipoles will be measured only warm, so that if the 

cold-warm correlation is erratic, "dead reckoning" may be inadequate). For plan

ning purposes the operational approach is studied by "operational simulation"; 

description of such studies forms part of this report. 
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3. General Strategy for Zeroing in on the "Best" Design or Designs. 

The correction issue impacting most strongly on the SSC plan is whether to 

use bore-tube correctors (as in the CDR) or lumped correctors. To be more pre

cise, since some lumped correctors will most likely be required, the two possibili

ties are: no bore-tube correctors, or bore-tube correctors for the largest multipole 

or multipoles. Several candidates of each of these types will be studied. As far 

as lumped schemes are concerned, it is known to be necessary~4-6] for the dom

inant multi pole, to have at least two correctors in at least some half-cells, with 

one being in the interior of the half-cell (i.e., not adjacent to the quadrupole). It 

is also known, for compensation of purely systematic errors, that more than two 

correctors per half cell is unnecessary .[4,5] We restrict our investigations to only 

the two most promising lumped configurations; they are called the "Simpson

N euffer" scheme and the "Gaussian Quadrature" scheme. The theoretical basis 

for considering these two schemes to be desirable is included in Appendix A, and 

a more detailed description is given below. 

Three forms of theoretical (numerical) analysis are employed, each starting 

with a prescription for setting the correctors, continuing by tracking extreme 

particles for some hundreds of turns, and finishing by extracting the smear and 

tune for each particle. They are: 

(1) Compensation of systematic magnet multipoles assuming no random mag

net errors and no closed orbit errors. 

(I I) Compensation of random magnet errors in the presence of already corrected 

systematic errors but with no closed-orbit errors. 

(I I I) Inclusion of random closed orbit errors and other errors. 

Since analysis (II) is much more computer-intensive than analysis (I), it was 

sensible to subject a much broader class of candidates to (I) than to (II). Only the 

best performers were retained, and they fully met the CDR specifications, which 

will be spelled out in the next section. Similar comments apply to analyses (II) 

8 



and (III). Analysis (III) is very computer-bound (and also brainpower-bound) 

as it amounts to a full operational simulation of orbit control, tune control, and 

chromaticity control. Only schemes which were fully satisfactory at the level (II) 

analysis were subjected to this analysis. The final schemes meet the requirement 

of constancy of the off-momentum, large-amplitude tunes, are sufficiently fine

grained to yield satisfactory improvement of the linear aperture by means of 

the "binning" compensation of random errors, [7] and have been checked to be 

satisfactory for chromaticity adjustment and orbit flattening. Sensitivity to errors 

which are partly random, partly systematic, has not been studied. 

With the study being organized as has just been described, and assuming that 

there is a satisfactory level of understanding at each stage, any theoretical basis 

for favoring one scheme over another amounts to stating which performs better 

under analysis (III); more specifically, which is more tolerant to closed orbit errors 

after the systematic and random multi pole errors are properly compensated for 

according to prescription? As mentioned earlier, this is just one of the factors, 

along with other considerations like cost, ease of manufacturing, and practicality, 

which will go into deciding among them. 

Theoretical calculations have been described in References 6. Particle track

ing has been performed using TEAPOT. Various aspects of operational simula

tion have been described in References 8-10. In Ref. 11 it is shown that breaking 

each dipole in half, with each half treated as thin, yielded tunes accurate to 

±O.OOOI (with respect to analytical calculations), and that is what has been 

done for this report. 
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4. Assumed Errors and Specification of Performance. 

The expected field errors are given in Appendix D(a), which updates esti

mates contained in the eDR based on recent experience. The main systematic 

errors are In = -7.4, b4 = 0.64, and b6 = -0.13 coming from persistent currents 

at the injection energy. These are in the usual units of parts per 104 at one 

centimeter. They are larger than the saturation multipoles though the latter 

may demand more powerful correctors since they appear at full field. The main 

random errors have standard deviations given by O'b2 = 2.0, O'a2 = 0.6,O'b3 = 0.3, 

and O'b4 = 0.7. 

A lattice consisting only of 320 simple 90° FODO cells, with parameters 

identical to those in the regular arcs of the sse, is assumed. In all cases the 

tunes were adjusted to the values Qx = 81.285, Qy = 82.265. 

The degradation of accelerator performance due to field errors will, as usual, 

be discussed by quantifying the tune variation and the smear. The independent 

variables, (x, y, b), are the horizontal and vertical transverse amplitudes and the 

momentum offset. For this report calculations are performed with these variables 

set to the following extremes: 

(i) Near the origin, for reference. 

(ii) With b = 0: x = 5mm at the point in the lattice where f3x is maximum and 

y = 5mm at the point in the lattice where f3y is maximum; this is the point 

along the diagonal in (x, y) space at which analyses have conventionally 

been performed; call it (5,5). Points (5,0) and (0,5) were also studied to 

guard against the possibility of accidentally good behavior on the diagonal. 

(iii) With b = ±0.001: (3.6,3.6), (3.6,0.0), and (0.0,3.6). For some previous 

investigations [6] in which effects of individual multi poles were calculated 

independently, the on-momentum and the off-momentum specification am

plitudes were increased from 5 and 3.6 mm to 7 and 5 mm respectively. This 

conservatism was intended to allow for possible undesirable conspiracy be-
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tween different multi poles, whose effects were being calculated individually. 

Some results with those larger amplitudes will also be shown. 

In subsequent tables, values of the tune difference 

~Qx(x, y, 8) = Qx(x, y, 8) - Qx(O, 0, 0) ( 4.1) 

at these extreme points will be presented, in units of 0.001. and ~Qy(x, y, 8) will 

be exhibited similarly. Smear values in percent, S(x, y, 8), will also be given. 

For the sse the following performance specifications have been set for values 

of the variables in the interior of the region defined by the above extremes: 

(i) The maximum tune variation should remain in the range ±0.005. 

(ii) The smear should remain less than 10%. This specification is not entirely 

uncontroversial and is subject to continuing study, for example experimen

tally in the Tevatron experiment E778. Even the definition of smear is 

not universally established in cases where the x and y invariant ampli

tudes are unequal. In this paper the smear is taken to be the bigger 

of an x-smear and a y-smear defined as follows. The normalizing am

plitude, a, for both is taken to be J a; + a; where ax = J x2 / f3x and 

ay = J y 2 / f3y are invariant amplitudes averaged over the motion. The x

smear is v'2/3 x (ar;ax -ar;in)/a and the y-smear is v'2/3 x (a,,;ax _a,,;in)/a. 

The off-momentum smear is calculated using the same formulas except that 

the correct off-momentum lattice functions are used and the transverse 

amplitudes are measured relative to the appropriate off-momentum closed 

orbit. 

In the tables of both tune variation and smear the units have been!3hosen such 

that 10 marks the boundary between acceptable and unacceptable performance 

according to these specifications. 
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5. Comparison of Various Schemes on the Basis 
of Tune Variation Due to Systematic Errors. 

In this section it is assumed that the only errors present are systematic: 

b2 = -7.4, b3 = 0.1, b4 = 0.64. These errors are large enough, if uncompensated, 

to give unacceptably large smear, but after compensation by any of the follow

ing schemes the smear is less than 1 percent and will not be exhibited. Before 

introducing any errors the tunes were set to their nominal values and both chro

maticities were adjusted to zero, using the sextupoles situated next to the main 

arc quadrupoles (these will be called chromaticity sextupoles). 

It is assumed that all of the systematic multipoles are compensated locally, 

and that there is no "remote" compensation: that is, every cell is treated iden

tically. In a later section it will be shown that, at least in the absence of orbit 

errors, this is unnecessarily extravagant and can be relaxed so that b3 and higher 

multi poles are compensated remotely. 

5.1 Small-Amplitude Chromatic Behavior of Various Bore-Tube Con

figurations After Simple-Minded Compensation. 

The data in this section are intended to illustrate the delicacy of the required 

chromatic compensation. In the current sse design the b2 bore-tube correctors 

run from one end of the dipole to about the middle. Magnets like that could be 

installed in the ring in various orders and orientations. 

I) [c-][c-][c-]:[c-][c-][c-]) ([c-][c-][c-]:[c-][c-][c-] (IBORASYM 

I) [c-][c-][c-]:[c-][c-][c-]) ([-c][-c][-c]:[-c][-c][-c] (IBORASYMALT 

I) [c-][c-][c-]:[-c][-c][-c] ) ( [c-][c-][c-]:[-c][-c][-c] (IBORSYM 

I) [c-][c-][c-]:[-c][-c][-c]) ([-c][-c][-c]:[c-][c-][c-] (IBORSYMALT 

The most obvious configurations are indicated in the above cell schematics, in 
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which the symbol [c-] stands for a dipole having its b2 correction coil super

imposed on the left half. Each of these correctors was adjusted to make J b2dl 

over its own dipole vanish. These schemes differ in respect to their symmetries 

about half-cell mid-points, indicated by dots in the figure. They are symmetric 

(BORSYM and BORSYMALT) or anti-symmetric (BORASYM and BORASY

MALT). In Appendix C there is a discussion of the effect of such symmetry and 

also an estimate of the importance of small displacements between field error and 

its compensation. The alternating schemes, BORSYMALT and BORASYMALT 

preserve the symmetry within half-cells, but magnets in successive half-cells are 

reversed. The small-amplitude tunes of all these lattices are given in the following 

Table. 

SMALL-AMPLITUDE TUNES 

{; -0.001 0.0 0.001 

Q ~Q Q Q ~Q 

BORASYM Qx 81.2691 -15.9 81.2850 81.3012 16.2 

Qy 82.2667 1.7 82.2650 82.2634 -1.6 

BORASYMALT Qx 81.5835 298.5 81.2850 81.0347 -250.3 

Qy 82.3711 106.0 82.2650 82.1557 -109.3 

BORSYM Qx 81.4308 145.8 81.2850 81.1437 -141.3 

Qy 82.2530 -12.0 82.2650 82.2779 12.9 

BORSYMALT Qx 81.2802 -4.8 81.2850 81.2906 5.6 

Qy 82.2670 2.0 82.2650 82.2634 -1.6 

Remembering that the performance specification is that the largest and small

est ~Q entry must not differ by more than 10, since the ~Q entries are in units 

of 0.001, it can be seen that only BORSYMALT meets the specification; (actu

ally, not quite, since 5.6+4.8=10.4.) This unsatisfactory behavior is explained in 

Appendix C. 
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5.2 Small-Amplitude Behavior of Various Bore-Tube Configurations 

After Operational Chromaticity Compensation. 

Next, and for all other investigations in this report, the operational approach 

was taken, of adjusting the chromaticities to zero, with the chromaticity sex

tupoles, after the compensators had been set. The results are shown in the 

following Table. 

SMALL-AMPLITUDE TUNES 

8 -0.001 0.0 0.001 

Q !:::.Q Q Q !:::.Q 

BORASYM Qx 81.2856 0.6 81.2850 81.2847 -0.3 

Qy 82.2651 0.1 82.2649 82.2650 0.0 

BORASYMALT Qx 81.2825 -2.5 81.2850 81.2919 6.9 

Qy 82.2655 0.5 82.2649 82.2649 -0.1 

BORSYM Qx 81.2833 -1.7 81.2850 81.2900 5.0 

Qy 82.2652 0.2 82.2649 82.2653 0.3 

BORSYMALT Qx 81.2858 0.8 81.2850 81.2851 0.1 

Qy 82.2651 0.1 82.2649 82.2652 0.2 

All performance is much improved. 

5.3 Large-Amplitude Behavior of the Same Bore-Tube Configura

tions After Operational Chromaticity Compensation. 

The large-amplitude behavior of the tunes for the same bore-tube compensa

tion schemes is shown in the following figure. The entries are tune discrepancies 

from the nominal (in units of 0.001) at those standard phase space points defined 

in Section (4). 
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LARGE-AMPLITUDE TUNES 

8 -0.001 0.0 0.001 

3.6,0 3.6,3.6 0,3.6 5.0,0 5.0,5.0 0,5.0 3.6,0 3.6,3.6 0,3.6 

BORASYM !:1Qx 0.52* 0.51 0.03 0.11 0.09 -0.04 -0.45 -0.46 -0.05 

!:1Qy -0.06 0.19 0.20 -0.06 0.12 0.14 -0.06 -0.11 -0.10 

BORASYMALT !:1Qx -4.26 -3.29 -1.05 1.52 1.55 0.00 5.84* 4.83 -1.03 

!:1Qy 0.96 2.98 2.00 -0.03 -1.00 -1.00 -0.90 -4.04 -3.04 

BORSYM ~Qx -3.16 -3.14 0.07 1.05 1.54 0.58 4.13 4.65* 4.26 

!:1Qy -0.01 -0.35 -0.39 0.49 2.38 1.82 4.92 2.76 2.22 

BORSYMALT !:1Qx 0.44 0.54 0.15 0.35 0.56 0.19 -0.19 -0.10 0.09 

!:1Qy 0.07 0.36 0.24 0.14 0.79* 0.58 0.03 0.40 0.31 

In each case the largest entry is marked by an asterisk. Again BORASYM 

and BORSYMALT are fully satisfactory. Of these, BORASYM, which is the 

present CDR plan and will, for that reason, from now on be called BORCDR, 

is noticeably easier to build, since all magnets are identical. Nevertheless, since 

symmetry about half-cell centers is theoretically attractive, the alternating sym

metric arrangement (BORSYMALT), which will be called BORTUB from now 

on was also retained for subsequent, more demanding, studies. 
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5.4 Comparison of Small Amplitude Behavior of Various Corrector 

Configurations. 

We next introduced three other candidate schemes, all expected to have excel

lent properties. They are illustrated below, along with the two schemes surviving 

the previous analysis. The same cell length was used for all cases (even though 

it doesn't look that way in the figure). 

D [c-][c-][c-][c-][c-][c-] ) ( [c-][c-][c-][c-][c-][c-] (IBORCDR 

(_ BORASYM) 

I) [c-][c-][c-][-c][-c][-c]) ([-c][-c][-c][c-][c-][c-] (IBORTUB 

(= BORSYMALT) 

D c[ ]c[ ]c[ ][ ]c[ ]c[ ]c) ([ ]c[ ]c[ ]cc[ ]c[ ]c[ ] (lMAGEND 

D F[ ][ ][ ]C[ ][ ][ ]) (D[ ][ ][ ]C[ ][ ][ ] (lSNEUFF 

D [ ]G[ ][ ][ ]G[ ]) ([ ]G[ ][ ][ ]G[ ] (lGAUINT 

The arrangement labelled MAG END was first suggested by John Peoples 

and John Rees, [12] motivated by the desire to simplify the dipole manufacturing 

program by concentrating the bore-tube compensation in a single element at one 

end of every dipole. They conjectured that the resulting compensation would 

be to all intents and purposes local, and almost equivalent to the longer, CDR, 

elements. Based on prejudices described above and in Appendix C, the symmetric 

arrangement, alternating every half-cell, is expected to perform best, and that is 

the arrangement which has been studied. For analysis purposes these are lumped 

correctors, but in the dipole manufacturing and measuring phase they would be 

the responsibility of the dipole manufacturing group; in that sense they more 

nearly resemble the bore-tube correctors. 

16 



All lumped schemes which have been studied are variants of those labelled 

SNEUFF (an abbreviation for Simpson-Neuffer) and GAUINT (an abbreviation 

for Gaussian integration). The rationale behind the lumped schemes is explained 

in Appendix B. The SNEUFF geometry has the advantage of placing correctors 

at the center of the cells as well as close to the F and D quadrupoles, which 

permits separate control of horizontal, coupled, and vertical motions. This al

lows correction and control of the motion beyond the first-order integration rule 

cancellations used in this study. These advantages of separate controls have not 

been explored here. There are theoretical grounds (pointed out by Forest and 

Neuffer[13] ) for expecting GAUINT to be more effective for some nonlinear com

pensation effects. At the same time that plan, which requires that there be either 

5 or 10 dipoles per half-cell, represents the greatest departure from the CDR of 

all plans studied. 

SMALL-AMPLITUDE TUNES 

8 -0.001 0.0 0.001 

Q ~Q Q Q ~Q 

BORCDR Qx 81.2856 0.6 81.2850 81.2847 -0.3 

Qy 82.2651 0.1 82.2649 82.2650 0.0 

BORTUB Qx 81.2858 0.8 81.2850 81.2851 0.1 

Qy 82.2651 0.1 82.2650 82.2652 0.2 

MAG END Qx 81.2869 1.9 81.2850 81.2859 0.9 

Qy 82.2655 0.5 82.2650 82.2655 0.5 

SNEUFF Qx 81.2911 6.1 81.2850 81.2894 4.4 

Qy 82.2664 1.4 82.2850 82.2668 1.8 

GAUINT Qx 81.2899 4.9 81.2850 81.2902 5.2 

Qy 82.2662 1.2 82.2650 82.2661 1.1 

All are satisfactory. 
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5.5 Comparison of Large-Amplitude Behavior of The Same Correc

tor Configurations. 

LARGE-AMPLITUDE TUNES 

8 -0.001 0.0 0.001 

~.6,0 3.6,3.6 0,3.6 5.0,0 5.0,5.0 0,5.0 3.6,0 3.6,3.6 0,3.6 

BORCDR ~Qx 0.52* 0.51 0.03 0.11 0.09 -0.04 -0.45 -0.46 -0.05 

~Qy -0.06 0.19 0.20 -0.06 0.12 0.14 -0.06 -0.11 -0.10 

BORTUB ~Qx 0.40 0.51 0.09 -0.21 -0.14 -0.04 0.34 0.55 0.19 

~Qy 0.06 0.34 0.23 0.04 0.41 0.33 0.13 0.79* 0.59 

MAGEND ~Qx 0.97 1.28 0.37 1.04 1.78 0.85 0.01 0.37 0.40 

~Qy 0.37 1.27 0.98 0.78 1.83* 1.14 0.44 0.58 0.13 

SNEUFF ~Qx 2.19 2.84 0.56 3.46 5.65 2.19 0.85 2.40 1.62 

~Qy 0.60 2.37 1.74 2.00 5.77* 3.67 1.46 3.44 1.95 

GAUINT ~Qx 1.35 2.30 0.98 3.34 4.74* 1.28 1.68 1.91 0.23 

~Qy 0.91 2.57 1.67 1.28 4.03 2.82 0.31 1.44 1.13 

Again, the largest entry for each scheme is indicated by an asterisk. If one 

were to order them, from best to worst, the ordering would be: BORCDR and 

BORTUB, followed by MAGEND, followed by GAUINT and SNEUFF. There 

are two reasons why this is probably inappropriate. For one thing, all schemes 

meet the specifications, and it is "apple-polishing" to attempt to do better. For 

another, tiny residual shifts like this will inevitably be present from other sources; 

as we shall see, they can be reduced as part of the global operational chromaticity 

compensation. 

One should say then, that all schemes are satisfactory at this level. 
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6. Remote Compensation Results. 

6.1 Cases Studied. 

For compensation of small multipole errors, remote compensation is poten

tially economical and satisfactory. The following study was predicated on the 

hope that all of b3 , b4 , and b6 could be compensated remotely, where remotely 

means every 10 or so cells. The following table shows the configurations which 

have been investigated, including, for reference, the local schemes already intro

duced. 

REMOTE AND LOCAL SCHEMES 

local remote period 

6 9 10 14 

BORCDR 

BORTUB 

BORNEU06 BORNEU09 BORNEU10 BORNEU14 

BORGAU09 

MAG END MAGENDR 

SNEUFF SNEUFFR 

GAUINT GAUINTR 

For the lumped schemes, MAGEND, SNEUFF, and GAUINT, it was natural 

to use the same lumped locations in the remote cells as in the local cells; b2 was 

corrected in every cell, b3 , b4 , and b6 every 10th cell. The resultant lattices were 

called MAGENDR, SNEUFFR, and GAUINTR. 

The case of retaining b2 bore-tube correctors was more complicated. First 

of all a new b2 local bore-tube correction possibility was introduced; it assumes 

a full-length b2 coil in every dipole and is sometimes symbolized by BORFUL. 

Theoretically, if b2 is measured perfectly and the full-length coil is set perfectly, it 
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is equivalent to the magnet having no b2 multipole. For present purposes, that is 

exactly what is assumed. All the remote schemes beginning with "BOR" in this 

section therefore are actually BORFUL, having full-length b2 bore-tube correc

tors. For the higher multipoles the systematic errors in BORFUL are the same 

as in all the other schemes. There was no point in investigating local compensa

tion of BORFUL, both because it is necessarily superior to BORCDR, as regards 

b2, and because such magnets would not, in fact, have bore-tube correctors for 

higher multipoles, since there is not enough room for them. It was assumed that 

lumped correctors were present every 6 cells (BORNEU06), every 10 cells (BOR

FULR=BORNEUlO), or every 14 cells (BORNEU14)i different periodicities were 

studied in order to uncover possible resonant effects. It later was decided that 

every 9 cells gave good performance analytically and computationally, and was 

also included in our studies. 

To the lowest order in mUltipole strengths the superposition principle for 

systematic errors holds, in which a corrector of strength 1, every cell, is entirely 

equivalent to an identically-placed corrector of strength N, every N cells. For 

this reason, the same lumped arrangements known to be good locally should be 

good remotely for sufficiently weak multi pole errors. The single most impor

tant application of this principle is that it is known that there must be at least 

one lumped corrector in a half-cell interior if b2 is to be corrected entirely with 

lumped correctors. (The issue of whether higher order lumped multipole cor

rectors can be confined to quad location, is the subject of a later section.) For 

the remote BORFUL possibilities it was decided to use initially a variant of the 

Simpson-Neuffer lumped arrangement for the b3 , b4 , and b6 remote, lumped coils. 

The variation was to retain the F _, F + and D _ , D + coils separate, rather than 

lumping them together into F and D as in SNEUFF (see Appendix B for nota

tion.) On theoretical grounds, this arrangement has to perform at least as well 

for systematic compensation, plus, being symmetric about the half-cell centers, 

it may be much less sensitive to other errors. Having three lumped correctors 

per half-cell, this plan might be regarded as too extravagant, but consideration 
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of that issue will be deferred until after the main issues of remote compensation 

have been clarified. These remote schemes were labelled BORNEU to indicate 

that the remote configuration is Simpson-Neuffer. In a later section a remote 

Gaussian case will be called BORGAU. 

Another, more important issue of practical machine design is also being de

ferred until remote compensation has been demonstrated to be fully effective. 

The economy of remote compensation is the reduction in the number of correc

tors by a factor equal to the periodicity N. The saving is partly due to the 

reduced number of elements and partly due to the reduced space requirement 

along the ring circumference. Though later found to be not so important, it was 

originally thought to be highly desirable that, as regards cell-length, steering, 

and linear optics, the lattice not exhibit the periodicity N; i.e. we do not want 

every N'th cell to be longer. The importance of this requirement is discussed in 

Appendix E. If empty drift spaces are inserted in every cell to achieve uniform 

length, then a large part of the economy of remote compensation is lost. Now, 

invoking the same superposition principle, there is no reason why all the remote 

correctors should be in the same cells; i.e., they can be staggered so that the same 

drift spaces in different cells are used for different multipoles. For simplicity we 

decided to defer study of this issue by assigning zero length to the correctors and 

putting them all in the same remote cells. 
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6.2 Comparison of Various Configurations and Dependence on Re

mote Corrector Period~ 

The results of all these investigations are shown in the following tables which 

are much like the earlier tables in this report. 

REMOTE COMPENSATION 

SMALL-AMPLITUDE TUNES 

8 -0.001 0.0 0.001 

MAGENDR ~Qx 6.5 0 14.7 

~Qy -0.6 0 2.8 

SNEUFFR ~Qx 5.9 0 4.1 

~QiJ 1.4 0 1.7 

GAUINTR ~Qx 4.8 0 5.0 

~Qy 1.2 0 1.0 

BORNEU06 ~Qx 1.4 0 -1.7 

~Qy -0.3 0 0.2 

BORFULR= ~Qx 0.8 0 -1.4 

BORNEU10 ~Qy -0.1 0 0.2 

BORNEU14 ~Qx 0.8 0 -0.4 

~Qy 0.0 0 -0.6 

All are satisfactory except MAGENDR. (It is not currently understood why 

that scheme is noticeably inferior in this regard; without looking into this fur

ther the above table shouid probably not be regarded as grounds for rejecting 

MAGENDR.) 
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REMOTE COMPENSATION 

LARGE-AMPLITUDE TUNES 

b -0.001 0.0 0.001 

3.6,0 3.6,3.6 0,3.6 5.0,0 5.0,5.0 0,5.0 3.6,0 3.6,3.6 0,3.6 

MAGENDR ~Qx 9.60 6.70 -3.30 -1.70 -0.07 2.10 -11.6* -7.60 4.40 

~Qy -2.70 -1.50 1.10 1.60 2.80 0.81 -0.06 -0.11 -0.10 

SNEUFFR ~Qx 1.30 2.20 0.77 3.40 5.60 0.24 -0.73 1.30 1.90 

~Qy 0.62 2.40 1.70 2.00 5.90* 3.50 -0.90 -4.04 -3.04 

GAUINTR ~Qx 1.30 2.50 1.10 3.30 4.80* 1.50 0.90 1.50 0.50 

~Qy 0.97 2.70 1.60 1.30 4.20 2.70 0.40 2.00 1.20 

BORNEUR ~Qx 0.44 0.21 -0.23 -0.17 -0.03 0.28 -1.40* -0.79 0.70 

~Qy -0.29 -0.28 -0.13 -0.06 0.07 -0.25 0.51 0.85 -0.09 

REMOTE COMPENSATION 

LARGE-AMPLITUDE TUNES 

b -0.001 0.0 0.001 

3.6,0 3.6,3.6 0,3.6 5.0,0 5.0,5.0 0,5.0 3.6,0 3.6,3.6 0,3.6 

BORNEU06 ~Qx 3.40 0.34 -1.10 -0.01 -0.08 0.07 -4.10 -0.96 1.30 

~Qy -2.90 -1.10 0.05 -0.05 0.04 -0.17 0.51 0.85 -0.09 

BORNEU10 ~Qx 0.44 0.21 -0.23 -0.17 -0.03 0.28 -1.40 -0.79 0.70 

~Qy -0.29 -0.28 -0.13 -0.06 0.07 -0.25 0.51 0.85 -0.09 

BORNEU14 ~Qx 2.40 0.52 0.11 0.29 -0.17 0.14 -3.2 -0.87 0.09 

~Qy -1.80 -0.67 -0.47 -0.35 0.21 0.11 1.80 1.00 0.70 

The conclusion to be drawn from this data is that all remote compensation 

schemes are satisfactory, with the possible exception of MAGENDR. The perfor

mance with N = 10 is best, but there is no striking dependence on periodicity of 
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the remote compensation. 

Finally, and most importantly for practical machine design, the issue of real

istic corrector designs and strengths is discussed in Section 11. 
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7. Investigation of Very Large Amplitudes to 
Protect Against Ignorance of Multipole Signs. 

7.1 Cases Studied. 

CASES STUDIED AT LARGER AMPLITUDES 

remote period 

9 32 320 

BORCDR 

BORCDRB3 

BORTUB 

BORNEU09 BORNEU32 BORNE320 

BORGAU09 

MAG END 

SNEUFF 

GAUINT 

The previous table shows the large-amplitude cases studied. 

BORCDR and BORCDRB3 differ only in the sign of b3. BORNEU09 and 

BORGAU09 are intended to compare remote Simpson-Neuffer and remote Gaus

sian. Though periodicity 10 was shown to be perfectly satisfactory above, there 

is a small logistic advantage (having to do with the number of cells per sec

tor) in using 9, and it is also theoretically favored (see Appendix F). This was 

checked with BORNEU09, and extreme remote compensation was studied with 

BORNEU32 and BORNEU320, the latter of which has only one lumped correc

tor cell in the entire machine. Except for being at larger amplitude, these runs 

extend the investigation of the dependence on the remote period. 

As mentioned before, some analytical investigations of systematic behavior 

have been performed with the on-momentum and the off-momentum specifica-
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tion amplitudes increased from 5 and 3.6 mm as used in the last section to 7 

and 5 mm respectively. This conservatism was originally intended to allow for 

possible undesirable conspiracy between different multipoles, whose effects were 

being calculated individually. The signs of some of the systematic multipoles are 

unpredictable; by calculating with both signs this effect is studied. Then various 

cases are repeated at the larger amplitudes. Finally, some other remote depen

dences are studied: dependence on remote period, and a comparison of Gaussian 

versus Simpson-Neuffer. 

7.2 The Effect of Reversing the Sign of b3 • 

The signs of the largest systematic multipoles, b2 and b4 , are predictable 

since they are due to persistent currents. That means that the leading polarity 

uncertainty is the sign of b3 . In the next table results are given in two cases, 

differing only in the sign of b3 . 

DEPENDENCE ON SIGN OF b3 

LARGE-AMPLITUDE TUNES 

8 -0.001 0.0 0.001 

5.0,0 5.0,5.0 0,5.0 7.0,0 7.0,7.0 0,7.0 5.0,0 5.0,5.0 0,5.0 

BORCDR !:1Qx 0.86 0.93 0.07 0.33 0.38 0.01 -0.56 -0.58 -0.03 

(b3 = -0.1) !:1Qy 0.00 0.49 0.44 -0.01 0.26 0.23 -0.05 -0.20 -0.20 

BORCDRB3 !:1Qx 1.12 1.22 0.07 0.74 0.81 0.03 -0.40 -0.41 0.01 

(b3 = +0.1) !:1Qy 0.01 0.75 0.67 0.01 0.74 0.67 -0.04 -0.01 -0.01 

Since the biggest discrepancy is 0.6 units, this uncertainty in the sign of b3 can 

be considered to be unimportant. Of course that is largely because its absolute 

value is as small as it is. 
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7.3 Local Compensation: Very-Large Amplitude. 

The cases studied in the Table in Section 5.5 are repeated here. 

LOCAL CORRECTORS 

VERY-LARGE-AMPLITUDE TUNES 

b -0.001 0.0 0.001 

5.0,0 5.0,5.0 0,5.0 7.0,0 7.0,7.0 0,7.0 5.0,0 5.0,5.0 0,5.0 

BORCDR !:1Qx 0.86 0.93 0.07 0.33 0.38 0.01 -0.56 -0.58 -0.03 

!:1Qy 0.00 0.49 0.44 -0.01 0.26 0.23 -0.05 -0.20 -0.20 

BORTUB !:1Qx 0.77 1.02 0.25 0.74 1.12 0.41 -0.04 0.17 0.21 

!:1Qy 0.20 0.66 0.41 0.35 1.41 1.01 0.14 0.84 0.64 

MAG END !:1Qx 3.48 3.78 0.10 1.57 3.30 1.74 -1.93 -0.51 1.60 

!:1Qy 0.13 2.23 2.07 1.65 3.86 2.21 1.45 1.56 0.11 

SNEUFF !:1Qx 3.71 4.84 1.08 6.74 10.9 4.30 2.43 5.46 3.07 

!:1Qy 1.08 4.51 3.57 3.92 11.6 7.49 2.89 6.94 3.86 

GAUINT !:1Qx 3.02 5.02 2.03 6.51 8.94 2.66 2.87 3.38 0.47 

!:1Qy 1.91 5.22 3.26 2.36 8.18 5.69 0.50 2.77 2.38 

Even at this extreme amplitude all schemes pass, or just barely fail. As an 

aside, it can be noted that because the important deviations are all positive, they 

could in principle be much reduced with octupole correctors. [14] At least one of 

these would have to be at a half-cell center, but they could most likely be quite 

remote. 
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7.4 Dependence on Periodicity of Remote Correctors: Very-Large 

Amplitude. 

LOCAL CORRECTORS 

VERY-LARGE-AMPLITUDE TUNES 

8 -0.001 0.0 0.001 

5.0,0 5.0,5.0 0,5.0 7.0,0 7.0,7.0 0,7.0 5.0,0 5.0,5.0 0,5.0 

BORNEU09 l::t.Qx -0.25 0.67 0.35 -0.31 0.87 2.71 -2.26 -0.26 0.04 

l::t.Qy 0.84 0.04 -0.51 0.45 5.00 -0.39 1.72 0.88 0.48 

BORNEU21 l::t.Qx -1.06 5.90 5.75 -2.10 6.76 -2.51 18.5 3.24 -9.09 

l::t.Qy 7.00 2.40 -3.86 7.87 -4.64 -0.63 -1.61 -1.94 6.80 

BORNEU32 l::t.Qx -4.41 0.60 -0.53 -6.09 0.94 9.17 -20.6* -1.18 4.78 

l::t.Qy 3.90 0.19 -0.19 6.51 1.41 -8.56 15.8* 4.02 -1.80 

BORGAU09 l::t.Qx -1.41 0.78 1.61 -0.08 0.91 2.43 -0.89 -0.72 -1.67 

l::t.Qy 1.82 1.76 -0.22 -0.13 5.76 -0.23 0.00 -0.91 0.30 

* Note that the FFT program misidentified the two tunes, giving the unphysical 

result that the tunes switched. In any case, the tolerance is exceeded. 

The case BORNEU320 is not shown. While it was fully satisfactory at small 

amplitudes, at large amplitudes particles were lost during tracking. Clearly a pe

riod of nine or less is acceptable for very large amplitude particles, while twenty

one or greater is not. 
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8. Investigation of the Possibility of Permitting Weak 

Lumped Correctors Only at Spool-Piece Locations. 

8.1 GENERAL COMMENTS 

In the Tevatron all correction elements are located in "spool-pieces" which are 

situated immediately next to main arc quadrupoles. It is natural to contemplate 

a similar configuration for the sse, and it would be more economical to include 

multipole correctors in those locations than in the cell interior. For that reason, 

considerable effort was expended in attempting to achieve satisfactory systematic 

compensation without the use of interior elements. The results are indicated 

in the following tables; small-amplitude and large-amplitude results are given 

in different tables, in the expectation that systematic small-amplitude behavior 

can be compensated satisfactorily, but that large amplitude behavior cannot be. 

As usual, "large" amplitude is taken to mean maximum excursion of 5mm, on

momentum, and 3.6mm, off-momentum. 

Unless stated otherwise, the assumed dipole systematic errors are: b2 = 0.0 

(by virtue of full-length bore-tube correction assumed to be present,) b3 = 

0.1, b4 = 0.64, b6 = -0.13, and all other multipoles 0.0. Remote correction was in 

the spool-pieces of every tenth cell. Also (to see if remote and local compensation 

are equivalent) results are given with elements in every cell, and with b3 or b6 set 

to zero (to see if they are negligible.) 

Multipole corrector strengths are indicated in the tables as ratios of their 

strength-length product to the field integral of the corresponding multipole in the 

dipole; with all values being 1, the field integrals around-the-ring of each dipole 

multi pole and its corresponding compensators would be equal and opposite; were 

the compensators superimposed exactly on the errors this would obviously yield 

perfect compensation. Since, in fact, the spool-pieces are at points where the 

,a-functions are large, the optimal values tend to be less than 1. 

The correctors can be said to be grouped in four families, with strength 
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parameters F3 and F4 for the elements beside F-type quads, and D3 and D4 for 

the elements beside D-type quads. 

8.2 SMALL AMPLITUDE BEHAVIOR. 

SPOOL-ONLY COMPENSATION 

SMALL AMPLITUDE TUNES 

COARSE SCAN, TWO CORRECTOR FAMILIES 

FRACTIONAL fJ = -0.001 fJ = 0.0 fJ = 0.001 

STRENGTHS 

F3 F4 D3 D4 

1.000 1.000 1.000 1.000 Qx 14.5 0.1 -31.3 

Qy 0.5 0.5 0.0 

0.700 0.700 0.70C 0.700 Qx 4.6 0.1 -7.7· 

Qy 2.0 0.4 -8.9 

0.400 0.400 0.400 0.400 Qx -3.7 0.1 15.7 

Qy 4.6 0.5 -18.1 

0.600 0.600 0.800 0.800 Qx 2.8 0.1 -0.1 

Qy 3.3 0.5 -9.3 

0.700 0.700 0.700 0.700 Qx 4.6 0.1 -7.7 

Qy 2.0 0.4 -8.9 

0.800 0.800 0.600 0.600 Qx 8.0 0.1 -15.5 

Qy 1.6 0.5 -8.5 

The data in the previous table show that the small amplitude tunes can 

almost be compensated adequately with correctors in the spool-pieces, even when 

the correctors are constrained to be in two families (as they would be, for example, 

if a single coil was designed to compensate more than one persistent current 
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multipole). This coarse scan of the two parameters shows that the minimum is 

very broad; the settings are not critical. 

The next table shows small-amplitude results after all four corrector-strength 

parameters have been adjusted for better compensation. For all data sets but the 

last, the parameters are adjusted to give optimal large-amplitude behavior (which 

is why the small-amplitude behavior is not much improved even after doubling 

the number of fitting parameters). Further comments, including an explanation 

of the parameter adjustment algorithm, will be deferred to the next section. 

SPOOL-ONLY COMPENSATION 

SMALL AMPLITUDE TUNES 

PERFORMANCE WITH OPTIMIZED CORRECTOR SETTINGS 

Fractional 8 = -0.001 8 = 0.0 8 = 0.001 

Strengths 

F3 I F4 J D3 I D4 

Remote, every lO'th cell. b6 = -0.13 

0.681 0.619 1.035 0.517 Qx 0.3 0.1 -3.6 

Qy 6.7 0.5 -9.9 

Remote, every 10'th cell. b6 = 0.00 

0.713 0.582 1.066 0.539 Qx -0.3 0.1 -3.5 

Qy 7.4 0.5 -9.0 

Correction in every cell. b6 = 0.00 

0.742 0.633 1.005 0.598 Qx 0.8 0.1 -5.6 

Qy 5.0 0.5 -7.6 

OPTIMIZATION BY OPERATIONAL SIMULATION b6 = -0.13 

0.563 0.470 1.365 1.800 Qx 0.1 0.1 0.2 

Qy 0.5 0.5 0.4 
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The last data set in the previous table shows the performance after the pa

rameters have been adjusted using an operational simulation procedure which 

employs only information which would reasonably be expected to be operationally 

available on the accelerator. [9] Only small-amplitude behavior is compensated. 

It can be seen that this procedure results in the small amplitude specification 

being met by a large factor. 

8.3 LARGE AMPLITUDE BEHAVIOR. 

SPOOL-ONLY COMPENSATION 

LARGE AMPLITUDE TUNES 

COARSE SCAN, CONSTRAINED RATIOS 

Fractional Strengths b = -0.001 b = 0.0 b = 0.001 

F3 F4 D3 D4 3.6,0 3.6,3.6 0,3.6 ~.O,O 5.0,5.0 0,5.0 3.6,0 3.6,3.6 0,3.6 

1.000 1.000 1.000 1.000 Qx 28.5 31.6 15.8 -5.7-7.8 -0.1 -73.5 -69.4 -32.2 

Qy 1.6 8.4 6.5 -0.3 -6.7 -6.7 -0.5 -12.7 -12.6 

0.700 0.700 0.700 0.700 Qx 8.5 19.6 15.7 -0.2 -6.1 -4.1 -19.5 -32.3 -23.7 

Qy 12.0 11.0 0.7 -4.0 -5.2 -0.5 -22.8 -22.8 -7.1 

0.400 0.400 0.400 0.400 Qx -11.5 7.0 15.4 4.0 -4.0 -8.0 25.6 0.1 -11.6 

Qy 20.4 12.5 -3.4 -7.7-3.6 4.4 -42.5 -30.8 -3.8 

0.600 0.600 0.800 0.800 Qx 3.3 13.0 12.6 0.3 -3.8 -4.1 -5.5 -19.4 -15.5 

Qy 12.4 13.3 4.1 -4.0-7.1 -3.1 -23.1 -26.9 -11.9 

0.800 0.800 0.600 0.600 Qx 15.7 25.1 16.6 7.0 -7.5 -4.2 -35.0 -.46.6 -27.7 

Qy 10.0 8.0 -2.1 -4.0 -3.4 0.6 -22.0 -18.5 -4.3 

b3 = 0.00 

0.700 0.700 0.700 0.700 Qx 10.8 23.7 19.5 0.2 0.2 0.0 -19.3 -29.4 -19.3 

Qy 17.1 16.3 4.5 0.4 0.6 0.5 -17.7 -15.3 -3.9 
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This table shows large-amplitude tunes obtained in a coarse scan with the 

parameters constrained to be in two families. The best case fails to meet tolerance 

by about a factor of four. Comparison of the second and last data sets shows 

that b3 is not very important. 

Next an effort was made to adjust the full four-family parameter settings in 

such a way as to improve the large amplitude tune behavior, with the results 

shown in the next table 

SPOOL-ONLY COMPENSATION 

LARGE AMPLITUDE TUNES 

PERFORMANCE AFTER OPTIMIZED PARAMETER SETTINGS 

Fractional Strengths b = -0.001 b = 0.0 b = 0.001 

F3 I F41 D31 D4 p.6,0 3.6,3.6 0,3.6 ~.O,O 5.0,5.0 0,5.0 3.6,0 3.6,3.6 0,3.6 

Remote, every 10'th cell. b6 = -0.13 

0.681 0.619 1.035 0.517 Qx 0.1 15.8 15.8 -0.2 -3.7 -3.3 -7.7 -24.3 -20.0 

Qy 20.3 11.7 -3.3 -3.1 -8.2 -7.0 -26.7 -23.0 -6.6 

Remote, every 10'th cell. b6 = 0.00 

0.713 0.582 1.066 0.539 Qx 0.3 15.2 14.5 -0.7 -3.7 -2.9 -11.6 -26.4 -19.4 

Qy 19.9 11.8 -3.2 -2.9 -8.5 -7.2 -23.1 -22.8 -6.9 

Correction in every cell. b6 = 0.00 

0.742 0.633 1.005 0.598 Qx 7.8 18.9 14.8 -1.5 -3.9 -3.3 -12.8 -27.1 -20.7 

Qy 15.2 10.5 -2.1 -3.1 -7.7 -6.6 -21.9 -22.3 -7.1 

OPTIMIZATION BY OPERATIONAL SIMULATION b6 = -0.13 

0.563 0.470 1.365 1.800 Qx 7.0 3.7 3.2 0.1 -2.0 -1.5 -2.9 -4.0 -3.8 

Qy 0.7 35.3 31.9 -2.1 -18.8 -16.4 -3.1 -50.6 -46.5 
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To obtain these fits, a parameter fitting option was added to TEAPOT which 

calculates the "large-amplitude interpolated map" [15] as the parameters are var

ied and finds the settings which makes the "worst map matrix element" be as 

"good" as possible, where good means "close to the small amplitude element". 

This is not precisely the same as optimizing the standard tracking cases but 

should be similar. Also it is not necessarily achievable operationally; for that 

reason it might not be prudent to rely on. In any case, the results are given in 

the table, for the same cases as were listed in the small-amplitude table above. 

It can be seen that there is not much improvement. It can also be seen that 

b6 is unimportant, and that remote and local compensation do not differ in any 

important way. 

Because the large amplitude behavior was not much improved another pa

rameter fitting algorithm was tried. It paid attention only to the tunes, both 

x and y, and adjusted the parameters to "keep the tunes in as small a box as 

possible". (The standard specification for tune variation is to stay in a box of 

height 10 units (i.e. a range of ±0.005) along the tune axes, for all momentum 

deviations less than ± 0.001.) For technical reasons this is still not equivalent to 

optimizing the standard tracking cases, but it's close. The results, shown in the 

next table, are no better than before. 

SPOOL-ONLY COMPENSATION 

LARGE AMPLITUDE TUNES 

PERFORMANCE AFTER ALTERNATE OPTIMIZATION 

Fractional Strengths {j = -0.001 {j = 0.0 {j = 0.001 

F3 F4 D3 D4 p.6,0 3.6,3.6 0,3.6 5.0,0 5.0,5.0 0,5.0 3.6,0 3.6,3.6 0,3.6 

0.776 0.649 0.865 0.788 Qx 8.1 17.3 12.2 -2.7 -5.0 -3.7 -15.6 -27.8 -17.0 

Qy 12.5 11.7 0.6 -3.3 -7.1 -3.4 -19.6 -22.5 -7.6 
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The large amplitude behavior after operational compensation [9] (briefly in

troduced in the previous section) of the small-amplitude behavior is unfortunately 

large. It was not unexpected that large and small amplitude behavior would be 

essentially different [6] so these numbers are not surprising. They can perhaps be 

used to make the following not-very-quantitative projection. 

If the systematic field errors were unknown, or were uncertain by amounts 

comparable with the multipoles used in this study, the small-amplitude behavior 

could still be compensated operationally, presumably rather well, as indicated in 

the previous section. But in that case one would have to expect large-amplitude 

shifts comparable with the values in the last row of this table; these are "outside 

specs" by close to a factor of ten. 

8.4 RELAXING THE ZERO CHROMATICITY CONDITION. 

Another thing that was tried was to "cheat", by letting the chromaticity be 

not quite zero, in an attempt to stay within the tune tolerance box. The results 

are shown in the next table. 

SPOOL-ONLY COMPENSATION, CHROMATICITY ADJUSTED 

LARGE-AMPLITUDE TUNES 

F, D cor- tune -0.001 0.0 0.001 

rection,% 3.6,0 3.6,3.6 0,3.6 5.0,0 5.0,5.0 0,5.0 ~.6,0 3.6,3.6 0,3.6 

70,70 Qx -11.4 0.0 -4.1 -0.2 -5.1 -4.1 0.1 -12.1 -2.6 

70,70 Qy -3.3 -3.8 -14.7 -4.3 -5.3 -0.5 -7.3 -7.3 5.9 

It is very nearly possible to remain within the box. This illustrates the sort 

of maneuver which might be attempted with the accelerator in place but which 

should surely not be counted upon in the design phase. It happens, in this case, 

35 



that the little bit of linear chromaticity added has the same positive sign which 

would be required to stabilize the beam against the head-tail instability. 

8.5 CONCLUSIONS. 

Valiant but unsuccessful efforts have been made to compensate the higher 

multi pole systematic tune behavior using compensation elements located only 

in the spool-pieces. It has to be concluded either that the systematic field er

rors must be reduced (for example by improving the magnets or by raising the 

injection energy) or that correction elements must be situated in cell interiors. 
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9. Random Error Correction Performance 

9.1 GENERAL COMMENTS 

The transverse amplitude and momentum dependence due to random multi

pole errors in the dipoles has been examined for the various correction schemes, 

all of which satisfied the systematic error requirements. For any lumped com

pensation elements it is assumed that "binning" [16] circuits are available; results 

with 7 bins and with infinitely fine bins (that is, the corrector strengths can all 

be adjusted independently of each other) were obtained. No closed-orbit errors 

will be introduced until the next section. 

It will be shown that each of the main correction schemes is capable of com

pensating for the random errors specified for the SSC. Smear values of about 

5% are obtained after compensation of only random b2 errors. This represents 

an improvement of more than a factor of two compared to the uncompensated 

situation. Compensation of higher llmltipoles could give roughly another factor 

of two in smear reduction if implemented. 

This section can in some ways be regarded to be a continuation of an ear

lier reportp 7] further explanations and references are given there, as well as the 

performance of other schemes not described here. A constraint imposed early on 

was that no more than two physical correctors be present per half cell. 

Random errors dominate the smear in the SSC. The dipole errors included 

in the study are the random sextupole, octupole and decapole errors, including 

their skew counterparts; values are shown in Table 1. 

Table 1. RMS Variations of Multipole Errors in 
SSC Dipoles (10-4 Bo at 1cm). [18) 

0.6 
0.7 
0.2 

37 

2.0 
0.3 
0.7 



The four schemes studied have been described in earlier sections. Their code 

names are repeated here (after being slightly abbreviated; BOR has been reduced 

to B; it still denotes schemes with bore-tube coils): BCDR has partial-length 

bore-tube correctors b2 , b3 , and b4 ; BFUL5 has full-length bore-tube b2 correctors 

and lumped correctors (of Simpson-Neuffer type) every fifth cell; SNEU and 

GAUl depend entirely on lumped correction (of Simpson-Neuffer and Gaussian 

integration type respectively.) 

Because of statistical fluctuations III the assumed errors, it is difficult to 

obtain accurate aperture determinations. To improve inter-scheme comparisons 

the same field errors were assigned where possible; that is, for BCDR, BFUL5, 

and SNEU. Since GAUl requires a different magnet configuration, it is less easily 

compared. For GAUl the total number of magnets differs from the other schemes 

by a factor of 5/6 or 10/6. For this investigation we have assumed 5/6 (and have 

retained the same cell-length as for the other lattices), even though that is almost 

certainly not a practical combination, since it would use longer magnets. This 

was done to make comparisons as direct as possible. The same r.m.s multipole 

coefficients (Table 1) were used in all cases; this effectively increases the r .m.s. 

multipole errors for GAUl by an artificial factor v1f!5 compared to the others. 

That will be seen below to cause GAUl to have a smaller aperture than the other 

schemes; this difference should be allowed for mentally in making comparisons. 

The corrector strengths of the two lumped schemes were evaluated by apply

ing the general scheme developed by Forest [19,20] to the individual half cell of 

six bending magnets and two correctors. We obtain for SNEU and GAUl the 

following corrector strengths. 

SNEU Scheme (in "three lumped corrector representation"): 

Lb 
C,L, =108 [-830::1 - 410::2 - 110::3 + 70::4 + 130::5 + 70::6] 

Lb 
CcLc = - 27[80::1 + 200::2 + 260::3 + 260::4 + 200::5 + 80::6] (9.1) 

Lb 
CdLd = 108 [70::1 + 130::2 + 70::3 - 110::4 - 410::5 - 830::6] 
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GAUl Scheme: 

(9.2) 

where (l:i is the multipole error of the ith dipole magnet. GxLx is the integral 

strength of corrector x. Note that the weights do not depend on the multipole or

der. The correction strengths for the bore tube based correctors (BCDR, BFULx, 

where x is a number indicating the period in units of cells of the remote correc

tors) are determined by the integral strength of the multipole moments within 

each magnet. 

To obtain the amplitude dependence of the smear, on-momentum particles 

were tracked around the "arcs only" SSC lattice. "Worst-case" particles, having 

equal "single particle emittances," were tracked. These particles lie along a 45 

degree line at points in the lattice where f3x and f3y are equal. In some earlier 

CDG reports the axes of graphs have been labelled with v' (x~ax + y'fnax) in 

millimeters, where Xmax and Ymax are amplitudes at a point in the lattice where 

the corresponding ,B-function is maximum (of course there is no point where 

these functions are simultaneously maximum). References to the graphs should 

emphasize the x = y = 5 mm point, since that defines the on-momentum "needed

aperture". (The detailed estimate yielded a needed aperture of x = y = 4.7mm; 

the "needed-aperture" is rounded upwards from this number.) 

The tune variations flQx(x,y,8) and flQy(x,y,8) after correction for the 

random errors are in general much smaller than the allowed maximum tune shift 

variation of ±O.005. The results will therefore not be presented explicitly. 

Prior to actual tracking, systematic errors are compensated as described in 

earlier sections and random errors are corrected by the above described formulas. 

Tracking results are Fourier-analysed to obtain the tune and smear. 

For the main study, where just b2 errors were compensated, a total of 5 seeds 

are run for each of the correction schemes in addition to the uncorrected case. In 
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the study of the contribution to the smear by the individual skew multi pole errors, 

only two seeds were used. To achieve adequate accuracies for the tracking results, 

the sse dipoles are represented by two kicks per dipole. Studies on the lattice 

with systematic errors have shown that this provides acceptable accuracy. [11] 

Random errors were assumed to be Gaussian distributed. For some early 

runs 20" cuts were applied to all multipoles; magnets falling outside the cuts were 

rejected. But respecting such cuts would require extreme discipline which, as a 

practical matter, might not be adhered to in the heat of magnet installation in 

the tunnel. For most of the subsequent runs 60" cuts were used. 

The binning correction goes as follows. For any particular multipole, the 

numerical values of that multi pole are ordered and "percentile" boundaries are 

defined which divide the magnets up equally (in 7 equal groups for most of the 

subsequent data). Every magnet in the same bin for the particular multipole 

gets the same "central to the bin" compensation for that multipole; initially t1;le 

bin half-way point was used. An effect of increasing the cuts was to make the 

binning compensation less effective, since the outermost bins had to go out to 60". 

It was found that the worst degradation came from the outermost bins. Using 

the median of the values actually falling within each bin, rather than the bin 

centers, yielded much better results and that was done for all the 60" data. 

9.2 SMEAR CONTRIBUTIONS FROM HIGHER MULTIPOLES, 20" CUTS. 

The next table shows the smear observed, on-momentum, with and without 

b2 compensation, as higher multipoles are one-by-one increased from zero to their 

expected distributions (Gaussian, cut at 20"). In the table the numerator of each 

entry is the smear with b2 7-bin correction, and the denominator is the smear 

without this correction and everything else the same. The value of the fraction 

gives the factor by which the correction reduces the smear. The smear is given 

in percentage, thus the CDR acceptable tolerance is 10. 
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PERCENT SMEAR AT 5mm, 5mm 

Only 2 seeds averaged, 20- cuts 

7-bin, b2 corrected smear/uncorrected smear 

syst. only +b2 +a2 +b3 +a3 +b4 + a4 

SNEU 0.75/0.75 2.4/7.4 3.2/8.4 3.3/8.6 4.4/9.3 4.2/9.1 

GAUl 0.19/0.19 3.1/11.4 4.8/12.5 5.2/13.1 5.7/13.7 5.5/13.7 

BFUL5 0.36/0.36 1.2/6.5 2.4/8.0 2.5/8.0 3.5/8.3 3.5/8.5 

BCDR 0.33/0.33 1.4/6.6 2.4/7.7 2.5/7.6 3.8/8.1 3.9/8.4 

It is evident from the table that all schemes pass the CDR tolerance. With 

only b2 errors the schemes with bore-tube b2 correctors, BFUL5 and BCDR, 

do much better than the others, but when higher multi poles are included the 

advantage is largely eroded. Fig. 9.1 illustrates qualitatively the amplitude 

dependence of the smear for one seed of the BCDR compensation scheme with 

increasing order of random multipole errors present. After the erect sextupole, 

the most significant degradations of the smear occur with the addition of the 

random skew sextupole and octupole errors. The remainder of higher order 

multi poles including the decapole errors (not plotted) have a minimal effect on 

the result. 
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Fig. 9.1: Smear vs Amplitude for random error compensation and increasing order 
of random multipole errors. The smear before and after correcting for the random 
b2 is plotted for one seed of the BCDR compensation scheme. The cutoff for the 
random errors present (upper right hand corner of each plot) was set at 6a. The 
description of the individual curves are given in the first figure. 



9.3 AMPLITUDE DEPENDENCE WITH BETTER STATISTICS AND 50" CUTS 

In the next table, smear values, on-momentum, with and without b2 correc

tion, are given as in the previous table. This time all multi poles are assumed to be 

present and the smear is determined for amplitudes of (5mm,5mm), (6mm,6mm), 

and (7mm,7mm). The values are averages of 5 seeds. Estimates of the r.m.s. er

rors were worked out from the 5 numbers; they are not entered in the table, but 

they are plotted in the following graph (Fig. 9.2), which includes the data from 

the following two tables. 

With the larger amplitude and looser cuts some particles in this investigation 

did not survive the 512 turns for which they were to be tracked. (The number 

of turns was chosen to provide adequate data to compute the smear. In one 

case studied, at 512 turns the smear had attained 99.7% ± 0.1 of the smear 

value obtained from 2048 turns.) In the table this is indicated by a number in 

parenthesis which gives the number of surviving particles. The average listed is 

the average of the surviving particles; as such it is pretty much useless. In all 

cases but one, all particles at all amplitudes survived after correction. That one 

case was for GAUl which, as mentioned previously, having fewer magnets, has 

artificially increased smear. 

As previously, the factor by which the smear is reduced by the correction 

is given by a ratio. Recall that different seeds are used for GAUL That, and 

the smaller number of magnets, accounts for the worse uncompensated smear 

of GAUl, and that accounts for its worse compensated smear. The factor by 

which the compensators reduce the smear is best for GAUl, but that is probably 

because the starting value is worst. 
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~ERCENT SMEAR AT VARIOUS AMPLITUDES 

5 seed averages, 60" cuts 

7-bin, b2 corrected smear/uncorrected smear 

5mm,5mm 6mm,6mm 7mm,7mm 

SNEU 5.4/10.1 7.2/(0) 9.9/(0) 

GAUl 6.6/15.1 10.1/(0) 12.0( 4)/(0) 

BFUL5 4.6/9.4 6.4/14.1(5) 8.6/15.1(5) 

BCDR 4.8/9.5 6.5/(0) 8.5/(0) 

The next table is the same as the previous one except that perfect binning is 

assumed, rather than 7 bins. That is equivalent to having an infinite number of 

bins and is also equivalent to having the ability to power every b2 coil individually. 

PERCENT SMEAR AT VARIOUS AMPLITUDES 

INFINITE BINS 

5 seed averages, 60" cuts 

00-bin, b2 corrected smear/uncorrected smear 

5mm,5mm 6mm,6mm 7mm,7mm 

SNEU 4.7/10.1 6.5/(0) 9.0/(0) 

GAUl 5.9/15.1 8.5/(0) 13.9/(0) 

There is not a great improvement, compared to the 7-bin data; earlier data 

of this sort (and a dash of common sense) was the basis for choosing 7 bins. 

The following figure presents pretty much the same information in graphical 

form. It can be seen that the error bars resulting from the small number of seeds 

make the absolute values rather uncertain. Fortunately, for comparing different 

44 



schemes relative values suffice. 

9.4 CONCLUSIONS TO THIS POINT 

To this point in the study, the candidate lattices BCDR, BFUL5, SNEU, 

and GAUl have satisfied the requirements first of systematic compensation and 

now of random compensation. In some ways performance of one or the other 

has been found to be measurably superior (e.g. the remote schemes tend to be 

slightly worse than the local schemes), but the differences are small, probably 

not great enough to stack up against qualitatively different considerations like 

cost and practicality. In the next section the more delicate issue of sensitivity to 

closed orbit errors will give a greater discrimination among the schemes. 
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Fig. 9.2: Smear VB Amplitude for random error compensation. The 5 seed averaged smear 
before and after correcting the random b2 is plotted as function of the amplitude for the 
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random errors (a2-a4. b2-b4) was set at 60'. Particles not surviving 512 turns were not 
plotted. The description of the individual curves are given in the first figure. 



10. Effects of Closed-Orbit Errors. 

We now describe early results of a study of the sensitivity of four of the 

schemes studied so far to the inclusion of closed-orbit errors. The results are very 

preliminary - only one seed has been studied so far, only the on-momentum be

havior has been investigated, and random multi poles have not yet been included. 

More work is necessary before these results can be considered fully reliable. 

The same four schemes studied in the previous section on random error cor

rection were used to study sensitivity to orbit errors caused by quadrupole magnet 

misalignment, dipole magnet rotation and misalignment, and dipole magnet field 

errors. The correctors were not misaligned. These studies were conducted with 

only systematic multipole errors, no random multipole errors, in the hopes that 

interpretation of the results would be made simpler. 

BORCDR, BORFUL5, SNEUFF and GAUINT were all prepared in the fol

lowing way: systematic multipole errors were added and the correctors were 

set to compensate them; the alignment and field errors mentioned above, with 

strengths adjusted to produce the desired residual closed orbit errors, were added 

and the orbit was corrected, leaving a ±lmm r.m.s. orbit; the tunes and linear 

chromaticities were set; the resulting machines were tracked for 512 turns, with 

the smears and tunes shifts being measured for various amplitude particles, all 

on-momentum. To date, only one random seed has been studied. It is important 

to remember while looking at the tracking results, that the needed aperture of 

5mm decreases by approximately 1.25mm when orbit errors are present in the 

machine being tracked. That is, part of the needed aperture is for orbit errors, 

so if they are included in the simulation, they can be subtracted from the needed 

aperture. 

Although the machines studied had only systematic multipole errors, we ex

pect the smear to be non-zero since the orbit errors will cause randomness in 

the feed-down of the systematic mUltipoles, which has the same effect as random 

multipole errors. The smears and tune shifts for BORCDR and BORFUL5 are 
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given in the following Table. The behavior of BORFUL5 is worse than BOR

CDR, but it is still acceptable; further comments appear later in this section. In 

this'case, and for this seed, BORFUL5 is acceptable since the smear is less than 

10% at (5,5), but the smear for a real machine with random errors, misaligned 

dipoles, etc. would certainly be larger. 

SMEARS AND TUNE SHIFTS WITH ORBIT ERRORS 

SYSTEMATIC ERRORS ONLY 

X (mm) Y (mm) Qx Qy Smearx Smeary 

BORCDR 0.0 0.0 0.2852 0.2653 0.0 0.0 

3.0 3.0 0.2851 0.2653 1.0 1.5 

4.0 4.0 0.2851 0.2654 1.5 2.6 

5.0 5.0 0.2851 0.2654 2.2 3.9 

6.0 6.0 0.2850 0.2655 2.9 5.4 

BORFUL5 0.0 0.0 0.2851 0.2655 0.0 0.0 

3.0 3.0 0.2848 0.2656 2.3 2.6 

4.0 4.0 0.2842 0.2657 4.0 4.3 

5.0 5.0 0.2836 0.2661 6.5 6.5 

6.0 6.0 0.2835 0.2675 9.9 9.4 

When a similar study of SNEUFF and GAUINT was attempted, it was not 

possible to fit the tunes to the nominal values due to linear coupling, presumably 

from the feed-down of systematic b2 • The distance of closest approach of the tunes 

was: SNEUFF, 0.054; GAUINT, 0.063; BORCDR, 0.013; BORFUL5, 0.006. 

Rather than pursue ways of overcoming this problem operationally it was decided 

to "turn off" the problem temporarily. When b2 was turned off in SNEUFF and 

GAUINT, the distance of closest approach of the tunes was reduced to 0.007 for 

SNEUFF and 0.003 for GAUINT. This is equivalent to placing a full-length b2 

bore tube corrector in each dipole. Note that SNEUFF in this case is equivalent to 
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BORFUL1, or a BORFUL case with lumped correctors every half-cell. Further 

study is necessary to determine whether these machines could be sufficiently 

decoupled using skew quadrupole correctors. One or the other of, decoupling 

using skew quads, or, installing full-length bore tube correctors, will have to be 

done in the accelerator. The resulting machines were then tuned and tracked, 

yielding the acceptable results shown in the following table. Note that these 

smears are comparably small with the smears from BORCDR above. Caution 

is advised in making any detailed comparisons, however, since only one random 

seed was used, and the closed orbit is different for each machine simulated. 

~MEARS AND TUNE SHIFTS WITH ORBIT ERRORS b2 = 0 

X (mm) Y (mm) Qx Qy Smearx Smeary 

SNEUFF 0.0 0.0 0.2850 0.2650 0.0 0.0 

3.0 3.0 0.2851 0.2655 1.2 0.9 

4.0 4.0 0.2852 0.2656 1.8 1.4 

5.0 5.0 0.2852 0.2656 2.8 2.0 

6.0 6.0 0.2652 0.2657 4.0 2.9 

GAUINT 0.0 0.0 0.2851 0.2653 0.0 0.0 

3.0 3.0 0.2850 0.2652 0.9 1.1 

4.0 4.0 0.2849 0.2650 1.4 1.7 

5.0 5.0 0.2847 0.2646 2.0 2.5 

6.0 6.0 0.2841 0.2641 2.8 3.5 

10.1 FURTHER STUDY OF BORFUL5. 

In an attempt to gain further understanding of the larger smears for BOR

FUL5 shown in the first table in this section, several runs were done in which 

the only random errors introduced were misalignments of the lumped correctors 

themselves. In these cases, tracked particles went through the center of all ele-
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ments except the lumped correctors (which correct only b3 and b4 ), which received 

±1 mm r.m.s. misalignments. The results of tracking this lattice are shown in 

the foll t bl oWIng a e. 

SMEARS AND TUNE SHIFTS 

ONLY REMOTE CORRECTORS MISALIGNED 

X (mm) Y (mm) Qx Qy Smearx Smeary 

BORFUL5 0.0 0.0 0.2850 0.2655 0.0 0.0 

3.0 3.0 0.2853 0.2654 2.1 1.6 

4.0 4.0 0.2865 0.2653 3.0 2.7 

5.0 5.0 0.2871 0.2651 5.1 4.1 

6.0 6.0 0.2883 0.2648 6.7 5.6 

This shows that misaligning the remote correctors alone causes substantial 

smear, and accounts for most of the smear in the first table in this section. The 

difference between the smear from misaligned correctors and that from full-blown 

orbit errors for BORFUL5 is comparable to the smear for BORCDR. Detailed 

comparisons are not possible since different random seeds have been used for 

misaligning the correctors and creating orbit errors. A study using several seeds 

is necessary before any real conclusions can be drawn. 

Tracking with horizontal amplitude only was also performed for comparison 

with the analytic calculation of feeddown from the misalignment of the remote 

correctors in Appendix G. The results are in very rough agreement with that cal

culation, which predicts a smear of approximately 5% at 5 mm. Further analytic 

work is needed to understand and confirm the results in this chapter. If possible, 

other simulation programs, such as the analytic mapping technique based on dif

ferential algebra currently being developed at CDG, should be brought to bear 

on this problem to check and expand on the results above. 
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11. Strength Estimates and Preliminary 

Engineering Considerations. 

11.1 PRELIMINARY ENGINEERING CONSIDERATIONS. 

The correction schemes that have been studied so far require either (or both) 

distributed bore-tube correction magnets or lumped correction magnets. The 

R&D on the actual proposed magnetic correction devices has lagged, so that at 

this time the performance of the devices is not known. Bore tube correction mag

nets have been the subject of a significant engineering effort at Brookhaven Na

tional Laboratory; the slow rate of progress, up to now, in that effort has been one 

of the driving inspirations to investigate fully lumped correction schemes. The 

development of bore-tube correctors is much advanced over that of the lumped 

correctors, however, and it is fair to say that one reason to prefer the lumped 

correction scheme is that, since little work has been done, there have been no 

failures. Nevertheless, both distributed and lumped correctors have been made 

to work at other accelerators, and in association with other projects. [21-23] 

In this section only engineering considerations for lumped correctors will be 

considered. The question to be addressed here is whether strong correctors can be 

built in a compact, reliable, and practical manner, or will construction considera

tions place restrictions on the correction scheme adopted. By lumped correctors 

here is meant any corrector not incorporated in the main dipole construction. 

Lumped correctors include steering dipoles, trim quadrupoles, chromaticity sex

tupoles, and possibly the sextupole, octupole, and decapole correctors for dipole 

im perfections. 

A starting point for engineering considerations is the correctors design for 

the Tevatron. The Tevatron correctors are random wound, epoxy-potted magnets 

with various multipoles radially nested. These correctors work well if currents are 

kept at or below approximately 25% of conductor short sample. This low percent 

is due to the many field configurations possible, and thus the many possible force 
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vectors on the conductor, when the nested correctors are powered at varIOUS 

currents and polarities. The strengths of the sse correctors are considerably 

greater than those of the Tevatron. For example, the Tevatron steering dipole 

corrector strength is 0.46 T·m whereas the sse steering dipole corrector strength 

is approximately 2.5 T·m. [24] Again, the Tevatron sextupole corrector strength 

is 0.021 T·m at a radius of 1 cm compared to various sse estimated sextupole 

strengths of 0.1 to 0.2 T·m at a radius of 1 cm. The space available along the 

beam tube for the sse correctors will vary with the correction scheme chosen but 

will be of the order of 1 m. The Tevatron correctors length is 0.76 m. To maintain 

a reasonable diameter for a correction package, then, the fraction of short sample, 

or the average current density, at which the correctors can comfortably operate 

will have to be increased. The Tevatron correctors operate at an average current 

density of 120 A/mm2 . A goal for sse correctors is 300 A/mm2 . A prototype 

program has just begun in order to explore lumped corrector construction. 

Figures 11.1 through 11. 5 present plots of magnetic field strength versus 

coil inner radius for various coil thicknesses and an average current density of 

300 A/mm2. The plots assume a cosO coil configuration and infinite permeability 

iron beginning at a radius of 5cm. From these plots one can determine various 

combinations of inner coil radius, coil thickness and coil length to provide a given 

corrector strength. As a simple example, using Fig. 11.1, the 2.5 T·m steering 

dipole with an inner coil radius of 2 cm and a length of 1 m would have a coil 

thickness of approximately 1.05 cm. If the length were increased to 2 m the coil 

thickness would be approximately 0.60 cm. 

Using the plots, the steering dipole strength given above, the estimated trim 

quadrupole strength of 0.38 T·m [25], and the sextupole, octupole, and decapole 

corrector strengths given in Ref. 26 one can configure radially nested correctors. 

As an example a radially nested 2 m long package of the steering dipole, chro

maticity sextupole (0.134 T·m), and trim quadrupole could be constructed with 

the following radial dimensions: steering dipole coil from 2.0 to 2.6 cm, chro

maticity sextupole coil from 3.1 to 3.5 cm, and trim quadrupole coil from 4.0 to 
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4.3 cm. This configuration allows 0.5 cm between coils. 

An overriding concern in correCtor construction is the current at which cor

rectors operate. High current magnets require high current leads which consume 

large amounts of refrigeration. Thus for the approximately 1600 steering dipole 

correctors, which must be powered independently, a low current design of about 

100 A is essential. Correctors which operate in large families and thus will have 

few current leads can operate at higher currents. 

The SSC steering dipole correctors will of necessity, then, be constructed of 

many turns of conductor. Epoxy potting is the only practical way to build such 

magnets. The goal of an average current density of 300 A/mm2 for the dipole 

correctors can be approached in several ways. The improvement in jc for Nb-Ti 

superconductors from the Tevatron value of 1800 A/mm2 at 4.2 K and 5 T to 

the current value of 2750 A/mm2 at 4.2 K and 5 T will provide an increase in 

average current density of 50% if the magnet is designed to accept the increased 

forces. Modest gains of 10% to 15% in conductor winding density are possible 

over the Tevatron random winding method. 

Using kapton as the conductor insulator holds promise for allowing a signif

icant increase in the fraction of short sample achievable. Brookhaven National 

Laboratory has constructed unnested epoxy-potted magnets, using bare kapton 

as the conductor insulation, that achieve 100% of short sample after one or two 

training quenches. This is to be compared to unnested Tevatron correctors, us

ing polyimide/polyamide-polyester as conductor insulation, achieving only 80% 

of short sample after many (2: 10) training quenches. No Brookhaven nested 

magnets were fabricated. Prototype testing is needed for nested correction mag

nets using kapton as conductor insulation. Other insulations and epoxies also 

need to be tested. 

Potted construction with many turns of conductor is also an option for multi

pole correctors other than the dipole, although it is not mandated as in the case of 

the dipole corrector. All the above considerations apply to any epoxy-potted cor-
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rector. Thus achieving average current densities of 300 A/mm2 and SSC strength 

correctors may be possible for epoxy-potted nested correctors; however extensive 

prototype testing will only give the answer. 

Another approach to SSC corrector design is to un-nest the correctors. As 

noted above the Tevatron correctors achieved 80% of short sample in unnested 

configuration. This is a factor of three gain over the nested configuration. Using 

kapton as insulation will provide more of a gain. This gain will have to offset the 

shortening of the correction magnets as they now complete for space along the 

beam tube. An attractive configuration for the sse primary corrector package, 

which consists of steering dipole, trim quadrupole, and chromaticity sextupole, 

is to share the available length half for the dipole and half for the quadrupole 

and sextupole. The dipole requires potted construction but the quadrupole and 

sextupole do not as they are powered in families. Calculation shows that a one 

meter long 2.5 T dipole, using 0.020-inch conductor with a copper to supercon

ductor ratio of 1.8 to 1, will require only 50% of short sample for a 6.5 mm thick 

coil. The field of the dipole is much enhanced by the closeness of iron. The 

quadrupole and sextupole can be constructed using a construction technique em

ploying minicables. This technique has been used successfully at Fermilab for 

the construction of 1000 A low beta quadrupoles. This technique uses cable and 

collar techniques that can achieve high fields. Using it on nested magnets will re

quire prototyping. However it is a feasible option. If the minicable technique does 

not work epoxy potting and wound conductor can be tried with possible gains 

in fraction of short sample achievable in the absence of the strong dipole field. 

Sequential placement along the beam line is an option that will be investigated 

in the prototype program. 

In summary engineering considerations for lumped correctors should not at 

this time place any restrictions on the correction scheme adopted. It is felt that 

the strengths required for the SSC can be achieved. The strengths of the steering 

dipole and sextupole correctors will provide the greatest challenge. As mentioned 

previously a lumped correctors prototype program has begun to investigate cor-

54 



'"1 

7 
(b 
("l 
M-

~ 0 ..... '"1 
()q 

~ .::: 
'"1 0-(b '"1 
I--' 

..... 
("l 

I--' ~ 
I--' 

M-..... 
0 
~ 

6 

2.0em Dipole Field 
~ J=300Nmm2 -

/ 1.75cm 
Fe@5cm 

.K' .... 

--!::. 
4 

"tJ 
] 

"" II.. 

"" 
ca 3 .. 
C 
G 
0 

~ ~ 
V 

~ 
~ 

~ 
1.50cm 

P" . 

~ 1.25 em .,.. -

~ ~ 
~ .................... 

L---" -
~ 

1.00cm 

-------- ---
~ 
~ -- 0.75 cm 

5 

2 

~ 

..- ......--a-~ ...-1 

- - 0.50cm 

-
~ 

"" 0.25cm 
"" .:. 

"" .:.. -

o 
2 3 4 5 

Inner radius (cm) 



1.2 

~ "0-
Quadrupole 

~ 1.50cm J=300Alm m2 
1.0 

~ 
Fe@5cm 

~ 1.25 em .. --- -
0.8 

..... 
E 
u 

~ 

~ 
~ ---- 1.00em 

.... ~ 

@) 
0.6 c.n 

0) t:-
~ 
~ 

i'a- -a- 0.75 em 
oo - - -'i 
u: 

0.4 ~ -.-. r-..- 0.50 em 
~ ~ 

0.2 
.~ 

0.25 em 

0.0 
2 3 4 5 

Inner radius (em) 



--l::-
E 
Co) 

,.. 

0"1 @I 
-l 

"'0 
"i 
ii: 
~ -., c:: 
DI 
CD 

::::e 

0.6 

0.5 .. -. 

~ '--
0.4 ~ '" ~ ~ 

'" 0.3 ~ 
"\ 
~ 

0.2 
.~ 

.~ 

0.1 

0.0 
2.0 

......., 

Correction Sextupole -_. 
J=300Almm2 

~ 
~ 
~ 
~ t=2.Ocm 

" ~ ~ 
~ 

~ -"-""i t=1.5cm 

" ...... 
~ ~ r----- t=1.Ocm-

.~ 
.~ 

.J-..... 
.~ 

.~ 

t=O.5cm 

3.0 4.0 

Inner coli radius (em) 



-. ... -
E 
u 
.... 

Q1 
@J 

00 

" "i 
u: 
..2 -e 
c 
C) 
ca 
~ 

0.2 

--

\ 

\\ -\ 
0.1 

" \ 

0.0 
2.0 

----f-. 

\ 
I\. 

\ ~ 
~ 

"\ 

.~. 

~ 

Correction Octupo/e 
J=300Almm2 

'" ~ ~ ~ 
~ ~ t=1.Scm 

.~ 
~ 
~ 

.~ ~ ~ t=;-Ocm I 
~~ 

.""--t ........ I I 
t=O.Scm 

I I 
3.0 4.0 

Inner coli radius (em) 



0.07 

\ 

\ 
0.06 

0.05 

-... .... 
E 
u 

0.04 .,.... 

o-<@I 
~"O 

'i 
:;: 

0.03 
u 
;: • c 
0) 
as 

:::e 
0.02 

\\ 

~ .\ 
.~ \\ 1\ Correction Decapole 

\ \ ~ J = 300 A/mm2 

\ ~\ '\. r'\. 

\ \ 
~" " .'" " ,,~ ~ 

0.01 

.~ " ~ ~ t=1.Scm 
........... ~ ... ......-_. ........, 

~ .~ ~ 
t=1.0cm 

.~ il- I I 
....,. I I 

t=O.Scm 
0.00 • • 

2.0 3.0 4.0 

Inner coli radius (em) 



11.2 How MUCH STRONGER ARE DIPOLE CORRECTORS, QUAD TRIMS, AND 

CHROMATIC SEXTUPOLES, WHEN LOCATED AT "GAUSSIAN" LOCATIONS? 

In this section we discuss the impact of moving correctors from F and D 

locations to G locations. These letters refer to lattice locations which are defined 

in Appendix A. F(D) labels spool-pieces beside F(D) quads, and G labels points 

1/5 and 4/5 along half-cells, which are close to the Gaussian quadrature points 

and thus give the best compensation with two correctors per half-cell. Because 

the number of corrector locations is being doubled, the strength at each corrector 

location would be halved, except that moving correctors from points of maximum 

f3 tends to reduce their "effective" strength. For the calculations that follow the 

required strengths will be quoted as ratios, somewhat greater than one, of the 

strength required at G to that required at For D. As just mentioned, the actual 

strength at a G location will be reduced by a factor of two from that, because 

there are twice as many elements. 

These strengths are needed as input to a determination of whether the im

proved performance of placing correctors in optimal locations justifies the cost of 

putting them there. 

Because x-steering correctors in the CDR design are located only at points of 

maximum i3x, and their effective strengths are proportional to $x, when moved 

in-board, their required strengths are are increased by the factor v'f3xF/f3xG = 

1.16. The same calculation is valid for y. Operational simulation of orbit flat

tening using elements at G locations (assuming that the beam position monitors 

remain at the quads) was found to be satisfactory. 

Trim quadrupoles: for tune variation along the tune diagonal, 8Qx = 8Qy, 

which is the worst case, the F-goes-to-G required strength ratio penalty is 1.67. 

For tune variations orthogonal to that, the correctors no longer fight each other, 

and the ratio is 1.19. 

For chromaticity compensation the D sextupoles are stronger than the F 

sextupoles (by about a factor of two) because they sit at points of low dispersion, 
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beside vertically focusing quads. The strength penalty of moving them inboard 

to the G location is 1.44. For the F sextupoles the penalty factor of moving to 

G is 1.93, which still leaves them weaker than the other sextupoles. 
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12. Conclusions and Recommendations For Further Studies. 

As described in the abstract, the main function of the study described in 

this report has been more to analyse options than to choose among them. At 

the same time, the shear complexity of the problem has forced us to make many 

non-controversial decisions in steering our way through the multi-dimensional 

parameter space. These have been described and will not be repeated. Here we 

will comment on somewhat more general questions. Some of these comments 

will be largely repetition, for emphasis, of points made previously in the report; 

others will be "indications" ("conclusions" would be too strong a word, "impres

sions" too weak) of expected SSC performance as it has been simulated in the 

investigations of this report. Some of the issues are controversial (mainly because 

they are difficult). For that very reason, and because they are of obvious impor

tance, it is appropriate to review what has been learned. Since any sensible plan 

for future study should concentrate on further study of precisely those questions 

which are both important and controversial, this discussion leads naturally to 

recommendations for further study. 

The discussion can be organized around the following questions, all of which 

will be more tightly specified as they are answered in the following paragraphs: 

(i) Should field compensation be performed with distributed (bore-tube) coils, 

or with lumped coils? 

(ii) Can the effects of systematic errors on global machine performance be ad

equately compensated? 

(iii) Can random errors be compensated satisfactorily? 

(iv) How well have CDR projections held up? 

(v) What is the most critical issue the study has identified? 

(vi) Based on simulations so far, will the operational performance of the SSC 

be satisfactory? 
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(vii) What is the "degree of conservatism" in the present design? 

(viii) What design changes are recommended? 

(ix) What issues have been left out? 

The first of these questions has been intentionally posed naIvely, to permit 

the answer to include an obvious point: it has always been clear that either dis

tributed or sufficiently fine-grained, lumped compensation can yield satisfactory 

results, as far as accelerator theory is concerned. Deciding between them de

pends on administrative weighting of various factors: manufacturing feasibility, 

desirability of separating functions, preserving flexibility, cost, operational ease, 

and so on. Most of these factors are outside the province of this working group. 

In particular, regarding operational issues, a correction scheme that is too so

phisticated or requires beam or magnet measurements that are impractical will 

be risky from the point of view of reliable machine operation. Whether a particu

lar correction scheme might be operationally impractical has not been addressed 

in these studies, except in the "gut reactions" of the members of the working 

group. It should be kept in mind that other, more direct methods of increasing 

the aperture, such as increasing the injection energy or enlarging the coil diame

ter, could be preferred from these, broader considerations, although no technical 

results in this study has made this consideration compulsory. An assignment for 

the working group has been to generate input for a broader comparison by ze

roing in on one or more simple, economical, and practical lumped schemes, that 

yield performance comparably good to that achievable with the CDR distributed 

scheme. Two lumped schemes have resulted from this screening, each having two 

lumped elements per half-cell. Neither scheme yields performance superior to the 

distributed scheme, but the differences are small; small enough to permit us to 

claim to have completed that assignment successfully. 

Systematic multi pole errors have a large effect upon global properties like 

chromaticity. It has been found, in the absence of other effects, that compensa

tion has been straightforward, even using "remote" compensation schemes having 
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correctors many half-cells away from the errors being compensated. It is found, 

however, that performance of such remote schemes is degraded by the simultane

ous inclusion of other errors, notably random multipoles and closed-orbit errors. 

One form of remote scheme, common in existing accelerators, called "harmonic 

compensation" , has not been investigated. It perhaps should be, but the results 

of the present study suggest that such schemes will be similarly degraded by 

other errors. 

Within the guidelines of the CDR, compensation of random errors has also 

been found to be satisfactory, with compensation of just b2 reducing the "smear" 

to about 5% within the "needed aperture". Nothing in this study bears on the 

question of what constitutes a tolerable level of smear. 

To the extent comparisons have been made, projections of the CDR have 

been largely born out. Examples are closed-orbit, tune, and chromaticity adjust

ment as anticipated there. In particular, the correction with b2 , b3, and b4 coils 

mounted on the bore-tube has permitted the compensation of both systematic 

and randoms as well as any other scheme studied. The remote, lumped elements 

present in that design have been used for successful remote compensation, but the 

same reservation made previously about remote compensation suggests replacing 

the remote elements of the CDR design. In principle, even random errors could 

be compensated to some degree by those remote correctors, but no practical way 

of doing this has been found (nor really looked for seriously). 

One important issue identified in the study has been the interplay of differ

ent errors which complicates the task of compensation. This complication makes 

itself progressively more important as the simulation includes more effects. Most 

noticeable so far have been difficulty in decoupling, increases in smear, and dete

rioration of remote compensation schemes when closed-orbit errors are included 

realistically. 

As well as projecting ultimate performance it is important to investigate the 

operational practicality of diagnostic and adjustment schemes. According to the 
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simulation, compensation of small-amplitude behavior (mainly as a function of 

momentum) has been shown to be quite feasible, but large amplitude behavior 

has not yet been adequately investigated. 

It would be valuable to quantify the "safety factor" in the SSC design, but 

that is very difficult and the present study has concentrated more on relative 

performance than on absolute performance. Certainly it has been found to be 

necessary to compensate more field errors than has been true of existing accel

erators. With modern diagnostic data collection and processing there exists a 

somewhat enhanced capability of performing such tasks compared to that avail

able when existing machines were built. Considerable progress has been made 

in developing, practising with, and assessing this enhanced capability but much 

remains to be done. 

As has been stressed repeatedly, this report has been limited"to a fraction of 

the considerations needed to motivate important changes in the CDR. Estimates 

have been given of the increased safety margin which could be "purchased" by 

increasing the injection energy and/or by increasing the bore radius of the dipoles. 

The latter would help primarily by improving the convergence of the multipole 

series, thereby reducing the importance of higher multipoles and reducing both 

the number of compensation elements and their criticality. To illustrate this 

reduced multipole sensitivity, we project that an improvement factor of 2.1 in 

the "worst" higher multipole effect found in our study would accompany a 25% 

enlargement in bore radius. 

Important issues that have been left out include quadrupole errors, effects of 

intersection regions (even if ideal, they complicate the optics and orbit control 

and double the chromaticity; when not ideal, errors in those regions tend to be 

magnified at least for colliding beam optics), and field errors that are neither 

completely random nor completely systematic (due, for example to temperature 

variations around the ring, or to gradual drifts with time in the manufacturing 

processes, and drifts and randomness in persistent currents). 
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Finally we turn to the question of what should be studied next. Certainly it 

does not follow that including all the things mentioned in the previous paragraph 

has the highest priority. It remains true that our limited resources should be 

focused on the regular arcs, until they are frozen, since they dominate the SSC 

cost. Clearly the IR design is important, especially in maximizing the luminosity, 

but these concluding comments will be restricted to the regular arcs. 

In this study the number of competing correction schemes has been much re

duced; probably enough so that the decision whether to use lumped or distributed 

correction can be deferred without making excessive the analysis burden of car

rying forward more than one option. It is however important to make the designs 

more detailed and realistic than has been true in this report; not so much because 

the details are important this early, but because it is the best way to motivate 

thorough studies. 

The operational simulation capability should continue to be enhanced. It is 

appropriate for this capability to be developed sufficiently that it can be applied 

to all operational questions. The current operations simulation can be applied 

to the problem of decoupling of the lumped schemes with closed orbit errors. It 

has already been invaluable in correcting the orbit in the studies of sensitivity to 

closed orbit errors, in studies of two families of correctors in the spoolpieces, and, 

earlier, in studying the operational steps necessary to correct the chromaticity 

given imperfect settings of the systematic correctors. [9] The latter studies must 

be repeated for schemes which pass all other tests. 

It is rather peripheral to this report but it should also be stated that this 

capability should be exercised on existing accelerators, as it was to some extent 

during the Fermilab experiment E778. That experiment is continuing, and ex

perimentation on diagnostic schemes is one competitor for the accelerator time 

available; no committment has been made. 

It seems sensible to concentrate on the question of closed-orbit sensitivities 

in the near future. At the present time the greatest uncertainties appear there, 
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although studies so far have not yielded any surprises. This is largely because 

the detailed studies have not yet all been completed and it seems appropriate to 

give that the highest priority. This should include analytical work to confirm, 

contradict, or correct the numerical studies. Efforts should be made to apply 

to this problem the analytical mapping technique presently being developed. 

The current simulations should be expanded to include off-momentum effects. 

Decoupling of the lumped schemes which had large coupling coefficients with 

closed orbit errors should be investigated. Design changes such as having more 

beam position correctors and monitors could also be considered, since those can 

reduce the r.m.s. orbit deviations, and thereby the size of the effects of feeddown. 
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APPENDIX A 

Effects of Systematic Nonlinear Multipoles. 

Suppose that a particular nonlinear dipole multi pole, b~), differs systemati

cally from zero. That is, summing over all N magnets in the ring, 

N 
~ "" b(~) = b(D) --'- o· n >_ 2 
N~nz n -;-, 

i=l 

(AI) 

(Systematic skew elements, an, will also have to be compensated but, being 

much smaller, they will be temporarily ignored.) Since b2 is the largest and most 

important multipole; it will be treated individually and discussed explicitly in 

this section. Some higher order multipoles (in particular b3 , b4 , and b6) are large 

enough to demand inclusion; they will be discussed, as a group, later. 

It is assumed that b~D) is constant along the full length of the dipole. That 
(D) (D) • 

IS, b2 (s) = b2 = constant, where S IS arc length measured from the half-cell 

center. To simplify the discussion it will also be assumed that the quadrupoles 

have no length and that the dipole completely fills each half cell. Of course, in 

actual calculations the correct lattice dimensions are used. 

Correction elements are described by the function b~C) (s). For zero-length 

elements these will include D-functions. This function can be chosen to reduce 

various effects to acceptable levels. Some of those effects will now be enumerated, 

more-or-Iess in order of importance, with the most basic first. 

(i) A particle passing through the half-cell will have accumulated, at the output, 

a horizontal angular deflection error given (to a lowest but thoroughly adequate 

approximation, and dropping a constant numerical factor) by !lx' (£/2), where 

(A2) 

where Xo and x~ are horizontal displacement and slope at the magnet entry point, 
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and similarly for y. This neglects focusing in the dipole, treats the dipole as a 

drift, with the straight-line, unperturbed orbit used to calculate the angular error. 

(ii) The corresponding vertical output deflection error is given by 

(iii) There will also be displacement errors given by 

£/2 

b:.x( R/2) . J b:.x' (s )ds 

-£/2 

£/2 

b:.y(R/2) = J b:.y'(s)ds 

-£/2 

(A3) 

(A4) 

(A5) 

Note that the four terms described so far are specific to the individual dipole 

magnet, and do not depend at all on any lattice functions at the position in the 

lattice that the dipole happens to be located. Compensating all these terms to 

zero would be equivalent to making the magnet perfect; all other formulas would 

then be superfluous. In that sense these are the most important terms, but it is 

unfortunately not practical to adjust them all to zero. 

(iv) The displacement error, b:.x(R/2), and the deflection error, b:.x'(R/2), can be 

combined to form an error of the Courant-Snyder[27] invariants: 

2xb:.x + 2x' b:.x' ;3; 
x2 + x'2;3; 

(A6) 

There is a corresponding formula for y. Unlike the previous quantities, these 

errors do depend on the lattice ,a-functions. When Eq.( A 6) is applied differ

entially to a thin element of the dipole, in lowest order, it is only the b:.x' term 
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which contributes to the variation of the Courant-Snyder invariant. The result

ing expression is approximately proportional to 6.x' as given by Eq.( A 2); the 

same correctors which suppress the slope error will suppress the Courant-Snyder 

invariant error. 

(v) The global quantities which respond most sensitively to systematic magnet 

multipoles, and are most deleterious to operations, are the horizontal and vertical 

chromaticities: 

l/2 

N J (D) (C) 
271" [b2 + b2 (s )],8x,y( S )1J( s )ds (A7) 

-l/2 

where, within a dipole, and again neglecting dipole focusing, the lattice functions 

vary as 

(vi) The leading nonlinear resonance driving-amplitude is proportional to 

l/2 

J (D) (C) 3/2 
[b2 + b2 (s)],8x cos(3~x(s))ds (A9) 

-l/2 

where ~x(s) is the betatron phase. This has only been written for reference; 

the factor cos( 3~x ( s )) varies so quickly over the half-cell that the granularity of 

compensation is usually too coarse for accurate local compensation. (This cloud 

has a silver lining: the same factor gives a strong global cancelling effect.) 

71 



72



APPENDIX B 

Compensation of Systematic Nonlinear M ultipoles. 

Of the effects analysed in Appendix A, all but the last (and least important) 

were described by formulas consisting of sums of terms of the form 

£/2 

J (D) (C) 
[b2 + b2 ( s ) 1 sP ds (B1) 

-£/2 

where P is a small integer. A natural approach to compensation is to choose 
(C) 

b2 (s) to make these terms small for values of p not greater than some value 

Pmax. That is 

£/2 

J (C) 
b2 ( s )sP ds ~ Ip (B2) 

-£/2 

where 

(D) 2(R/2)p+l 
Ip = - b2 P + 1 ' P even, (B3) 

=0, p odd. 

Fully-lumped schemes. The entire compensation can be performed using N L 

short lumped correctors, of lengths Li, located at s = Si, for i = 1,2, ... , NL. 

Eq. ( B 2) becomes 

P = 0,1, ···,pmax· (B4) 

As emphasized first by Neuffer, [4] these conditions are equivalent to numerical 

quadrature formulas. The two most promising candidate formulas are: 
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(i) Simpson's rule. 

1 J f(s)ds = ~[f( -1) + 4f(0) + f(l)] - O.Ollfiv(e) (B5) 
-1 

where fiv(e) is a fourth derivative evaluated somewhere in the range. It has 

usually been assumed, and this will be investigated further as part of the 

study, that the lumps on either side of a lattice quad (represented by the 

terms f( -1) and f(l)) in ( B 5) can be combined into a single lump. This 

is now indicated pictorially, labelling correctors F, D, or C, depending on 

whether they are beside F or D quads, or in the center: 

The correctors, D_ and D+, would be lumped together on one or the other 

side of the D-quad, and the F -correctors would be similarly lumped. The 

result is shown: 

I) F[ ][ ][ ]C[ ][ ][ ]) ( D[ ][ ][ ]C[ ][ ][ 1 (I; 
(ii) Gaussian quadrature. 

1 J f(s)ds = [f( -0.58) + f(0.58)] + 0.0074iV (O (B6) 

-1 

where fiv(e) has the same significance as in Simpson's rule. The excellent 

properties of this scheme were pointed out by Forest and Neuffer. [28] The 

reason it is somewhat more accurate than the Simpson formula, in spite of 

having fewer lumps (2 instead of 3), is that the abscissas ±0.58 are optimal. 

(In this connection, note also the comment above about combining end

correctors in the Simpson-Neuffer scheme.) Unfortunately, with 6 dipoles 
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per half-cell, as in the present sse design, those points are not accessible. 

With either 5 or 10 dipoles per half cell the points ±0.60 are accessible, one 

fifth of the way along the half-cell; it is expected that that is adequately 

close. Pictorially, indicating the lumped correctors by G: 

D [ ]G[ ][ ][ ]G[ ]) ([ ]G[ ][ )[ ]G[ ] ([ 

(It is known to be too constraining for all G-correctors to have the same strength, 

but the extra flexibility can be achieved remotely.) 
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APPENDIX C 

Sensitivity of the Chromaticity to Non-Optimal Corrector 

Location and Symmetry. 

We first estimate the chromaticity due to a given systematic sextupole coef

ficient b2. An ideal compensating coil would have strength -b2, (referred to the 

dipole field of the dipole on which it is exactly superimposed,) and that would 

exactly cancel the effect of the original error. If the corrector is translated a 

distance d along the beam line from its optimal position, there will be a residual 

chromaticity proportional, in lowest order, to d. A formula will be derived and 

applied to the SSC. First define symbols: 

n = total number of half cells (= 640) 

nn = number of magnets per half cell (= 6) 

~Ol = bend in one magnet = 27r / (nn n ) 

~X' = angular deflection due to sextupole 

= b2i27r(Xj3 + Erti)2/(nnn) 

where the particle has betatron amplitude x j3 and fractional energy offset E, at a 

point in the lattice where the dispersion is rti. Extracting the coefficient of the 

term proportional to xj3, which is the effective quadrupole strength of the error 

field, yields b2A7rErti/(nnn). Inserting this in a standard formula yields the tune 

shift ~l/ due to this quadrupole; that in turn yields the chromaticity 

(Cl) 

where the sum has been reduced to a sum over just the magnets in a single 

half-cell. Alternatively, this could be expressed as an integral 

£ 

~l/ 1 J 
-E =-e b(s)j?(s)rt(s)ds 

o 
(C2) 

~ < b2 >< j? >g< rt >a 
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where < f3 >g = VU3minf3max) = R/ sin ¢> 

and < 'f/ >a = 0.5(17min + 'f/max) ~< f3 >g /v 
(C3) 

are average values of the lattice functions; R is the length of the half-cell, ¢> 

is the phase advance per half-cell. Using SSC values, < b2 >= 7.4 X 10-4 , 

< f3 >g = 141m, and < 17 >a = 1.7m, yields 1774 as the value of the uncom

pensated chromaticity. (Taking € = 10-3 and dividing by 0.001 to express this 

-as elsewhere in this report- as a tune shift in units of 0.001 leaves this number 

unchanged. ) 

This is the gigantic chromaticity to be compensated. It should not be surpris

ing that slightly non-optimal compensation can leave a still-unacceptable chro

maticity, as we now estimate. Suppose all b2 compensation coils have the correct 

strength, b2 = -7.4units, but are systematically displaced along the beam line by 

a distance d from where they should be. The integrand of the integral by which 

the chromaticity is calculated will vanish over much of the range, but there will 

be a large contribution b2f3max17maxd/ R from one end, and a much smaller term 

from the other end which will be ignored. In the current SSC design the b2 bore

tube correctors are at one end of each magnet and have approximately half of 

the magnet length. Effectively then, they are displaced by d = 4m, from their 

ideal locations. Taking f3max = 324m, 17max = 4.0m, R = 100m, yields an error of 

384; that is, the error is only reduced to 384/1774=22% of its uncorrected value. 

This accounts for the large effects observed in Section 5.1. 

If the coils are displaced in the same direction in the next cell, as in BORCDR 

for example, then this error is largely compensated. This is the least extreme 

example of remote compensation, in which imperfection in one part of the lattice 

is compensated in another. Compensation such as this brings with it the risk of 

depending on features present in the ideal lattice which, owing to other sources 

of error, are not present in the actual lattice. It is explained in Appendix B 

that the local cancellation of certain error integrals (odd moments of s) depends 

on the corrections being symmetrically placed relative to half-cell centers. In 
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the case of BORCDR this is not satisfied; that accounts for the large half-cell 

chromaticity. (This has not been studied extensively, but so far cancellation on 

the full-cell basis has been found to be sufficiently local to protect against global 

imperfection.) The elegance of Gaussian compensation schemes, of which G A VI, 

having two lumps per half-cell, is the simplest, is that they simultaneously cancel 

odd moments of s (by symmetry) and even moments (by placement,) thereby 

achieving truly local, lattice insensitive, compensation. 
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APPENDIX D 

(a) Expected Field Errors and Their Reliability. 

The multipole errors used in this corrector study are those due to geometric 

factors and to persistent current effects. Yoke saturation reduces the normal 

sextupole coefficient ~ by something in the range of 0 to -2 units, depending on 

the design of the iron yoke, but since this change is small relative to that due to 

persistent currents it is not specifically included in this study. Saturation effects 

on the other multipoles have been measured to be much smaller (0.1 unit or less). 

The geometric multipoles for the sse dipole magnets are taken from the spec

ifications listed by Chao and Tignerf!S] , modified slightly to reflect the change 

to the 90-degree lattice. [29] 

These multipoles are listed in Table D.l. The persistent current multipoles 

in the dipole magnets at the injection field of 0.331 T are based on calculation 

by Green [30] and are also listed in Table D.l. The total systematic multipole 

coefficients used in the present calculations are a judicious combination of the 

geometric, systematic and the persistent-current coefficients and are separately 

listed in Table D .1. 

The reliability of these geometric multipole projections can be judged to some 

extent by comparing with the measured coefficients [31] of the various sse model 

dipole magnets, which also are listed in Table D.l. However, in making such 

comparisons, one must keep in mind that in the model magnets several coil cross 

sections are represented and probably do not include the final cross section, so 

that the measured geometric systematic and r.m.s. variations of the allowed 

coefficients (b2' b4 , b6 , bs, . . .) are probably not representative of the final dipole 

magnet design. Also listed in Table D.l are the average (and r.m.s. variations) 

of the allowed persistent current multipoles [32] measured at 0.33 T in five 1.8-m 

(BNL) and eight 1-m (LBL) model magnets made with 5/-l filaments and scaled 

to coils with 6/-l filaments with Jc = 2750 A/mm2. 
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Table D.1 Magnetic Multipole Coefficients Used in the 

CEWG Study. Units are 104 Bo at 1 cm. 

at 
I a2 a3 a4 a5 a6 a7 as 

systematic spec. 0.2 0.1 0.2 0.2 - - - -

r.m.s. variation spec. ± 0.7 ± 0.6 ± 0.7 ± 0.2 ±0.2 ± 0.1 ± 0.2 ± 0.1 

7 long models, syst. 0.55 .0.3 0.09 0.02 0.02 -0.01 0.01 -0.01 

7 long models, r.m.s. var. ± 0.76 ± 0.25 ± 0.16 ± 0.06 ± 0.04 ± 0.02 ± 0.02 ± 0.02 

6 1.8-m models,* syst. 0.00 0.08 -0.09 0.02 0.01 0.01 0.01 0.01 

6 1.8-m models, r.m.s. var. ± 1.1 ± 0.40 ± 0.43 ± 0.10 ± 0.06 ± 0.02 ± 0.02 ± 0.01 

6 1.0-m models, syst. 0.08 0.62 0.08 0.08 -0.01 -0.02 0.00 0.01 

6 1.0-m models, r.m.s. var. ± 1.8 ± 0.66 ± 0.36 ± 0.04 ± 0.08 ± 0.02 ± 0.01 ±0.01 

bt 
I b2 b3 b4 b5 b6 b7 bs 

systematic spec. 0.2 1.0 0.1 0.2 0.04 0.07 0.1 0.2 

r.m.s. variation spec. ± 0.7 ± 2.0 ± 0.3 ± 0.7 ± 0.1 ± 0.2 ± 0.2 ± 0.1 

persistent-current calc. & - -7.9 - 0.75 - -0.14 - -

total systematic used 0 -7.4 0.1 0.64 0 -0.13 0 0 

7 long models,# syst. 0.76 - 0.04 - 0.00 - 0.00 -

7 long models, r.m.s. var. ± 1.6 - ± 0.07 - ± 0.02 - ± 0.01 -

6-10 1.8-m models,*syst. -0.11 1.05 -0.02 0.27 -0.01 -0.08 -0.01 0.03 

6-10 1.8-m models, r.m.s. var. ± 1.1 ± 1.8 ± 0.17 ± 0.43 ± 0.07 ± 0.09 ± 0.02 ± 0.05 

6 1.0-m models, syst. -0.03 3.3 -0.10 0.02 -0.04 0.09 0.01 0.00 

6 1.0-m models, r.m.s. var. ± 1.5 ± 1.9 ± 0.13 ± 0.93 ± 0.07 ± 0.10 ± 0.01 ± 0.02 

5 1-m & 8 1.8-m models - -7.6 - 0.79 - -0.23 - -

persistent-current meas. - ± 1.8 - ± 0.33 - ± 0.14 - -

t In the CEWG study, systematic and random al and bI were set to zero. 

& M. A. Green, private communication, May 88, scaled to 6ft filament, Jc = 2750 A/mm2 
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at 5T, 4.2K. Lower values were used early in the CEWG study. 

# The allowed normal multipoles were not averaged because the 7 long mag

nets included three different coil designs. 

* DSS9 data excluded (NC9 cross section). 
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(b). Multipole Values Appropriate for Doubled Injection Energy 

and for Bore Diameter Enlargement From 4cm to 5cm. 

Table D.2 Table of Multipoles for CEWG Consideration 

Normal Multipoles 

Systematic Random 

Geometric Persistent Current 

1 Tev Inj. 2 Tev 

Multipole 4cm 5cm 4cm 5cm 4cm 5cm 4cm 5cm 

bI 0.2 0.15 - - - - 0.7 0.56 

b2 1.0 0.63 -7.4 - 4.7 - 3.0 - 1.9 2.0 1.36 

b3 0.1 0.054 - - - - 0.3 0.18 

b4 0.2 0.092 0.64 0.30 0.20 0.09 0.7 0.35 

bs 0.04 0.016 - - - - 0.1 0.043 

b6 0.07 0.024 - 0.13 - 0.044 - 0.050 - 0.017 0.2 0.073 

b7 0.1 0.029 - - - - 0.2 0.063 

bs 0.2 0.050 - - - - 0.1 0.027 

Skew Multipoles 

al 0.2 0.15 0.7 0.56 

a2 0.1 0.06 0.6 0.41 

a3 0.2 0.11 0.7 0.41 

a4 0.2 0.09 0.2 0.10 

as - - 0.2 0.09 

a6 - - 0.1 0.037 

a7 - - 0.2 0.063 

as - - 0.1 0.027 
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Notes: 

(1) Systematic-geometric scaled as (Rc)n+l for constant errors. 

(2) Systematic-persistent scaled as (Rc)n+l for constant filament diameter. 

(3) Random multipoles scaled as (Rc)n+~ where Rc is the effective coil radius, 

taken as 3cm for 4cm inner diameter (ID) dipole and 3.5cm for the 5cm ID 

dipole. 

(4) Energy dependence of persistent-current multi poles taken from theoretical 

calculations by M.A. Green. [30] 
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APPENDIX E 

Effects of non-uniform Cells. 

The standard 90° lattice is composed of uniform cells with one large gap of 

6.57 m for a spoolpiece on the clockwise side of the quadrupole in each half cell, 

with a 0.8 m inter-magnet gap everywhere else. These gaps are between magnetic 

effective lengths. This appendix considers the consequences of introducing an 

additional gap in the center of each half cell of a cell, once every Nth cell. 

Two different cases were studied - one in which every 10th cell had a gap of 

4.1 m between the magnetic ends of dipoles 3 and 4 in each of its half cells, and 

another which had similar gaps every 9th cell. The effects on the linear optics 

of these perturbations were measured by examining the beta and dispersion

function distortions over the unperturbed case. The results are that the N = 10 

cell case is completely unsatisfactory, due to the lO-cell tune, while the N = 9 cell 

case is tolerable in terms of its linear optics properties. Plots of the beta and eta 

functions for the perturbed 9 and 10 cell cases are shown below, and Tables E.l 

and E.2 give the beta and eta distortions for the two cases for a variety for cell 

tunes. The current sse design calls for a maximum tuning range of ±1 unit of 

tune per arc, .corresponding to a maximum beta distortion of 6% for N = 9. The 

dispersion distortion is similar. These distortions would necessitate re-matching 

the optics of the straight sections, but would not seriously complicate the lattice 

design. 
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Table E.l 

Maximum cell lattice function values for nine regular cells and for 

nine regular cells plus one cell with two 4.1 meter gaps as a function 

of the ten-cell tune. 

Structure Vx Vy (3x (3y 'fJ 

10 Cells 2.492 2.492 388m 388m 3.05m 

9 + 1 Cell 2.485 2.492 445 912 3.12 

2.476 2.476 420 522 3.13 

2.439 2.439 402 441 3.20 

2.349 2.349 396 401 3.38 

Table E.2 

Maximum cell lattice function values for nine regular cells and for 

eight regular cells plus one cell with two 4.1 meter gaps as a function 

of the nine-cell tune. 

Structure !:!..Q/arc Vx Vy (3x (3y 'fJ 

9 Cells 0 2.243 2.243 388m 388m 3.05m 

8 + 1 Cell 1.9 2.362 2.362 420 427 2.91 

1.0 2.301 2.301 409 412 3.03 

2.243 2.243 403 402 3.14 

-1.0 2.181 2.181 401 393 3.28 

-1.9 2.124 2.124 402 395 3.44 
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APPENDIX F 

Numerology for the Remote Placement of Systematic Correctors. 

The bn correctors in a remote correction scheme, b3 , b4 and b6 , are placed 

in a configuration which repeats itself every N cells, where N is chosen so as to 

avoid resonance build-up from the correctors. It is assumed that N is the same 

for n = 3, 4 and 6, even though all three correctors may not be combined into 

a single hardware package - and the three configurations may even be different 

from one another. What is a good value for N? 

If the same pattern of bn correctors is repeated every N cells, then one of 

several terms which distorts transverse phase space dynamics is proportional to 

where 

Snkl = bn L exp[ij N( k6¢> H + 16¢>v)] 
j 

i =V-l 
j=0,1,2 ... 

k =n + 1, n + 1 - 2, ... (n + 1)mod2 

. n+1 . n+1 
1 =mteger(-2-)' ... 2,0, -2, ... - mteger(-2-) 

with k + III :s; n + 1 

(F1) 

(F2) 

In the case at hand the phase advances per cell, 6¢> Hand 6¢>v, are both 90 

degrees, or 7r /2, so that 

S b" [2' .N(n + 1- 2m)] 
nm = n ~exp 7rZJ 4 (F3) 

J 

where m = 0, 1, 2 ..... integer( nil) . 

Notice that the same result would be obtained if the correctors were skew, 

except for changing bn to an. 
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Resonant build up of the vector Snm is avoided by ensuring, wherever possible, 

that the phase of the vector does not remain constant as j increases, stepping 

from corrector to corrector. There is no resonant build up IF 

1) N mod 4 =f. 0 AND 

2) N mod 2 =f. 0 OR (n + 1 - 2m) mod 2 =f. 0 AND 

3) (n + 1 - 2m) mod 4 =f. 0 

If n is even (n mod 2 = 0), then conditions 2) and 3) are automatically 

satisfied, leaving only the condition that N not be divisible by 4. 

If n is odd (n mod 2 = 1), then conditions 1) and 2) are only satisfied if N 

is odd. Even so, condition 3) is only satisfied for every other value of m. For 

example, when n = 3, the terms with m = 0 and m = 2 can not be suppressed. 

The conclusion so far, then, is simply that the best choice for N is ANY ODD 

NUMBER, a choice which suppresses all distortion terms for even-n correctors, 

but which only suppresses half of the odd-n corrector terms. 

The following argument shows that this conclusion is not modified when 

longitudinal phase space is included. A test particle with an energy offset of ti = 

tiE / E and a horizontal offset of x passing through a corrector with a dispersion 

function of ", receives a horizontal angular kick of 

Here k is a constant of proportionality. The additional terms in the binomial 

expansion, such as nC",ti)xn - 1 , show that bn correctors masquerade as lower order 

correctors, such as bn -1, in the presence of energy errors. This effect is often 

referred to as the "feed down" phenomenon. The relative strength of the feed 

down terms is fixed by the magnitude of ",ti, that is, by the magnitude of the 

energy offset. As a crude rule of thumb, the feed down terms are all commensurate 

for large values of ti in the sse. Regardless of whether n is even or odd, then, a 
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set of bn correctors will excite both even and odd order distortions, one quarter 

of which will receive no suppression from the addition of vectors with different 

phases. The best strategy is still to choose N odd, however. 

Finally, consider the effect on the linear lattice of a repeating pattern of 

additional "drift" lengths every N'th cell for the placement of systematic remote 

correctors. In their effect on betatron functions, these drifts act like b2 correctors 

in the formalism developed above, while they have a b1 effect on the dispersion 

function. It is apparent that if N divides by 2, then erroneous betatron waves 

are coherently excited, and that if N divides by 4, then dispersion waves are 

coherently excited. If N is odd, however, then both kinds of error wave are 

suppressed. 
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APPENDIX G 

A Naive Estimate of Smear Due to Displaced Lumped Correctors. 

The perturbation in the horizontal amplitude a measured at a reference point 

with /30 due to a nonlinear magnet is 

where 

00 

lia = ac L bnxn 

n=2 
(Gl) 

(G2) 

Here /3c and Lc are the beta function and length of the magnet, and the bn follow 

the conventional TEAPOT definition. On one particular turn, the displacement 

of a particle of amplitude a at the magnet is 

x = ay' /3c/ /30 sin W (G3) 

Following the spirit of SSC-20, the smear is estimated from the total perturbation 

due to N such random magnets, encountered in one turn. Very loosely, then, the 

smear S is 

where 

< /ja2 >t 
S';::j2---

a 
00 

= 2m a c L CnO'bnan-l 

n=2 
/3 n/2 

en = (/3~) < sin
2n W >t 

= (/3c)n/2((2n)!)~ 
/30 2nn! 

(G4) 

and O'bn is the standard deviation of bn . This estimate inevitably handles reso

nance effects incorrectly, and amounts to little more than dimensional analysis. 
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Now consider the magnets to be lumped correctors, with only one systemat

ically set non-zero value of bn , so that the O"bn are normally all zero. Non-zero 

values of O"bn are due to first order feed down through random displacements, d, 

of the correctors. Then it is reasonable to replace 

(G5) 

(This seems appropriate for d ~ a, and is presumably simple to prove, but is 

unconfirmed.) Thus, 

(G6) 

where O"d is the standard deviation of the displacements. Note that if these 

displacements are.to be considered as due to closed orbit errors, then there should 

be an extra factor of ..j /3e1 /30 included here. So, the approximate smear due to 

one such set of correctors is expected to be 

(G7) 

The periods in this expression separate four terms of different character. The 

first term is constant over all corrector sets, except, perhaps, for a factor of v'2 
or so. The second term, ac , depends only on the corrector set location. The third 

term depends on the corrector set and on the n value of the multipole, while the 

fourth term has been pre-scaled to a typical amplitude of 5 millimeters. 

For example, in BFUL5C there are F, D, and M (for middle) correctors in 

two half cells, every fifth cell. If the half cell length is 115 metres, and the cell 

phase angle is 90 degrees, then /3F (=/30), /3M, and /3n are 393, 173 and 67 metres, 

respectively. Take O"d = 1 millimeter, and (BoL/Bp) = 0.0147, 0.0589, 0.0147 for 

F, M, and D corrector sets, with N = 128 for 640 half cells in a complete sse. 
Using b3 = -10.0m-3 and b4 = -6.4· 103m-4, then the contributions to the 

smear at an amplitude of 5 millimeters are estimated to be 
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n corrector type 5mm smear, % 

3 F 1.20 
3 M 1.40 
3 D .08 
4 F 4.68 
4 M 3.65 
4 D .14 

These partial smears, when added in quadrature, are in reasonable agreement 

with the total smear found from simulation. 
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