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(1) Introduction

This study was undertaken to compare the features and performance of the three principal
numerical approximations to partial differential equations (PDEs), finite differences, finite elements
and finite volumes. We made this comparative study by applying these three approximations to a
single parabolic test problem, Fourier’s second law (the heat conduction equation) with Dirichlet and
Neumann boundary conditions, and boundary conditions of the third type. The results of this study
should in general provide some insight into the characteristics and performance of the three methods of
approximation to PDEs which are first order in time and second order in space. The implementation
of the three approximations is done consistently within the numerical method of lines format so that
results can be compared on this consistent basis. Also, the derivation of the approximating ODEs is
done at a tutorial level, and the method of lines programs to solve the approximating ODEs are
provided in the body of the discussion or in appendices so that the reader will know exactly how we
performed the calculations. All of the software to produce the solutions we discuss is available from

the authors.

(2) The Test Problems

We now consider the finite difference, finite element and finite volume solutions of Fourier’s

second law (the one dimensional heat conduction equation)

llt = DUx_x (l)
with the initial condition
u(x,0) = g(x) (2)
and either Dirichlet bounditions
u(xl,t) = fl(t), u(xN,t) = fN(t) (3)(4)
or Neumann boundary conditions
ux(xlvt’) = hl(t)s Uy (xNvt') = hN(t‘) (5)(6)

{boundary conditions of the third type will be considered subsequently}.

In particular, we use the special cases Xy = 0, XN = 1 with



Case [:

u(x,0) = sin{#x) (7)

u(xt) = 0. ulxyt) = 0 | (8)(9)
Case 2:

wo={ 515 ()

ux{xq,t) =0, ug(xpt) = 0 {11)(12)

Thus, Case 1 involves Dirichlet boundary conditions and Case 2 involves Neumann boundary

conditions. For Case 1, the exact solution is simply
-7r2t .
u(x,t) = e " “sin(mx) (13)

which is used {o compute the error in the three numerical solutions (from the three methods of

approximation).

The solution to Case 2 is derived in Appendix 1 as

X ks
ufx,t) = Z Cpe ™™ cos(Apx) (14)
n=0
where Ay = 0, Cg = 1/2, Ay = n7, Cp = (33)sin(0.5n7), n = 1,2, 3, . . . A function SERIES to

calculate u{x,t) from equation (14) is included with the programs for the finite difference, element and
volume numerical solutions of equations {1), (10), (11) and (12) for comparison of these numerical
solutions with the analytical solution {equation {14)}. Also, we can compute the total energy of the
system, which should remain constant because of the “insulated boundary conditions”, equations (11)

and (12), and observe the approach to the steady state solution u{oco,t) = 1/2.

For each of the three spatial approximations {finite differences, elements and volumes), we use
a uniform spatial grid of 50 sections, and the same ODE integrator with the same error tolerances, so
that differences in the computed solutions result only from the three spatial approximations. We now

consider each approximation applied to the two test problems. Generally, the approach is to discretize
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the spatial derivative, uxy, in equation (1), by one of the three approximations, then integrate the
resulting system of ODEs with respect to t. The initial conditions for the ODEs are set in subroutine
INITAL, the ODE derivatives are computed in subroutine DERV and the solution is printed in
subroutine PRINT. These three subroutines are in Program 1 for the first test problem (Case 1,

equations (1), (7), (8) and (9))

SUBROUTINE INITAL

THE TEST PROBLEM FOR DIRICHLET BOUNDARY CONDITIONS IS

U = DxU (1)
T XX

U(X,0) = SIN(PIxX/L) (2)
U(0,T) = 0, U(L,T) = O (3) (4)

WITH THE EXACT SOLUTION
UE(X,T) = EXP(-(PIxx2/Lx*2)*T)SIN(PI*X/L) (5)

THE FOLLOWING CODE COMPUTES A NUMERICAL SOLUTION TO EQUATIONS
(1) TO (4) BY

(1) FINITE DIFFERENCES
NORUN = 1, THREE POINT DIFFERENCES
NORUN = 2, FIVE POINT DIFFERENCES
(2) FINITE ELEMENTS
NORUN = 3, LINEAR FINITE ELEMENTS (HAT FUNCTIONS)
(3) FINITE VOLUMES
NORUN = 4, EQUAL VOLUMES
IN EACH CASE, A 51 POINT GRID IS USED. THE NUMERICAL SOLUTION,
THE EXACT SOLUTION, EQUATION (5), AND THE DIFFERENCES BETWEEN
THE TWO SOLUTIONS ARE PRINTED SO THE RELATIVE ACCURACIES OF THE
THREE APPROXIMATIONS CAN BE ASSESSED.
COMMON/T/ T, NSTQOP, NORUN

SOLUTION OF EQUATIONS (1) TO (4) BY FINITE DIFFERENCES
IF ((NORUN.EQ.1) .0OR. (NORUN.EQ.2))CALL INIT1
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SOLUTION OF EQUATIONS (1) TO (4) BY LINEAR FINITE ELEMENTS (HAT
FUNCTIONS) '
IF (NORUN.EQ.3)CALL INIT2

SOLUTION OF EQUATIONS (1) TO (4) BY FINITE VOLUMES
IF(NORUN.EQ.4)CALL INIT3

RETURN

END

SUBROUTINE DERV
COMMON /T/ T, NSTOP, NORUN

SOLUTION OF EQUATIONS (1) TO (4) BY FINITE DIFFERENCES
IF( (NORUN.EQ.1) .OR. (NORUN.EQ.2))CALL DERV1

SOLUTION OF EQUATIONS (1) TO (4) BY LINEAR FINITE ELEMENTS (HAT

FUNCTIONS)
IF(NORUN.EQ.3)CALL DERV2

SOLUTION OF EQUATIONS (1) TO (4) BY FINITE VOLUMES
IF (NORUN.EQ.4)CALL DERV3

RETURN

END

SUBROUTINE PRINT(NI,NO)
COMMON/T/ T, NSTOP, NORUN

SOLUTION OF EQUATIONS (1) TO (4) BY FINITE DIFFERENCES
IF( (NORUN.EQ.1) .OR. (NORUN.EQ.2))CALL PRINT1(NI,NO)

SOLUTION OF EQUATIONS (1) TO (4) BY LINEAR FINITE ELEMENTS (HAT
FUNCTIONS)
IF(NORUN.EQ.3)CALL PRINT2(NI,ND)

SOLUTION OF EQUATIONS (1) TO (4) BY FINITE VOLUMES
IF (NORUN.EQ.4)CALL PRINT3(NI,NO)

RETURN

END

Program 1: Subroutines INITAL, DERV and PRINT for Case 1 Test Problem

Note that these three subroutines merely call other subroutines for the implementation of the Case 1
test problem. Thus, INITAL calls (1) INIT1 to implement initial condition (7) (or (2) in the
comments) with finite differences (NORUN = 1 for three point approximations and NORUN = 2 for
five point approximations), (2} INIT2 for initial condition (7) with finite elements and (3) INIT3 for
initial condition (7) with finite volumes. Similarly, DERV calls DERV1, DERV2 and DERV3 to
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compute the ODE derivatives resulting from finite differences, elements and volumes, respectively,
applied to equation (1) with boundary conditions (8) and (9). Finally, PRINT calls PRINTL, PRINT2
and PRINT3 to print the solutions from finite differences, elements and volumes, respectively.
Subroutines INITAL, DERV and PRINT for the Case 2 test problem, equations (1), (10), (11) and
(12) are essentially identical. We now proceed to a discussion of the numerical methods and

subroutines for each of the approximations.

(3) Finite Differences

Solutions to the two test problems are computed by three point and five point finite differences
approximations that are discussed in detail elsewhere {Schiesser (1)]. Therefore, we consider only the

details of the computer program.

(3.1) Dirichlet Boundary Conditions

Subroutines INIT1, DERV1 and PRINT1 are listed in Program 2 (Case 1 test problem,
equations (1} and {7} to (9) with finite differences)

SUBROUTINE INIT1

SOLUTION OF EQUATIDNS (1) TO (4) BY FINITE DIFFERENCES
PARAMETER (N=51)

COMMON/T/ T, NSTOP, NORUN

1 /Y/ UM

2 JF/  UT(N)
3 /XG/ L, DX, X(N), PI
4 /1/ P

TYPE SELECTED VARIABLES AS REAL

REAL L

PI

PI=4.0+«ATAN(1.0)

LENGTH

L=1.0

GRID SPACING
DX=L/FLOAT(N-1)

INITIAL CONDITION (2)
DO 1 I=1,N
X (1)=FLOAT(I-1)xDX
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U(I)=SIN(PI+X(I)/L)
CONTINUE

INITIALIZE THE TEMPORAL DERIVATIVES IN COMMON/F/
CALL DERV

IP=0

RETURN

END

SUBROUTINE DERV1

SUBROUTINE DERV1 IS CALLED BY THE ODE INTEGRATOR TO DEFINE THE
ODES IN THE FINITE DIFFERENCE SOLUTION OF EQUATIONS (1) TO (4)

PARAMETER (N=51)

COMMON/T/ T, NSTOP, NORUN
/Y/ UN)
/F/ UT(N)
/XG/ L, DX, X(N), PI
/17 1P
TYPE SELECTED VARIABLES AS REAL
REAL L

DEFINE ARRAYS FOR THE SPATIAL DERIVATIVES
REAL UX(N), UXX(N)

BOUNDARY CONDITION (3)
U(1)=0.

UT(1)=0.

NL=1

BOUNDARY CONDITION (4)
U(N)=0

UT(N)=0.

NU=1

U BY THREE POINT DIFFERENCES
XX
IF (NORUN.EQ.1)CALL DSS042(0.,L,N,U,UX,UXX,NL,NU)

U BY FIVE POINT DIFFERENCES
XX
IF (NORUN.EQ.2)CALL DSS044(0.,L,N,U,UX,UXX,NL,NU)

EQUATION (1)

DO 1 I=2,N-1
UT(1)=UXX(I)

CONTINUE

RETURN

END
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SUBRODUTINE PRINT1(NI,NQ)

SUBROUTINE PRINT1 IS CALLED BY THE MAIN PROGRAM TO PRINT THE
FINITE DIFFERENCE SOLUTION OF EQUATIONS (1) TO (4)

PARAMETER (N=51)

COMMON /T/ T, NSTOP, NORUN
/Y/  U(N)
/F/  UT(N)
/XG/ L, DX,  X(N), PI
/1/ 1P

TYPE SELECTED VARIABLES AS REAL
REAL L, UE(N), DIFF(N)

CALCULATE THE EXACT SOLUTION, AND THE DIFFERENCE BETWEEN THE
NUMERICAL AND EXACT SOLUTIONS
DO 1 I=1,N,10
UE (1)=EXACT(I)
DIFF(I)=U(I)-UE(I)
CONTINUE

PRINT THE NUMERICAL AND EXACT SOLUTIONS TO EQUATIONS (1) TO (4)
WRITE(ND,2)T, (U(I),I1=1,N,10),

(UE(1),I=1,N,10),
(DIFF(1),I=1,N,10)
FORMAT (’ T =">,F6.2,/,15X,°> X=0’,5X,’X=0.27,5X,’X=0.4",5X,
'X=0.67,5X,’X=0.8",5X,°> X=1’,/,

) U(x,T)’,6F10.6,/,
> UE(X,T)?,6F10.6,/,
> DIFF(X,T)’,6F10.6,/)

RETURN

END

REAL FUNCTION EXACT(I)

FUNCTION EXACT COMPUTES THE EXACT SOLUTION TO EQUATIONS (1) TO
TO (4), I.E., EQUATION (5), AT GRID INDEX I

PARAMETER (N=51)

COMMON/T/ T, NSTOP, NORUN
/Y/ U(N)
/F/ UT(N)
/XG/ L, DX,  X(N), PI
/1/ Ip
TYPE SELECTED VARIABLES AS REAL
REAL L

EXACT SOLUTION AT X AND T



EXACT=EXP( (-PI»=2/L=x=2}=T)=SIN(PIxX(I)/L)
RETURN
END
Program 2: Solution of Case 1 Test Problem by Finite Differences
We can note the following details concerning Program 2:

(1) Initial condition (7) is defined over a 51 point grid in INITI.

(2) The derivative uxx is computed by subroutine DSS042 in DERV1 for NORUN = 1 (three
point approximations) and by subroutine DSS044 for NORUN = 2 (five point approximations).
The details of the differentiation formulas in DSS042 and DSS044, and the significance of the

arguments of these subroutines are discussed elsewhere [Schiesser (1)].

(3) PRINT1 computes the exact solution from equation (13) and the difference between the

numerical and exact solutions. It then prints the two solutions and their difference.

The solution is printed at t = 0, 0.1, 0.2, . . ., 0.5 (PRINT1 is called at these times}, as specified by

the data in Program 3

FINITE DIFFERENCE SOLUTION OF EQUATIONS (1) TGO (4)

0. 0.5 0.1

51 0.0000001
FINITE DIFFERENCE SOLUTION OF EQUATIONS (1) TO (4)
0. 0.5 0.1

51 G.0000001
FINITE ELEMENT SOLUTION OF EQUATIONS (1) TO (4)
0. 0.5 0.1

51 0.0000001
FINITE VOLUME SOLUTION OF EQUATIONS (1) TG (4)
. 0.5 0.1 :

50 0.0000001

END OF RUNS

Program 3: Data Used by Program 2

These data are for four runs. The first and second runs (NORUN = 1 and 2 in Program 1) are for

finite differences as implemented in INIT1, DERV1 and PRINT1. The third run is for finite elements



as implemented in INIT2, DERV2 and PRINT2 (NORUN = 3), and the fourth run is for finite
volumes as implemented in INIT3, DERV3 and PRINT3 (NORUN =3). Note that for each run (cach

set of data), time runs from 0 to 0.5 in steps of 0.1 {e.g., PRINT! is called every 0.1 tinte units to print

the numerical and exact solutions). 51 ODEs are specified (for the 51 point spatial grid) and the error

tolerance of the ODE integration is 0.0000001. This stringent error tolerance, used by ODE integrator

LSODES which is called by the main program in Appendix 2, was selected to insure that the ODE

integration did not contribute significantly to the numerical solution; thus, any error in the numerical

solutions can be attributed to the spatial approximation of equation (1),

The output from Programs 1, 2 and 3 (in combination with the main program of Appendix 2

and ODE integrator LSQDES) is given in Table 1 for the {irst and second runs

RUN NO. - 1  FINITE DIFFERENCE SOLUTION OF E(QUATIONS (1) TO (4)
INITIAL T - 0.000E4+00
FINAL T - 0.500E+00
PRINT T - 0.100E+00
NUMBER OF DIFFERENTIAL E{QQUATIDNS - 51
INTEGRATION ALGORITHM - LSODES
MAXIMUM INTEGRATION ERROR - 0.100E-06
T = 0.00
X=0 X=0.2 X=0.4 X=0.6 X=0.8 X=1
U(X,T) 0.000000 0.587785 0.951057 0.951057 0.587785 0.000000
UE(X,T) 0.000000 0.587785 0.951057 0.951057 0.587785 0.000000
DIFF{X,T) G.0060000 0.000000 0.000000 0.000000 0.000000 0.000000
T = 0.10
X=0 X=0.2 X=0.4 X=0.6 X=0.8 X=1
U(X,T) 0.000000 0.219144 0.354582 0.354582 0.219144 0.000000
UE(X,T) 0.000000 0.219072 0.354466 0.3544G66 0.219072 0.000000
DIFF(X,T) 0.000000 0.000072 0.000116 0.000116 G.000072 0.000000
T = .20
X=0 X=0.2 X=0.4 X=0.6 X=0.8 X=1
U(X,T) 0.000000 0.081703 0.132198 0.132198 0.081703 0.000000
UE(X,T) 0.000000 0.081650 0.132112 0.132112 0.081850 0.000000
DIFF(X,T) 0.000000 0.000053 O0.000086 0.000086 0.000053 0.000000
T = 0.30



X=0 . X=0,2 X=0.4 X=0.6
U(X,T) ©.000000 0.030461 0.049287 0.049287
UE(X,T) 0.000000 0.030432 0.049239 0.049239
DIFF(X,T) 0.000000 0.000030 0.000048 0.000048
T = 0.40
X=0 X=0.2 X=0.4 X=0.6
U(X,T) 0.000000 0.011357 0.018376 0.018376
UE(X,T) 0.000000 0.011342 0.018352 0.018352
DIFF(X,T) 0.000000 0.000015 0.000024 0.000024
T = 0.50
X=0 X=0.2 X=0.4 X=0.6
U(X,T) 0.000000 0.004234 0.006851 0.0068561
UE(X,T) 0.000000 0.004227 0.006840 0.006840
DIFF(X,T) 0.000000 0.000007 0.000011 0.000011
COMPUTATIONAL STATISTICS
LAST STEP SIZE 0.126E-01
LAST ORDER OF THE METHOD 5
TOTAL NUMBER OF STEPS TAKEN 108
NUMBER OF FUNCTION EVALUATIONS 161
NUMBER OF JACOBIAN EVALUATIONS 2

RUN NO. - 2 FINITE DIFFERENCE SOLUTION
INITIAL T - 0.0Q000E+00

FINAL T - 0.500E+00

PRINT T - 0.100E+00
NUMBER OF DIFFERENTIAL EQUATI{ONS - 51

INTEGRATION ALGORITHM - LSODES

MAXIMUM INTEGRATION ERROR -

T = 0.

U(X,T)
UE(X,T)
DIFF(X,T)

X=0 X=0.2
0.000000 0.587785
0.000000 0.587785
0.000000 0.000000

0.100E-06
X=0.4 X=0.6
0.951057 0.9510567
0.951057 0.9510567
0.000000 0.000000

10

X=0.8
.030-461
.030432
.000030

[sNole

X=0.8
.011357
.011342
.000015

l=ReNe)

X=0.8
004234
004227
. 000007

COO0o

X=0.8
0.587783
0.587785
0.000000

X=1
. 000000
. 000000
. 000000

oReole)

X=1
. 000000
. 000000
.000000

aNaRe

X=1
. 000000
.000000
.000000

=ReNe)

OF EQUATIONS (1) TO (4)

X=1
0.000000
0.000000
0.000000



T = 0.10
X=0 X=0.2
UX,T) 0.000000 0.219071
UE(X,T) 0.000000 0.219072
DIFF(X,T) 0.000000 -0.000001

T = 0.20
X=0 X=0.2
U(X,T) 0.000000 0.0816530
CE(X,T) 0.000000 0.081650
DIFF(X,T) 0.006000 0.000000
T = 0.30
X=0 X=0.2
U(X,T) 0.000000 0.030432
UVE(X,T) 0.000000 0.030432
DIFF(X,T) 0.000000 0.000000
T = 0.40
X=0 X=0.2
U(X,T) 0.000000 0.011342
UE(X,T) 0.000000 0.011342
DIFF(X,T) 0.000000 0.000000
T = 0.50
X=0 X=0.2

U(X,T) 0.000000 0.004227
UE(X,T) 0.000000 0.004227
DIFF(X,T) 0.000000 0.000000
COMPUTATIONAL STATISTICS
LAST STEP SIZE
LAST ORDER OF THE METHOD
TOTAL NUMBER OF STEPS TAKEN

NUMBER 0OF FUNCTION EVALUATIONS

NUMBER OF JACOBIAN EVALUATIONS

a.

0
-0

o0 o NeRe OO

oo

X=0.4 X=0.6
354465 0.354465
.354466 0.354466
.000001 -0.000001

X=0.4 X=0.6
.132113 0.132113
.132112 0.132112
000000  0.000000

X=0.4 X=0.6
.049240 0.049240
.049239 0,049239
000001 0.000001

X=0.4 X=0.6
018352 0.018352
.018352 0.018352
.000000 0.000000

X=0.4 X=0.6
.006840 0.006840
.006840 0.006840
.000000 0.000000

0.232E-02
4

179

324

7

Table 1: Qutput from Programs 1, 2 and 3

We note the following points about this output:

0.
0.
-0.

COo0 l=Rale OO0

leNaNal

X=0.&8
219071
219072
000001

X=0.58

. 081630
.081650
. 000000

X=0.8

.030432
. 030432
.000000

X=0.8

.011342
.011342
. 000000

X=0.8

. 004227
. 004227
. 000000

OO =ReNe SCo coC

=ReRel

X=1

. 000000
. 000000
. 000000

X=1

. 000000
. 000000
. 000000

X=1

. 000000
.000000
.000000

X=1

. 000000
. 000000
. 000000

xX=1

. 000000
. 0000600
.000000

(1) The numerical solution has better agreement with the exact solution for the five point

11
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approximations (of DSS044} than for the three point approximations (of DS5042), as expected.

(2) The computational effort for LSODES to integrate the 51 ODEs was modest (as reflected in
the computational statistics). This contrasts with the explicit ODE integrator RKF45 which
produced solutions with reasonable effort for the finite differences (NORUN = 1 and 2), but failed
because of excessive computational effort for the finite elements, apparently because of stiffness of

the ODEs (NORUN = 3).

(3) The calculations were performed on a 32 bit computer for which single precision Foriran gave

acceptable results.

(4) Parenthetically, the solutions were essentially identical for an ODE error tolerance of

0.000001, indicating that the ODE integration error was practically negligible.

Also, as a point that can be better appreciated when the finite element solution is discussed next, the

programming of equations (1) and (7) to (9) was quite straightfoward (v. Program 2).

(3.2) Neuwmann Boundary Conditions

The coding of the Case 2 test problem, equations (1} and (10) to (12), is given in Program 4
SUBROUTINE INIT1
SOLUTION OF EQUATIONS (1) TO (4) BY FINITE DIFFERENCES

PARAMETER (N=51)

COMMON/T/ T, NSTOP, NORUN
b /Y/ U{N)
2 /¥/ UT(N)
3 /XG/ L, DX, X(X)
4 /1/ 1P

TYPE SELECTED VARIABLES AS REAL
REAL L

LENGTH

L.=1.0

GRID SPACING
DX=L/FLOAT(N-1)

INITIAL CONDITIDN (2)

12
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DO 1 I=1,N
X (1)=FLOAT(I-1)=DX
IF(I.LT.(N+1)/2)U(I)
IF(I.GT.(N+1)/2)U(I)
IF(I.EQ. (N+1)/2)U(I)
CONTINUE

0.
1.
.

Honi

5

INITIALIZE THE TEMPORAL DERIVATIVES IN COMMON/F/
CALL DERV

IP=0

RETURN

END

SUBROUTINE DERV1

SUBROUTINE DERV1 IS CALLED BY THE ODE INTEGRATOR TO DEFINE THE
ODES IN THE FINITE DIFFERENCE SOLUTION OF EQUATIONS (1) TO (4)

PARAMETER (N=51)

COMMON/T/ T, NSTOP, NORUN
Y/ U(N)
/F/ UT(N)
/XG/ L, DX,  X(N)
/1/ IP
TYPE SELECTED VARIABLES AS REAL
REAL L

DEFINE ARRAYS FOR THE SPATIAL DERIVATIVES
REAL UX(N), UXX(N)

BOUNDARY CONDITION (3)
UX(1)=0.
NL=2

BOUNDARY CONDITION (4)
UX(N)=0.
NU=2

U BY THREE POINT DIFFERENCES
XX
IF(NORUN.EQ.1)CALL DSS042(0.,L.N,U,UX,UXX,NL,NU)

U BY FIVE POINT DIFFERENCES
XX
IF(NORUN.EQ.2)CALL DSS5044(0.,L,N,U,UX,UXX,NL,NU)

EQUATION (1)

DO 1 I=1,N
UT(I)=UXX(I)

CONTINUE

13
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RETURN
END

SUBROUTINE PRINT1(NI,NO)

SUBROUTINE PRINT1 IS CALLED BY THE MAIN PROGRAM TO PRINT THE
FINITE DIFFERENCE SOLUTION OF EQUATIONS (1) TO (4)

PARAMETER (N=51)

COMMON/T/ T, NSTOP, NORUN
1 /Y/  U(N)
2 /F/  UT(N)
3 /XG/ L, DX,  X(N)
4 /1/ IP

Ol ON

TYPE SELECTED VARIABLES AS REAL
REAL L, UE(N), DIFF(N)

COMPUTE THE TOTAL ENERGY (RHO = CP = 1)

CALL DERV1

ENERGY=0.

DO 1 I=2,N
ENERGY=ENERGY+0. 5= (U(I)+U(I-1))=DX

CONTINUE

CALCULATE THE EXACT SOLUTION, AND THE DIFFERENCE BETWEEN THE
NUMERICAL AND EXACT SOLUTIONS
DO 3 I=1,N,10
UE(T1)=SERIES(I)
DIFF(1)=U(1)-UE(I)
CONTINUE

PRINT THE NUMERICAL AND EXACT SOLUTIONS TO EQUATIONS (1) TD (4)
WRITE(NO,2)T,ENERGY, (U(I),I=1,N,10),
(UE(T),I=1,N,10),
(DIFF(I),I=1,N,10)

FORMAT ( T = ’>,F6.2,” ENERGY = °,F9.5,
/,14X,?  X=0’,5X,’X=0.2’,5X,’X=0.4",
5X,’X=0.6",5X,’X=0.8,5X,’X=1.0"/,
) U(X,T)’,6F10.6,/,
> UE(X,T)’,6F10.8,/,
» DIFF(X,T)’,6F10.6, /)
RETURN
END

REAL FUNCTION SERIES(I)

PROGRAM SERIES EVALUATES THE ANALYTICAL SOLUTION TO EQUATIONS
(1), (10), (11) AND (12), I.E., EQUATION (14)

PARAMETER (M=51)

14



Qo

NOO -

aa aa aaaa aa

BN -

COMMON/T/ T, NSTOP, NORUN

/Y7 U()
JF/  UT(M)
/XG/ L, DX,  X(M)
/1/ iP
TYPE SELECTED VARIABLES AS REAL
REAL L

DEFINE MANIMUM NUMBER OF TERMS IN THE SERIES (THIS IS SET TO A
HIGH VALUE TO ACHIEVE CONVERGENCE TO THREE FIGURES FOR T = 0:
BEYOND T = 0, THE SERIES CONVERGES RAPIDLY)

PARAMETER (NS=1000)

PI
PI=4.0%<ATAN(1.0)

EVALUATE SERIES SOLUTION

SUM=0.5

SIGN=1.0

DO 1 N=1,NS,2
EN=FLOAT(N) »P1I
PN=- (EN»»2)=T -
SIGN=-1.0*SIGN
CN=SIGN=2.0/(FLOAT(N)=PI)
SUM=SUM+CN=EXP (PN) «COS (EN+X (1))

AVOID UNDERFLOW OF THE EXP FUNCTION
IF(PN.LT.-100.0)GD TO 2
CONTINUE

SUMMATION OF SERIES 1S COMPLETE

SERIES=SUM
END

Program 4: Solution of Case 2 Test Problem by Finite Differences

Note that subroutine PRINT1 computes the total energy of the soluticn, E, as

1
E= JH(u)dx (15)
0

where H(u) is the enthalpy per unit volume which is a function of temperature u, and can be computed

H(u) = Jp(u)Cp(u)du (16)
0

15



For equation (1), D = k/(pCp) = 1 and therefore we take p = 1 and Cp =1 in equation (16). Thus.

H(u) = u, which, when substituted in equation {15} gives

1
E::Judx
0

(17)

The integral in equation (17) is evaluated numerically by the trapezoidal rule in subroutine PRINTI

over the 51 point grid in x each time PRINTI is called. The energy (ENERGY in the code) is then

printed with the numerical solution.

Since we are interested in the steady state numerical solution (recall that from equation (14),

u(x,00) = 0.5), the solutions were computed to t = 1 (rather 0.5 as specified by the data in Program

3). Abbreviated output from Program 4 is listed in Table 2 (for the first and second runs)

RUN NO. - 1 FINITE DIFFERENCE SOLUTION OF EQUATIONS (1) TG (4)
INITIAL T - 0.000E+00
FINAL T - 0.100E+01

PRINT T - 0.100E+00
NUMBER OF DIFFERENTIAL EQUATIONS - 51
INTEGRATION ALGORITHM - LSODES
MAXIMUM INTEGRATION ERROR - 0.100E-06

T = 0.00 ENERGY = 0.50000
X=0 X=0.2 X=0.4
U(xX,T) 0.000000 0©.000000 0.000000
UE{X,T) 0.000318 (0.000393 0.001030
DIFF(X,T) -0.000318 -0.000393 -0.001030

T = 0.10 ENERGY = 0.50000
X=0 X=0.2 X=0.4
U(X,T) 0.262758 0.308032 0.426654
UE{(X, T} 0.262736 0.308033 0.426655
DIFF(X,T) 0.000001 -0.000001 -0.000001

T = 0.20 ENERGY =  0.50000
X=0 X=0.2 X=0.4

U(X,T) 0.411539 0.428433 0.472664
UE(X,T) 0.411566 0.428456 0.472673
DIFF(X,T) -0.000027 -0.000023 -0.000009

16
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(oNaNo)

X=0.6

.000000
. 998971
.001029

X=0.6

.573347
.573345
.000001

X=0.6

.527336
.527327
. 000009

SO0

oQ O

X=0.8

. 000000
. 999607
.000393

X=0.8

.691968
.691967
. 000001

X=0.8

.5715867
.571544
.000023

OO Q

X=1.0

. 000000
. 999682
.000318

X=1.0

. 737242
. 737244
. 000002

X=1.0

. 588461
. 588434
.000027
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SO0 QOO

oCC

Qo0

X=0.8

. 526682
. 526665
.000017

X=0.8

. 509948
.509938
000010

X=0.8

. 503709
. 503704
. 000005

X=0.8

.500026
. 500027
. 000000

o Nale oo O

jolele

sNelel

X=1.0

.H32981
. 532960
. 000021

X=1.0

.512296
.512284
. 000012

X=1.0

. 504585
. 504578
. 000006

x=1.0

.500033
.500033
. 000000

T = 0.30 ENERGY = 0.50000
X=0 X=0.2 X=0.4 X=0.6
U(X,T) 0.467019 0.473318 0.4898%08 0.510192
UE(X,T) 0.467040 0.473335 0.489815 0.510185
DIFF(X,T) -0.000021 -0.000017 -0.000007 0.000006
T = 0.40 ENERGY =  0.50000
X=0 X=0.2 X=0.4 X=0.6
U(X,T) 0.487703 0.490052 0.496200 0.503800
UE(X,T) 0.487716 0.490062 0.496204 0.503796
DIFF(X,T) -0.000012 -0.000010 -0.000004 0.000004
T = 0.50 ENERGY = 0.50000
X=0 X=0.2 X=0.4 X=0.6
U(X,T) 0.495415 0.496291 0.498583 0.501417
UE(X,T) 0.495421 0.496296 0.498585 0.501415
DIFF(X,T) -0.000006 -0.000005 -0.000002 0.000002
T = 1.00 ENERGY = 0.50000
X=0 X=0.2 X=0.4 X=0.6
U(X,T) 0.499967 0.499973 0.499989 0.500010
UE(X,T) 0.499967 0.499973 0.499990 0.500010
DIFF(X,T) -0.000001 0.000000 0.000000 O.000000
COMPUTATIONAL STATISTICS
LAST STEP SIZE 0.173E-01
LAST ORDER OF THE METHOD 3
TOTAL NUMBER OF STEPS TAKEN 299
NUMBER OF FUNCTION EVALUATIONS 414
NUMBER OF JACOBIAN EVALUATIONS 6
RUN NO. - 2 FINITE DIFFERENCE SOLUTION GF EQUATIONS (1) TGO (4)
INITIAL T - 0.000E+00
FINAL T - 0.100E+01
PRINT T - 0.100E+00
NUMBER OF DIFFERENTIAL EQUATIONS - 51



INTEGRATION ALGORITHM - LSODES

MAXIMUM INTEGRATION ERROR - O.100E-06
T = 0.00 ENERGY = 0.50000
X=0 X=0.2 X=0.4
U(x,T) 0.000000 0.000000 0.000000
UCE(X,T) 0.000318 0.000393 0.001030
DIFF(X,T) -0.000318 -0.000393 -0.001030
T = 0.10 ENERGY = 0.50000
X=0 X=0.2 X=0.4
U(X,T) 0.262834 0.308085 0.426678
UE(X,T) 0.262756 0.308033 0.4268655
DIFF(X,T) 0.000078 0.000062 0.000023
T = 0.20 ENERGY = 0.50000
X=0 X=0.2 X=0.4
U(X,T) 0.411595 0.428478 0.472681
UE(X,T) 0.411566 0.428456 0.472673
DIFF(X,T) 0.000029 0.000023 0.000008
T = 0.30 ENERGY = 0.50000
X=0 X=0.2 X=0.4
U(X,T) 0.467050 0.473343 0.489817
UE(X,T) 0.467040 0.473335 0.489815
DIFF(X,T) 0.000010 (.000008 0.000002
T = 0.40 ENERGY = 0.50000
X=0 X=0.2 X=0.4
U(X,T) 0.487720 0.490064 0.496204
UE(X,T) 0.487716 0.490062 0.496204
DIFF(X,T} 0.000004 0.000003 0.000000
T = 0.50 ENERGY = 0.50000Q
X=0 X=0.2 X=0.4
U(X,T) 0.495424 0.496297 0.498585
UE(X,T) 0.495421 0.496296 0.498585
DIFF(X,T) 0.000002 0.000001 0.000000
T = 1.00 ENERGY = 0.50000
X=0 X=0.2 X=0.4
U(X,T) 0.499965 0.499971 0.499987
UE(X,T) 0.499967 0.499973 0.499990
DIFF(X,T) -0.006002 -0.000003 -0.000002

COMPUTATIQONAL STATISTICS
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0

X=0.6

.000000
. 998971
. 001029

X=0.6

573321
.573345
. 000024

X=0.6

.H27318
.527327
.000010

X=0.6

.510181
.510185
. 060004

X=0.6

.503793
.503796
. 000003

X=0.6

. 501412
.501415
. 000003

X=0.6

.500008
0.
-0.

500010
000002

1

0.
0.
-0.

X=0.8

. 000000
0.
0.

999607
000393

X=0.8

.691904
.691967
.000063

- X=0.8

. 571520
.571544
. 000024

X=0.8

. 526655
. 526665
.000010

X=0.8

.5098933
. 509938
. 000005

X=0.8

.H503700
.503704
.000004

X=0.8
500025
500027
000002

1

0.
0.

0.
0.
-0.

X=1.0

. 000000

999682
000318

X=1.0
737167
737244
000077

X=1.0

. 588404
. 588434
. 000029

X=1.0

. 532948
. 532960
. 000012

=1.0

.512278
.512284
. 000006

X=1.0

.504574
. 504578
. 000004

X=1.0

.500032
. 500033
- 000001



LLAST STEP SIZE 0.366E-02
!

LAST ORDER OF THE METHOD |
TOTAL NUMBER OF STEPS TAKEN 646
NUMBER OF FUNCTION EVALUATIONS 1913
NUMBER OF JACOBIAN EVALUATIONS 105

Table 2: Qutput from Programs 1 and 4

Note that emergy is constant to five figures, and the steady state solution u{x,oc} = 0.5 is closely
approximated at t = 1. Also, the analytical solution implemented in function SERIES does not satisfy
initial condition (10) to more than about three figures, even with 1000 terms used in the series of
equation (14). However, this series solution converges rapidly for t > 0, and therefore the comparison

between the numerical and analytical solutions is reliable for t > 0.

In summary, the three and five point finite difference approximations produced accurate
solutions with straightforward programming. We now consider the finite element solution of the two
test problems in the same format so that a comparison of the numerical solutions with the preceding

finite difference solutions can be made.

(4) Finite Elements

To develop the finite element algorithm, we start with a separated solution of the form

N
u(x,t) ~ ci(t)q&i(x) (18}
i=1
The derivatives in equation (1) are then
N
u (x,t) = ci’(t)qai(x) (19)
i=1
N
uxx(at) %Y ¢ ()8!](x) (20)
i=1

where (') denotes differentiation (there is no confusion about this differentiation since ¢;(t) and ¢.(x)

are functions of only one variable). If equations (19) and (20) are substituted in equation (1), we have
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N N '
_}:l e/ (t)g;(x) = D-Zl & {Uo!'(x) (21)
1= 1=

Equation (18) will probably, at best, be only an approximate solution, and therefore equation (1) will

not be truly satisfied. Thus we arrange equation (21) as

N
Z ¢/ (1), (x) - DZ ¢(t)8!'(x) = R(x.t) (22)

=
where R(x,t) is a residual, which ideally is zero for all x and t (if we could find the exact solution to

equation (1)). Since equation (18) (or (21)) will only be approximate, we attempt to minimize R(x,t)

in equation (22) in some fashion. Generally, this is done by forming the integral
I w(x)R(x,t)dx = 0 (23)

where w(x) is a weighting function selected by the analyst. Thus the use of equation (23) is called the
method of weighled residuals (as suggested by the integrand in equation (23)). In other words, we are
making the residual, R(z,1), orthogonal to the weighting function, w(?).

In order to obtain clf(t), i=1,2, ..., N, we multiply equation {22) by ¢j(x) and integrate

from Xy 1o Xy

x X.N xN
j ¢(x)z (¢;(x)ex - D ¢(X)§:c ()8"()dx = [ $,(IR(x)dx = 0
1 X1
N XN
Zc'(t)J .(x)6 (x)dx - Dz (t)J 8,(x)6(x)dx ..J SR (x,t)dx = 0 (24)
i=1 b1
X 1

where we have interchanged the order of integration and summation.

In order to evaluate the integrals of equation (24), we must select some basis (shape) functions.

Our choice is the linear finite element (hat or chapeau function) depicted in Figure 1.a, with first and

20



second derivatives depicted in Figures 1.b and l.c

¢ (x)

AX Ax

1= X Xij41 =
Xj - Ax X; + AX

Fig. 1.a: Linear Finite Element

dé;(x)/dx

1/Ax

Xj41 =
Ax Xj + AX

Xj-q = X Ax
Xj - AX

~1/AX

Fig. 1.b: Derivative of Linear Finite Element
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oy 2 (x)/dx2

1/AX 1/Ax
| AX Ax
Xji-1 = X Xig1 =
Xj - Ax Xj + A

‘I'
Fig. 1.c: Second Derivative of Linear Finite Element

We now must consider three cases for each of the two LHS integrals in equation (24). For the

first integral

*N
M) [ 60¢;00dx

[ 8,08,00x = /3%

X1

(1.2) i=j+1 (orj=i1)
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X

N
¢i(X)¢i+l(x)dx = (1/6)Ax
X1

(1.3} i =j-1(orj=i+1)
N

[ 48, 1(0x = /oAx
*1

We have stated here just the final results of the integrations; the details are given else where {Carcagno,

et al (2)].

*N
@ | @l (dx

+
I 4, (an(x)dx = J {qﬁ (x)(1/Ax){x {-Ox) - 2¢i(x)(1/Ax)6(xi) + 4 (x)(]/Ax);S(xi-i-Ax)}dx

X

= ¢, (x Ax)(l/Ax) 26;(x, )1/Ax) + ¢, (x;+Ax)(1/Ax) = -2/ Ax

(2.2) i=j41 (orj=il)

N X1
J 406,21 (0 = | {¢i(x)(1/m)6(xi) - 26, (x)(I/AX)é(xi+AX)}dx = ¢.(x)(1/Ax) = 1/Ax

xl xi

{2.3) i=j1(orj=i+1)
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XN Ki

J ¢ai(x)¢iifl(x)dx = ‘[ {-2¢i(x)(1/..kx)6(xi-Ax) + d)i(x)(l/Ax)é(xi)}dx = 6,(x;)(1/Ax) = 1/Ax

X1 %1

Here we have made use of the delta function properties of Figure l.c.

Thus, equation (24) becomes

(A)c/('})t:i_:1 + (4Ax/6)ci' + (Ax/ﬁ)ci_’l = 1:)(1/:5.\:){ci_+_1 - 2 + ci—l}

or

-2 + ¢
1 1 1-1} (25)

(1/6)c, | + (4/6)c] +(1/6)c, ) = D{°i+ —

Equation (25) is the (local) Galerkin approximation to the one dimensional heat conduction,
equation (1), based on the linear finite element of Figure l.a. We note in particular that the RHS is
just the well known second order central difference approximation for the second derivative uyy.

However, the LHS is a weighted sum of three time derivatives.

(4.1) Dirichlet Boundary Conditions

If we now consider the Dirichlet boundary conditions, equations (8) and (9), we also have
u(xy,t) = ¢ (t) = f;(t), u(xy,t) = en(t) = fy(t) (26)(27)

which follows from equation (18) with ¢, (x;)} = 1, ¢;(x)) = 0,i = 2,3, ..., N and én(xy) = 1,
qﬁ-l(xN) =0,i=1,2,..., N-1. Then from equations (26) and (27),

ci (t) = fi(t), c]&(t) = f&(t) (28)(29)
Thus, the full set of (global) equations for ¢;(t) to ¢y (t) becomes
ci(t) = fi(t)

-2
(1/6)c1' + (4/6)c2' + (1/6)c3" = D{E?L—A-:?—Jrﬂ}

24



e, +
(1/6)c] + (4/6)c] + (1/6)c] = D{M}

Ax?
(30)
(1/8)ey's + (4/6)cy!y + ‘(1 /6)ex, =. D{CN-l - 22? + CN-S}
(1/B)cyy + (4/6)ey!; + (1/6)ey = D{CN - 2"2—}(1; CN-Q}
c;{.(t) = fl\'.(t)
which can be integrated to obtain ci, cf'_,, cs CN’-I“ c}’\. subject to the initial conditions
€,(0) = gxy), ¢o(0) = B(xg)s - - - » ey 1(0) = gl ) cy(0) = £(xy) 31)

Initial condition {31) follows from equations (2) and (18).

For the special case of f;{t) = C; and f(t) = Cy where C; and Cy are given constants, and
therefore ci(t) = { and CI:I(t) = 0, equations (30) can be stated as

. y cg - 2e + Cl}
(4/6)c2 + (1/(‘3-)c3 = D{-—-—-——-——-Ax2

(1/6)::2’ + (4/5).:3’ + (1/6)(:4' = D{c4'2°——3—fi2}

sz

(32)
) ' P -2c + ¢
N-1 N-2 N-3
(1/6)cy/y + (4/6)cy!y + (1/6)ch1 = D{ 7 }
Cy - 2¢ +c
! P N N-1 N-2
(l/ﬁ)cN_2 + (4/6)(:1\._1 = D{ AL }

In other words, we integrate only N-2 QDEs for c2Ir . c3' ey CNIZ ) CN—’ 1 since < and cy are given

by the boundary conditions ¢4(t) = C; and ¢y (t} = Cy.

Subroutines INIT2, DERV2 and PRINT? for the solutions of equations (31) and (32), which
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are called by Program 1, are listed in Program 3
SUBROUTINE INIT2
SOLUTION OF EQUATIONS (1) TO (4) BY LINEAR FINITE ELEMENTS

PARAMETER (N=51)

COMMON/T/ T, NSTOP. NORUN

1 /Y, U(N)

2 /F/  UT(N)
3 /XG/ L, DX. X(N), PI
4 /1/ IP

5 JFE/ AL(N), BM(N). CU(N), BRHS(N)
TYPE SELECTED VARIABLES AS REAL

REAL L

PI

PI=4.0=ATAN(1.0)

LENGTH

L=1.0

GRID SPACING
DX=L/FLOAT (N-1)

SET UP THE COEFFICIENT MATRIX IN BAND STORAGE MODE. THIS IS
DONE ONLY ONCE SINCE THE COEFFICIENT MATRIX IS CONSTANT

LOWER DIAGONAL

DO 2 I=1,N
IF(I.EQ.1)THEN
AL(1)=0.
ELSE
+ IF(I.EQ.N)THEN
AL(N)=0.
ELSE
AL(1)=1.0/6.0
END IF
CONTINUE
MAIN DIAGONAL
DO 3 I=1,N
IF(I.EQ.1)THEN
BM(1)=1.0
ELSE
+ IF(I.EQ.N)THEN
BM(N)=1.0
ELSE

BM(I)=4.0/6.0
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END IF
CONTINUE

UPPER DIAGONAL
DO 4 I=1,N
IF(I.EQ.1)THEN

Cu(1)=0.

ELSE

1F(1.EQ.N)THEN
CU(N)=0.

ELSE
CuU(1)=1.0/6.0

END IF

CONTINUE

INITIAL CONDITION (2)
PO 1 I=1,N
X (1)=FLDAT(I-1)~DX
U(1)=SIN(PI=X(1)/L)
CONTINUE

INITIALIZE THE TEMPORAL DERIVATIVES IN COMMON/F/
CALL DERV

IP=0

RETURN

END

SUBROUTINE DERV2

SUBROUTINE DERV2 IS CALLED BY THE ODE INTEGRATOR TO DEFINE THE
ODES IN THE FINITE ELEMENT SOLUTION OF EQUATIONS (1) TO (4)

PARAMETER (N=51)

COMMON /T/ T, NSTOP, NORUN
/Y/  UN)
/F/ UT(N)
/XG/ L, DX,  X(N), PI
/1/ IP
/FE/ AL(N), BM(N), CU(N), BRHS(N)

TYPE SELECTED VARIABLES AS REAL
REAL L

BOUNDARY CONDITION (3)
U(1)=0.

BOUNDARY CONDITION (4)
U(N)=0.

RIGHT HAND SIDE VECTOR (WITH D = 1)
DO 1 I=1,N
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IF(I.EQ.1)THEN
BRHS (1)=0.
ELSE
IF(I.EQ.-N)THEN
BRHS (N)=0.
ELSE
BRHS(I1)=(1.0/DX==2)=(U(I+1)-2.0xU(I)+U(I-1))
END IF
CONTINUE

SOLVE THE LINEAR ALGEBRAIC EQUATIONS BY SUBROUTINE TRIDAG, WHICH
RETURNS THE DERIVATIVE VECTOR UT IN COMMON/F/

CALL TRIDAG(AL,BM,CU,BRHS,UT,N)

RETURN

END

SUBROUTINE PRINT2(NI,NO)

SUBROUTINE PRINT2 IS CALLED BY THE MAIN PROGRAM TO PRINT THE
FINITE ELEMENT SOLUTION OF EQUATIONS (1) TO (4)

PARAMETER (N=51)

COMMON/T/ T, NSTOP, NORUN
/Y/  U(N)
/F/ UT(N)

/XG/ L, DX, X(N), PI
/1/ IP

/FE/ AL(N), BM(N), CU(N), BRHS(N)

TYPE SELECTED VARIABLES AS REAL
REAL L, UE(N), DIFF(N)

PRINT THE COEFFICIENT MATRIX FOR VERIFICATION
IP=IP+1
IF(IP.EQ.1)THEN
WRITE(NO,3)
FORMAT(/.’ COEFFICIENT MATRIX’,/)
DO 4 I=1,N
WRITE(NO,5)I,AL(I),BM(I),CU(I)
FORMAT(15,3F12.4)
CONTINUE
WRITE(NO,6)
FORMAT (//)
END IF

CALCULATE THE EXACT SOLUTION, AND THE DIFFERENCE BETWEEN THE
NUMERICAL AND EXACT SOLUTIONS
DO 1 I=1,N,10
UE (1)=EXACT(I)
DIFF(1)=U(1)-UE(I)
CONTINUE
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C... PRINT THE NUMERICAL AND EXACT SOLUTIONS TO EQUATIONS (1) TO (4)
WRITE(NO,2)T, (U(1),I=1,N,10),
(UE(I),I=1.N,10),
(DIFF(1),1=1.N,10)
2 FORMAT (° T = >,P6.2./,15X,> X=0’,5X,’X=0.2’,5X, X=0.4",5X,

|l ]

1 'X=0.6°,5X,’X=0.8,5X,’ X=1’,/,
2 U(X,T)’,6F10.6,/,
3 UE(X,T)'.6F10.6,/,
4 DIFF(X,T)’.6F10.6,/)
RETURN
END

Program 5: Solution of Case 1 Test Problem by Finite Elements
The following points should be noted about Program 5:

{1) The LBS tridiagonal coefficient matrix in equations (32) is set numerically in subroutine

INIT2. Then initial condition (31) {or (7)) is implemented in DO loop 1.

(2) The RHS vector of equations (32} is computed in subrourtine DERV2 after boundary
conditions (8) and (9) are implemented. A call to the tridiagonal solver TRIDAG then computes
the derivative vector cl’ (t), c2' {th ... CN-’I {t), ch; (t) {in array UT) which then goes to the

ODE integrator through COMMON/F/.

(3) Subroutine PRINT2 prints the numerical solution at t = 0, 0.1, .2, . . ., 8.5 (according to
the third set of data in Program 3).

The output from Program 5 is listed in Table 3

RUN NO. - 3 FINITE ELEMENT SOLUTION OF EQUATIONS (1) TO (4)
INITIAL T - 0O.000E+00

FINAL T - 0O.500E+00

PRINT T - 0.100E+00
NUMBER OF DIFFERENTIAL EQUATIONS - 51

INTEGRATION ALGORITHM - LSODES
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MAXIMUM INTEGRATION
COEFFICIENT MATRIX
1 0.0000
2 0.1667
3 0.1667
4 0.16867
5 0.1667
6 0.1667
7 0.1667
8 0.1667
9 0.1667
10 0.1667
45 0.1667
46 0.1667
47 0.1667
48 0.1667
49 0.1667
50 0.1667
51 0.0000

T = g.00
X=0
U(X,T) 0.0600000
UE(X,T) 0.000000
DIFF(X,T) ©0.000000
T = 0.10
X=0
U(x,T) 0.000000
UE(X,T) 0.000000
DIFF(X,T) 0.000000
T = 0.20
X=0
U(X,T) 0.000000
UE(X,T) 0.000000
DIFF(X,T) 0.000000
T = 0.30
X=0
U(X,T) 0.000000
UE(X,T) 0.000000
DIFF(X,T) 0.000000

ERROR -

cocCc

COQCOCOOoOOOOH

—HOoOOOoOOOO

587785
.B87785
. 000000

0.
o.
-0.

.081597
.081650
. 000053

. 030402
.030432

. 0000
. 6667
.6667T
. 6667
.G667T
. 6667
.6667
. 6667
.6667
L6667

.6667
.6667
. 6667
.6667
.6667
.6667
.0000

X=0.2

0o
0
0

X=0.2
219002
219072
000070

X=0.2

X=0.2
0.
0

.000030 -0.

. 951057
. 951057
. 000000

.354352
.354466
.000114

.132027
.132112
.000086

. 049239

0.100E-06G

.0000
.1667
. 1667
.1667
.1667
L1667
.1667
.1667
.1667
L1667

COOCOoOOOOOCOO

.1667
. 1667
. 1667
. 1667
. 1667
. 1667
.0000

CO0OOOCOoOO

X=0.4

X=0.4

X=0.4

X=0.4
049192 0.
0.

000048 -0.

30

0
0.
0

X=0.6
.951057 O
951057 O.
.000000 O

X=0.6
.3543562 O
.354466 O
.000114 -0

X=0.6
.132027 O
132112 O
. 000086 -0

X=0.6
049192 O.
046239 O
000048 -0.

X=0.8

.D87785

587785

. 000000

X=0.8

.219002
.219072
.000071

X=0.8

.081597
.081650
.000053

X=0.8
030402

.030432

000030

oo QOO o N ool

cCQoQ

X=1

. 000000
. 000000
.000000

X=1

. 000000
.000000
. 000000

X=1

. 000000
. 000000
. 000000

X=1

. 000000
. 000000
. 000000



T =

U(X.
.T) 0.000000
.T) 0.000000

UE(X
DIFF (X

T =

U(X.
.T) 0.000000
DIFF (X,

UE(X

0.40
X=0
T) 0.000000

0.50
X=0
T) 0.000000

T) 0.000000

X=0.2

.011327
011342
.000015

X=0.2

. 004220
. 004227
. 000007

COMPUTATIONAL STATISTICS

LAST STEP SIZE

LAST ORDER OF THE METHOD

TOTAL NUMBER OF STEPS TAKEN

NUMBER OF FUNCTION EVALUATIONS

NUMBER OF JACOBIAN EVALUATIONS

The solution has better than 0.1% accuracy.

0.

0

-0.

X=0.44 X=0.6
018328 0.018328
018352 0.018352
.000024 -0.000024

X=0.4 X=0.6
006829 0.006829
.006840 0.006240
(00011 -0.000011

0.112E-01
4

137

220

3

Table 3: Output from Programs 1 and 5

0.
0.
-0,

0.
0.
-0.

" X=0.8
011327
011342
000015

X=0.8
004220
004227
000007

oCCQ

oCoo

X=1

. 000000
. 000000
. 000000

X=1

. 000000
. 000000
. 000000

Also, Program $ was first executed with explicit ODE

integrator RKF45, which reported excessive work (the number of calls to DERV2 exceeded the default
set in RKF45). We therefore switched to the implicit ODE integrator LSODES, which is called in the

main program of Appendix 2.

(4.2) Neumann Boundarv Conditions

For the case of Neumann boundary conditions {11} and (12}, we first write the original PIIE,

equation (1), in residual form

ug ~ Duygy = R{x,t)

(recall that u will only be approximate so that in general, for some x and t, R(x,t) # 0). Then we

substitute this residual in the Galerkin integral

K1}



X.N XN XN
J w(x)R(x,t)dx = I w(x){ut - Duxx}dx = <;t>i(x){ut - Duxx}d-x =0
Xy X1 X

We can now consider two integrals. The first involves u,
*N
J @, (x)uydx = (Ax/ﬁ)ci_{_'l + (4AX/6)C; + (Ax/ﬁ)ci"l
X
1

(33)

(34)

where we have made use of the previous results of equations (25) to (30). The second integral involves

Uxx
XN XN XN
-D| ¢(x) uxxdx—~D{¢ (x)ux | j ¢;(x)uxdx}
*1 "1 1

*N
N
=- D{ux(xN,t) . j ¢;(x)2ci(t)¢i"(x)dx} (fori=N)
2, =l

XN
N
. D{— uy (x4 J qS;(x)Zci(t)d:i' (x)dx} (fori=1)
xl i:—-l

X
N «w
= - D{- J ¢;(x)zci (t)q&i' (x)dx} {fori # 1 or N)
%) i=1

If we consider first the last result (for 3 # 1 or N), three integrals must be considered (for the hat

function of Figure l.a)

X1 X; Xi+1
45;(")‘?5; (x)dx + G- J ,(x)¢ l(x)dx + C1+1I ;(X)¢i_:_1(x)dx
X1 Xi-1 %
*i41 X
= (| #ls!@ax + [ 6ls] oax)
% %i-1
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% X1
+ CHJ ¢;(x)¢i_'1(x)dx + °i+1J qf-;(x)qﬁ.l_:_l(x)dx
-1 X
Xi+1 X
:cid (-1/Ax)2dx +I (1/8x)%dx)
B M1
% Xi+1
+ Ci—lJ (1/Ax)(-1/Ax)dx + ci-HJ (-1/Ax)(1/Ax)dx
i1 X
X 1 X.
= (tant [+ a/ank | )
% %i-1

, N o T+l
-ci_l(lex) xxl 'ci+1(1/Ax) x | }
i-1 X
= ci((l /Ax) + (I/Ax))— &1 (1/A%) - ¢, | (1/Ax)

Then, combining the two integrals (for u, and - Duxx), we have as the approximation of equation (1)
at the interior grid points (fort # 1 or N)

(Ax/6)c, [} +(4Ax/6)ci" +(Ax/6)ci_’l

/
c.
1+

=- D{ci((l/Ax) + (lex))— ¢;_1(1/Ax) - °i+1(1/Ax)}

or

C. .4 - 2¢ +
(1/6)ci+’1 + (4/6}:{' + (1/6)ci"1 = D{Jmtl__a!ﬁ__.)_l}

We now consider the preceding results at the boundaries. First, at the left boundary, x = Xqs

XN
N
- D{- ux (x,t)- j ¢;(x)_zci(t)¢i'(x)dx} (fori = 1)
X i=1
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*9 N
=- {' uk(xls I X)Z (t)o. (x)dx}
X

1.....

The integration in x gives
X9 X9
clj ¢i(x)¢1' (x)dx + c‘_,J' ¢i(x)¢2' {x)dx
*1

X1

X9 )
= .:1[ (-1/Ax)%dx + CQJ (-1/Ax)(1/ Ax)dx
X1 *1

X b

= (1/89%x | - ey(1/8x)x |
*1 X1

= ¢q(1/Ax) - co(1/Ax)
The approximation to equation (1) at x = Xy is then
(22x/8)c] + (Ax/B)e]

= D{- hy(t) - ¢y (1/A8x) + c2(l/Ax)}

or

(2/6)c; + (1/6)c] = -Dh(t)/Ax + D{CQA- 2': 1}

X

where we have used boundary condition (5}.

Similarly, for the boundary at x = xy, we have

XN N
- D{ uy (xpt)- J r;bi(x)Zci(t)éi' (X)dx} {fori = N)
i=1

X1
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XN
¢ N
=- D{ ux (X t)- J ¢;(x)zci(z)¢i'(x;dx}
g o i=l
The integration in x gives
XN XN

CNJ ¢1(1(x)¢§ (x)dx+cN_1J ¢I{T(x)¢N_’l (x)dx
N1 *N-1

XN X
= CNJ (l/Ax)de + CN-IJ {1/ Ax)(-1/Ax)dx
*N-1 *N-1
X X

= eng(1/ax)%x | - ey y(1/8%)%x |
*N-1 *N-1

= CN(I/AX) - CN_I(}./AX)
The approximation to equation (1) at x = xy Is then
(2Ax/6)c1\‘; + (tﬁux/fi)cl\ﬁ"1

or

(2/6)cyy + (1/6)ey, = Dhy(t)/Ax + D{E&I—-Q—CN}

AX

where we have made use of houndary condition (6).

The complete set of ODEs for Neumann boundary conditions (5) and (6) is therefore

(2/6)c! + (1/6)c, = -Dh(1)/Ax + D{°2 . ‘1}
1 2 i Ax2

X

(1/6)c1' + (4/6)(:2’ + (1/6)c?:r = D{'.:}_-_%%ifl}
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_ 4 - 2c3 + ¢
(1/6)] +4f5)c; + (1/6)c/ = D{T}

(3%)

. . cy - 2 +c

' ! ! N N-1 N-2
(l/ﬁ)cN_2 + (4/6)CN_1 + (1/6)(:N = D{ AL }
(1/6)cy’. + (2/6)c,! = Dhy(t)/Ax + Dy N-LT N
N-1 N7 N Ax2
This is a system of N ODEs which can be integrated to obtain c,(t), cz(t), R cN_l(t), ¢ (t) subject
to the initial conditions

CI(U) = g(x]_)v C2(0) = g(x2)s crey CN-I(O) = g(xN_l)’ CN(O) = g(xN) (36)

Subroutines INIT2, DERV2 and PRINT?2 for the integration of equations (35) and (36) are
listed in Program 6
SUBROUTINE INIT2

SOLUTION OF EQUATIONS (1) TO (4) BY LINEAR FINITE ELEMENTS (HAT
FUNCTIONS)

PARAMETER (N=51)

COMMON/T/ T, NSTOP, NORUN

1 /Y/  U(N)

2 /F/  UT(N)

3 /XG/ L, DX, X(N)

4 /1/ 1P

5 /FE/ AL(N), BM(N), CU(N), BRHS(N)

TYPE SELECTED VARIABLES AS REAL
REAL L

LENGTH
L=1.0

GRID SPACING
DX=L/FLOAT(N-1)

SET UP THE COEFFICIENT MATRIX IN BAND STORAGE MODE. THIS IS
DONE ONLY ONCE SINCE THE COEFFICIENT MATRIX IS CONSTANT
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LOWER DIAGONAL

DO 2 1=1.N
IF(I.EQ.1)THEN
AL(1)=0.
ELSE

IF(1.EQ.N)THEN
AL(N)=1.0/6.0
ELSE
AL(1)=1.0/6.0
END IF
CONT INUE

MAIN DIAGONAL
DO 3 I=1,N
IF(I.EQ.1)THEN
BM(1)=2.0/6.0
ELSE
IF(I.EQ.N)THEN
BM(N)=2.0/6.0
ELSE
BM(I)=4.0/6.0
END IF
CONTINUE

UPPER DIAGONAL
DO 4 I=1,N
IF(I.EQ.1)THEN
CU(1)=1.0/6.0

ELSE
IF(I.EQ.N)THEN
CU(N)=0.
ELSE
CU(1)=1.0/6.0
END IF
CONTINUE

INITIAL CONDITION (2)
DO 1 I=1,N
X (1)=FLOAT(I-1)=DX
IF(I.LT.{(N+1)/2)U(I)
IF(I.GT. (N+1)/2)U(I)
IF(I.EQ. (N+1)/2)U(I)
CONTINUE

o.
1.
0.

I

5

INITIALIZE THE TEMPORAL DERIVATIVES IN COMMON/F/
CALL DERV

1P=0

RETURN

END
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SUBROUTINE DERV2

SUBROUTINE DERV2 IS CALLED BY THE ODE INTEGRATOR TO DEFINE THE
ODES IN THE FINITE ELEMENT SOLUTION OF EQUATIONS (1) TO (4)

PARAMETER (N=51)

COMMON/T/ T, XNSTOP, NORUN
/Y7 U(N)
/F/ UT(N)
/XG/ L, DX,  X(N)
J1/ 1P
/FE/ AL(N), BM(N), CU(N), BRHS(N)

TYPE SELECTED VARIABLES AS REAL
REAL L

BOUNDARY CONDITION (3)
H1i=0.

BOUNDARY CONDITION (4)
HN=0.

RIGHT HAND SIDE VECTOR (WITH D = 1)
DO 1 I=1,N
IF(I.EQ.1)THEN
BRHS (I)=-H1/DX+(U(I+1)-U(I))/DX=x2
ELSE
IF(I.EQ.N)THEN
BRHS (I)= HN/DX+(U(I-1)-U(I))/DXxx2
ELSE
BRHS (1)=(U(I+1)~2.0%U(I)+U(I-1)) /DXx=2
END IF
CONTINUE

SOLVE THE LINEAR ALGEBRAIC EQUATIONS BY SUBROUTINE TRIDAG, WHICH
RETURNS THE DERIVATIVE VECTOR UT IN COMMON/F/

CALL TRIDAG (AL,BM,CU,BRHS,UT,N)

RETURN

END

SUBROUTINE PRINT2(NI,NO)

SUBROUTINE PRINT2 1S CALLED BY THE MAIN PROGRAM TO PRINT THE
FINITE ELEMENT SOLUTION OF EQUATIONS (1) TO (4)

PARAMETER (N=51)

COMMON/T/ T, NSTOP, NORUN
/Y/  U(N)
/E/ UT(N)
/XG/ L, DX, X(N)
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4 /1/ P
5 /FE/ AL{N), BM(N), CU(N), BRHS(N)

TYPE SELECTED VARIABLES AS REAL
REAL L, UE(N), DIFF(N)

PRINT THE COEFFICIENT MATRIX FOR VERIFICATION
IP=1P+1
IF(IP.EQ.1)THEN
WRITE(NO,13)
FORMAT (/,’ COEFFICIENT MATRIX’,/)
DO 14 I=1,N
WRITE(NO,15)I,AL(I),.BM(1I),CU(I)
FORMAT(I5,3F12.4)
CONTINUE
WRITE(NO,16)
FORMAT(//)
END IF

COMPUTE THE TOTAL ENERGY (RHO = CP = 1)

CALL DERV2

ENERGY=0.

DO 1 I=2,N
ENERGY=ENERGY+0. 5= (U(I)+U(I-1))=DX

CONTINUE

CALCULATE THE EXACT SOLUTIGN, AND THE DIFFERENCE BETWEEN THE
NUMERICAL AND EXACT SOLUTIONS
DO 3 I=1,N,10
UE(I)=SERIES(I)
DIFF(I)=U(I)-VE(I)
CONTINUE

PRINT THE NUMERICAL AND EXACT SOLUTIONS TO EQUATIONS (1) TO (4)
WRITE(NO,2)T,ENERGY, (U(I1),I=1,N,10),

1 (UE(1),I=1,N,10),
2 (DIFF(I),I=1,N,10)
FORMAT(? T = *,F6.2,> ENERGY = ’,F9.5,
1 /,14X,>  X=0’,5X,’X=0.2’,5X,’X=0.4",
2 5X,’X=0.6",5X,  X=0.87,5X,’X=1.07/,
3 ; U(X,T)’,6F10.6,/,
4 » UE(X,T)’,6F10.6,/,
5 * DIFF(X,T)’,6F10.6,/)
RETURN
END

Program 6: Solution of Case 2 Test Problem by Finite Elements

The only essential difference between Programs & and 6 is that in the latter, initial condition (10)
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(rather than (7)) is implemented' in INIT2, and boundary conditions (5) and (6) (or (11) and (12)
rather than (3) and (4) (or (8) and (9)) are implemented in DERV2. Also, the total energy is again

calculated in PRINT2 {as was done in Program 4).

The output from Program 6 is listed in Table 4 (the weighting coefficients of equations (35)

are not printed since they are the same as in Table 3)

RUN NO. - 3 FINITE ELEMENT SOLUTION OF EQUATIONS (1) TO (4)

INITIAL T - 0.000E+00
FINAL T - 0.100E+01

PRINT T - 0.100E+00

NUMBER OF DIFFERENTIAL EQUATIONS -

INTEGRATION ALGORITHM - LSUDES

51

MAXIMUM INTEGRATION ERROR - 0.100E-06

COEFFICIENT MATRIX
(deleted)

T = 0.00 ENERGY = 0.50000
X=0 X=0.2

X=0.4

U(X,T) 0.000000 0.000000 0.000000

UE(X,T) 0.000318 0.000393 0.001030 O.
DIFF(X,T) -0.000318 -0.000393 -0.001030 O.

T = 0.10 ENERGY = 0.50000
X=0 X=0.2

U(X,T) 0.262911 0.308158 0.426703 O.
UE(X,T) 0.262756 0.308033 0.426655 O.
DIFF(X,T) 0.000154 0.000125 0.000048 -O.

T = 0.20 ENERGY = 0.50000
X=0 X=0.2

U(X,T) 0.411652 0.428525 0.472699 O.
UE(X,T) 0.411566 0.428456 0.472673 0.
DIFF(X,T) 0.000085 0.000069 0.000027 -0.

T = 0.30 ENERGY = 0.50000
X=0 X=0.2

U(X,T) 0.487082 0.473369 0.489828 0.

X=0.4

X=0.4

X=0.4

UE(X,T) 0.467040 0.473335 0.489815

40
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0.

X=0.6

. 000000
998971

001029

X=0.6
573297
573345
000048

X=0.6
527301
527327
000026

X=0.6
510172
510185

X=0.8

.000000
. 999607
.000383

X=0.8

691842
.691967
.000125

X=0.8

571475
.071544
.000069

X=0.8

.526631
. 526665

X=1.0

. 000000
. 999682
. 000318

X=1.0

. 737090
. 737244
.000154

X=1.0

. 588348
. 588434
. 000085

X=1.0

. 532918
. 532960



DIFF(X,T) 0.000042 0.000034 0.000013 -0.000013 -0.000034 -0.000042

T = 0.40 ENERGY = 0.50000
X=0 X=0.2 X=0.,4 X=0.6 X=0.8 X=1.0
U(X,T) 0.487735 0.490077 0.496210 0.503790 0.509923 0.512266
VE(X,T) 0.487716 0.490062 0.496204 0.503796 0.509938 0.512284

DIFF(X,T) 0.000019 0.000016 0.000006 -0.000006 -0.000015 -0.000019

T = 0.50 ENERGY = 0.50000
X=0 X=0.2 X=0.4 X=0.6 X=0.8 X=1.0
U(X,T) 0.495430 0.496303 0.498588 0.501413 0.503698 0.504570
UE(X,T) 0.495421 0.496296 0.4985BK85 0.501415 0.503704 0.504578
DIFF(X,T) 0.000009 0.000007 0.000003 -0.000002 -0.000006 -0.000008

T = 1.00 ENERGY = 0.50000
X=0 X=0.2 X=0.4 X=0.6 X=0.8 X=1.0
U(X,T) 0.499967 0.499974 0.499930 0.500010 0.500027 0.500033
UE(X,T) 0.499967 0.499973 0.499990 0.500010 0.500027 0.500033
DIFF(X,T) 0.000000 0.000000 0.000000 0.000000 0.0000060 0.000000
COMPUTATIONAL STATISTICS
LAST STEP SI1ZE 0.150E-01
LAST ORDER OF THE METHOD 3
TOTAL NUMBER OF STEPS TAKEN 347
NUMBER OF FUNCTION EVALUATIONS 644
NUMBER OF JACOBIAN EVALUATIONS 7

Table 4: Output from Programs I and 6

Again, as in Table 2, the energy is conserved to five figures. We now proceed to the third method of

approximation, finite volumes.

(5) FEinite Volumes

The essential idea of the method of finite volumes is the application of one or more
conservation principles to a control volume [Palankar (3), Lick (4)). This idea is illustrated in Figure 2

where a spatial grid in x is represented in terms of a series of control volumes which are arranged for
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Dirichlet boundary conditions with temperatures ug and up, specified (u represents temperature in the
subsequent analysis), or Neumann boundary conditions with fluxes g, and qy; specified (which in turn

define the gradicnts or first order spatial derivatives at x = 0 and x = 1)

% a a2 _ N2 -1 an
s el ——
1 ] ] ' ] .
E tyq E U i E UN-1 E UN E
Yo ———0— 01— 0——Qu,
P A2 AWR | A2 A2 {oAw2  Aw2 | W2 AN2
[} ] ] 1 1 ]
X=0 x=1
Fig. 2: Finite Volume Spatial Grid
An energy balance written for the volume with temperature u, gives
dU2
VoreChaar = A191 - A29g (37)

where

uy lemperature of control volume 2

t time

V5 volume of control volume 2

py density of material in control volume 2

C

p2 specific heat of material in control volume 2
q; heat flux due to temperature difference u, - uy
A, area across which q; flows

4o heat flux due to temperature difference u, - uy

Ay area across which qq flows

If we take fluxes q; and g, as
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U]-UQ Uf)'U3

U =hoEs AR, 2T EGRTAGR (38)(39)

where

k; o thermal conductivity as a function of uy and u, (to be defined)
kg 4 thermal conductivity as a function of u, and ug (to be defined)

Axy lengths indicated in Figure
Axy
AX3

then substitution of equations (38) and (39) in equation (37) gives an ODE for the temperature uy.
However, in a computer code, it is often maore convenient to compute the fluxes separately, e.g., from

equations (38) and (39), then use them in the energy balance, e.g., equation (37).

We can now consider an interface temperature, ui,'at the left face of volume V2. Then, if we

assume continuity in the heat flux qqacross the left face

ay = k (__EI_L) =k (M) = (_i‘,___“z) (40)
1 L2%Ax, /2 + Ax,/2 PAx, /2 2'Ax, /2

u; obtained from the last of equations (40} is

k) ky ky ky
& 2 @) i G ™t G

or

ky ko
G+ G

(Ax1/2) + (Ax2 73

Then. we can form the temperature difference U, - uy (after cancellation of the common factor of 2 in

equation (41})

Ky k,
(3}1)“1 + (3"@)“2

U. - Uy =
1

ky ky 2
or (3‘;{—1) + (E';(E)
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&)+
Then, from equation (40),
4 = k2T 2T = X2y
17 "L2%Ax, /2 + Axgy/[2 Ax /2
2k ko/(Ax; Axy)
172 l 2 — 2
k; (up-ug) = “Bx, Ay - ug)
( ( ) (_kT) + (-k—;)
or
(AX] + AX2)
kio= Axy Axgy (42)
(T) S )

which is the result reported by Patankar [3, eq. (4.9)}. For the special case Ax) = Axgy = AX,

equation (42) reduces to

2k L2

k12 =+, (43)
so that kl,2 is the harmonic mean of ky and k.
We can now generalize equations (37), (38), (39) and (42) to
du,
Vi plcpl dt. = A% A (44)
S e Ui " Y1
%1 =NiE T A % T N ERTE T Ay Y (43)(46)
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where “1” is now a grid index and does not denote an interface. By writing equation (44) in terms of
the grid index i, it is possible to vary the properties as a function of u;, L.e., nonlinear characteristics
piv Kip and Ky

parameters can be varied with i, i.e., Ax;, Vi' Ai-l and Ai as a function of i, which could be used to

can be included by programming P C jasa function of . Also, the geometric

implement equation (44) in various coordinate systems, e.g., cylindrical or spherical coordinates.

(5.1) Dirichiet Boundary Conditions

Subroutines INIT3, DERV3 and PRINT2 for the application of equations (44) to (47) to
equations (1), (7), (8) and (9) are listed in Program 7

SUBROUTINE INIT3
SOLUTION OF EQUATIONS (i) TO (4) BY FINITE VOLUMES

PARAMETER (N=50)

COMMON/T/ T, NSTOP, NORUN
1 /Y, U(N)

2 /F/  UT(N)
3 /XG/ L, DX, X(N), PI
4 /17 IP

TYPE SELECTED VARIABLES AS REAL

REAL L

PI

PI=4.0xATAN(1.0)

LENGTH

L=1.0

GRID SPACING
DX=L/FLOAT(N)

INITIAL CONDITION (2)
DO 1 I=1,N
X (I)=FLOAT(I~1)*DX+0.5~DX
U(I)=SIN(PI=X(1)/L)
CONTINUE

INITIALIZE THE TEMPORAL DERIVATIVES IN COMMON/F/
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CALL DERV
IP=0
RETURN
END

SUBROUTINE DERV3

SUBROUTINE DERV3 IS CALLED BY THE ODE INTEGRATOR TO DEFINE THE
ODES IN THE FINITE VOLUME SOLUTION OF EQUATIONS (1) TO (4)

PARAMETER (N=50)

COMMON/T/ T, NSTOP, NORUN
/Y/  U(N)
/F/ UT(N)
/%G/ L, DX, X(N), PI
/1/ IP
TYPE SELECTED VARIABLES AS REAL
REAL L

DEFINE ARRAY FOR THE FLUXES
REAL GQ(0:N)

BOUNDARY CONDITION (3)
uo=0.

BOUNDARY CONDITION (B4)
UL=0.

COMPUTE THE FLUXES (K/(RHO=CP) = 1)
Q(0)=(U0-U(1))/(0.5%DX)
DO 2 I=1,N-1
Q(I)=(U(I)-U(I+1))/DX
CONTINUE
Q(N)=(U(N)-UL)/ (0.5DX)

EQUATION (1)

DO 1 I=1,N
UT(1)=(Q(I-1)-Q(I))/DX

CONTINUE

RETURN

END

SUBROUTINE PRINT3(NI,NO)

SUBROUTINE PRINT3 IS CALLED BY THE MAIN PROGRAM TO PRINT THE
FINITE VOLUME SOLUTION OF EQUATIONS (1) TO (4)

PARAMETER (N=50)
COMMON/T/ T, NSTOP, NORUN
/Y/  UN)
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2 /F/ UT(N)
3 /XG/ L, DX. X(NY. P1
4 /1/ IP
C..
C.. TYPE SELECTED VARIABLES AS REAL
REAL L, UE(N), DIFF(N)
C..
C.. CALCULATE THE EXACT SOLUTION, AND THE DIFFERENCE BETWEEN THE
C.. NUMERICAL AND EXACT SOLUTIONS
DO 1 I=1,21.5
UE(1)=EXACT(I)
DIFF(I)=U(I)-UE(I)
CONTINUE
C..
C.. PRINT THE NUMERICAL AND EXACT SOLUTIONS TO EQUATIONS (1) TO (4)
UVAVG=(U(N/2)+U(N/2+1)) /2.0
WRITE(NG,2)T, (U(I),1=1,21,5),UA\G,
1 (UE(1),1=1,21,5),
2 (DIFF(1),I=1,21,5)
FORMAT (? T = ’,F6.2,
1 /,14X,°X=0.017,4X,°X=0.117,4X,°X=0.21",
2 4X,’X=0.317,4X,’X=0.41’,4X,°X=0.50"/,
3 ? u(x,T)?,6F10.6,/,
4 ’ UE(X,T)?,5F10.86,/,
5 * DIFF(X,T)’,5F10.6,/)
RETURN
END
Program 7: Solution of Case 1 Test Problem by Finite Volumes
The programming is essentially self explanatory. Note in particular the programming of the fluxes in
DO loop 2 and the finite volume (energy balance) equation in DO loop 1 of subroutine DERVS, in
accordance with equations (44) to (47).
The output from Program 7 is listed in Table 5
RUN NO. - 4 FINITE VOLUME SOLUTION OF EQUATIONS (1) TO (4)
INITIAL T - 0.000E+00
FINAL T - 0.500E+00
PRINT T - 0.100E+00
NUMBER OF DIFFERENTIAL EQUATIONS - 50

INTEGRATION ALGORITHM - LSODES
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MAXIMUM INTEGRATION ERROR - 0.100E-06

T = 0.00
X=0.01 X=0.11 X=0.21 xX=0.31 X=0.41 X=0.50
U(X,T) 0.031411 0.338738 0.612007 0.827081 0.960294 0.999507
UE(X,T) 0.031411 0.338738 0.612907 0.827081 0.960294
DIFF(X,T) 0.000000 0.000000 0.000000 0.000000 0.000000
T = ¢.10
X=0.01 X=0.11 X=0.21 X=0.31 X=0.41 X=0.50
U(X,T) 0.011711 0.126292 0.228510 0.308360 0.358026 0.372646
UE(X,T) 0.011707 0.126250 0.228435 0.308259 0.357909
DIFF(X,T) 0.000004 0.000041 0.000075 0.000101 0.000117
T = 0.20
X=0.01 X=0.11 X=0.21 X=0.31 X=0.41 X=0.50
U{X,T) 0.004366 0.047085 0.085195 0.114965 0.133482 0.138933
UE(X,T) 0.004363 0.047054 0.085140 0.114891 0.133395
DIFF(X,T) 0.000003 0.000031 0.000055 0.000075 0.000087
T = 0.30
X=0.01 X=0.11 X=0.21 X=0.31 X=0.41 X=0.50
U(X,T) 0.001628 0.017555 0.031763 0.042862 0.049766 0.051798
UE(X,T) 0.001626 0.017538 0.031732 0.042821 0.049718
DIFF(X,T) 0.000002 0.000017 0.000031 0.000042 0.000048
T = 0.40
X=0.01 X=0.11 X=0.21 X=0.31 X=0.41 X=0.50
U(X,T) 0.000607 0.006545 0.011842 0.015980 0.018554 0.019312
UE(X,T) 0.000608 0.006536 0.011827 0.015960 0.018330
DIFF(X,T) 0.000001 ©0.000008 0.000015 0.000021 0.000024
T = 0.50
X=0.01 X=0.11 X=0.21 X=0.31 X=0.41 X=0.50
U(X,T) 0.000226 0.002440 0.004415 0.005958 0.006917 0.007200
UE(X,T) ©0.000226 0.002436 0.004408 0.005948 0.006906
DIFF(X,T) 0.000000 0.000004 0.000007 0.000009 0.000011
COMPUTATIONAL STATISTICS
LAST STEP SIZE 0.112E-01
LAST ORDER OF THE METHOD 4
TOTAL NUMBER OF STEPS TAKEN 110
NUMBER OF FUNCTION EVALUATIONS 158

NUMBER OF JACOBIAN EVALUATIONS 2
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Table 5: Output from Programs 1 and 7

The comparison with the preceding solutions (Tables 1 and 3) is complicated somewhat by the fact
that the temperatures in the grid of Figure 2 are not at the same values of x as for the finite difference
and finite elements solutions. For example, u{Ax/2,t) is the first (left-most) temperature (U(1) in

Program 7) and u(1-Ax/2,t) is the last temperature (U(N) in Program 7). Thus, the surface

temperatures are not available for comparison with the preceding solutions.

However, we can make a comparison, keeping in mind the “offset” of Ax/2. From Tables 1, 3

and 5, we have

Three point finite differences (from Table 1)

T = 0.10
X=0 X=0.2 X=0.4 X=0.6 X=0.8 X=1
UX,T) 06.000000 0.219071 0.354465 0.354465 0.219071 0.000000
VUE(X,T) 0.000000 0.219072 0.354466 0.354466 0.219072 0.000000
DIFF(X,T) 0.000000 -0.000001 -0.000001 -0.000001 -0.000001 ©.000000
Finite elements (from Table 3)
T = 0.10
X=0 X=0.2 X=0.4 X=0.6 X=0.8 X=1
U(X,T) 0.000000 0.219002 0.354352 0.354352 0.219002 0.000000
UE(X,T) 0.000000 0.219072 0.354466 0.354466 (.219072 0.000000
DIFF(X,T) 0.000000 -0.000070 -0.000114 -0.000114 -~0.000071 0.000000
Finite volumes (from Table 5)
T = 0.10
X=0.01 X=0.11 X=0.21 X=0.31 X=0.41 X=0.50
U(X,T) ©0.011711 0.126292 0.228510 0.308360 0.358026 0.372646
UE(X,T) 0.011707 0.126250 0.228435 0.308259 0.357909
DIFF(X,T) 0.000004 0.000041 0.000075 0.000101 0.000117

We can now make a linear interpolation of the solution from Table 5 over the interval Ax/2 for

comparison with the solutions from Table 1 and 3. For example, extrapolation from x = 0.0 tox =0

gives
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= 0.011711 - (0.126292 - 0.01171130.1 = 0.011711 - 0.011458 = 0.000253

and the exact value is u(0,0.1) = 0 (from boundary condition (8)). Similarly, an interpolation from x

= 0.21 to x = 0.2 gives
(0.2,0.1) = u(0.21,0.1) - {(u(0.21,0.1) . u(0.11,0.1))/(o.21 - 0.11)}0.01
= 0.228510 - (0.228510 - 0.126292)0.1 = 0.228510 - 0.102218 = 0.218882

and the exact value is (0.2,0.1) = 0.219072.

(5.2) Neumann Boundary Conditions

Subroutines INIT3, DERV3 and PRINT3 for the finite volume solution of equations (1), (10},
(11) and (12) is listed in Program 8

SUBROUTINE INIT3
SOLUTION OF EQUATIONS (1) TO (4) BY FINITE VOLUMES

PARAMETER (N=50)

COMMON/T/ T, NSTOP, NORUN
1 /Y/ U(N)

2 /F/ UT(N)

3 /XG/ L, DX, X{N)
4 J1/ iP

TYPE SELECTED VARIABLES AS REAL
REAL L

LENGTH

L=1.0

GRID SPACING
DX=L/FLOAT (N)

INITIAL CONDITION (2)

DO 1 I=1,N
X{I)=FLOAT(I-1)«DX+0.5+DX
IF(I.LE. (N/2))U(I)=0.
IF(1.GT.(N/2))U(I)=1.0

CONTINUE

INITIALIZE THE TEMPORAL DERIVATIVES IN COMMON/F/
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CALL DERV
I1P=0
RETURN
END

SUBROUTINE DERV3

SUBROUTINE DERV3 IS CALLED BY THE ODE INTEGRATOR TO DEFINE THE
ODES IN THE FINITE VOLUME SOLUTION OF EQUATIONS (1) TO (4)

PARAMETER (N=30)

COMMON/T/ T. NSTOP, NORUN
1 /Y, UWN)
2 /F/  UT(XN)
3 /XG/ L, DX, X(N)
4 J1/ IP

TYPE SELECTED VARIABLES AS REAL
REAL L

DEFINE ARRAY FOR THE FLUXES
REAL Q(0:N) :
BOUNDARY CONDITION (3)

Q(0)=0.

BOUNDARY CONDITION (4)

Q({N)=0.

COMPUTE THE FLUXES (K/(RHOxCP) = 1)
DO 2 I=1,N-1

Q(I)=(U(I)-U(I+1))/DX
CONTINUE

EQUATION (1)

DO 1t I=1,N
UT(I)=(Q(1-1)-g(1))/DX

CONTINUE

RETURN

END

SUBROUTINE PRINT3(NI,NO)

SUBROUTINE PRINT3 IS CALLED BY THE MAIN PROGRAM TO PRINT THE
FINITE VOLUME SOLUTION OF EQUATIONS (1) TO (4)

PARAMETER (N=30)

COMMON/T/ T, NSTOP, NORUN
1 7Y/ LN
2 JF/  UT(N)

3 /XG/ L, DX,  X(N)
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C..
C. TYPE SELECTED VARIABLES AS REAL
REAL L, UE(N), DIFF(N)
C..
C. COMPUTE THE TOTAL ENERGY (RHD = CP = 1)
CALL DERV3
ENERGY=0.
DO 1 I=1.N
ENERGY=ENERGY+U (1) =DX
CONTINUE

CALCULATE THE EXACT SOLUTION, AND THE DIFFERENCE BETWEEN THE
NUMERICAL AND EXACT SOLUTIONS
DO 3 I1=1,21,5
UE(1)=SERIES (1)
DIFF(I)=U(I)-UE(I)
CONTINUE

nNnaoe

W

PRINT THE NUMERICAL AND EXACT SOLUTIONS TO EQUATIONS (1) TO (4)
UAVG=(U(N/2)+U(N/2+1)) /2.0
WRITE(NO,2)T,ENERGY, (U(I1),I=1,21,5),UAVG,
(VE(I),1=1,21,5),
(DIFF(I),I=1,21,5)
FORMAT (* T = ’,F6.2,> ENERGY = ’,F9.5,

b

1 /,14X,7X=0.01",4X,°X=0.117,4X, ’X=0.21",
2 4X,°X=0.317,4X,’X=0.417,4X,?X=0.50"/,
3 ’ U(X,T)’,6F10.6,/,
4 > UE(X,T)’,5F10.6,/,
5 > DIFF(X,T)’,5F10.6,/)
RETURN
END

Program 8: Solution of Case 2 Test Problem by Finite Volumes

Program 8 follows closely the details of Program 7. The only essential difference is the use of boundary

conditions (11) and (12) rather than (8) and (9) in subroutine DERV3.
The output from Program 8 is listed in Table 6
RUN ND. - 4 FINITE VOLUME SOLUTION OF EQUATIONS (1) TO (4)
INITIAL T - 0.000E+00
FINAL T - 0.100E+01
T

PRINT - 0.100E4+00
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NUMBER OF DIFFERENTIAL EQUATIONS - 50

INTEGRATION ALGORITHM - LSODES

MAXIMUM INTEGRATION ERROR - 0.100E-06
T = 0.00 ENERGY = 0.50000
X=0.01 X=0.11 X=0.21

U(X,T) 0.000000 0.000000 0.000000
UE(X,T) 0.000319 0.000338 0.000403
DIFF(X,T) -0.000319 -0.000338 -0.000403

T = 0.10 ENERGY = 0.50000
X=0.01 X=0.11 X=0.21
U(X,T) 0.262758 0.276660 0.312414
UE(X,T) 0.262873 0.276769 0.312506
DIFF({X,T) -0.000115 -0.000109 -0.000092

T = 0.20 ENERGY = 0.50000
X=0.01 X=0.11 X=0.21
U(X,T) 0.411538 0.416726 0.430067
UE(X,T) 0.411610 0.416795 0.430124
DIFF(X,T) -0.000072 -0.000068 -0.000057

T = 0.30 ENERGY = 0.50000
X=0.01 X=0.11 X=0.21
U(X,T) 0.467018 0.468952 0.473926
UVE(X,T) 0.467056 0.468989 0.473957
DIFF(X,T) -0.000038 -0.000036 -0.000030

T = 0.40 ENERGY = 0.50000
X=0.01 X=0.11 X=0.21
U(X,T) 0.487703 0.488424 0.490279
UE(X,T) 0.487722 0.488442 0.490293
DIFF(X,T) -0.000019 -0.000018 -0.000015

T = 0.50 ENERGY =  0.50000
X=0.01 X=0.11 X=0.21
U(X,T) 0.495415 0.495684 0.496375
UE(X,T) 0.495424 0.495692 0.496382
DIFF(X,T) -0.000009 -0.000008 -0.000007

T = 1.00 ENERGY = 0.50000
X=0.01 X=0.11 X=0.21
U(X,T) 0.499967 0.499969 0.499974
UE(X,T) 0.499967 0.499969 0.499974
DIFF(X,T) 0.000000 0.000000 0.000000
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X=0.31
0.000000
0.000566

-0.000566

X=0.31
0.3663538
0.366604

-0.000066

X=0.31
0.450252
0.450293

-0.000041

X=0.31
0.481452
0.481474

-0.000022

X=0.31
0.493085
0.4930985

-0.000011

X=0.31
0.497422
0.497427

-0.000005

X=0.31
0.499981
0.499981
0.000000

0.
0.
-0.

lolala;

X=0.41
000000
001141
001141

X=0.41

. 433748
. 433781
. 000033

X=0.41

. 475308
. 475328
. 000020

X=0.41

.490794
. 490804
. 000011

X=0.41

. 496568
.496573
.000005

X=0.41

- 198720
.498723
.000002

X=0.41

.499991
.499991
. 000000

X=0.50

. 500000

X=0.50

. 500000

X=0.50

. 500000

X=0.50

.500000

X=0.50

. 500000

X=0.50

. 500000

X=0.50

. 500000



COMPUTATIONAL STATISTICS

LAST STEP SIZE

LAST ORDER OF THE METHOD

TOTAL NUMBER OF STEPS TAKEN
NUMBER OF FUNCTION EVALUATIONS

NUMBER OF JACOBIAN EVALUATIONS

G.227E-01

3

315

419

Table 6: Output from Programs 1 and 8

The numerical solutions at t = 0.1 for the three methods of approximation are

Three point finite differences (from Table 2)

T = ©0.10 ENERGY = 0.50
X=0 X=0.2
U(X,T) 0.262758 0.308032
UE(X,T) 0.262756 0.308033
DIFF(X,T) 0.000001 ~0.000001

000

X=0.4 X=0.6
0.426654 0.573347 O
0.426655 0.573345 0.
-0.000001 0.000001 O

Five point finite differences (from Table 2)

T = 0.10 ENERGY = 0.50000
X=0 X=0.2 X=0.4 X=0.6
U(X,T) 0.262834 0.308095 0.426678 0.573321 0
UE(X,T) 0.262756 0.308033 0.426655 0.573345 O.
DIFF(X,T} 0.000078 0.000062 0.000023 -0.000024 -0
Finite elements (from Table 4)
T = 0.10 ENERGY = 0.50000
X=0 X=0.2 X=0.4 X=0.6
U(X,T) 0.262911 0.308158 0.426703 0.573297 O.
UE(X,T) 0.262756 0.308033 0.426655 0.573345 O
DIFF(X,T) 0.000154 0.000125 0.000048 -0.000048 -0.

Finite volumes (from Table 6)

T = 0.10 ENERGY =

0.50000
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X=0.8
.691968 0.
691967 O.
. 000001 -0

X=0.8
.691804 O
691967 0.
. 000083 -0

X=0.8
891842 0.
.691967 O.
000125 -0.

X=1.0
737242
737244

. 000002

X=1.0

.737167

T37244

.000077

X=1.0
737090
737244
000154



X=0.01 X=0.11 X=0.21 X=0.31 - X=0.41 X=0.50

U(X,T) 0.262758 0.276660 0.312414 0.366338 0.433748 0.500000
UE(X,T) 0.262873 0.276769 0.312506 0.366604 0.433731
DIFF(X,T) -0.000115 -0.000109 ~0.000082 -0,000066 -0.000033

The three point finite difference solution, u(0,0.1) = 0.262758, the five point finite difference solution,
u(0,0.1) = 0.262834, and the finite element solution u(0,0.1) = 0.262911 agree with the finite volume
solution u(0.01.0.1) = 0.262758 to better than three figures because of the Neumann boundary
condition uy(0,0.1) = 0 (equation (11)), i.e., this zero slope condition means that the solution changes

very little in the neighborhood of x = 0.

Thus, we conclude that for the Case 1 and Case 2 test problems of section (2}, the three
methods give essentially the same numerical solutions, and the choice of a solution, at least on the
basis of these test problems, is largely determined by the convenience of implementation. We now
conclude this discussion of approximations for parabolic PDEs with a test problem having boundary

conditions of the third type.

(6) Boundary Conditions of the Third Type and Conductances

When two different materials come into contact in heat conduction and diffusion problems
modeled by parabolic PDEs, the usual procedure for modeling the common boundary between the
materials is to use a conductance (also termed a contact resistance, heat transfer coefficient or mass
transfer coefficient). This procedure leads to a boundary condition of the third type, which is a
combination of a Dirichlet boundary condition (since the PDE dependent variable appears in the
boundary condition) and a Neumann boundary condition (since the first order spatial derivative of the
dependent variable appears in the boundary condition). We now illustrate how boundary conditions of
the third type can be implemented in a finite difference or a finite volume solution. We do not include
a f{inite element solution because of the relative complexity of this method, as illustrated by the two

preceding test problems (and by Programs 5 and §).
The problem to be considered is again equation (1) with initial condition (2) (or, specifically,
equation (10}) and the boundary condition

K02 - clu(54.1) - u(0.5-0)) "

Ju(0.5,t)

Equation (48) states that the flux at x = 0.5, k , is proportional to the difference in

temperatures just to the right and left of x = 0.5, Cfu(0.5+,t) - u(0.5-,t.)}. The proportionality
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constant, C, is the conductance. We now consider two approaches to the solution of equation (1} with

this boundary condition.

(6.1) Finite Differences

In using finite differences, we consider two domains, one to the left of x = 0.5 with
temperature u;(x,t), and the other to the right of x = 0.5 with temperature u,(x;t). The complete test

problem is then

Upe = Uit Y26 T Yaxx {49)(50)
u{x,0) = 0, uy(x,0) = 1 (51)(52)
ulx(ﬂ,t) =0, uy,(1t)=0, (53){54)

H%ﬂmm=cw@ﬂmn-%muﬁ.@%ﬂmnzcmbﬂmn-%mmﬁ (55)(56)

where k, and k, are the thermal conductivites for the sections to the left and to the right of x = 0.5,

respectively, and Cy 5 is the conductance at x = 0.5.

Equations (49) to (58) are implemented in Program 9

SUBROUTINE INITAL
PARAMETER (NX=26)

COMMON/T/ T, NSTOP, NORUN

1 /Y/  UL(NX), U2 (NX)

2 /F/ ULT(NX),  U2T(NX)
3 /S/  UIX(NX), UIXX(NX), U2X(NX), U2XX(NX),
4 /R/  X1(NX), X2 (NX), XL, DX,
5 K1, K2, c12
6 /1/ IP

REAL Ki, K2

HALF LENGTH
XL=0.5

GRID INCREMENT
DX=XL/FLOAT(NX-1)

GRID POINTS
DO 1 I=1,NX
X1(I)= FLOAT(I-1)=DX
X2 (1)=XL+FLOAT (1-1)=DX
CONTINUE
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CONDUCTIVITIES
Ki=1.0
K2=1.0

CONDUCTANCE
C12=0.1

INITIAL CONDITION
U10=0,
U20=1.0
DO 2 I=1,NX
U1(I)=U10
U2(1)=U20
CONTINUE

INITIALIZE COUNTER FOR PRINTED AND PLOTTED SOLUTION
IP=0

RETURN

EXND

SUBROUTINE DERV
PARAMETER (NX=26)

COMMON/T/ T, NSTOP, NORUN
1 /Y/  UL(NX), U2 (NX)
2 /F/ UIT(NX),  U2T(NX)

3 /S/ UIX(NX), ULXX(NX), U2X(NX), U2XX(NX),
4 /R/  X1(NX), X2 (NX), XL, DX,
5 K1, K2, c12

6 /1/ IP

REAL K1, K2

BOUNDARY CONDITION AT X = O

NL=2

U1X(1)=0.0E0

BOUNDARY CONDITION AT X = 0.5 FOR U1l

NU=2
UIX(NX)=(C12/K1)}=(U2(1)-U1(NX))

DERIVATIVE Ul
XX

IF (NORUN.EQ.1)CALL DSS042(0.,XL,NX,U1,U1X,U1XX,NL,NU)

IF (NORUN.EQ.2)CALL DSS044(0.,XL,NX,U1,U1X,U1XX,NL,NU)

BOUNDARY AT X = 0.5 FOR U2
NL=2
U2X (1)=(K1/K2)=U1X{NX)

BOUNDARY CONDITION AT X = 1
NU=2
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U2X (NX)=0.0E0

DERIVATIVE L2

XX
IF(NORUN.EQ.1)CALL DSS042(XL,1.0,NX,U2,U2X,U2XX,NL,NU)
IF(NORUN.EQ.2)CALL DSS044(XL,1.0,NX,U2,U2X,U2XX,NL,NU)

PDE FOR U1
DO 1 I=1,NX

U1T(1)=K1=U1XX (1)
CONTINUE

PDE FOR U2
DO 2 I=1,NX
U2T (1) =K2xU2XX (1)
CONTINUE
RETURN
END

SUBROUTINE PRINT(NI,NO)
PARAMETER (NX=26)

COMMON/T/ T, NSTOP, NORUN
/Y/  U1(NX), U2 (NX)
/F/ UIT(NX),  U2T(NX)
/S/ ULX(NX), UIXX(NX), U2X(NX), U2XX(NX),
/R/  X1(NX), X2 (NX), XL, DX,

K1, K2, Ci2

/1/ IP

REAL K1, K2

PRINT A HEADING FOR THE SOLUTION

IP=1P+1

IF(IP.EQ.1)THEN
WRITE(NO,1)
FORMAT (5X, ’t’
,1X,? U1(0,t)?,1X,’ U1(0.3,t)’,1X,’ U1(0.5,t)’
,1X,? U2(0.5,t)7,1X,? U2(0.7,t)7,1X,’ U2(1.0,t)’)
END IF

COMPUTE THE TOTAL ENERGY
CALL DERV
ENERGY=0.

ENERGY FOR U1l

DO 2 I=2,NX :
ENERGY=ENERGY+0 .5 (U1 (I-1)+U1 (I))=DX

CONTINUE

ENERGY FOR U2

DO 3 I=2,NX
ENERGY=ENERGY+0 .5 (U2(I-1)+U2(I))~DX
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3 CONTINUE
C..
C. PRINT THE NUMERICAL SOLUTION
WRITE(ND,4)T.U(1),U1(16),U1(26),
+ U2(1),U2(11),U2(26),
+ ENERGY
4 FORMAT (F6.1.6F11.5,/,” ENERGY = ’,F8.5,/)
RETURN
END
BOUNDARY CONDITION OF THE THIRD TYPE VIA SECOND ORDER FINITE DIFFERENCES
0. 25.0 2.5
52 0.00001

BOUNDARY CONDITION OF THE THIRD TYPE VIA FOURTH ORDER FINITE DIFFERENCES
0. 25.0 2.5

52 0.00001
END OF RUNS

Program 9: Solution of Two Region Problem by Finite Differences
The following points shouid be noted about Program 9:

(1) Two srrays in COMMON/Y/, U1(NX) and U2(NX) (NX = 26), repr&ent dependent
variables u; and uy in equations (49) to (56). The temporal derivatives are in UIT(NX) and
U2T(NX) in COMMON/F/, representing u;, and uy,, respectively. The spatial derivatives are in
U1X(NX), UIXX(NX}, U2X(NX]) and U2XX(NX) in COMMON/S/, represeniing 1y, Ui, Y2x

and Uy, s respectively.
(2) Initial conditions (51) and (52) are implemented iz DO loop 2 in INITAL.

(3) uy,, and uy, are computed by calls to subroutine DSS5042 (for NORUN = 1) or DS5044
(for NORUN = 2).

(4} Boundary conditions (53) to (55) are implementéd before the calls to DSS042 or DSS044.

Also, a ratio of boundary conditions (55) to (56) is used as the fourth boundary condition, i.e.,

Uy, (0.5,8) = (ky/kg)uy, (0.5,t)

This choice of a fourth boundary condition is arbitrary, and equation (56) could have been used.
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(5) The total energy of the system is computed in PRINT before the numerical solution is

printed.

Abbreviated output from Program 9 is listed in Table 7

RUN NO. - 1
FINITE DIFFERENCES
INITIAL T -~ 0.000E+00
FINAL T - (0.250E+02
PRINT T - 0.250E+01
NUMBER OF DIFFERENTIAL EQUATIONS - 52

INTEGRATION ALGORITHM - LSODES

MAXIMUM INTEGRATION ERROR -

t U1(0,t) U1(0.3,t)
0.0 0.00000 0.00000
ENERGY = 0.50000
2.5 0.30693 0.31028
ENERGY = 0.50000
5.0 0.42663 0.42791
ENERGY = 0.50000
7.5 0.47213 0.47261
ENERGY = 0.50000
10.0 0.48941 0.48960
ENERGY = 0.49999
25.0 0.49995 0.49996
ENERGY = 0.49998

COMPUTATIONAL STATISTICS
LAST STEP SIZE

LAST ORDER OF THE METHOD

0.100E-04
U1(0.5,t) U2(0.5,t)
0.00000 1.00000
0.31619 0.68381
0.43016 0.56984
0.47347 0.52652
0.48991 0.51007
0.49996 0.50001

0.175E+01

3
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U2(0.7,t)

1.00000
0.68972
0.57209
0.52738

0.51039

0.50001

BOUNDARY CONDITION OF THE THIRD TYPE VIA SECOND ORDER

U2(1.0,t)

1.00000

0.69307

0.57336

0.52788

0.51058

0.50001



TOTAL NUMBER OF STEPS TAKEN 95

NUMBER OF FUNCTION EVALUATIONS 135
NUMBER OF JACOBIAN EVALUATIONS . 4
RUN NO. - 2 BOUNDARY CONDITION OF THE THIRD TYPE VIA FOURTH ORDER
FINITE DIFFEREXNCES
INITIAL T - 0O.000E+00
FINAL T - 0.250E4+02
PRINT T - 0,250E+01
NUMBER OF DIFFERENTIAL EQUATIONS - 52

INTEGRATION ALGORITHM - LSODES

MAXIMUM INTEGRATION ERROR - 0.100E-04
t U1(0,t) U1(0.3,t) U1(0.5,t) U2(0.5,t) U2(0.7,t) U2(1.0,t)
0.0 0.00000 0.00000 0.00000 1.00000 1.00000 1.00000
ENERGY = 0.50000
2.5 0.30693 0.31028 0.31619 0.68382 0.68974 0.69309
ENERGY = 0.50001
5.0 0.42660 0.42788 0.43013 0.56990 0.57215 0.57342

ENERGY = 0.50001

7.5 0.47208 0.47257 0.47342 0.52659 0.52744 0.52793
ENERGY = 0.50000

10.0 0.48938 0.48956 0.48989 0.51013 0.51048 0.51065
ENERGY = 0.50001

25.0 0.50000  0.50000 0.50000 0.50002 0.50002 0.50002
ENERGY = 0.50001

COMPUTATIONAL STATISTICS
LAST STEP SIZE 0.150E+01

LAST ORDER OF THE METHOD 2
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TOTAL NUMBER QOF STEPS TAKEN 107
NUMBER OF FUNCTION EVALUATIONS 166

NUMBER OF JACOBIAN EVALUATIONS 5

Table 7: Output from Program 9

The two solutions (for NORUN = 1 and 2) are in close agreement, and the energy is conserved to

about five figures.

{6.2) Finite Volumes

A second approach to this problem with a conductance at x = 0.5 is based on finite volumes,

and in particular, equations (44) to (47). To include the conductance, we modify equation (47) to

k. ..
-1, 1 .
C= akd = (57)
(Axi_l + Ax.) Axi-l 1 Axi
Vo + A ()

i-1 i
or for a uniform grid with spacing Ax,

k. 4 -
-1,1
C=—at= 1 (58)
2Ax~ (Axy 4 1 . (BAx
(ki-l) + ot k. )

If Ax is now defined as the distance between two adjacent temperatures (i.e., twice the Ax in equation

(58), see Figure 3), equation {58) becomes

k. .
— l'lll_ 1
C= Ax (05AX) + _1__|_ (0.5AX) . (59)
ki O K

Equation (59) is used in subroutine DERV in Program 10, along with equations (44), (45) and (46},

which for the present formulation with a uniform grid, are

du,
1 —
VoiCoid = A9 A% (60)
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9.3 = Clygy -9, gy = Oy -y, 4) (61)(62)

where C is given by equation (59) (with the (Tl- term removed if x # (.5). Note that the denominator
v _
U..5£&x) + C__l__+ (051‘._\)()

of equation (59) is just the sum of three thermal resistances in series, i.e., { ”

i-1 v i
{and we use the idea that a reciprocal resistance is a conductance, or in other words, equations (61) and
(62) are a thermal analog of Ohm’s law). In Program 10, we take P = Cpi = ki-l =k =A ;=4
=A=1V=AAx,Cy = 0.1

SUBROUTINE INITAL
PARAMETER (NX=50)

COMMON /T/ T, NSTOP, NORUN
1 /Y/ U(NX)

2 /F/  UT(NX)

3 /R/  XG(NX), XL, DX,
4 KV, cv, c1, c2
5 /1/ IP

REAL KV

FULL LENGTH
XL=1.0

GRID INCREMENT
DX=XL/FLOAT (NX)

GRID POINTS
DD 1 I=1,NX
XG(I)=FLOAT(I-1)+DX
CONTINUE

CONDUCTIVITY
KvV=1.0

CONDUCTANCE
Cv=0.1

CONSTANTS FOR COMPUTING HEAT FLUXES ON A UNIFORM GRID
Cl1=1.0/((0.5«DX/KV)+(0.5+xDX/KV))
C2=1.0/((0.5*DX/KV)+(1.0/CV)+(0.5«DX/KV))

INITIAL CONDITION

Uo=1.

DO 2 I=1,NX
IF(I.LE.25)U(I)=0.
IF(I.GT.25)U(I)=U0

CONTINUE
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INITIALIZE COUNTER FOR PRINTED AND PLOTTED SOLUTION
I1P=0 ‘
RETURN

END

SUBROUTINE DERV
PARAMETER (NX=50)

Uvb D

COMMON /T/ T. NSTOP, NORUN
/Y/  UNX)
/F/  UT(NX)
/R/  XG(NX), XL, DX,
KV, cv, C1, c2
/1/ IP

REAL KV

DEFINE ARRAY FOR THE FLUXES
REAL Q(0:NX)

Il
o

BOUNDARY CONDITION AT X
Q(0)=0.

BOUNDARY CONDITION AT X
Q(NX)=0.

ik
-

COMPUTE THE FLUXES (K/(RHO+CP) = 1)
DO 2 1=1,NX-1

Q(I)=C1=(U(I}Y-U(I+1))
CONTINUE

INCLUDE CONDUCTANCE
Q(25)=C2x (U(25)-U(26))

EQUATION (1)

DO 1 I=1,NX
UT(1)=(Q(I1-1)-Q(1))/DX

CONTINUE

RETURN

END

SUBROUTINE PRINT(NI,NO)
PARAMETER (NX=50)

G O

COMMON/T/ T. NSTOP, NORUN
/Y/  U(NX)
/F/  UT(NX)
/R/  XG(NX), XL, DX,
KV, cv, Ct, c2
/1/ 1P

REAL KC

COMPUTE THE TOTAL ENERGY
CALL DERV
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ENERGY=0.
DO 2 I=1,NX
ENERGY=ENERGY+U (1) =DX
CONTINUE

PRINT THE NUMERICAL SOLUTION TG EQUATIONS (1) TGO (4) AND THE TOTAL
ENERGY

UAVG=(U(NX/2) +U(NX/241))/2.0
WRITE(NO,4)T,ENERGY,U(1),U(6),U(11),U(16),U(21) ,UAVG

FORMAT (° T = >,F6.2,’ ENERGY = ’,F9.5,

1 /,4X,’X=0.017,4X,’X=0.11",4X, ’X=0.21",

2 ' 4X,’X=0.31,4X,’X=0.41?,4X,’X=0.50",/,
3  6F10.6,/)

RETURN

END

Program 10: Solution of Two Region Problem by Finite Yolumes

The code in Program 10 follows directly from equations (59) to (62). There are a few points we shouid

note:

(1) Only one dependent variable is used in contrast with Program 10, i.e., U{NX) in
COMMON/Y/, with the temporal derivative UT(NX) in COMMON/F/. Also, the grid now has
50 points rather than the 52 in Program 9 because of the characteristics of the grid in Figure 2.
This change in the number of grid points is also reflected in the third line of data.

(2) Spatial derivatives are not contained in arrays as in Program 10 since spatial derivatives do

not appear explicitly in equations (59) to (62).

(3) The conductance used in subroutine DERV is C2 when x = 0.5 and C1 when x # 0.5, in

accordance with equation (59), with (C2) or without (C1) the term C—l—
v

The output from Program 1@ is listed in Table 8
RUN NO. - 1 BOUNDARY CONDITION OF THE THIRD TYPE VIA FINITE VOLUMES
INITIAL T - 0.000E+00
FINAL T - 0.250E+02

PRINT T - 0.250E+01
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NUMBER OF DIFFERENTIAL EQUATIONS - 50
INTEGRATION ALGORITHM - LSODES

MAXIMUM INTEGRATION ERROR - 0.100E-04

T = 0.00 ENERGY = 0.50000

X=0.01 X=0.11 X=0.21 X=0.31 X=0.41 X=0.50
0.000000 0.000000 0.000000 0.000000 0.000000 0.500000

T = 2.50 ENERGY = 0.50000

X=0.01 X=0.11 X=0.21 X=0.31 X=0.41 X=0.50
0.306937 (.307385 0.308578 0.310512 0.313179 (G.500000

T = 5.00 ENERGY = 0.50000

X=0.01 X=0.11 Xx=0.21 X=0.31 X=0.41 X=0.50
0.426644 0.426814 0.427268 0.428003 0.429016 0.500000

T = 7.50 ENERGY = 0.50000

X=0.01 X=0.11 X=0.21 X=0.31 X=0.41 X=0.50
0.472116 0.472182 0.472359 0.472630 0.473015 0.499996

T = 10.00 ENERGY = 0.50000

X=0.01 X=0.11 X=0.21 X=0.31 X=0.41 X=0.50

0.489398 0.489422 (0.489488 0.489594 0.489741 (.500000

T = 25.00 ENERGY = 0.50000
X=0.01 X=0.11 X=0.21 X=0.31 X=0.41 X=0.50
0.499970 0.499970 0.499970 0.499970 0.499971 0.500000

COMPUTATIONAL STATISTICS

LAST STEP SIZE 0.113E+01
LAST ORDER OF THE METHOD 4
TOTAL NUMBER OF STEPS TAKEN o7
NUMBER OF FUNCTION EVALUATIONS 135
NUMBER OF JACOBIAN EVALUATIONS 4

Table 8: Output from Program 10

The conservation of energy of the solution in Table 8 is to five figures. Also, the following comparison
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of the finite difference and finite volume solutions at t = 2.5 indicates that the agreement is good.

Second order finite differences (from Table T7)

2.5 0.30693 0.31028 0.31619 0.68381 0.68972 0.69307
ENERGY = 0.50000

Fourth order finite differences (from Table 7)

2.5 0.30693 0.31028 0.31619 0.68382 0.68974 0.698309
ENERGY = 0.30001

Finite volumes (from Table &)

T = 2.50 ENERGY = 0.50000
X=0.01 X=0.11 X=0.21 X=0.31 X=0.41 X=0.50
0.306937 0.307385 0.308578 0.310512 0.313179 0.500000

The finite volume solution, e.g., u{Ax/2,2.5) = u(0.01,2.5) = 0.306937, and the finite difference
solution is uf0,2.5) = 0.30693. The close agreement indicates that the grid in Figure 2 works well for
the method of finite volumes for Dirichlet and Neumann boundary conditions (from the results of

" Tables 5 and 6) and for boundary conditions of the third type (from Table 8).

(7) Summary

Through the use of a series of basic test problems, we have demonstrated the three principal
methods of numerical approximation of PDEs: finite differences, finite elements and finite elements.
The presentation is tutorial, and is intended to also illustrate the details of programming these three
approximations when applied to PDEs that are first order in time and second order in space, i.e.,
parabolic PDEs. All of the programs discussed previously, and that produced the numerical results, are

available from the authors (send inquiries to WES).

Generally, we conclude that the three methods are equivalent, with the possible exception that
the method of finite elements, as used in the context of the test problems, was relatively more difficult
to use, e.g., the analytical or numerical evaluation of the Galerkin integrals was required, and this
must be done for each PDE problem that has new terms in the PDEs. Of course, finite elements are
widely used, and they would possibly be selected for other problems in preference to finite differences or

finite volumes.

We also offer the opinion that any numerical approximation of Fourier’s second law should
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obey energy conservation (or, perhaps more generally, satisfy invariance conditions based on
conservation principles). However, we regard this as only a necessary cendition for a nmmmnerical
approximation. In other words, a numerical approximation could conceivably exhibit conservation of
energy and still produce an inaccurate solution. This can perhaps be appreciated by the fact that the
conservation of energy is a global property (typically computed by spatial integration) and therefore

does not insure point-to-point accuracy of the numerical solution.
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Appendix 1

Derivation of the Analvtical Solution for the Parabolic Test Problem

with Neumanp Boundary Conditions

The test problem. equations (1), (10), (11) and (12}, is restated here

fo, 0<x<05
ux (x1:6) = 0, ux(xy,t) = 0 (a.3)}(a.4)

The solution to equations (a.1), (a.3) and (a.4) is easily derived (with D = 1, x; = 0, x)y = 1) as

2 .
u(x,t) = Ce-Ant cos(Apx} (a.5)

where the eigenvalues are Ay = nm, n =9, 1, 2, . . . and C is a constant to be determined. Since
equation (a.1) is linear, we can take a superposition of solutions of the form of equation (2.5} to satisfy

the initial condition, equation (a.2)
- Ot
u{x,t) = Z Cpe ™ cos{Apx) (a.6)
n=(

We now follow the well known procedure of evaluating the Fourier coefficients, Cp, by multiplying

equation (a.6) by cos(Amx) and integrating (with t = 0 since we are considering initial condition (a.2))

i
00
J 1 cos(Amx)dx = I cos{Amx) Z Cpcos( Xy x)dx (a.7)
0.5 0 =0

Interchanging the orders of integration and summation in the RHS of equation (a.7), and using the

orthogonality property

1
Jcos(,\mx)cos(lnx)dx =0,m#n
0
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i 1

1
J cos? (A x)dx = J (1/2){1 + cos(?.\nx)}dx = (1/2){:( + (ﬁ;)sin(?z\nx)} (1) =1/2  (a.8)

0 0

The LHS integral of equation (a.7) is (with Ap = Ay, # 0)

1
1
J 1 cos(Apx)dx = (’\l}sin(,\nx) | = (%)sin(O.Smr)
05 n 0.5

Thus

Cp = (ﬁ%)sin({]jnﬂ'), n=1,2,

=-2/m, 2/(37),-2/(57), 2/(T7), . ..

For the case Ap = 0 (n = 0) equation (a.7) becomes

1 1
J 1dx = COJ 12dx
or 0.5 0

Co=1/2

(a.9)

{(a.10)

Equations {a.6), (a.9) and (a.10) are then the complete solution, which are also stated as

equation (14).
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Appendix 2

Main Program for the Numerical Solution

PROGRAM LSODES2

THE FOLLOWING PROGRAM INTEGRATES A SYSTEM OF ODES, DEFINED BY
THE USER-SUPPLIED SUBROUTINES INITAL, DERV AND PRINT, PLUS DATA.
THE SYSTEM OF ODES PROGRAMMED IN SUBROUTINE DERV 1S INTEGRATED
BY LSODES (THE SPARSE MATRIX SOLVER IN ODEPACK, A LIBRARY OF
INTEGRATORS DEVELOPED BY ALAN C. HINDMARSH, LAWRENCE LIVERMORE
NATIONAL LABORATORY).

+.. THE MODEL INITIAL CONDITIONS ARE SET IN SUBROUTINE INITAL, AND
THE MODEL DERIVATIVES ARE PROGRAMMED IN SUBROUTINE DERV. THE
NUMERICAL SOLUTION IS PRINTED AND PLOTTED IN SUBROUTINE PRINT.

THE FOLLOWING CODING IS FOR 250 ORDINARY DIFFERENTIAL EQUATIONS.
IF MORE ODES ARE TO BE INTEGRATED, ALL OF THE 250%S SHOULD BE
CHANGED TO THE REQUIRED NUMBER

COMMON/T/ T, NSTOP, NORUN
1 /Y/ Y (250)
2 JF/ F(250)

sReloloNoNoloNsNoRsNoNoNoNoNe!

COMMON AREA TO PROVIDE THE INPUT/OUTPUT UNIT NUMBERS TO OTHER
SUBROUTINES
COMMON/IG/ NI, NG

ABSOLUTE DIMENSIONING OF THE ARRAYS REQUIRED BY LSODES. ARRAY
WORK IS SIZED BY THE FOLLOWING FORMULAS TAKEN DIRECTLY FROM THE
LSODES DOCUMENTATION:
RWORK REAL WORK ARRAY OF LENGTH AT LEAST..
20 + 16=NE(Q FOR MF = 10,
20 + (2 + 1./LENRAT)=NNZ + (11 + 9./LENRAT)=*=NEQ
FOR MF = 121 OR 222,

WHERE. .

NNZ = THE NUMBER OF NONZERG ELEMENTS IN THE SPARSE
JACOBIAN (IF THIS IS UNKNOWN, USE AN ESTIMATE}, AND

LENRAT = THE REAL TO INTEGER WORDLENGTH RATIO (USUALLY 1 IN

SINGLE PRECISION AND 2 IN DOUBLE PRECISION).

MF = METHOD FLAG. STANDARD VALUES ARE..

10 FOR NONSTIFF (ADAMS) METHOD, NO JACOBIAN USED.

121 FOR STIFF (BDF) METHOD, USER-SUPPLIED SPARSE JACOBIAN.
222 FOR STIFF METHOD, INTERNALLY GENERATED SPARSE JACOBIAN.

Qaaoaooaaoaaoaaaaaonn aan
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THUS, FOR MF = 222, NEQ (= NEQN IN THE SUBSEQUENT CODING) = 250,
NHZ = 1250, LENRAT = 1, 20+(2+1./1.)*1250+(11+49./1.)=250 = 9000
(APPROXIMATELY)

DIMENSION YV(250), RWORK(10000), IWORK(30)

EXTERNAL THE DERIVATIVE AND ODE JACOBIAN MATRIX ROUTINES CALLED BY
LSODES
EXTERNAL FCN, JAC

ARRAY FOR THE TITLE (FIRST LINE OF DATA), CHARACTERS END OF RUNS
CHARACTER TITLE(20)=4, ENDRUN(3)=4

VARIABLE FOR THE TYPE OF ERROR CRITERION
CHARACTER=3 ABSREL

DEFINE THE CHARACTERS END OF RUNS
DATA ENDRUN/’END ’,’QF R’,’UNS 7/

DEFINE THE INPUT/OUTPUT UNIT NUMBERS
NI=5
NO=6

OPEN INPUT AND OUTPUT FILES
OPEN(NI,FILE=’DATA>, STATUS=’0LD’)
OPEN(NQO,FILE="0UTPUT’ ,STATUS="NEW?)

INITIALIZE THE RUN COUNTER
NORUN=0

BEGIN A RUN
NORUN=NORUN+1

INITIALIZE THE RUN TERMINATION VARIABLE
NSTOP=0

READ THE FIRST LINE OF DATA
READ (NI, 1000,END=999) (TITLE(1),I=1,20)

TEST FOR END OF RUNS IN THE DATA
PO 2 1=1,3
IF(TITLE(I).NE.ENDRUN(I))GO TO 3
CONTINUE

AN END OF RUNS HAS BEEN READ, SO TERMINATE EXECUTION
STOP

READ THE SECOND LINE OF DATA
READ(NI, 1001 ,END=999)TO0O,TF,TP

READ THE THIRD LINE OF DATA
READ (NI ,1002,END=999)NEQN, ERROR
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PRINT A DATA SUMMARY

WRITE(NO, 1003)NORUN, (TITLE(1),1=1,20),
1 TO,TF,TP,
2 NEQN , ERROR

INITIALIZE TIME
T=TO

SET THE INITIAL CONDITIONS
CALL INITAL

PRINT THE INITIAL CONDITIONS
CALL PRINT(NI,NO)

SET THE INITIAL CONDITIONS FOR SUBROUTINE LSODES
DO 5 I=1,NEQN

YV(I)=Y(I)

CONTINUE

SET THE PARAMETERS FOR SUBROUTINE LSQODES
TV=TO

ITOL=1

RTOL=ERROR

ATOL=ERROR

LRW=10000G

LIW=30

I10PT=1

ITASK=1

ISTATE=1

ONE NONSTIFF OPTION, MF = 10, AND ONE STIFF OPTION, MF = 222,
ARE PROGRAMNED HERE. SEVERAL OTHER OPTIONS ARE AVAILABLE FOR
LSODES WHICH SHOULD BE CONSIDERED WHEN RUNNING PROBLEMS THAT
LARGER AND MORE COMPLEX THAN THE RELATIVELY SMALL TEST PROBLEM
IN SUBROUTINES INITAL, DERV AND PRINT

(1) NORUN =1
IMPLICIT ADAMS METHOD, FUNCTIONAL ITERATION
IF(NORUN.EQ@.1)THEN
MF=10

(2) NORUN = 2

IMPLICIT ADAMS METHOD, CHORD ITERATICGN WITH AN INTERNALLY

GENERATED (DIFFERENCE QUOTIENT) SPARSE JACOBIAN
ELSE IF(NDRUN.EQ.2)THEN

MF=222

END IF
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1000
1001
1002
1003

CALL SUBROUTINE LSODES TO COVER ONE PRINT INTERVAL
TOUT=TV4TP

REDEFINE THE SPARSITY STRUCTURE

ISTATE=3
CALL LSODES(FCN,NEQX.YV,TV,TOUT,ITOL,RTOL,ATOL, ITASK, ISTATE,
1 I0PT ,RWORK . LRW, IWORK ,LIW, JAC, MF)
PRINT THE SOLUTION
T=TV
DO 6 I=1,NEQN
Y(I)=YV(1)
CONTINUE

CALL PRINT(NI,NQ)

TEST FOR AN ERROR CONDITION
IF(ISTATE.LT.QO)THEN

PRINT A MESSAGE INDICATING AN ERROR CONDITION
WRITE(ND,1004) ISTATE

GO ON TO THE NEXT RUN
GO TO 1
END 1F

CHECK FOR A RUN TERMINATION
IF(NSTOP.NE.0)GO TO 1

CHECK FOR THE END OF THE RUN
IF(TV.LT. (TF-0.5xTP))GD TO 4

THE CURRENT RUN 1S COMPLETE, SO PRINT THE COMPUTATIONAL STAT-

ISTICS FOR LSODES AND GO ON TO THE NEXT RUN

WRITE(NO,8)RWORK(11) , IWORK (14) , IWORK (11) , IWORK (12) , IWORK (13)

FORMAT(1H ,//,’ COMPUTATIONAL STATISTICS® /7
bl

1 > LAST STEP SIZE ’, E10.3,//,

2 > LAST ORDER OF THE METHOD ', 110,//,

3 ’ TOTAL NUMBER OF STEPS TAKEN ', 116,//,
4 > NUMBER OF FUNCTION EVALUATIONS ’, 110,//,
5 > NUMBER OF JACOBIAN EVALUATIONS >, 110,/)
GO TO 1
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FORMATS

FORMAT (20A4)

FORMAT (3E10.0)

FORMAT (15,20X,E10.0)

FORMAT (1H1,

1 > RUN NO. - *,13,2X,20A4,//,
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* INITIAL T - *,E10.3,//,

’ FINAL T - ’,E10.3,//,

? PRINT T - ?,E10.3,//,

> NUMBER OF DIFFERENTIAL EQUATIONS - *,I4,//,

> INTEGRATION ALGORITHM - LSODES °.//,

 MAXIMUM INTEGRATION ERROR - ’,E10.3,//,

1H1)

1004 FORMAT(1H ,//,’ ISTATE = ',13,//,
1 * INDICATING AN INTEGRATION ERROR, SO THE CURRENT RUN’ o/ s
2 * IS TERMINATED. PLEASE REFER TO THE DOCUMENTATION FOR’ o/ s
3 ’ SUBROUTINE®,//,23X,’LSODES’,//,
4 *> FOR AN EXPLANATION OF THESE ERROR INDICATORS’ )

END

010 080K

SUBROUTINE FCN(NEQN,TV,YV,YDOT)

SUBROUTINE FCN IS AN INTERFACE ROUTINE BETWEEN SUBROUTINES LSODES
AND DERV

sEeNe e

COMMON/T/ T, NSTOP, NORUN
1 /Y/ Y(1)
2 /F/ F(1)

VARIABLE DIMENSION THE DEPENDENT AND DERIVATIVE ARRAYS
DIMENSION YV(NEQN), YDOT(NEQN)

TRANSFER THE INDEPENDENT VARIABLE, DEPENDENT VARIABLE VECTOR
FOR USE IN SUBROUTINE DERV

T=TV

DO 1 I=1,NEQN

Y(I)=YV(I)

CONTINUE

aaoa ad

EVALUATE THE DERIVATIVE VECTOR
CALL DERV

QA0 QGw

TRANSFER THE DERIVATIVE VECTOR FOR USE BY SUBROUTINE LSODES
DO 2 I=1,NEQN

YDOT(1)=F (1)

CONTINUE

RETURN

END

]

SUBROUTINE JAC(NEQ,T,Y,J,IAN,JAN,PDJ)

SUBRODUTINE JAC IS CALLED ONLY IF AN OPTION OF LSODES IS SELECTED
FOR WHICH THE USER MUST SUPPLY THE ANALYTICAL JACOBIAN MATRIX OF
THE ODE SYSTEM. THE PROGRAMMING OF THE ANALYTICAL JACOBIAN iIN
SUBROUTINE JAC IS DESCRIBED IN DETAIL IN THE DOCUMENTATION COMMENTS
COMMENTS AT THE BEGINNING OF SUBROUTINE LSODES.

cacoont
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RETURN
END
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