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We considerhere some fundamentalcharacteristicsof convectivesystemswhich complicatethe

calculation of numerical solutions of the descriptive PDEs for thesesystems. We start with the

momentumbalancethe precursorof the Navier-Stokesequations[Bird, et al 1960, eq. 3.2-20]

+ f-PVXVX+ f_PVyVx+ j-PVzVx + f-rn + - pg = 0 1.1

where

Yx,YyVz componentsof the velocity vector

p density

P pressure

T normal componentof the stresstensor

gx x-componentof the gravitationalaccelerationvector

Eq. 1.1 is the x-componentof the vector momentumbalanceexpressingNewton’s secondlaw in the

x direction.

To focus on the terms of particular interest in eq. 1.1, we considerone dimensionalflow vy

= vz = 0 and drop the pressureand gravitationalterms

&PVx + ?P’’xvx+ f-Ta = 0 1.2

Also, if the shearis expressedin term of a visocity through Newton’slaw for fluids, eq. 1.2 becomes
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0 9 UVX
13-pVx + yPVxVx -

The next step that is usually followed in analyzingeq. 1.3 is to expandthe LHS

a a a a a2v
+ vxp + PVxrvx + vxrPvx =

or

Pjjvx + pvx#vx + vx{&P + Pvx} = 1.4

The term in bracketsis zero from the continuity equationmassbalance

a a -n .0

andthereforeeq. 1.4 reducesto

a a _vvx 16vx Vxyvx -

where v = p/p the kinematic viscosity.

Eq. 1.6 is the well-known Burgers’ equation, which has been studied extensively, both

analytically and numerically therefore,we might consider Burgers’ equationas a special caseof the

Navier-Stokesequations,seefor exampleSchiesser1993. For the purposeof the subsequentanalysis,

we consider the case v = 0, and in conformity with the usual convention of the numerical analysis

literature, we denotethe dependentvariableas u, i.e., u v. The equation that is the starting point

for the subsequentanalysis,the inviscid Burgers’ equation, is thereforefrom eq. 1.6

au+uauo 17at ax

Clearly eq. 1.7 is a highly simplified form of the generalmomentumbalance,eq. 1.1. However, for

the purposeof the subsequentanalysis,it hasthe nonlinear advectiongroup, Cu/Ct + uOu/Ox, which is

of primary interestand, of course,appearsin computationalfluid dynamicsproblemsin general,when

both the dynamic momentumand convective momentum terms, e.g., au/at and uOu/Cx, must be

takeninto consideration.

The intention of the following analysisis to:
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1 Compareanalytical and numericalsolutions to eq. 1.7 in order to illustrate and evaluate

the numericalmethods.

2 Illustrate some important propertiesof the nonlinear advectiongroup, e.g., front flattening

and front sharpening,which can have a major effect on the performanceof numerical methods

used to integrateeq. 1.7.

Thus, we proceedfirst to an analytical solution of eq. 1.7.

If we assumea product solution of the form

ux,t = fxgt 1.8

substitutionin eq. 1.7 gives

fxg’t + fxgt2f’x = 0 1.9

which canbe separatedinto

g’t/g2t = - f’x = A 1.10

where A is a separationconstantto be determined. Thus, we havetwo ordinary differential equations

ODEs

g’t . Ag2t = 0 1.11

f’x + A = 0 1.12

Eq. 1.11 hasa solution

1 113

where a and b are constantsto be determinedand A = -b. Then, from eq. 1.12

fx = bx + c 1.14

wherec is a constantto be determined. Thus, a solution to eq. 1.7 is

ux,t c±bx 1.15
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In the subsequentanalysis,we take the one initial condition and the one boundarycondition required

by eq. 1.7 to be consistentwith eq. 1.15.

We now considera method of lines solution to eq. 1.7, subject to the initial and boundary

conditions from eq. 1.15. The first case is for: 1 a > and b > 0 and 2 a > 0 and b < 0, i.e., two

executionsor "runs" of the program. SubroutineINITAL to define the initial condition for eq. 1.7

from eq. 1.15, ux,0 = c + bx/a is listed below

SUBROUTINE INITAL
IMPLICIT DOUBLE PRECISION A-H,O-Z
COMMON/T/ T, NSTOP, NORUN

+ /1/ N, NCASE, IP, NT
C...
C... SELECT CASE

NCASE=1.
C...
C... SELECT INITIALIZATION ROUTINE

IFNCASE.EQ.1CALL INIT1
IFNCASE.EQ.2CALL INIT2
IFNCASE.EQ.3CALL INIT3
RETURN
END

We can note in subroutineINITAL that three casesare programmed,NCASE = 1, 2 or 3, for which

threeinitialization routinesare called, INIT1 for NCASE = 1, etc. In the presentINITAL, NCASE =

1.

SubroutineINIT1 is listed below:

SUBROUTINE INIT1
IMPLICIT DOUBLE PRECISION A-H,O-Z
PARAMETERNX=1O1
COMMON/T/ T, NSTOP, NORUN

+ /Y/ UNX
+ /F/ UTNX
+ /5/ UXNX
+ /X/ xNx
+ /C/ A, B, C, XL, DX
+ /1/ N, NCASE, IP, NT

C...
C... SELECT THE SOLUTION PARAMETERS
C...
C... FRONT FLATTENING

IFNORUN.EQ. 1THEN
A=1 . ODO
B=1 .0Db
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C=O.ODO
NT=1 1

C...
C... FRONT SHARPENING

ELSE
+ rFNORUN.EQ.2THEN

A= 1.O1DO
B=-1 .0Db
C= 1.ODO
NT=i 1
END IF

C...
C... NUMBER OF GRID POINTS

N=1 1
C...
C... TOTAL LENGTH IN X, GRID SPACING

XL=1 .ODO
DX=XL/DFLOAT N-i

C...
C... INITIAL CONDITION

DO 1 I=1,N
XI=XLDFLOATI-1/DFLOATN-1
UI=ANALXT ,O.000

CONTINUE
C...
C... INITIAL DERIVATIVES

CALL DERV
I P=0
RETURN
END

We cannote the following points about subroutineINIT1:

1 The coding is in double precision. A maximumof 101 grid points in x is specified.

IMPLICIT DOUBLE PRECISION A-H,O-Z
PARAMETERNX=101
CDMMON/T/ T, NSTUP, NOB.UN

+ /Y/ UNX
+ /F/ UTNX
+ /S/ UXNX
+ /X/ XNX
+ /C/ A, B, C, XL, DX
+ /1/ N, NCASE, IP, NT

The following variablesare used throughout the code.,

IJNX ux,t in eq. 1.7
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UTNX Cu/Ot in eq. 1.7, which is subsequentlyexpressedin subscriptnotationas ut

UXNX au/axin eq. 1.7, in subscriptnotation,ux

XNX spatial variable x in eq. 1.7, definedon a grid of NX points

A,B,C a, b andc in eq. 1.15

XL length of the x axis

DX interval used in the finite differenceapproximationof Ou/ax in eq. 1.7

N numberof spatial grid points actually used< NX

NCASE case implementedin the computercodesubsequentlyexplained

IP integerindex usedin the plotting routine PLOTTD

NT total numberof outputpoints used in PLOTTD

2 Two runsare programmed

C...
C... SELECT THE SOLUTION PARAMETERS
C...
C... FRONT FLATTENING

IF NORUN . EQ. 1 THEN
An .000
Bni . ODO
Cr0 .000
NT=1 1

C...
C... FRONT SHARPENING

ELSE
+ IFNORUN.EQ.2THEN

Ar 1.0100
Br-i .ODO
Cr 1.000
NT=i 1
END IF

For the first run NORUN n I, a = 1, b = I and c = 0 in eq. 1.15; the numberof output points,

NT, is 11. For the secondrun NORUN = 2, a = 1.01, b = -1 and c = 1 in eq. 1.15, and again the

numberof output points is 11.

3 In both runs, the numberof spatialgrid points, N, is 11
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C...
C... NUMBER OF GRID POINTS

N=ii

A small numberof grid points i.e., N < NX can be usedsincethe solution is quite smooth for both

runs as discussedsubsequently.

4 The total length of the system, XL, is unity, and the grid spacing for the finite difference

approximationof au/axin eq. 1.7, DX, is then computedfor this valueof the length

C..
C... TOTAL LENGTH IN X, GRID SPACING

XL=1 . ODO
DX=XL/DFLOATN-i

5 The spatial grid, XI, and the initial condition from eq. 1.15, implementedvia function ANAL,

are defined in DO loop 1

C...
C... INITIAL CONDITION

DO 1 Ini,N
XI=XL*DFLOATI-1/DFLOATN-i
UI=ANALXI ,0.ODO

1 CONTINUE
C...
C... INITIAL DERIVATIVES

Function ANAL is a straightforwardimplementationof eq. 1.15

DOUBLE PRECISION FUNCTION ANALX,T
IMPLICIT DOUBLE PRECISION A-H,O-Z
COMMON/C/ A, B, C, XL, DX
ANAL= C÷BX / A+B*T
RETURN
END

Note the use of a, b and c in eq. 1.15 availablethrough COMMON/C/.

6 A call to DERV then computesthe initial derivativesin eq. 1.7. Finally, the index for plotting

used in subroutinePLOTTD is intialized

C.
C... INITIAL DERIVATIVES
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CALL DERV
IP=0

SubroutineDEItY for the calculationof the derivativesin eq. 1.7 is listed below

SUBROUTINE DERV
IMPLICIT DOUBLE PRECISION A-H,O-Z
COMMON/T/ T, NSTOP, NORUN

+ /1/ N, NCASE, IP, NT
C...
C... SELECT DERIVATIVE SUROUTINE

IFNCASE.EQ.1CALL DERV1
IFNCASE.EQ.2CALL DERV2
IFNCASE. EQ .3CALL DERV3
RETURN
END

Note the COMMON area is the same as in INITAL, and three derivative subroutinesare called,

dependingon NCASE currently, NCASE = 1, so DERV1 is called.

SubroutineDERV1 is listed below

SUBROUTINE DERV1
IMPLICIT DOUBLE PRECISION A-H,O-Z
PARAMETERNX=101
COMMON/T/ T, NSTOP, NORUN

+ /Y/ UNX
+ /F/ UTNX
+ /S/ UXNX
+ /X/ XNX
+ A, B, C, XL, DX
+ /1/ N, NCASE, IP, NT

C...
C... BOUNDARY CONDITION AT X = 0

U1=ANAL0 .ODO,T
UT 1 =0 . ODO

C...
C... PDE

DO 1 I=2,N
UTI=-UIsUI-UI-1/DX

CONTINUE
RETURN
END

We can note the following points about DERV1:
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1 The COMMON areais the sameas in INIT1.

2 The boundary condition for eq. 1.7, u0,t, is defined by analytical solution eq. 1.15 via

function ANAL

C...
C... BOUNDARY CONDITION AT X = 0

U1=ANAL0 .ODO ,T
UT1=0 .ODO

Also, since u0,t is defined, its temporal derivative, au0,t/at is set to zero so that the ODE

integrator doesnot move u0,t away from its prescribedvalue. Of course,mathematically,this is not

correct since this temporal derivative is not zero from eq. 1.15, Ou0,t/ôt = -bc/a + bt2.

ilowever, the next time DERV1 is called, the boundary value, u0,t, will again be reset according to

eq. 1.15 via the call to ANAL. By zeroing the derivative,auo,t/at,the ODE integrationat x = 0

is facilitated. We should note, however, that this proceduremay not work correctly with some ODE

integrators, e.g., the BDF integratorsof ODEPACK such as LSODE and LSODES, and the DAE

integrator DASSL; for such integrators,the correct temporalderivativeat x = 0 may be required, arid

the setting of the dependentvariable at x = 0 would then be dropped. In other words, the following

alternativeprogrammingcould be used

C...
C... BOUNDARY CONDITION AT X = 0

UT1=ANALT0 .ODO ,T

where the Oux,t/Ot is programmedin function ANALT as

DOUBLE PRECISION FUNCTION ANALTX,T
IMPLICIT DOUBLE PRECISION A-H,O-Z
COMMON/C/ A, B, C, XL, DX
ANALT=-B* C+BscX/ A+B*T scsc2
RETURN
END

Now we are actually integrating the correct ODE at x = 0, and the initial condition for this ODE,

uO,0, would be set in INIT1 as u0,O = c/a from eq. 1.15.

3 The methodof linesapproximationof eq. 1.7 is finally programmedoverpoints 2 to N

C...
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C... PDE
DO 1 In2,N

UTI=-UI*UI-.UI-lfl/DX
CONTINUE

Here we haveused the first order, backwardfinite differenceapproximation

Oux,t ux,t -ux.Ax,t
UI.UI.1/DX 1.16

This finite differencerepresentationof the spatial derivative in eq. 1.1 is usually termed a two point,

upwind approzimationsince the "upwind" point, ux.Sx,t is used. Note, also, that this approximation

is first order correct, i.e.,
Oux,t ux,t - ux-ix,t

+ OAx 1.17

where "0" capital oh is interpretedas "of order". In other words, the approximationof eq. 1.17 is

exact or "superaccurate"for constant and linear functions in x, as we shall observe in the

subsequentnumericalsolutions.

SubroutineDERV1 defines the temporal derivativesfor all of the method of lines ODEs, in

this case N = 11 ODEs. This derivative vector, UTN, is sent through COMMON/F/ to an ODE

integrator, in this case RKF45 [Forsythe, et al 1977J. The ODE integrator then returns the

dependent variable vector, UN, through COMMON/Y/ for the programming of the temporal

derivativesin DERV1. The dependentvariable vector, UN, which is the numerical solution to eq.

1.7, is printed via subroutinePRINT, listed below

SUBROUTINE PRINTNI ,NO
IMPLICIT DOUBLE PRECISION A-H,O-Z
COMMON/T/ T, NSTOP, NORUN

+ /1/ N, NCASE, IP, NT
C...
C... SELECT PRINT ROUTINE

IFNCASE.EQ.1CALL PRINT1NI,NO
IFNCASE.EQ.2CALL PRINT2NI ,NO
IFNCASE.EQ.3CALL PRINT3NI ,NO
RETURN
END

PRINT is similar to INITAL and DERV. For NCASE = 1, PRINT1 is called to print and plot the

numerical solution resulting from the integration of the ODEs programmedin DEItY!. PRJNT1 is

listed below
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SUBROUTINE PRINT1 NI ,NO
IMPLICIT DOUBLE PRECISION A-H,O-Z
PARAMETERNX=1O1
COMMON/T/ T, NSTOP, NORUN

+ UNX
+ UTNX
+ UXNX
+ XNX
+ /C/ A, B, C, XL, DX
+ /1/ N, NCASE, IP, NT

C...
C... MONITOR OUTPUT ON SCREEN

WRITE* ,*NORUN,T
C...
C... PRINT NUMERICAL AND ANALYTICAL SOLUTIONS

WRITENO,3T
3 FORMAT/,’ t = ‘,F5.2,/,9X,’x’,4X,’ux,t’,3X,’uax,t’

DO 1 I=1,N
UA=ANALXI ,T
WRITENO,2XI ,UI ,UA

2 FORMATF1O.2,2F10.5
1 CONTINUE
C...
C... PLOT THE SOLUTION

IP=IP+1
CALL PLOTTD
RETURN
END

We can note the following points aboutsubroutinePRINTI:

1 The COMMON areais the sameas in INIT1 and DERV1.

2 The numerical solution, hA, is computed via function ANAL, then printed along with the

numericalsolution, UI, as a function of x at the valuesof t correspondingto when PR.INT1 is called,

as definedby the datafile discussedsubsequently

C...
C... PRINT NUMERICAL AND ANALYTICAL SOLUTIONS

WRITENO ,3T
3 FORMAT/,’ t = ‘,F5.2,/,9X,’x’,4X,’ux,t’,3X,’uax,t’

DO 1 I=1,N
UA=ANALXI ,T
WRITENO,2XI ,UI ,UA

2 FORMATF1O.2,2F10.5
1 CONTINUE
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3 Finally, the counter It’ is incrementedeach time PRINTI is called to control the storing and

plotting of the solution by subroutinePLOTTD

C...
C... PLOT THE SOLUTION

IP=IP+1
CALL PLOrI’D

PLOTTD writes a computer file with the solution to be plotted. This file is then read by a

plotting system, Top Drawer, to draw the plots discussedsubsequently.SubroutinePLOTTD is listed

in Appendix A. The data file read by the main program that calls ODE integrator RKF45 is listed

below

Inviscid Burgers equation, front flattening
0. 1.0 0.1

11 0.0001
Inviscid Burgers equation, front sharpening
0. 1.0 0.1

11 0.0001
END OF RUNS

This file defines:

1 Line 1: A title for the run.

2 Line 2: The initial, final and print interval valuesof t. Thus, PRINT1 is call at t = 0, 0.1, 0.2,.

1 i.e., 11 times.

3 Line 3: 11 ODEs to be integratedby RKF45 with an accuracyof 0.0001.

Three lines of dataare readfor eachrun. At the endof the secondrun, the charactersEND OF RUNS

are readto terminateexecutionof the main program.

Abbreviatedoutput from the main programandsubroutinePRINT1 is listed below

RUN NO. - 1 Inviscid Burgers equation, front flattening

INITIAL T - 0.000D+OO
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FINAL T - 0.100D+01

PRINT T - 0.100D+00

NUMBER OF DIFFERENTIAL EQUATIONS - 11

MAXIMUM INTEGRATION ERROR - O.100D-03

t = 0.00
x ux,t uax,t

0.00 0.00000 0.00000
0.10 0.10000 0.10000
0.20 0.20000 0.20000
0.30 0.30000 0.30000
0.40 0.40000 0.40000
0.50 0.50000 0.50000
0.60 0.60000 0.60000
0.70 0.70000 0.70000
0.80 0.80000 0.80000
0.90 0.90000 0.90000
1.00 1.00000 1.00000

t = 0.10
x ux,t uax,t

0.00 0.00000 0.00000
0.10 0.09091 0.09091
0.20 0.18182 0.18182
0.30 0.27273 0.27273
0.40 0.36364 0.36364
0.50 0.45455 0.45455
0.60 0.54545 0.54545
0.70 0.63636 0.63636
0.80 0.72727 0.72727
0.90 0.81818 0.81818
1.00 0.90909 0.90909

t = 0.20

t = 0.30

t = 0.80

t = 0.90
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x ux,t uax,t
0.00 0.00000 0.00000
0.10 0.05263 0.05263
0.20 0.10526 0.10526
0.30 0.15789 0.15789
0.40 0.21053 0.21053
0.50 0.26316 0.26316
0.60 0.31579 0.31579
0.70 0.36842 0.36842
0.80 0.42105 0.42105
0.90 0.47368 0.47368
1.00 0.52632 0.52632

t = 1.00
x ux,t uax,t

0.00 0.00000 0.00000
0.10 0.05000 0.05000
0.20 0.10000 0.10000
0.30 0.15000 0.15000
0.40 0.20000 0.20000
0.50 0.25000 0.25000
0.60 0.30000 0.30000
0.70 0.35000 0.35000
0.80 0.40000 0.40000
0.90 0.45000 0.45000
1.00 0.50000 0.50000

RUN NO. - 2 Inviscid Burgers equation, front sharpening

INITIAL T - 0.000D+OO

FINAL T - 0.100D+01

PRINT T - 0.100D+00

NUMBER OF DIFFERENTIAL EQUATIONS - 11

MAXIMUM INTEGRATION ERROR - 0.100D-03

t = 0.00
x ux,t uax,t

0.00 0.99010 0.99010
0.10 0.89109 0.89109
0.20 0.79208 0.79208
0.30 0.69307 0.69307
0.40 0.59406 0.59406
0.50 0.49505 0.49505
0.60 0.39604 0.39604
0.70 0.29703 0.29703
0.80 0.19802 0.19802
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0.90 0.09901 0.09901
1.00 0.00000 0.00000

t = 0.10
x ux,t uax,t

0.00 1.09890 1.09890
0.10 0.98900 0.98901
0.20 0.87915 0.87912
0.30 0.76921 0.76923
0.40 0.65934 0.65934
0.50 0.54945 0.54945
0.60 0.43956 0.43956
0.70 0.32967 0.32967
0.80 0.21978 0.21978
0.90 0.10989 0.10989
1.00 0.00000 0.00000

t = 0.20

t = 0.30

t = 0.80

t = 0.90
x ux,t uax,t

0.00 9.09091 9.09091
0.10 8.18169 8.18182
0.20 7.27312 7.27273
0.30 6.36346 6.36364
0.40 5.45462 5.45455
0.50 4.54549 4.54545
0.60 3.63640 3.63636
0.70 2.72731 2.72727
0.80 1.81822 1.81818
0.90 0.90911 0.90909
1.00 0.00000 0.00000

t = 1.00
x ux,t uax,t

0.00 100.00000 100.00000
0.10 89.99937 90.00000
0.20 80.00154 80.00000
0.30 69.99988 70.00000
0.40 60.00046 60.00000
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0.50 50.00040 50.00000
0.60 40.00043 40.00000
0.70 30.00044 30.00000
0.80 20.00045 20.00000
0.90 10.00042 10.00000
1.00 0.00000 0.00000

We cannote the following pointsabout this output:

1 Consideringfirst the output from the first run, the initial conditionof eq. 1.15 with a = b = 1, c

= 0 set in INIT1 is

ux,0 = x 1.18

This linear function is apparentin the output at t = 0

t = 0.00
x ux,t uax,t

0.00 0.00000 0.00000
0.10 0.10000 0.10000
0.20 0.20000 0.20000
0.30 0.30000 0.30000
0.40 0.40000 0.40000
0.50 0.50000 0.50000
0.60 0.60000 0.60000
0.70 0.70000 0.70000
0.80 0.80000 0.80000
0.90 0.90000 0.90000
1.00 1.00000 1.00000

checking the initial condition is, of course,always importantin developinga dynamic simulation; also,

the output of the solution is in accordancewith the data file, i.e., the output is at t = 0, 0.1, 0.2,.

1.

2 The evolution of the solution is in accordancewith eq. 1.15

ux,t = i-t-i 1.19

Note that at t = 1, the analyticaland numericalsolutions are still in agreementto five figures, i.e.,

numericalintegration errors did not accumulatesignificantly as the solution evolved. This agreement

is not unexpectedsince the solution is linear in x from eq. 1.19, and therefore the finite difference
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approximationof eq. 1.17 is exact. Also, the integrationin t by RKF45 surpassedthe error tolerance

of 0.0001 RKF45 uses this number in a combinEd absolute/errortolerance. Of course, we cannot

generallyexpect an accuratenumerical solution to a POE to be computedso easily; for example, the

first order approximation of eq. 1.17 will typically give solutions of limited accuracy since the

variation of the solution with x will usually departsubstantiallyfrom a linear relationship.

3 Continuing on to the solution for the second run, we see again that the numericalsolution is in

five figure agreementwith the analyticalsolution with a = 1.01, b = .1 and c = 1 in eq. 1.15

ux,t
= ioi ‘ t 1.20

Note in particular that the initial condition, ux,0 = 1 - x/1.0l, is again linear in x

t = 0.00
x ux,t uax,t

0.00 0.99010 0.99010
0.10 0.89109 0.89109
0.20 0.79208 0.79208
0.30 0.69307 0.69307
0.40 0.59406 0.59406
0.50 0.49505 0.49505
0.60 0.39604 0.39604
0.70 0.29703 0.29703
0.80 0.19802 0.19802
0.90 0.09901 0.09901
1.00 0.00000 0.00000

and at t = 1, the solution has increasedto a maximum valueof 100

t = 1.00
x ux,t uax,t

0.00 100.00000 100.00000
0.10 89.99937 90.00000
0.20 80.00154 80.00000
0.30 69.99988 70.00000
0.40 60.00046 60.00000
0.50 50.00040 50.00000
0.60 40.00043 40.00000
0.70 30.00044 30.00000
0.80 20.00045 20.00000
0.90 10.00042 10.00000
1.00 0.00000 0.00000
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The five figure agreementat t = 1 is particularly interestingsince the solution of eq. 1.20 has a

singularityat t = 1.01 from eq. 1.20.

The solutions for the two runs are plotted in Figures 1.la and 1.lb; the linear characterof

these solutions is apparentwhich also suggeststhat good accuracyin the solutions could have been

achievedusing only two points in the spatialgrid in x. Also, the front flatteningand front sharpening

of the two solutions is clear. In the first solution, the front flattening occurs becausethe velocity is

relatively small at small valuesof x, i.e., the left end is flowing more slowly than the right end. In the

secondsolution, the front sharpensbecausethe velocity is relatively large at small valuesof r, the left

end is flowing more rapidly than the right end.

The precedingsolutions are not typical of PDE solutions in the sensethat they were easily

calculatedto good accuracywith a small numberof spatial grid points. To investigatea more typical

PDEproblem, we repeatthe precedingexample,but keep the boundaryvalue, u0,t, fixed at its initial

value, u0,0. Physically, this might representan entering velocity which doesnot changewith time.

i.e., a constantentering flow rate. The precedingprogramming is modified in a very minor way to

include this revised boundarycondition. However, to clarify just how this case was programmed.we

now consider subroutinesINIT2, DERV2 and PRINT2, which are called from INITAL, DERV and

PRINT, respectively,by setting NCASE = 2 in INITAL.

SubroutineINIT2 is listed below

SUBROUTINE INIT2
IMPLICIT DOUBLE PRECISION A-H,O-Z
PARAMETERNX=101
COMMON/T/ T, NSTOP, NORUN

+ /Y/ UNX
+ /F/ UTNX
+ /5/ UXNX
+ /X/ XNX
+ /C/ A, B, C, XL, DX
-4- /1/ N, NCASE, IP, NT

C...
C... SELECT THE SOLUTION PARAMETERS
C...
C... FRONT FLATrENING

IFNORUN.EQ.1THEN
A=1 . ODO
B=1 . ODO
C=0 . ODO
NT=1 1

C...
C... FRONT SHARPENING
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ELSE
÷ IFNORUN.EQ.2THEN

A= 1.ODO
8=-i .000
C= 1.000
NT=13
END IF

C...
C... NUMBER OF GRID POINTS

N=101
C...
C... TOTAL LENGTH IN X, GRID SPACING

XL=1 . 000
DX=XL/DFLOAT N-i

C...
C... INITIAL CONDITION

DO 1 I=1,N
XI=XL*DFLOATI-1/DFLOATN-1
UI=ANALXI ,0.ODO

CONTINUE
C...
C... INITIAL DERIVATIVES

CALL DERV
I P=0
RETURN
END

INIT2 differs from INIT1 in only two ways:

1 The number of spatial grid points has been increasedfrom II to 101 to improve the spatial

resolution, which is requiredbecausethe solution is no longer necessarilylinear in x.

2 The value of a in the secondrun was changedfrom 1.01 to 1 and the numberof output points,

NT, was increasedfrom 11 to 13 so that PRINT2 is calledat t = 0, 0.1, 0.2,. . ., 1.2. Note that this

doesnot causea problem with the singularity of eq. 1.20 sinceeq. 1.20 is not the analyticalsolution

to this problem in fact, the analyticalsolution is unknown. However, we still use eq. 1.15 to define

the initial condition in DO loop 1.

SubroutineDERV2 is listed below

SUBROUTINE DERV2
IMPLICIT DOUBLE PRECISION A-H,O-Z
PARAMETERNX=10i
COMMON/T/ T, NSTOP, NORUN

+ /Y/ UNX

19



+ /F/ UTNX
+ /S/ UXNX
+ /X/ XNX
+ /C/ A, B, C, XL, DX
+ /1/ N, NCASE, IP, NT

C...
C... BOUNDARY CONDITION AT X = 0

U1=ANAL0.000,0 .ODO
UT 1 =0 . ODO

C...
C... POE

DO 1 I=2,N
UT I =-U I * U 1-U I-i /DX

1 CONTINUE
RETURN
END

SubroutineDERV2 differs from subroutineDERV1 in only one way: The call to ANAL to define the

boundarycondition at x = 0 is

U1=ANAL0 .000,0.000

rather than

U1=ANAL0.ODO ,T

Thus, the boundaryvalue, u0,t, remainsat the initial value,u0,0.

Subroutine PRINT2 is identical to PRINT1 and therefore is not listed. The data file for

NCASE2is

Inviscid Burgers equation, front flattening, n = 101
0. 1.0 0.1

101 0.0001
Inviscid Burgers equation, front sharpening, n = 101
0. 1.2 0.1

101 0.0001
END OF RUNS

There are two differencesin this datafile with respectto the NCASE= 1 datafile:

1 The numbersof ODEs is now 101.

2 For the secondsolution, t runs to 1.2.
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Abbreviatedoutput from thesethe two runs is listed below

RUN NO. - 1 Inviscid Burgers equation, front flattening, n = 101

INITIAL T - 0.000D+0O

FINAL T - 0.1000+01

PRINT T - 0.1000+00

NUMBER OF DIFFERENTIAL EQUATIONS - 101

MAXIMUM INTEGRATION ERROR - o.100D-03

t = 0.00
x ux,t

0.00 0.00000
0.01 0.01000
0.02 0.02000
0.03 0.03000
0.04 0.04000
0.05 0.05000

0:95 0:95000
0.96 0.96000
0.97 0.97000
0.98 0.98000
0.99 0.99000
1.D0 1.00000

t = 0.10
x ux,t

0.00 0.00000
0.01 0.00909
0.02 0.01818
0.03 0.02727
0.04 0.03636
0.05 0.04545

0.95 0:86364
0.96 0.87273
0.97 0.88182
0.98 0.89091
0.99 0.90000
1.00 0.90909
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t = 0.20

= 080

= 090

t = 1.00
x

0.00
0.01
0.02
0.03
0.04
0.05

0:95
0.96
0.97
0.98
0.99
1 .00

ux,t
0.00000
0.00500
0.01000
0.01500
0.02000
0.02500

0:47500
0.48000
0.48500
0.49000
0.49500
0.50000

RUN NO. - 2 Inviscid Burgers equation, front sharpening, n = 101

INITIAL T -

FINAL T -

PRINT T -

0.0000+00

0.1200+01

0.1000+00

NUMBER OF DIFFERENTIAL EQUATIONS - 101

MAXIMUM INTEGRATION ERROR -

t = 0.00
x ux,t

0.00 1.00000
0.01
0.02
0.03
0.04 0.96000
0.05 0.95000

0.1000-03

0.99000
0.98000
0.97000
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0.95 0.05000
0.96 0.04000
0.97 0.03000
0.98 0.02000
0.99 0.01000
1.00 0.00000

= 0.20

t = 1.00

=

t = 1.20
x ux,t

0.00 1.00000
0.01 1.00000
0.02 1.00000
0.03 1.00000
0.04 1.00000
0.05 1.00000

0:95 0:99951
0.96 0.99935
0.97 0.99909
0.98 0.99876
0.99 0.99833
1.00 0.00000

We can note the following pointsabout the precedingoutput:

1 The first solution demonstratesfront flattening and remainslinear throughoutthe interval 0 t

< 1; thesecharacteristicsare apparentin the plot of the solution in Figure 1.2a.

2 The second solution demonstatesfront sharpening;by the time it has progressedto t = 1.2, the

solution decreasesfrom 0.99833 to 0.00000 within an interval Ax = 0.01. This front sharpeningis

apparentin the plot of the solution in Figure 1.2b, and indicates the requirementfor a finer spatial

grid, e.g., 101 grid points rather than 11. The performanceof the first order approximation of eq.

23



1.17 is surprisingly good considering the sharp spatial variation in the solution; in fact, we cannot

usually expect such good resultsfrom a low order approximation.

3 An interestingfeatureof the secondsolution is u1,t = 0. In other words, the front doesnot "flow

out of the system" at x = 1, as indicated in Figure 1.2b, but rather, merely sharpensat x = 1. The

reasonfor this can be seen in consideringDO loop 2 of DERV2

C...
C... POE

DO 1 I=2,N
UTI=-UI*UI-UT-lfl/DX

CONTINUE

Note that initially, u1,0 = 0. Therefore,at t = 0, UN = 0 and from DO loop 2, UTN = 0. Since

the velocity at x = I startsat zero, and its temporalderivativetherefore is zero, it cannotchangewith

increasingt, i.e., it remainsat zero, which is what we observein the numericalsolution. Thus, the case

u1,0 0 shouldbe interesting,andcan easily be run by a small change in the initial condition set in

INIT2.

To investigatethe effect of the order of the approximationfor the spatial derivative, äu/Ox. in

eq. 1.7, we now considerusinga secondorder, centeredapproximation

Oux,t ux+Ax,t - ux.Ax,t
+ 0Ax2 1 "1

Ox 2Ax

Intuitively, it would seem that the centered approximation of eq. 1.21 should produce a better

solution than the upwind approximationof eq. 1.17. To investigate this point, we againconsiderthe

precedingINITAL, DERV and PRINT, with NCASE = 3, for which INIT3, DERV3 and PRINT3 are

called. INIT3 is essentially the sameas INIT2, so it is not listed here. The only difference is that the

secondsolution is terminatedat t = I i.e., NT = 11 in INIT3 rather than at t = 1.2 NT = 13 in

INIT2; the reasonfor the shorterrun with INIT3 is explainedsubsequently. DER.V3 is listed below

SUBROUTINE DERV3
IMPLICIT DOUBLE PRECISION A-H,O-Z
PARAMETERNX=101
COMMON/T/ T, NSTOP, NORUN

+ /Y/ UNX
+ /F/ UTNX
+ /S/ UXNX
+ /X/ XNX
+ /C/ A, B, C, XL, DX
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÷ /1/ N, NCASE, IP, NT

C...
C... BOUNDARY CONDITION AT X = 0

U1=ANAL0 .000,0.000
UT 1 =0 . ODO

C...
C... PDE
C... XNEO0RXL

DO 1 I=2,N-1
UTI=-UIUI+1-UI-1fl/2 .000*DX

1 CONTINUE
C...
C... X=XL

UTN=-UN*UN-UN-lfl/DX
RETURN
END

We can note the following points about DERV3:

1 The boundarycondition at x = 0 is the sameas in DERV2

C...
C... BOUNDARY CONDITION AT X = 0

U1=ANAL0.000,0 .000
UT 1 =0 . 000

2 The temporal derivative Oul,t/Ot is computedwith the approximationof eq. 1.17 in order to

avoid the use of the fictitious valueul+Ax,t

C..
C... X=XL

UTN=-UN*UN-UN-lfl/DX

3 The interior temporalderivativesare computedwith the centeredapproximationof eq. 1.21

C...
C... POE
C... XNEOORXL

DO 1 I=2,N-1
UTI=-UI*UI+1-UI-lfl/2.ODO*DX

1 CONTINUE

SubroutinePRINT3 is the sameas PRINT2, so it is not listed here. The data file for the two

solutionscomputedwith DERV3 is listed below
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Inviscid Burgers equation, front flattening, n = 101
0. 1.0 0.1

101 0.0001
Inviscid Burgers equation, front sharpening, n = 101
0. 1.0 0.1

101 0.0001
END OF RUNS

Note that the only differencebetweenthis datafile and that for NCASE 2 is the termination of the

secondrun at t = 1 rather than 1.2.

Abbreviatedoutput from JNIT3, DERV3 and PRINT3 is listed below

RUN NO. - 1 Inviscicl Burgers equation, front flattening, n = 101

INITIAL T - 0.0000+00

FINAL T - 0.100D+01

PRINT T - 0.100D+00

NUMBER OF DIFFERENTIAL EQUATIONS - 101

MAXIMUM INTEGRATION ERROR - 0.100D-03

t = 0.00
x ux,t

0.00 0.00000
0.01 0.01000
0.02 0.02000
0.03 0.03000
0.04 0.04000
0.05 0.05000

0:95 0:95000
0.96 0.96000
0.97 0.97000
0.98 0.98000
0.99 0.99000
1.00 1.00000

t = 0.10
x ux,t

0.00 0.00000
0.01 0.00909
0.02 0.01818
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0.03 0.02727
0.04 0.03636
0.05 0.04545

0:95 0:86364
0.96 0.87273
0.97 0.88182
0.98 0.89091
0.99 0.90000
1.00 0.90909

= 020

t = 0.80

=

=
x ux,t

0.00 0.00000
0.01 0.00500
0.02 0.01000
0.03 0.01500
0.04 0.02000
0.05 0.02500

0:95 0.47495
0.96 0.47996
0.97 0.48504
0.98 0.49004
0.99 0.49499
1.00 0.49998

RUN NO. - 2 Inviscid Burgers equation, front sharpening, n = 101

INITIAL T - 0.0000+00

FINAL T - 0.100D+01

PRINT T - 0.100D+00

27



NUMBER OF DIFFERENTIAL EQUATIONS - 101

MAXIMUM INTEGRATION ERROR - 0.100D-03

1

t = 0.00
x ux,t

0.00 1.00000
0.01 0.99000
0.02 0.98000
0.03 0.97000
0.04 0.96000
0.05 0.95000

0:95 0:05000
0.96 0.04000
0.97 0.03000
0.98 0.02000
0.99 0.01000
1.00 0.00000

t = 0.10
x ux,t

0.00 1.00000
0.01 1.00023
0.02 1.00060
0.03 0.99974
0.04 0.99861
0.05 0.99900

0:95 0:05556
0.96 0.04444
0.97 0.03333
0.98 0.02222
0.99 0.01111
1.00 0.00000

t = 0.20

t = 0.80

t = 0.90
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t = 1.00
x ux,t

0.00 1.00000
0.01 1.00000
0.02 1.00000
0.03 1.00000
0.04 1.00000
0.05 1.00001

1:01462
0.96 1.02332
0.97 1.03823
0.98 1.07794
0.99 1.34886
1.00 0.00000

We cannote the following points aboutthis output:

1 The first solution is essentially the sameas with NCASE = 2, which is not unexpectedsince the

solution is linear, and we would therefore expect the second order approximation of eq. 1.21 to

perform as well as the first order approximationof eq. 1.17. In fact, the only difference betweenthe

NCASE = 2 and NCASE = 3 solutionsis due to the mixed use of eq. 1.17 at x 1 and eq. 1.21

at x 1 in DERV3. The linear characterof the first solution is apparentin Figure 1.3a.

2 The second solution has unrealistic oscillations e.g., note u0.99,1 = 1.34886, and these

oscillationsbecomelarger with increasingt which is the reasonfor terminatingthe secondsolution at

= 1; beyond t = 1, the oscillations become so large they cannot be plotted. The characterof the

secondsolution is evident in Figure 1.3b.

From theseresults, we arrive at the following conclusions:

1 Centeredapproximationsdo not work well for the dynamic analysisof strongly convectivesystems.

2 Someform of upwinding zs essentialfor the dynamic analysisof strongly convectivesystems.

Of course,we have not proveneither of theseconclusionsrigorously, but rather,we infer them from the

resultsof the one test problem basedon eq. 1.7. More generally,theseconclusionshaveprovento be
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correctbasedon accumulatedexperience.

Conclusion 2 has an important implication. In using upwinding, the direction of flow must

be known in order to know the upwind direction for the approximation. But, in general,during the

analysis of a convective system, we may not know the direction of flow intuitively. Therefore,some

test or analytical method must be included in the analysis to indicate the correct direction for

upwinding; if this is done incorrectly and downwinding is actually used, the solution will in general be

unstable.

Finally, we mention one other generalizationbasedessentially on experience. If a systemof

PDEs for a strongly convectivesystemis to be integratednumerically, upwinding in all of the PDEs

may not be required. For example, if the continuity, momentum and energy equations are to be

integrated,upwinding of the continuity and energy equationsmay be sufficient to computea solution.

The momentumbalancecan be approximatedby centereddifferenceswhich is an importantadvantage

since the momentum balance in effect provides the fluid velocity i.e., the direction of flow is not

required in approximating the momentum balance, and the fluid velocity that comes from the

momentum balancecan be usedwith appropriateupwinding in the continuity and energy balances.

Again, we emphasizethat there is apparentlyno proofof this statement,and some analysisto at least

support this conclusionwould be reassuring.
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Appendix A: SubroutinePLOTTD

Although Top Drawer is not a part of Fortran, and is generally not available on most

computers,subroutinePLOTTD is listed below to indicate how the plots of Figures 1.la to 1.3b were

actually producedand to assistin the conversionto other, more widely available plotting systems,e.g.,

Matlab, a spreadsheet;this conversionis a straightforwardprocess.

SUBROUTINE PLOTTD
IMPLICIT DOUBLE PRECISIONA-H,0-Z
PARAMETERNX= 101
COMMON/T/ T, NSTOP, NORUN

+ /Y/ UNX
+ /F/ UTNX
+ /5/ UXNX
+ /X/ XNX
+ /C/ A, B, C, XL, DX
+ /1/ N, NCASE, IP, NT

C...
C... OPEN A FILE FOR TOP DRAWER PLO’VI’ING

IFIP.EQ.1.AND.NORUN.EQ.1THEN
OPEN1,FILE=’TD.TOP’ ,STATUS=’UNKNOWN’

END IF
C...
C... SCALE AXES AT THE BEGINNING OF EACH RUN

IFIP.EQ.1THEN
WRITE1 , 1

I FORMAT’ SET LIMITS X FROM 0 TO 1 Y FROM -0.1 TO 1.2’,/,
+ ‘ SET FONT DUPLEX’

END IF
C...
C... WRITE THE NUMERICAL SOLUTION FOR SUBSEQUENT TOP DRAWER PLOTTING

DO 2 Iz1,N
WRITE1 ,3XI ,UI

3 FORMATF10.3,F10.5
2 CONTINUE
C...
C... CONNECT POINTS

WRITE1 ,4
4 FORMAT’ JOIN 1’
C...
C... LEGEND, AXES LABELS

IFIP.EQ.NTTHEN
WRITE1 ,5NCASE

5 FORMAT
+‘ TITLE 4.5 9.75 "Case ‘,Il,’: Inviscid Burgers Equation"’
+,/,‘ TITLE LEFT "

+,/,‘ TITLE BOTTOM "x"’
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C...
C... NEXT PLOT

WRITE1 ,6
6 FORMAT’ NEW FRAME’

END IF
RETURN
END

We can note the following pointsabout PLOTTD:

1 The COMMON area is the sameas in INIT1, DERV1 and PRINT1 so that the solution to eq.

1.7 canbe transferredto PLOTTD for plotting.

2 At the beginning of the first run, when IP = 1, a file, TD.TOP, is openedto store the numerical

solution

C..
C... OPEN A FILE FOR TOP DRAWER PLOTTING

IFIP.EQ. 1 .AND. NORUN.EQ. 1flTHEN
OPEN1 ,FILE=’TD.TOP’ ,STATUS=’UNKNOWN’

END IF

3 At the beginning of eachrun, with IP = 1, the axesfor the plot are scaled

C...
C... SCALE AXES AT THE BEGINNING OF EACH RUN

IFIP.EQ. lTHEN
WRITE1 ,1

1 FORMAT’ SET LIMITS X FROM 0 TO 1 Y FROM -0.1 TO 1.2’,/,
+ ‘ SET FONT DUPLEX’

END IF

The Top Drawer commands"SET LIMITS" and "SET FONT" are programmedwith Format 1.

4 During each call to PRINT1 and therefore PLOTTD, the numerical solution is written to file

TD.PLOT

C...
C... WRITE THE NUMERICAL SOLUTION FOR SUBSEQUENT TOP DRAWER PLOTTING

DO 2 I=1,N
WRITE1 ,3XI ,UI

3 FORMATF1O.3,F1O.5
2 CONTINUE
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C...
C... CONNECT POINTS

WRITE1 ,4
4 FORMAT’ JOIN

C...

1’

After the N values of the solution are written by. DO loop 2, the Top Drawer command "JOIN" is

written to join the points in the plot to producea curve for eachvalueof t.

5 At the endof eachrun, with IP = NT, labels are addedto the plot

C... LEGEND, AXES LABELS
IFIP.EQ .NTTHEN

WRITE1,5NCASE
5 FORMAT

+‘ TITLE 4.5
+,/,‘ TITLE
+,/,‘ TITLE

C...

The label includesthe valueof NCASE.

6 The plot for each run is now complete, so the Top Drawer command,"NEW FRAME", is used to

initiate the next plot

C... NEXT PLOT
WRITE1 ,6

6 FORMAT’
END IF

NEW FRAME’

9.75
LEFT
BOTTOM

Case ‘ ,I1, Inviscid Burgers Equation"

‘
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