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Abstract

The simulation of physical systems with strongly convective flow is a particularly challenging
numerical problem because such systems tend to propagate steep spatial fronts (e.g., in temperature),
and even discontinuities (shocks) which are difficult to represent numerically. Much effort has been
devoted to this problem by numerical analysts, scientists and engineers, and this report is another
attempt to arrive at a computationally useful procedure. Within the context of the SSC, the flow of
supercritical helium (He) through the magnets is a process that must be understood to assure adequate
cooling of the magnets according to an acceptable time schedule, Thus, the propagation of sharp
temperature fronts along the magnets is a phenomena which must be understood through modeling and

simulation.

In this study, we investigate approximations of the basic advection group

¥ vou (1)

QJ[QD

which we write in subscript notation (to facilitate the discussion and analysis)
ut + Yy (2)

v is a linear, constant velocity, although the numerical procedures to be developed and evaluated can

be applied to nonlinear variants of (1) and (2}, including two and three dimensions.

Ten approximations, which are essentially finite differences, are evalvated through a series of
five test problems of varying difficulty, all of which have an exact solution which can be used to assess
the quality of the numerical solutions. We conclude as a result of these 50 tests (10 approximations x
five test problems = 50 cases) that the five point biased upwind approximation with five point
approximations at the boundaries is the best of the 10 approximations. We also include listings of our
code so that other investigators can know exactly how we did the calculations, and thereby evaluate

our work. Finally, a set of subroutines is provided which can be easily called for use in applications.

In addition to finite differences, finite volumes are mentioned briefly, and then the five test

problems are executed with two different finite elements approximations, giving an additional 10 tests



(two appoximations x five test problems = 10 cases). The study concludes with two tests based on the
nonhomogeneous advection equation, four tests based on a problem involving two PDEs and one test
based on the nonlinear Burgers’ equation, a total of seven additional tests. Thus, the complete test set

has 67 cases. In all of these cases, analytical solutions were used to evaluate the numerical solutjons.



(1} The Advection Equation

We start by analyzing the convective system illustrated in Figure 1 in terms of an energy

balance written for an incremental length Ax

rate of accumulation of energy =

rate of heat flowing in - rate of heat flowing out

AApCpIT = AvpCpTx- AvpCpT, 4, (3)

at

Division by the coeflicient of the ¢ derivative, followed by Ax— 0, gives

Qa% = ""g_}c‘ (4)

We have made several assumptions in deriving equation (4), e.g., no heat transfer to the fluid, constant
fluid (temperature independent) properties, constant velocity, all of which can be relaxed, i.e., in

applying the numerical approximations to be discussed to more general and realistic problem systems.

Tlx Tly+Ax

X X+AX

Figure 1.1: One-dimensional Convective System

Equation (4) is termed the advection equafion since it basically models flow. The group of derivatives

o1 + VAT s termed the advection group, and essentially what we are considering are ways to

at ax



approximate this advection group. Somewhat ironically. although equation (4) is one of the simplest
partial differential equations (PDEs) we can conceive, it also is one of the most difficult to integrate
numerically for reasons which will soon be apparent. Mathematically, it is termed a first order

kyperbolic PDE,

Before proceeding with the numerical analysis of equation (4), we introduce some notation that
will simplfy the discussion, and the programming of numerical approximations for the advection group.
If, instead of using the full derivative notation, we use a subscript to denote a partial derivative,
equation (4) can be written simply as

T, + vIx =0 (5)

An independent variable appearing as a subscript denotes a partial derivative with respect to that
independent variable, Thus, %f is denoted as Ty, and %;I-c-‘ is denoted as Tx. Other subseripts (not
with respect to the independent variables of a PDE) are interpreted in the usual way (as just
subscripts).  Finally, in order to follow the usual convention of the numerical analysis literature for
PDEs, we denote the dependent variable as “u” (not to be confused with internal energy), so equations

(4) and (5) become
Gu - Qu (6)

ug +vux =0 (M

Since equation (7) (or (6)) is first order in t and x, it requires one initial condition and one

boundary condition

u(x,0) = g(x), u(0.t) = f(t}, (8)(9)

We now consider some approximations for the basic advection or convective problem,
equations (7} to (9). First, we again state that equation (7) is deceptively simple; it is one of the most
difficull PDEs 1o integrate numerically. To illustrate this point, we first consider the analytical

solution to equations (7), (8) and (9) for the special case g(x) = 0and f{t) = 0 fort < 0
u(x,t) = f(t - x/v)h(t - x/v) {10)

h(t) is the Heaviside unit step function



ht) = {‘l’ : §g ‘ (11)

Equation (10) is derived in Appendix 1.

This solution can easily be verified. If we define A =t - x/v, then from equation (10), u(x.t) =

f(A)h(A) , L.e., u is a function of only A. The terms in equation (7} become
ug = (du/dA)dA/8t) = du/dA
vux = v{du/dA)(3A/0x) = v{du/dA)(-1/V)

and, upon addition of these two equations, we see that equation (7) is satisfied. Also, equation (10)
satisfies the initial and boundary conditions, equations (8) and (9) (again, for the special case g(x) = 0

and f(t) = 0 for t < 0).

Now, consider the additional special case f(t) = 1, t > 0, so that at x = 0, the___ entering

temperature undergoes a unit step change at t = 0
0,t<0
f(t) = {1, t>0 (12}

i.e., (1) defined by equation (12) is the Heaviside unit step function, h(t).

In physical] terms, the temperature is initially zero since g(x) = 0 (this does not imply absolute
zero, but rather, that the datum upon which the temperature is defined is zero, e.g., zero degrees
centigrade). Then, at t = 0, the entering temperature (at x = 0) jumps from zero to one accordi.ng to
equation {12),

u(0,t) = h{t)
It then follows from equation (10)
u(x,t) = h{t - x/v} (13)

i.e., the unil step in lemperature al z = 0 propagales lefi 1o right al velocity v; eventually, at t = L/v,
the unit step will reach the other end of the system (L is the overall length). At any position x when t
= x/v, an observer would see & unit step function pass by. In other words, equation (7} propagates a

finile discontinuity for this special case, which is a major source of numerical difficulties.



Why does this cause a problem in computing a numerical solution? Consider the slope of the
solution at any point x when t = x/v; the slope uzy in cquation (7) is infinite! (which follows from
equation (13)). Clearly, any numerical procedure based an well behaved functions will fail under this
condition. In a sense, we are asking the impossible of any numerical approximation we might consider
for calculating spatial derivatives such as uy in equation (7). With this rather sobering conclusion in
mind, we can now consider what we might do to approximate equation (7) (and, again, recall it is

probably the simplest possible description of convection).

(2) Numerical Approximation of the Advection Equation

We now consider how equation {7) might be approximated for numerical solution. One
approach, within the context of the numerical method of lines [Schiesser (1)] is to replace the spatial
derivative, uy, in equation (7) with a discrete approximation such as a first order backward finite
difference

ag(x,t) = 20t :}E"'A"’t) + O(Ax) (14)

where O(Ax) is interpreted as “of order Ax” and means that the principal (truncation) error of

equation (14) in calculating uy is proportional to Ax. Substitution of equation (14) in equation (7)

gives
du(x,t} u(x,t) - u{x-Ax,t)
- V{ Ax } _ (15)

Note that equation (15) is now an ODE since x has essentially been removed as an independent

variable, and only t remains as an independent variable.

We can now use equation (15) at each of the N points in a spatial grid in x, i.e.,ati= 1, 2, ..
- » N, with grid spacing Ax = L/(N - 1), so that x = (i - 1)Ax and, of course, L = (N - 1)Ax. Thus, if
u(x,t) = u, u(x-Ax,t) = u, 1+ equation (7) can be written as

du, 0. - u-

@ = ) (%)
At i = 1, we cannot use equation (6.27) since it would involve W = Uy which is a fictitious point
outside the left boundary of the grid. Rather, for i = 1, we use a first order forward finite difference
approzimation

ux(xpy = SOHAM WY 4 o8y (17)




which when substituted in equation (7) gives

du Uy - U
_dTl = - v 2Ax 1) (18)

Nate that from boundary condition (9), u; = f(t) in equation (18). Thus, as an aliernative to equation
(18), we can directly apply boundary condition (9) as uy = f(t), with dul/dt = 0 or du, /dt = df{t)/dt;
either of these last two ODEs (for du, /dt) will lead to the same numerical solution.

Thus, we now have a systemn of N ODEs for the N dependent variables Uy, Ugyeny UN- All that

remains is to specify the initial conditions for these N QDEs, which come from equation (8)

ui((]) = g((i - I)Ax, l =1, 2,.., N (19)

For flow in the negative x direction (right to left), modeled by

uy - vuy =0 (20)
equation (7) becomes
du. LS
-d—tl = \'( -l‘-'-tA—x-—l), 1= 1, 2,..., N - 1 (21)
dUN uN_l - uN
& = (A (22)

Equation (8) again provides the initial conditions for equations (21) and (22). However, in order to
program flow in both the positive and negative x directions, we must have some logic in the coding to
select either equations (16) and (18), or equations (21) and (22). These equations are generally termed
two point upwind approzimalions since they involve two points along the spatial grid, e.g., u; | and

in equation (16), and one of these is the upwind (or upstream) point, e.g., u;,in equation (16).

In summary, through the use of first order forward and backward finite difference
approximations, we have replaced the advection equation, equation {7) for flow in the positive x
direction, or equation (26} for flow in the negative x direction, with a set of approximating ODEs that

can be integrated by a library routine for ODEs, e.g., RKF45 or LSODES. This is the essence of the



ao

=00

method of lines.

(3) Programming Two Point Upwind Approximations

Equations (16) and (18), and (21) and (22}, can now be put in a general-purpose library
routine for the caleulation of ux in equations (7) and (20), respectively (or in any advection-like
equation as will be discussed subsequently). Here is the coding for stepping along the spatial grid,

which appears in subroutine DSS012 listed in Appendix 2

DX=(XU-XL) /FLOAT(N-1)
IF(V.LT.0.)GD TO 10

(1) FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V
UX(1)=(U(2)-U(1)) /DX
DO 1 I=2,N
UX(1)=(U(1)-U(I-1))/DX
CONTINUE
RETURN

{2) FINITE DIFFERENCE APPROXIMATION FOR NEGATIVE V
NM1=N-1
DO 2 I=1,NM1
UX(I)=(U(I+1)-U{1))/DX
CONTINUE
UX(N)=(U(N)-U(N-1)) /DX
RETURN

Program 1: Coding for Two Point Upwind Approximations
(taken from Subroutine DSS012 in Appendix 2)

The following points should be noted about this code:

(1) The left and right values of x, XL and XR, are available as inputs through the arguments of
subroutine DS55012, along with the total number of grid points in the spatial grid, N. Then, the

grid spacing, DX (= Ax) can be calculated.

(2) The velocity in equations (7) and (20) also is available through an argument of DSS012, and
can be used to select either equation (16) (programmed first) or equation (21) (programmed at

statement 10).
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(3) DO loopl and 2 are straightforward implementations of equations (16) and (18), or (21) and

(22), respectively (array U is also available through an argument of subroutine D§5012).

Thus, this coding returns the first derivative UX (ux in equation (7) or equation {16)) to the calling
program (through an argument of DS5012). Subroutine DSS012 can then be called in the derivative

subroutine for ODEs to implement equations (16) and (18), or (21) and (22) (depending on the sign of
v). This is illustrated by the following coding for:

(1)  Subroutine INITAL which defines the initial conditions for equations (16) and (18), or
equations (21) and (22). i.e., equation (19).

(2) Subroutine DERV where the derivatives in equations (16} and (18), or equations (21) and
(22) are programmed after DSS012 is called (for the first run, NORUN = 1). Note also the
implementation of boundary condition (9) at the beginning of subroutine DERYV, i.e., u{0,t) =
f(t) = h(t) (U(1) = 1 in Fortran), followed by du;/dt = 0 (UT(1) = 0 in Fortran). Also, the
coding of equation (7) in DO loop 1 bears a close resemblance to equation (7), which is a

significant advantage of the method of lines.
(3} Subroutine PRINT which prints the numerical and analytical solutions, and plots these
solutions.

SUBROUTINE INITAL

PURE CONVECTIDN THROUGH A TUBE WITH A UNIFORM VELOCITY PROFILE CAN
BE DEPICTED AS

---------------------------------------------

Voo . .
Voo +.DX. U(X,T)
Voo oo .
Vieouns +
=0 X=XL

IF A MASS OR ENERGY BALANCE IS WRITTEN FOR A DIFFERENTIAL SECTION
OF THE TUBE, THE WELL-KNOWN ADVECTION EQUATION RESULTS
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U+ VU =0 (1)
T X

SINCE EQUATION (1) IS FIRST-ORDER IN THE SPATIAL VARIABLE, X, AND
THE TEMPORAL VARIABLE, T, IT REQUIRES ONE BOUNDARY CONDITION AND
ONE INITIAL CONDITION

U(0,T) = F(T), U(X,0) = G(X) (2)(3)
FOR WHICH THE EXACT SOLUTION TO EQUATIONS (1) TO (3) IS

U(X,T) = 0, X GT V=T

(4}
U(X,T)

i

F(T - X/V), X LT V«T

THE SPATIAL DERIVATIVE IN EQUATION (1), U IS REPLACED BY A FINITE
X

DIFFERENCE APPROXIMATION OVER A GRID OF N (= 21) POINTS IN X. A

SYSTEM OF N INITIAL-VALUE ORDINARY DIFFERENTIAL EQUATIONS IN T

RESULTS, ONE DIFFERENTIAL EQUATION FOR EACH GRID POINT. THIS

SYSTEM OF ODES IS THEN INTEGRATED SIMULTANEQUSLY TO OBTAIN THE

NUMERICAL SOLUTIDN TO EQUATIONS (1) TO (3).

COMMON/T/ T, NSTOP, NORUN
1 /Y/ U(21)
2 /F/ UT(21)
3 /SD/ UX(21)
4 /C/ v, XL, N, DX, SSE, 1P

SET THE VELOCITY, LENGTH OF THE SYSTEM, NUMBER OF SPATIAL GRID
POINTS, LENGTH OF THE GRID INTERVAL, SUM OF SQUARES OF ERRORS OF
THE NUMERICAL SOLUTION, COUNTER FOR THE PLOTTED SOLUTION USED IN
SUBROUTINE PRINT

V=1,

XL=1.

N=21

DX=XL/FLOAT(N-1)

SSE=0.

I1P=0

INITIAL CONDITION
DO 1 I=1,N
U(1)=0.

CONTINUE

INITIALIZE THE TEMPORAL DERIVATIVES IN COMMON/F/

CALL DERV
RETURN

10
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END

SUBROUTINE DERV

COMMON /T/ T, NSTQP, NORUN
1 /Y/  U(21)
2 /F/ UT(21)
3 /SD/ UX(21)

4 /C/ v, XL, N, DX, SSE, IP
UNIT STEP FUNCTION

U(1)=1.

UT(1)=0.

COMPUTE THE SPATIAL DERIVATIVE IN EQUATION (1) BY ONE OF A
SERIES OF SPATIAL DISCRETIZATIONS

TWO POINT UPWIND
IF(NORUN.EQ.1)CALL DS$S012(0.,XL,N,U,UX,V)

PDE

DO 1 I=2,N

UT(I)=-V=UX (1)

CONTINUE

RETURN

END

SUBROUTINE PRINT(NI,NO)
COMMGN/T/ T, NSTOP, NORUN
1 /Y/ U(21)
2 /F/ UT(21)
3 /SD/ UX(21)
4 /C/ v, XL, N, DX, SSE, 1P

DIMENSION THE ARRAYS FOR PLOTTING THE SOLUTION
DIMENSION TPE(201),TPN(201),UPE(201),UPN(201)

PRINT A HEADING FOR NUMERICAL BSOLUTION
IF(IP.EQ.0)WRITE(NO,1)
FORMAT (9X, 1HT,6X,6HU(0,T) ,6X,6HU(1,T),7X,5HEXACT, 11X, 1HE)

STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING
X=1.0

TXV=T-X/V

DO 3 I=1,NP

UNIT STEP FUNCTION
IF(TXV.LE.Q.)EXACT=0.
IF(TXV.GT.0.)EXACT=1.0
CONTINUE

11
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COMPUTE THE FIGURE OF MERIT, SSE
E=U(N) -EXACT
SSE=SSE+Ex=2

PRINT THE NUMERICAL AND EXACT SOLUTIONS, ERRQR
IF((IP/10=10) .EQ. IP)
1 WRITE(NO,20)T,U(1),U(N),EXACT,E
FORMAT(F10.2,4F12.3)

STORE THE NUMERICAL SOLUTION FOR SUBSEQUENT PLOTTING VIA TOP
DRAWER

IP=1P+1

UPN(IP)=U(N)

STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING
UPE (1P )=EXACT

STORE THE INDEPENDENT VARIABLE FOR SUBSEQUENT PLOTTING VIA TOP
DRAWER

NP=201

TPE (IP)=2.0%FLOAT (IP-1) /FLOAT(NP-1)

TPN(IP)=TPE(IP)

TEST FOR THE END OF A RUN
IF(IP.LT.NP)RETURN

OPEN FILE FOR TOP DRAWER PLOTTING
OPEN(4,FILE="T.TOP? ,STATUS="NEW?)

WRITE TOP DRAW FILE FOR PLOTTING
WRITE(4,17)
FORMAT(’ SET LIMITS X FROM O to 2 Y FROM -0.5 TO 1.5°,/,
1 » SET FONT DUPLEX’)
WRITE(4,13)
FORMAT(’ SET WINDOW X 2 TO 6 Y 2 TO 87)
WRITE(4,14) (TPN(I),UPN(1},I=1,NP)
FORMAT (2F10.3)
WRITE(4,16)
FORMAT(’> JOIN 1)
WRITE(4,14) (TPE(I) ,UPE(1),I=1,NP)
WRITE(4,16) '
WRITE(4,18)NORUN,SSE
FORMAT (
1’ Title 3.5 9.0 "Fig. ’,12,°"?
2,/,” TITLE LEFT "u(1,t)” °*
3,/,’ TITLE BOTTOM »t”°
4,/,°Title 3.0, 0.75 "SSE = ’,F6.3,°”7)
WRITE(4,15)

12



15 FORMAT(’ NEW FRAME?’)

(ONS]

LEGEND OF RUNS AT THE END
IF(NORUN.EQ.10)THEN
WRITE(4,19)
19 FORMAT(
1° Title 3.25 9.0 "Heaviside Unit Step Funtion”?’,/,
1’ Title 3.25 8.5 "Fig. 1: Two Point Upwind”?’,/,
1’ Title 3.25 3.5 "All solutions are for a 21-point grid”?’}
END 1F
RETURN
END
Program 2: Subroutines INITAL, DERV and PRINT for Equations (7) to (9)
with g(x) = 0, f{t} = h(t) (Unit Step Function)
The numerical and graphical output from subroutine PRINT is listed in Table 1 and Figur 1 (the
figures appear in one place at the end of this report so that can be more easily compared)
RUN NO. - 1 METHOD OF LINES SOLUTION OF THE ADVECTION EQUATION - DS$S012

INITIAL T - 0.000E+00
FINAL T - 0.200E+01
PRINT T - 0.100E-01
NUMBER OF DIFFERENTIAL EQUATIONS - 21

MAXIMUM INTEGRATION ERROR - 0.100E-03

T U(0,T) U(1,T) EXACT E
0.00 1.000 0.000 0.000 0.000
0.10 1.000 0.000 0.000 0.000
G.20 1.000 0.000 0.000 0.000
0.30 1.000 0.000 0.000 0.000
0.40 1.000 0.000 0.000 0.000
0.50 1.000 0.003 0.000 0.003
0.60 1.000 0.021 0.000 0.021
0.70 1.000 0.077 0.000 0.077
0.80 1.000 0.188 0.000 0.188
0.90 1.000 0.349 0.000 0.349
1.00 1.000 0.530 0.000 0.530
1.10 1.000 0.694 1.000 ~0.306
1.20 1.000 0.820 1.000 -0.180
1.30 1.000 0.903 1.000 ~0.097

13



1.40 1.000 0.952 1.000 -0.048
1.50 1.000 0.978 1.000 -0.022
1.60 1.000 0.991 1.000 -0.009
1.70 1.000 0.996 1.000 -0.004
1.80 1.000 ¢.999 1.000 -0.001
1.90 1.000 0.999 1.000 ~-0.001
2.00 1.000 1.000 1.000 0.000

Table 1: Numerical Qutput from Program 2

The following points should be noted about the tabular and graphical outoput in Table 1 and Figure 1.

(1) The numerical solution only approximates the exact solution. In particular, the numerical
solution is “smoothed” which is generally termed numerical diffusion. This is a feature of the two
point, vpwind approximations and results from an additional diffusion term introduced into the
advection equation (equation (7)) by the upwind approximations, as demonstrated in Appendix 3.
Recall again that this is essentially an impossible problem since uy in equation (7) is infinite at
the point of discontinuity in the solution u(x,t) = h(t - x/v), so that the numerical solution can

only be an approximation in some fashion.

(2) A sum of squares of errors, SSE (the sum of squares of the differences between the exact and
numerical solutions), is computed in subroutine PRINT. SSE is then printed at the end of the
run in the graphical output {of Figure 1); in this case, SSE = 5.263. SSE can then be used as a

figure of merit in judging the performance of various approximations of the advection equation to

be considered subsequently.

In order to provide the complete Fortran program SRKF45 used to compute the results in

Table 1, we have listed the main program in Appendix 4 which calls library integrator RKF45

[Forsythe, et al (1)]. Also, SRKF45 reads three lines of data to control the integration (via formats

1000, 1001 and 1002) that are listed below

METHOD OF LINES SOLUTION OF THE ADVECTION EQUATION - DSS012

0.
21

2.0 0.01
0.0001

END OF RUNS

Table 2: Data for Program 2 Read by Main Program SRKF45

14



The data are printed in a summary at the beginnirg of each run (see Table 1) and are explained below:

(1) Line 1 - a documentation title which is merely read, then printed at the beginning of the run

read with the format 20A4.

(2) Line 2 - the initial, final and print interval values of time (T0, TF and TP in main program
SRKF45) read with the format 3E10.0. In the case of Table 2, the solution is stored for plotting
(via calls to subroutine PRINT) every 0.01 time units, so that there are a total of 2/0.01 + 1 =
201 points stored, including the initial condition at t = 0 (this large number was selected to give
smooth plots such as in Figure 1). Note however, that the solution is printed every 0.1 time units
via FORMAT 20 through the logic of the counter IP so that a reasonable number of solution
points are printed (21 rather than 201).

(3) Line 3 - the number of ODEs and the error tolerance, in this case 21 and 0.0001, read with
the format I5, 20X,E10.0.

Finally, the characters END OF RUNS in columns 1 to 11 are read to terminate the run.

In summary, aithough the two point upwind approximation is generally stable computationally
in the sense that the solutions are bounded (in this case 0 < u(x,t) < 1), it suffers from numerical
diffusion which may be an unacceptable distortion of the solution. We therefore now consider a series

of approximations, some of which offer better performance.

(4) An Evaluation of Approximations for the Advection Equation

We now consider how some alternative approximations for uyx in equation (7). We can start
with the idea that if two point upwind approximations produce significant distortion in the numerical
solution (Figure 1), then additional points might improve the solution. We therefore consider three
poinl upwind apprerimations in which two (rather than one) points upwind of the point where the
derivative uy is to be computed are used. The finite difference equations can be derived by a Taylor
serjes analysis, or by a simple algorithm developed by Fornberg [Schiesser (1.2)]; the resulting three
point upwind approximations are second order correct, i.e., O(sz), which would lead one to believe

that the solutions should be better than for the two point upwind approximations of equations (16) and
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(18), or (21) and (22) which are O(Ax).

Subroutine DSS014 with three point upwind approximations is listed in Appendix 5. The code
to call DS5014 in subroutine DERV (for NORUN = 2} is

COMPUTE THE SPATIAL DERIVATIVE IN EQUATION (1) BY ONE QOF A
SERIES OF SPATIAL DISCRETIZATIONS

TWO POINT UPWIND
IF (NORUN.EQ.1)CALL DSS012(0.,XL,N,U,UX,\V)

THREE POINT UPWIND
IF (NORUN.EQ.2)CALL DSS014(0.,XL,N,U,UX,V)

In order for the code to execute a second run and thereby call DSS014, an additional set of data must

be added, i.e.,

METHOD OF LINES SOLUTION OF THE ADVECTION EQUATION - DSS012

0. 2.0 0.01

21 0.0001
METHOD OF LINES SOLUTION OF THE ADVECTION EQUATION - DSS014
0. 2.0 0.01

21 0.0001

END OF RUNS

Thus, the first set of data is read (NORUN = 1) and a run executed with DSS012. Then the second
set of data is read (NORUN = 2) and a second run is executed with DSS014. Additional sets of data
can be added and main program SRKF45 will continue to execute runs until the END OF RUNS data

line is read.

Because of the many finite difference approximations, and associated subroutines and outputs
to be considered, we will now discuss the performance of the various approximations only through the
graphical output. For example, the output from the three point upwind approximations in subroutine
DSS014 is plotted in Figure 2. We note the second major form of numerical distortion, numerical
oscillation, to the left of the discontinuity. Thus, we conclude that merely adding more points to an
upwind scheme does not improve the performance of the method of lines solution (although SSE =

3.494 which is somewhat lower than for the Lwo point upwind approximation for which SSE = 5.263 ).

We therefore consider the performance of four point biased upwind approximations which use

two points upstream and one point downstream of the point where uy is calculated. Again, these
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approximations can be derived by a Taylor series analysis or by Fornberg's algorithm, and they are
O(Ax3). The final results are coded in subroutine DSS018 listed in Appendix 6. We see in Figure 3
that the numerical solution is substantially improved over Figures 1 and 2. with SSE = 1.711. We
therefore conclude that biasing does help (i.e., using downstream and well as upstream points, but
more upstream than downstream points, which is the reason for the term -~biased™). Note also that
four point approximations are used at the boundaries in subroutine DSS018 (at x = XL and XR)}, but
they cannot be four point biased upwind approximations if we are to avoid going outside the spatial

grid running from x = XL to XR.

We can therefore consider a variant of DSS018 in which we use two point approximations at
the points on and near the boundaries, then switch to four point biased upwind approximations at the
interior points. This combination is programmed in subroutine DSS019 in Appendix 7. The
corresponding graphical output is given in Figure 4, which appears to be essentially equivalent to
Figure 3, but with a slightly higher SSE (2.157 vs 1.711 for Figure 3). Thus, we conclude that
switching to lower order approximations at the boundaries does not offer any advantage, and this

conclusion is confirmed with subsequent examples,

Since biasing appears to improve the performance of the spatial differentiators used to calculate
uy in equation (7), we consider five point biased upwind approrimations originally proposed by Carver
and Hinds t3.), which use three points upwind and one point downwind, and are O(Ax4). These
a.pproximations are programmed in subroutine DSS020 in Appendix 8. The graphical output is given
in Figure 5, which has the lowest SSE so far (1.392). Also, two point approximations at the
boundaries rather than five point approximations are programmed in subroutine DSS021 in Appendix
9. The output is in Figure 6, which has a higher SSE (= 2.036) than Figure 5, so again we conclude

that using lower order approximations at the boundaries offers no advantage.

Next, we consider a four point biased upwind approximation proposed by Leonard (4), as
coded in subroutine LEOI in Appendix 10. The solution is plotted in Figure 7 for which SSE = 1.881.
This example illusirates that the SSE figure of merit tends to emphasize discrepancies in vertical
distances due to numerical diffusion more than due to numerical oscillation. Also, two point
approximations at the boundaries rather than four point approximations are used in LEOZ2 in
Appendix 11; the solution is plotted in Figure 8 with SEE = 2.133. As might be expected, the two
point approximations tend to reduce the oscillation (recall the oscillation-free solution of Figure 1) at

the expense of increasing the numerical diffusion.
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Finally, since biasing has produced better numerical solutions (relative te pure upwinding), we
might conclude that furt,her biasing, say to centered approximations, should improve the solution. In
subroutine DSS002 listed in Appendix 12 we have three point approximations programmed which are
O(Ax2). The numerical solution is given in Figure 9, with SSE = 3.654. The obvious problem here is
excessive numerical oscillation. We might consider using more points in a centered approximation.
This is done in subroutine DSS004 in Appendix 13 with graphical output in Figure 10, for which SSE
= 2.456. Clearly the numerical oscillation is worse, and we can therefore generally conclude that
centered approzimations should not used in the method of lines solution of the advection equation if the

forcing funclion has a discontinuity.

This last statement also suggests that the performance of these various finite difference
approximations may be strongly dependent on the characteristics of the forcing function, f(t) in
equation (9). In other words, as we move away from the unit step function, f(t) = h(t), (which has a
finite discontinuity and a first derivative dh(t)/dt = &(t), the unit impulse or Dirac function, that
really cannot be represented by any of the finite difference approximations considered previously), and
consider smoother functions, the performance of the various approximations should improve. This is
indeed the case, as we now demonstrate. We conclude this section by noting that f(t) = h(t) is not

realistic in physical problems anyway. Some degree of smoothness will occur in all realistic

applications.

(5) The Effect of Smoother Test Functions

We consider as a test function f(t) = r(t) where r{t) is a truncated ramp function defined as

(t)=0,t <0
t)=s,0<t < 1fs (23)
(t)y=1t>1/s

where we take s = 5. r{t) has a steep, but finite, slope. Therefore, it is continuous, but its first

derivative is discontinuous, so it is a stringent test problem.

The exact solution to equation (7) with f(t) = r(t) in boundary condition (9) is

u(x,t) = r(t - x/v}h{t - x/v) (24)
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which follows immediately from 7equation (10} with f(t) = r(t) and which can be used to evaluate the
10 finite difference approximations considered previously. Before proceeding to the final results, we list
subroutine: (1) DERV with equation (23) programmed as a boundary condition (forcing function) for
the 10 finite difference approximation (NORUN = 1 to 10) and (2} subroutine PRINT with equation
{24) programmed as the exact solution and the extension of the plotting for all 10 finite difference

approximations {v. FORMAT 19):

SUBROUTINE DERV

COMMON/T/ T, NSTOP, NORUN
1 /Y/ U(21)
2 /F/ UT(21)
3 /SD/ UX(21)
4 /C/ v, XL, N, DX, SSE, IP

TRUNCATED RAMP FUNCTION

5=5.0

IF(T.LT.0.)U(1)=0.
IF(T.GT.(1./8))U(1)=1.
IF((T.GE.O0.).AND.(T.LE.(1./S8)))U(1)=S*T
UT(1)=0.

COMPUTE THE SPATIAL DERIVATIVE IN EQUATION (1) BY ONE OF A
SERIES OF SPATIAL DISCRETIZATIONS

TWO POINT UPWIND
IF(NORUN.EQ.1)CALL DSS012(0.,XL,N,U,UX,V)

THREE POINT UPWIND
IF(NORUN.EQ.2)CALL DSS014(0.,XL,N,U,UX,V)

FOUR POINT BIASED UPWIND WITH FOUR POINT APPROXIMATIONS
AT THE BOUNDARIES
IF (NORUN.EQ.3)CALL DSS018(0.,XL,N,U,UX,V)

FOUR POINT BIASED UPWIND WITH TWO POINT APPROXIMATIONS
AT THE BOUNDARIES :
IF(NORUN.EQ.4)CALL DSS019(0.,XL,N,U,UX,V)

FIVE POINT BIASED UPWIND WITH FIVE POINT APPROXIMATIONS
AT THE BOUNDARIES
IF(NDRUN.EQ.5)CALL DSS020(0.,XL,N,U,UX,V)

FIVE POINT BIASED UPWIND WITH TWO POINT APPROXIMATIONS

AT THE BOUNDARIES
IF(NURUN.EQ.6)CALL DSS021(0.,XL,N,U,UX,V)
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LEONARD WITH FOUR POINT APPROXIMATIONS AT THE BOUNDARIES
IF(NORUN.EQ.7)CALL  LEO1(0.,XL,N,U,UX,V)

LEONARD WITH TWO POINT APPROXIMATIONS AT THE BOUNDARIES
IF (NORUN.EQ.8)CALL  LE0D2(0.,XL,N,U,UX,V)

THREE POINT CENTERED
IF(NORUN.EQ.9)CALL  DSS002(0.,XL,N,U,UX)

FIVE POINT CENTERED
IF (NORUN.EQ.10)CALL DSS004(0.,XL,N,U,UX)

PDE
DO 1 I=2,N
UT(I)=-V*UX(I)
CONTINUE
RETURN
END
SUBROUTINE PRINT(NI,NG)
COMMON/T/ T, NSTOP, NORUN
/Y/ U(21)
/F/ UT(21)
/SD/ UX(21)
/C/ Vv, XL, N, DX, SSE, 1P

DIMENSION THE ARRAYS FOR PLOTTING THE SOLUTION
DIMENSION TPE(201),TPN(201),UPE(201),UPN(201)

PRINT A HEADING FOR NUMERICAL BSOLUTIUN
IF(IP.EQ.0)WRITE(NO,1)
FORMAT (9X, 1HT,6X,6HU(0,T) ,6X,6HU(1,T),7X,5HEXACT, 11X, 1HE)

STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING
X=1.0

TXV=T-X/V

5=5.0

PO 3 I=1,NP

TRUNCATED RAMP FUNCTION

IF(TXV.LT.0.)EXACT=0.

IF(TXV.GT. (1./S))EXACT=1
IF((TXV.GE.0.) .AND. (TXV.LE. (1./8)))EXACT=S+TXV
CONTINUE

COMPUTE THE FIGURE OF MERIT, SSE

E=U(N) -EXACT
SSE=SSE+E**2
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PRINT THE NUMERICAL AND EXACT SOLUTIONS, ERROR
IF((IP/10%10) .EQ.IP)
1 WRITE(NG,20)T,U(1),U(N),EXACT,E
FORMAT(F10.2,4F12.3)

STORE THE NUMERICAL SOLUTION FOR SUBSEQUENT PLOTTING VIA TOP
DRAWER

IP=IP+1

UPN(IP)=U(N)

STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING
UPE(IP)=EXACT

STORE THE INDEPENDENT VARIABLE FOR SUBSEQUENT PLOTTING VIA TOP
DRAWER

NP=201

TPE(IP)=2.0=FLOAT(IP-1) /FLOAT(NP-1)

TPN(IP)=TPE(IP)

TEST FOR THE END OF A RUN
IF(IP.LT.NP)YRETURN

OPEN FILE FOR TOP DRAWER PLOTTING
OPEN(4,FILE="T.T0OP’ ,STATUS=’NEW’)

WRITE TOP DRAW FILE FOR PLOTTING
WRITE(4,17)
FORMAT(’> SET LIMITS X FROM O TO 2 Y FROM -0.5 TO 1.57,/,
1 » SET FONT DUPLEX?’)
WRITE(4,13)
FORMAT(’> SET WINDOW X 2 TD 6 Y 2 TO &)
WRITE(4,14) (TPN(I),UPN(I),I=1,NP)
FORMAT (2F10.3)
WRITE(4,16)
FORMAT(’> JOIN 1)
WRITE(4,14) (TPE(1),UPE(1),I=1,NP)
WRITE(4,16)
WRITE(4,18)NORUN+10,SSE
FORMAT(
1’ Title 3.5 9.0 ”"Fig. °,I2,°"?
2,/,’ TITLE LEFT "u(1,t)” °?
3,/,’ TITLE BOTTOM "t”°
4,/,’Title 3.0, 0.75 "SSE = *,F6.3,°” )
WRITE(4,15)
FORMAT(’> NEW FRAME’)

LEGEND OF RUNS AT THE END

IF (NORUN.EQ.10) THEN
WRITE(4,19)
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19 FORMAT(

1* Title 3.25 9.0 "Truncated Ramp Funtion”?’,/,

1" Title 3.25 8.5 "Fig. 11: Two Point Upwind”’,/,

1* Title 3.25 8.0 "Fig. 12: Three Point Upwind”’,/,

17 Title 3.25 7.5 "Fig. 13: Four Point Biased Upwind, 4PB”?,/,
1" Title 3.25 7.0 "Fig. 14: Four Point Biased Upwind, 2PB”’,/,
1" Title 3.25 6.5 "Fig. 15: Five Point Biased Upwind, 5PB”?,/,
1° Title 3.25 6.0 "Fig. 16: Five Point Biased Upwind, 2PB”’,/.
17 Title 3.25 5.5 "Fig. 17: Leonard, 4PB"?,/,

1’ Title 3.25 5.0 "Fig. 18: Leonard, 2PB”’,/,

1' Title 3.25 4.5 "Fig. 19: Three Point Centered”’,/,

1 Title 3.25 4.0 "Fig. 20: Five Point Centered”’,/,

1° Title 3.25 3.5 "All solutions are for a 21-point grid”?)
END IF

RETURN

END

Program 3: Subroutines DERV and PRINT for the Truncated Ramp

The preceding subroutine DERV aiso requires 10 sets of data for NORUN = 1 to NORUN = 10. Since
these are essentially replications of the data in Table 2, they are not presented here. The preceding
FORMAT 19 serves as an index for the figures produced by the 10 finite difference approximations,
Figures 11 to 20. The SSE values are tabulated below:; |

11 2.636
12 0.892
13 0.121
14 0.326
15 0.037
16 0.242
17 0.192
18 0.323
19 1.069
20 0.141

Table 3: Summary of the SSE Values for the Ramp Function

As in the case of the unit step function, the five point biased upwind approximations in subroutine
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21:
22:
23
24
25:
26G:
27 :
28
29:
30:

Two Point Upwind”’,/,
Three Point Upwind”’,/,
Four Point Biased Upwind,
Four Point Biased Upwind,
Five Point Biased Upwind,
Five Point Biased Upwind,
Leonard, 4PB”’,/,
Leonard, 2PB”’,/,

Three Point Centered”’,/,
Five Point Centered”’,/,

Program 4: Programming for the Cosine Step

The SSE values for the graphical solutions in Figures 21 to 30 are

21
22
23
24
- 25
26
27
28
29
30

2.155
0.564
0.063
0.201
0.024
0.148
8.101
0.196
0.637
0.058

Table 4: Summary of the SSE Values for the Cosine Step Function

4PB”
2PB”
5PB”
2PB”

s/ s
s/ s
/s
’/’

As before, the five point biased upwind approximations in subroutine DSS020 have the smallest value

of SSE, and the numerical solution closely approximates the exact solution (Figure 25).

Next, we consider a cosine step function which has continuous left and right derivatives

sc(t) =0, wt <0
sc{t) = [1 - cos(wt)}/2, 0 < wt < 7
sc(t) =0, wt > =«

24
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DSS020 have the lowest value of SSE (Figure 15), and give a good approximation to the exact solution.

Next we consider a cosine step function with a continuous left derivative and a discontinuous

right derivative which can be used to investigate the local effect of continuity in the derivative

e(t) =0, wt < 0
c(t) = 1- cos(wt), 0 < wt < /2 (25)
c(t) =1, wt > /2

The exact solution for this boundary condition function again follows immediately from equation (10)

since f(t) = c(t)
u(x,t) = c(t - x/v)h(t - x/v) (26)

The programming of equation {25) as the boundary condition in subroutine DERV is

C...
C... COSINE STEP FUNCTION
W=35,
PI=4.+ATAN(1.)
IF(T.LT.0.)U(1)=0.
IF ((W=T) .GT. (P1/2.))U(1)=1.
IF(((W=T).GE. (0.0)) .AND. ((W=T).LE. (PI/2.)))U(1)=1.-COS(W=T)
UT({1)=0.
and the programming of the exact solution, equation (26) is subroutine PRINT, plus FORMAT 19,
which serves as an index for the graphical solutions is
X=1.0
TXV=T-X/V
W=5.0
PI=4.*ATAN(1.)
PO 3 I=1,NP
C.
C. COSINE STEP FUNCTION

IF(TXV.LT.0.)EXACT=0.
IF ((W~TXV) .GT.(PI/2.))EXACT=1.

IF( ( (W*TXV) .GE. (0.0)) . AND. ((W+TXV) .LE. (P1/2.)))EXACT=1.-COS (W=TXV)
3 CONTINUE

WRITE(4,19)
19 FORMAT(
1? Title 3.25 9.0 "Cosine Step Funtion”?’,/,
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The exact solution for this boundary condition function again follows immediately from equation (10)

since f(t} = se(t)

u(x,t) = se(t - x/v)h(t - x/v) (28)

The programming of equation (27) as the boundary condition in subroutine DERV is

C...
C... SMOOTH COSINE STEP FUNCTION
W=5.
PI=4.xATAN(1.)
IF(T.LT.0.)U(1)=0.
IF({(W=«T).GT.(PI))U{1)=1.
IF( ({W+T).GE. (0.0)) .AND. ((W=T) .LE. (PI)))U(1)=(1.-COS(W+T)) /2.0
UT(1)=0.
and the programming of the exact solution, equation (28) in subroutine PRINT, plus FORMAT 19,
which serves as an index for the graphical solutions is
X=1.0
TXV=T-X/V
W=5.0
PI=4.«ATAN(1.)
PO0 3 I=1,NP
C..
C.. SMOOTH COSINE STEP FUNCTION
IF(TXV.LT.0.)EXACT=0.
IF((W=TXV) .GT. (PI))EXACT=1.
IF(((W+xTXV) .GE. (0.0)) .AND. ((W+TXV) .LE. (PI)))
+ EXACT=(1.-COS(W=TXV)) /2.
3 CONTINUE
WRITE(4,19)
19 ° FORMATY(
1’ Title 3.25 9.0 ”Smooth Cosine Step Funtion”’,/,
1’ Title 3.25 8.5 "Fig. 31: Two Point Upwind”’,/,
1’ Title 3.25 8.0 "Fig. 32: Three Point Upwind”?’,/,
1’ Title 3.25 7.3 "Fig. 33: Four Point Biased Upwind, 4PB”’,/,
1> Title 3.25 7.0 "Fig. 34: Four Point Biased Upwind, 2PB”?,/,
1’ Title 3.25 6.5 "Fig. 35: Five Point Biased Upwind, 5PB”?,/,
1’ Title 3.25 6.0 "Fig. 36: Five Point Biased Upwind, 2PB”’,/,
1’ Title 3.25 5.5 ”Fig. 37: Lecnard, 4PB?’,/,
1’ Title 3.25 5.0 "Fig. 38: Leonard, 2PB”’,/,
1’ Title 3.25 4.5 "Fig. 39: Three Point Centered”’,/,
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1’ Title 3.25 4.0 "Fig. 40: Five Point Centered”’,/,
1> Title 3.25 3.5 "All solutions are for a 21-point grid”?)

Program 5: Programming for the Smooth Cosine Step

The SSE values for the graphical solutions in Figures 31 to 40 are

31 0.99303
32 0.07744
33 0.00224
34 0.03109
35 0.00049
36 0.02384
37 0.00487
38 0.02851
39 0.04865
40 0.00118

Table 5: Summary of the SSE Values for the Smooth Cosine Step Function

As before, the five point biased upwind approximations in subroutine DSS020 have the smallest value
of SSE, and the numerical solution is essentially indistinguishable from the exact solution (Figure 35).
Also, as expected, the various finite differences approximate the exact solution more closely as the
forcing or boundary condition function becomes smoother. This is an important result since for many
applications, the forcing function has the necessary smoothness for the various approximations, with
the possible exception of centered differences, to produce accurate numerical solutions. Also, it may be
possible in some cases to choose the boundary condition function to be smooth enough to ensure an
accurate solution; for example, i only the steady state solution (spatial profile) is required, then the
boundary condition function u(0,t) = f(t) can change slowly, with the only requirement that f(t)

approach the correct steady state value.

We conclude this section with one more forcing function which again provides a stringent test

of the various approximations
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pit) =0, wt <
p(t) =1 - cos(wt), 0 < wt < =/2 (29)
p(t) =1 + cos(wt}, 7f2 < wt < «

pl)=0,wt > 7

The exact solution for this cosine pulse from equation (10) is

u(x,t) = p(t - x/v)h(t - x/v) {30)

The programming of equation (29} as the boundary condition in subroutine DERV is

[oN@]

COSINE PULSE FUNCTION

W=5. '

PI=4.=ATAN(1.)

IF(T.LT.0.)U(1)=0.

IF((W=T).GT. (PI))U(1)=0.
IF(((W+T).GE.(0.0)) .AND. ((W=T).LE. (PI/2.)))U(1)=1.-C0OS(W=T)
IF(((W=T).GT.(PI/2.)) .AND. ((W*T).LE. (PI))) U(1)=1.+COS(WxT)
UT(1)=0.

and the programming of the exact solution, equation (30) in subroutine PRINT, plus FORMAT 19,

which serves as an index for the graphical solutions is

X=1.0
TXV=T-X/V
W=5.0
PI=4.xATAN(1.)
DO 3 I=1,NP

oNe@]

COSINE PULSE FUNCTION

IF(TXV.LT.0.)EXACT=0.

IF ( (W<TXV) .GT. (PI1))EXACT=0.

IF(((W=TXV).GE. (0.0)) .AND. ((W«TXV) .LE. (P1/2.)) )EXACT=1 . -COS (W~TXV)

IF (((W=TXV).GT.(P1/2.)) .AND. ((W+TXV) .LE. (PI))) EXACT=1.+COS (WxTXV)
3 CONTINUE

WRITE(4,19)
19 FORMAT (
1’ Title 3.25 9.0 ”"Cosine Pulse Function”?,/,
1’7 Title 3.25 8.5 "Fig. 41: Two Point Upwind”’,/,
1’ Title 3.25 8.0 "Fig. 42: Three Point Upwind”’,/,
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1’ Title 3.25 7.5 "Fig. 43: Four Point Biased Upwind, 4PB”’,/,
1’ Title 3.25 7.0 "Fig. 44: Four Point Biased Upwind, 2PB”’,/,
1’ Title 3.25 6.5 "Fig. 45: Five Point Biased Upwind, 535PB"",/,
1’ Title 3.25 6.0 "Fig. 46: Five Point Biased Upwind, 2PB”?,/,
1’ Title 3.25 5.5 "Fig. 47: Leonard, 4PB”’,/,

1? Title 3.25 5.0 "Fig. 48: Leonard, 2PB"‘,/,

1’ Title 3.25 4.5 "Fig. 49: Three Point Centered”?,/,

1’ Title 3.25 4.0 "Fig. 30: Five Point Centered”’,/,

1’ Title 3.25 3.5 "All solutions are for a 21-point grid”?)

Program 6: Programming for the Cosine Pulse

The SSE values for the graphical solutions in Figures 41 to 50 are

41 4.645
42 1.947
43 0.244
44 0.680
45 0.094
46 0.498
47 0.384
48 0.671
49 2.335
50 0.235

Table 6;: Summary of the SSE Values for the Cosine Pulse Function

As before, the five point biased upwind approximations in subroutine DS5020 have the smallest value
of SSE by a substantial margin (Figure 45). Also, we see from these results that using two point
approximations at the boundaries rather than approximations of the same order as at the interior
points has an obvious negative effect on the accuracy of the numerical solution, e.g., compare the SSE

values for Figures 45 and 46.

In conclusion, based on the results from the five test functions, we recommend the use of the
five point bjased upwind finite differences in subroutine DSS020 for problems which have strongly

convective characteristics. Of course, another way to improve the accuracy of numerical solutions is to
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increase the number of grid points. Experience has indicated that 21 points is minimal for forcing or

boundary conditions functions which change rapidly with time. Thus. the rule-of-thumb that only a
small number of grid points or cells is required to obtain accurate solutions is generally not valid; even
with very smooth or slowly varying boundary condition functions, the spatial discretization errors could
be large if only a small number of grid points is used, and these errors would appear even at steady

state,

{6) Numerical Solutions to the Advection Equation by Finite Elements

So far, we have considered approximate numerical solutions computed by finite differences.
We now consider two other general approaches to numerical solutions: finite elements and in the next
section, finite volumes. The problem to be considered is again equations (7) to (9). The general
approach in finite elements is to assume a trial solution consisting (at least in part) of selected
approximating functions, then attempt to complete the solution so as to minimize its error. In the
present case of equations (7) to {9), we assume a separaled solution {a solution with the x and t

dependency in separate functions) of the form

N
u(x,t) ng <, (t)#;(x) (31)
1=

Note that this solution is separated since the c;(t) depend only on t and the ¢,(x), which are termed
the basis functions, depend only on x. Equation {31) is then based on the assumption that an adequate
numerical solution can be computed as a sum or superposition of N of the products of these two

functions.

Next, we choose the basis or shape functions, q’.ai(x), somewhat arbitrarily (or perhaps more
accurately, based on knowledge of the problem and experience with the finite element method). In the
present case, we make the simplest choice, linear or triangular finite elements, also termed hat, rosf or
chapeau functions, as depicted in Figure 6.1. Note that #;(x) is centered at x = x;, and consists of two
linear segments which intersect the x axis at X+ Ax (=x; 41 and x; ,, respectively); also 4;(x;) = 1.
These linear finite elements make the analysis required to complete the trial solution, equation {31),

relatively easy since they are easily differentiated and integrated.
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Figure 6.1: A Linear Finite Element

Also, they have the property of local support since, for any given x;, only three terms in the sum of
equation (31) need be considered which is apparent from a consideration of Figure 6.1 (only the

functions é;.1» ¢i and ¢i+l are nonzero in the interval x; & Ax).

We now substitute equation (31) in equation (7) (where we see a major advantage of the

separated form of equation (31), that is, the partial derivatives in equation (7} are easily computed}

N

ug () &Y e/ (1é;(x) (32)
i=1
N

uy (x,t) =y (16 (x) (33)
=1

where (') denotes differentiation {and, again, there is no confusion about this differentiation since ci(t)
and ¢,(x) are functions of only one variable). Substitution of equations {32) and (33) in equation (7)
gives

X ' N I

Y- o] (1)g;(x) = v (1)@ (x) (34)

i=1 =1

1= 1

Equation (31) will probably, at best, be only an approximate solution, and therefore equation (34) will
not be truly satisfied. Thus we arrange it as

v

N N
> ¢/ ()¢ (x) + vy ¢ ()8 (x) = R(x,t) (35)
i=1

i=
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where R{x,t) is a residual, which ideally is zero for all x and t (if we could find the exact solution to
equation (7)). Since equation (31) will only be approximate, we attempt to minimize R(x,t) in some
fashion. Generally, this is done by forming the integral

*N

J w{x)R(x,t)dx =0 (36)

X1
where x| and xy are the left and right boundary values of x, respectively, and w(x) is a weighting
funciion selected by the analyst. Thus the use of equation (36) is called the method of weighted
residuals (as suggested by the integrand in equation (36)). Basically, we are making the residual,

R(z,?), orthogonal to the weighting function, w(1).

The solution resulting from the use of equation (36) is said to be of the week form since it does
not satisfy equation (7) for all x and t. Several well known choices for w(x) can be considered. We
consider here just one, w(x) = é(x - x;} (the unil impulse or Dirac delta function), for which equation
{36) becomes

XN |
j (x - x)R(x,)dx = R(x; t) = 0 (37)
*1

where we have made use of the sifting property of the delta function,

| Ié(x)f(x) = f(0) (38)

Equation (37) indicates that we merely sei the residual lo zero at the z,;, which is the collocation
method; the X, i=1,2 ..., N, are called the collocation points. It is also a strong form of the
solution at these collocation points since the residuals are zero at these points, or in other words,

equation (7) is satisfied exactly at the collocation points.

We apply the collocation method, equation (37), to equation (35) at xj,j =1,2,...,,N(theN
collocation points), by multiplying equation (35) by é(x - xj) and integrating from x, to XN

N N *N N N
I &(x - xj)z ci, (t)¢i(x)dx + vJ &(x - xj)Z°i(t)¢{ {x)dx = J 8(x - xj)R(x,t)dx =0
%, =1 % i=1 %y

or
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XN XN xN
N N
! . . U — . —
;ci (:)J 8(x - x;)¢; (x)dx + vgci(t)f 5(x - x;)o/ (x)dx = J 6(x- x)R(xt)dx =0 (39)
= X1 =X X1
where we have interchanged the order of integration and summation (which can be done for finite

sums). Then, making use of equation (37),
N ' N '
_Zlci (1)6;(x;) + v_zlcimesi (x;)= 0 (49)
1= 1=

From the properties of ¢.(x) in Figure 6.1, i.e.,

=1i=)
#ily) {: i

we have
N
>l (1e;(x) =</ (1) (41)

i.e., there is only one nonzero term in this sum corresponding to i = j.

However, we encounter some difficulties with the sum
N '
.Zlci(t)d’i (x;) (42)
1=

since ¢i'(xj) is discontinuous at i = j - 1, j and j + 1 (v. Figure 6.1); in other words, it’s not clear
what values we should use for ¢$i' (xj) in equation (42) (this can perhaps be better understood by
selecting specific values of i and j as gxampies and sketching ¢i'(xj), say ] = 4,i= 3,4 and S or i = 4,
j =3, 4 and 5). We therefore conclude that collocation cannot be applied to the solution of equation
(7) with the linear finite elements of Figure 6.1. Higher order finite elements, e.g., quadratics ot
cubics, with continuous first derivatives would circumvent this problem; B-splines [Strang, (5)] are

widely used basis functions which meet this condition of continuity in various derivatives.

However, we will continue with the linear finite elements of Figure 6.1, and use a different
weighting function, w(x), in equation (36). Specifically, we use the basis functions as the weighling
functions, which is the Galerkin method

N

8;(x)R(x,t)dx = 0 (43)
X1
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In other words, we make the residual, R(z,t), orthogonal to the basis functions. 'Multiplying equation

(35) by cj(x) and integrating from x; to xy, we have

*N N XN N N

I ¢j(x)g ci’(t)q&i(x)dx + vJ. ¢j(x).§:ci(t)¢i’(x)dx = J qéj(x)R(x,t)dx =0

xl 1=1] xl i=1 xl

N N N N N

Zcif (t)J ¢j(x)¢i(x)dx + vzci(t)J q’;j(x)qsif {(x)dx = J qu(x)R(x,t)dx =10 (44)
i=1 xl i=1 xl xl

where we have interchanged the order of integration and summation.

We now must consider three cases for each of the two LHS integrals in equation {44). For the

first integral

XN
@) | ¢80

%1
(1.1} i=}

N X Xig1

2 2
i - X - X'—l X 1 - X
J o000 = | {“—1} | {“fr“} d"

X X1 i

S N P = s
= X - X - X. -X =({2/31Ax
3Ax2 i-1 xi-l 3Ax2 l+l xi ( / )

(1.2) i=j+1 (orj = i-1)

XN 41 . . < %41 - x
. - X - X. ~ X X~ X
0. (x)o- xdx:[ 1+1_ g :_J‘ i+1 i i_iqg
J 10991 i {xi+1 1R I R TR TR i

X . X
1 f; 1
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Using integration by parts, we have

i+l X=X X-X .-,xi+1 Tit1 9
i+ ST | . B
‘J {xi-{-l - xi}{"i—{-l -lxi}dx = Axg{(x - ii_}_l)(l/?)(k - Ri) ’!i - (I/Q)J {x- xi) dx}

X

. 4i+1
—54 (1/6)(x- x;)7 | = (1/6)Ax
Ax X

50

*N
[ 8098, 1% = (/1A%
X1

(1.3) i=j1 (orj=i+l)

N X ot
XX 4 X - X X - X 4 X - X
¢(x)d;.4 (x)dx =,J Ry (%% [T I 5 (15 % [
X %1 S|
= (1/6)Ax

which follows from the preceding case with i+1 - 1.

N
@) [ 6098] coax
X
(2.1) i=]j
X x4 %41 % -x
j. ¢i(x)¢if(x)dx = J { i xli-_ll}(xli)dx + ,( {x::ll ) xl}(.‘&—;) *
Xy X1 i
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b
1 2 ¢ 1
= X-X i +¢(
(Ga2® ) Xy 24

(2.2) i =j+1 (orj =i-l)

- X.

*N ' i+1 Xigp - X
[ ool wax=] (g,
xl xi

(2.3) i=j-1(orj=i+l)
XN X
*i-1

X1

Thus, equation (44) becomes

(a5 )dx = (

' (x-x .1 . .
J Qsi(x)d)i-'l {(x)dx = [ {ﬁ}(ﬁi)d}( = (2Ax

2
A M

X+l

1
L)y -0 | =3
2Ax2 i+1 X 2

(Ax/6)c, )y + (48x/6)c] + (Ax/6)c; ! = v{(1/2);, -(1/2)ci_1}

or

. - Cs
(1/6)c, § + (4/6)c] + (1/8)c; ) ="’{c"_l+2lA“x l-l}

(45)

Equation (45) is the Galerkin approximation to the advection equation (7) based on the linear

finite element of Figure 6.1. It has the following properties:

{1) The LHS is a linear combination of three time derivatives,

1 | .
¢ 6 (= dc., , /dt,

?
410 i+1

dci /dt, dci-l /dt) so that equation (45) is linearly implicit; in other words, it is not possible to

explicitly compute each time derivative as in preceding approximations, and therefore library

routines such as RKF45, which are for explicsi ODEs cannot be used directly.

essentiaily two choices: (a) apply a linear equation solver to equation (45) to obtain e +'1 . e

35
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and ci_"'1 explicitly which can then be sent to a solver like RKF45, or (b) use an ODE integrator
designed specifically for implicit ODEs, such as LSODI or DASSL. We will use the former in the

subsequent coding so that we can retain the use of RKF43.

(2) The RHS of equation (45) is just the usual two point, centered approximation of the

derivative in uy in equation (7).

In summary, weighted residual methods such as Galerkin’s method generally lead to implicit ODEs such
as equation (45).

In order to complete the Galerkin formulation of equation (7), we must also include the initial
and boundary conditions, equations (8) and (9). For the initial condition, we take g{x) = 0 as in the
preceding examples. in which case ci(t) =0,i=12, ..., N in equation (31) so that u(x,0) = 0. For

the boundary condition, we have from equation (31)
u(0,t) = f(t) = ¢ (t}61(0) + co(t)do(0) + - . . + cn(t)Pn(0)
But, we see from Figure 6.1 that cfal(O) = 1 and t;bi(O) =0,i=2,3,..., Nsothat
cy(t) = 1(1) (46)
However, this result is rather specific to the linear finite element in Figure 6.1. We shall therefore also
consider the integrals at x = x; which lead to this result to demonstrate how we can use finite elements

other than the linear finite element in Figure 6. These integrals result from applying equation (44)

with ¢j(x) = ¢(x), and neglecting any integrations for x < x;.

N xN N xN XN
Zci'(t).[ ¢1(x)¢; (x)dx + vzci(t)J dl(x)qSi' (x)dx = J ¢, (X)R(x,t)dx = 0 47)
i=1 %) i=1 % X

Because of the properties of the linear finite element in Figure 6.1, equation (47) becomes
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X9 X9
e/ (t)] $1(x)¢(x)dx + 5 (t)] $1(x)$9(x)dx

% *
(48)
X2 X
+ vcl(t)J 91050 (x)dx + ve j (x)¢2 (x)dx = 0
xl x

‘Thus, we have four integrals to evaluate in equation (48).

Also, we are primarily interested in u(xy.t) for which we require an equation. If in equation
(44) we take c&j(x) = ¢)(x) and neglect any integrations for x > xy, we again arrive at four integrals

resulting from the application of Galerkin’s method

x N N X *N
z:lci'(t)J $n(x)9;(x)dx + v.zlci(t)j ¢N(x)¢i'(x)dx = | éN(x)R(x,t)dx =0 (49)
=X = ]

which, because of the properties of the linear finite element in Figure 6.1, becomes

XN XN
enly O] on0sy(ax + e ) syoy00ax
*N-1 XN-1
(50)
xN X
e O ey s+ vey ) aydy Rax =0
AN-1 *N-1

Thus, we again have four integrals to evaluate.
XN

@ | #0,ax
XN-1
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»
2

2 Xg -~ X 2 X9
[ #1090, 0000x = | {xf- xl} dx= Syl 0 | = (/3988

Xl Xl

which is 1/2 of the result from integral {1.1) as expected.

Xo Xg )
F X - X% | [ x-%; X - Xgo X - Xy

J ¢1(x)02(x)dx = J %o -X (1% %1 dx = 'J X=X (X9 - % dx
1

X |

Using integration by parts, we have

X - X
2- X %
S|

X9 X9 t;

] { = }{ TR }dx= A—%{( o)/ 5y [ )] (- "1)2‘“}
X

2} = (1/6)Ax

_ L Y
= A,@{“’“)(" D' )

which agrees with integral (1.2).

(3.3) i=j=N
i *N Xx-X 2 XN
@ (x)¢1xdx:J DL b dx = 1 X - Xp_ 3 | = (1/3)Ax
J N h( ) xN xN_I 3Ax2( N 1) xN—l (
N1 XN-1

which is 1/2 of the result from integral {1.1) as expected.

(34) i=N-1,j=N
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XN XN N

. i _ x-x’\-_l XN-X —_J X-XN_I E X-KN
J IN(ION. () “XJ {"N . "_\'-1}{";\' ' xN-l}dx = {"N ' xN-l}{xN ' "N-l}dx

*N-1 N-1 *N-1

Using integration by parts, we have

h X-xn ] X-xn 1 2 "N F 2
J {xN - xN-l}{xN E xN_l}dx: A_—xz{(x - Xy (/2)(x - xy) x]\ll-l- (I/i)i-l(x ) XN) dx}

N
= —1-{(1/6J(x-x ® }=(1/6)Ax
Ax* RS

which agrees with integral (1.3).

N
(@ | 8096,/
*N-1
(41) i=j=1
X2 32 - x x2
J¢1(x)¢l! (x)dx = I {x_g-—i'i}("_i—]x)dx = (2Al 5)(xg - x)2xl _ %
xl Xl X 1

which agrees with the first part of integral (2.1) as expected.
(42) i=2,j=1

2 ? Xg - X *2
= 2 1 = {1 2

| 01008 (yax = | {x2 - xl}t 3= Gl -0 )
! 1

=1
-2

which agrees with integral (2.2).
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(43) i=j=N
xN XN

X . XN
e N = N- 1 e wo 32 1
J on(x)¢y (x)dx —‘j‘ {W}(Ax) = ( AXg)(-\ - Xpnp) xl\g_l =3
*N-1 *N-1

which agrees with the first part of integral (2.1).

(44) i=N-1,j=N

*N *N x
' X - XN-1 2 N _ 1
on()éy.y (dx = | erTxr (£h)dx = (QAx Jx - xy 1) "I\II e
*N-1 *N-1 i
which agrees with integral (2.3).
Thus, for x = x;, we have in place of equation (45)
Cy-C
(2/6)c, + (1/6)cy =-v %&—1}
or
(4/6)c! + (2/6)] = -v{°2 , cl} (51)
1 2 - Ax
Also, for x = xy, we have in place of equation (45}
N - ONL
(1/6)cy!; + @/6)ey = -V{J‘Lﬁy
or
-c
(@/6)ey!, + (4/6)cy, { NN (52)

We can now summarize the entire system of ODEs from equations (45), (51) and (52)
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(wio)e! + 2/6)e] =2

1/ + @/6)eg + /0] = {45}
, , , €4 -y
{1/6)~:2 + (4/6)cg + (1/6)c, = -Vi53 }
(53)
(I/G)CN_'3 + (4/6)CN-’2 + (I/G)CN.II - {CN ZL;:N‘ }
(I/G)CN_’Q +(4/6)"N_’1 + (l/ﬁ)cl\; :'v{fﬁj?:giN_-z
(2/6)ey!; + (4/6)cy {N X

We have equation from (46), ¢ = {(t), and it follows that c = f/(1). However, since ci is

then integrated by the ODE solver to produce ¢;, we could eqmvalently set ¢ = f(t) apd use c{ =0as
the first equation in equations (53), i.e., use the boundary condition ¢ = f(t) to set ¢y rather than use
the ODE integrator to compute ¢;. However, this approach is rather specific to the linear finite
element in Figure 6.1, and therefore we will use the more general approach of equations (53) in the
subsequent programming.

We note that the LHS weighting coefficients of equations (53) form a tridiagonal matrix.

Therefore, we can invert the LHS using a tridiagonal solver to obtain cl' , c2' s ey cN-'l , € !
explictly, then send this vector of derivatives to an explicit ODE solver, e.g., RKF45. The solution of

particular interest is u(xy,t), which, from equation (31), is

alxy,t) & Cplt) (54)

and CN(t) is computed by simultaneous solution of equations (50).

The programming of equations (53) in subroutine DERYV is listed in Program 7 along with the
data files in Table 7 for the five test functions (NORUN = I to 5). Program 7 also includes a listing of
subroutine INITAL which has been extended to set the tridiagonal coefficient matrix of equations {53).

Subroutine PRINT has also been miodified slightly to give the correct titles to the plots
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SUBROUTINE INITAL

PURE CONVECTION THROUGH A TUBE WITH A UNIFORM VELOCITY PROFILE CAN
BE DEPICTED AS

----------------------------------------------

Voooo.. +.
Voeoo.. o .
Voeo.. +.DX. U(X,T)
Voo . .
Voo, +
X=0 X=XL

IF A MASS OR ENERGY BALANCE 1S WRITTEN FOR A DIFFERENTIAL SECTION
OF THE TUBE, THE WELL-KNOWN ADVECTION EQUATION RESULTS

U + V+U = 0O (1)
T X

SINCE EQUATION (1) IS FIRST-ORDER IN THE SPATIAL VARIABLE, X, AND
THE TEMPORAL VARIABLE, T, IT REQUIRES ONE BOUNDARY CONDITION AND
ONE INITIAL CONDITION

U(o,T) = F(T), U(X,0) = G(X) (2)(3)
FOR WHICH THE EXACT SOLUTION TO EQUATIONS (1) TO (3) IS
U(X,T) = 0, X GT VT

(4)

U(X,T) = F(T - X/V), X LT V=T

THE SPATIAL DERIVATIVE IN EQUATION (1), U IS REPLACED BY A FINITE
X

ELEMENT APPROXIMATION OVER A GRID OF N (= 21) PDINTS IN X. A

SYSTEM OF N INITIAL-VALUE ORDINARY DIFFERENTIAL EQUATIONS IN T

RESULTS, ONE DIFFERENTIAL EQUATION FOR EACH GRID POINT. THIS

SYSTEM OF ODES IS THEN INTEGRATED SIMULTANEQUSLY TO OBTAIN THE

NUMERICAL SOLUTION TO EQUATIONS (1) TO (3).

COMMON /T/ T, NSTOP, NORUN
/Y/ U(21)
/F/ UT(21)
/SD/ UX(21)
/C/ v, SSE, FT
/FE/ X1, XN, DX,
AL(21), BM(21), CU(21),BRHS(21)
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UPPER DIAGONAL
DO 25 I=1,N
IF(I.EQ.1)THEN

FIRST ODE NOT USED
CU(1)=0.0EO

FIRST ODE USED
CU(1)=2.0E0/6.0EO
ELSE

IF(I.EQ.N)THEN
CU(N)=0.0E0
ELSE
CU(I)=1.0E0/6.0E0
END IF
CONTINUE
INITIAL CONDITION (5)
DO 1 I=1,N
U(I)=0.
CONTINUE

INITIALIZE THE TEMPORAL DERIVATIVES IN COMMON/F/
CALL DERV

PRINT THE COEFFICIENT MATRIX FOR VERIFICATION
IF(NORUN.EQ.1)THEN
bg 27 I=1,N
WRITE(NO,28)I,AL(I),BM(1),CU(I)
FORMAT(1I5,3F12.4)

CONTINUE
END IF
RETURN
END
SUBROUTINE DERV
COMMON/T/ T, NSTOP, NORUN
7Y/ U(21)
/F/ UT(21)
/SD/ UX(21)
/C/ v, SSE, FT
/FE/ X1, XN, DX,
AL(21), BM(21), CU(21),BRHS(21)
/1/ P, N

UNIT STEP FUNCTION
IF(NORUN.EQ.1)THEN
FT=1.0EQ
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X!

7

/1/ 1P, N

COMMON AREA FOR I/0 UNIT NUMBERS
COMMON/ 10/ NI, NO

SET THE VELOCITY, LENGTH OF THE SYSTEM, NUMBER OF SPATIAL GRID
POINTS, LENGTH OF THE GRID INTERVAL, SUM OF SQUARES OF ERRORS OF
THE NUMERICAL SOLUTION, COUNTER FOR THE PLOTTED SOLUTION USED IN
SUBROUTINE PRINT

V=1,

X1=0,

AN=1,

N=21

DX=(XN-X1) /FLOAT(N-1)

SSE=0.

IP=0

SET UP THE COEFFICIENT MATRIX IN BAND STORAGE MODE. THIS IS
DONE ONLY ONCE SINCE THE COEFFICIENT MATRIX IS CONSTANT

LOWER DIAGONAL
Dg 23 I=1,N
IF(I.EQ.1)THEN
AL(1)=0.0E0
ELSE
IF(I.EQ.N)THEN
AL (N)=2.0E0/6 .0E0
ELSE
AL(I)=1.0E0/6.0EO
END IF
CONTINUE

MAIN DIAGONAL
DO 24 I=1,N
IF(I1.EQ.1)THEN

FIRST ODE NOT USED
BM(1)=1.0EO

FIRST ODE USED
BM(1)=4.0E0/6.0ED
ELSE

+ IF(I.EQ.N)THEN

BM (N)=4.0E0/6 .0EQ
ELSE
BM(T)=4.0E0/6.0E0Q
END IF
CONTINUE
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TRUNCATED RAMP FUNCTION
ELSE IF(NORUN.EQ.2)THEN
5=5.0
IF(T.LT.0.)FT=0.
IF(T.GT.(1./S))FT=1.
IF((T.GE.0.) .AND. (T.LE.(1./S})))FT=5x*T

COSINE STEP FUNCTION
ELSE IF(NORUN.EQ.3)THEN
W=5.
PI=4.xATAN(1.)
IF(T.LT.0.)FT=0.
IF((W=T).GT.(P1/2.))FT=1.
IF(((WxT).GE. (0.0)) .AND. ((W=«T) .LE. (P1/2.)))FT=1.-COS(WxT)

SMOOTH COSINE STEP FUNCTION
ELSE IF(NORUN.EQ.4)THEN
W=5.
PI=4.xATAN(1.)
IF(T.LT.0.)FT=0.
IF((W*T).GT.(PI))FT=1,
IF(((WxT).GE. (0.0)) .AND. ((W=«T) .LE. (PI}})
+ FT=(1.-COS(W%T)) /2.0

COSINE PULSE FUNCTION
ELSE IF (NORUN.EQ.5)THEN
w=5.
PI=4.%ATAN(1.)
IF(T.LT.0.)FT=0.
IF ((W*T) .GT.(PI))FT=0.
IF (((W=T).GE. (0.0)) .AND. ( (W+T) .LE. (PI/2.)))FT=1.-COS(W=T)
IF (((W+T).GT.(PI/2.)) .AND. ((WxT).LE. (PI))) FT=1.+COS(W=T)
END IF

APPLY BOUNDARY CONDITION (4) AS A CONSTRAINT
U(1)=FT

RIGHT HAND SIDE VECTOR
DD 1 I=1,N
IF(I.EQ.1)THEN

FIRST ODE NOT USED
BRHS (1)=0.0EQ

FIRST ODE USED
BRHS (1)=-(V/(1.0E0«DX) ) (U(2)-U(1))
ELSE
+  IF(I.EQ.N)THEN
BRHS (N) =~ (V/(1.0EO0*DX) ) (U(N) ~U(N-1))
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ELSE
BRHS (I)=-(V/(2.0E0*DX))*(U(I+1)-U(I~1))
END IF
CONTINUE

SOLVE THE LINEAR ALGEBRAIC EQUATIONS BY SUBROUTINE TRIDAG, WHICH
RETURNS THE DERIVATIVE VECTOR UT IN COMMON/F/
CALL TRIDAG(AL,BM.CU,BRHS,UT,N)

SN OU W=

RETURN
END
SUBROUTINE PRINT(NI,NO)
COMMON /T/ T, NSTOP, NORUN
/Y/ U(21)
JF/ UT(21)
/SD/ UX(21)
/C/ Vv, SSE, FT
/FE/ X1, XN, DX,
AL(21), BM(21), CU(21),BRHS(21)
/1/ 1P, N

DIMENSION THE ARRAYS FOR PLOTTING THE SOLUTION
DIMENSION TPE(201),TPN(201),UPE(201),UPN(201)

PRINT A HEADING FOR NUMERICAL BSOLUTION
IF(IP.EQ.0)WRITE(NO,1)
FORMAT (9X,1HT,6X,6HU(0,T) ,6X 6HU(1 T) , 7X,5HEXACT, 11X, 1HE)

STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING
X=1.0

TXV=T-X/V

PO 3 I=1,NP

UNIT STEP FUNCTION

IF (NORUN.EQ.1)THEN
IF(TXV.LE.Q.)EXACT=0
IF(TXV.GT.0.)EXACT=1.0

TRUNCATED RAMP FUNCTION
ELSE IF(NORUN.EQ.2)THEN
5=5.0
IF(TXV.LT.0.)EXACT=0.
IF(TXV.GT. (1./S))EXACT=1.
IF((TXV.GE.0.) .AND. (TXV.LE. (1./S)))EXACT=S»TXV

COSINE STEP FUNCTION
ELSE IF(NORUN.EQ.3)THEN
W=5.0
PI=4.+ATAN(1.)
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IF(TXV.LT.0.)EXACT=0.

IF ((W=TXV).GT.(PI1/2.))EXACT=1.

IF(((WxTXV) .GE. (0.0)) .AND. ((W«TXV) .LE. (P1/2.)))
+ EXACT=1.-C0S (WxTXV)

C... SMOOTH COSINE STEP FUNCTION
ELSE IF(NORUN.EQ.4)THEN
W=5.0
PI=4.*xATAN(1.)
IF(TXV.LT.0.)EXACT=0.
1F( (W+TXV) .GT. (PT) )EXACT=1.
IF(((WxTXV).GE. (0.0)) -AND. ({W«TXV).LE. (PI}))
+ EXACT=(1.-COS{(W=TXV)})/2.

C... COSINE PULSE FUNCTION
ELSE IF(NORUN.EQ.5)THEN
W=5.0
PI=4.%ATAN(1.)
IF(TXV.LT.0.)EXACT=0.
IF( (WxTXV) .GT. (PI1))EXACT=0.
IF(((W*TXV).GE. (0.0)) .AND. ((W=TXV) .LE. (P1/2.)))
+ EXACT=1 . -COS (W«TXV)
IF (((W+TXV).GT. (P1/2.)) .AND. ((W+TXV) .LE. (PI)))
+ EXACT=1.+C0S (W=TXV)
END IF
CONTINUE

Q0w

COMPUTE THE FIGURE OF MERIT, SSE
E=U (N) -EXACT
SSE=SSE+E=x%2

[oNe]

PRINT THE NUMERICAL AND EXACT SOLUTIONS, ERROR
IF((IP/10%10) .EQ. IP) '
1 WRITE(ND,20)T,FT,UN,EXACT,E
0 FORMAT(F10.2,4F12.3)

QOnN

STORE THE NUMERICAL SOLUTIDN FDR SUBSEQUENT PLOTTING VIA TOP
DRAWER

IP=1P+1

UPN (IP)=U(N)

STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING
UPE(IP)=EXACT

STORE THE INDEPENDENT VARIABLE FOR SUBSEQUENT PLOTTING VIA TOP
DRAWER

NP=201

TPE(IP)=2.0=FLOAT(IP~1) /FLOAT(NP-1)

TPN(IP)=TPE(IP)

Qoo oo
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TEST FOR THE END OF A RUN
IF(IP.LT.NP)RETURN

OPEN FILE FOR TOP DRAWER PLOTTING
OPEN(4,FILE="T.TOP" ,STATUS=’NEW?)

WRITE TOP DRAW FILE FOR PLOTTING
WRITE(4,17)
FORMAT(’> SET LIMITS X FROM O TO 2 Y FROM -0.5 TO 1.5°,/,
1 * SET FONT DUPLEX’)
WRITE(4,13)
FORMAT(’ SET WINDOW X 2 TO 6 Y 2 TC &)
WRITE(4,14) (TPE(1) ,UPE(I),I=1,NP)
FORMAT (2F10.4)
WRITE(4,16)
FORMAT(® JOIN 1°)
WRITE(4,14) (TPN(I) ,UPN(I),I=1,NP)
WRITE(4,16)
WRITE(4,18)NORUN+50,SSE
FORMAT (
1’ Title 3.5 9.0 "Fig. *,I2,°"’
2,/,? TITLE LEFT "u(l,t)” >’
3,/,’ TITLE BOTTOM “¢”° :
4,/,’Title 3.0, 0.75 ”"SSE = ’>,F6.3,°"?)
WRITE(4,15)
FORMAT(’ NEW FRAME®)

LEGEND OF RUNS AT THE END
IF (NORUN.EQ.5) THEN
WRITE(4,19)

FORMAT (

1’ Title 3.25 9.0 "Galerkin with Linear FInite Elements"?’,/,
1’ Title 3.25 8.5 "Fig. 51: Heaviside Unit Step Function”?,/,
1’ Title 3.25 8.0 "Fig. 52: Truncated Ramp”?’,/,

1’ Title 3.25 7.5 "Fig. 53: Cosine Step”’,/,

1’ Title 3.25 7.0 "Fig. 54: Smooth Cosine Step”?’,/,
1’ Title 3.25 6.5 "Fig. 55: Cosine Pulse”’,/,

1’ Title 3.25 6.0 "All solutions are for a 2l1-point grid”?)
END IF

RETURN

END

Program 7: Subroutines DERV and PRINT for the Galerkin

Selution with Linear Finite Elements - Five Test Functions

The following points should be noted about the programming in subroutines DERV and

48



PRINT:
(1) Tridiagonal equations (53} are programmed in two steps:

(1.1) In INITAL, the subdiagonal is stored in array AL, the main diagonal in array BM, and

the superdiagonal in array CU. This is done only once in INITAL since these diagonals are

constant.

(1.2} In DERV, after the boundary condition function, f{t), is computed (for NORUN =1 to
5), the RHS vector of equations {53) is stored in array BRHS.

(2) After the tridiagonal matrix and RHS vector are defined, subroutine TRIDAG [Press, et al,
(6)] is called {at the end of DERV) to compute ci to c& (array UT). Then, in the usual way, UT
is sent through COMMON/F/ to RKF435, which returns array U (¢ te cy) in COMMON/Y/.

{3) From equation (54), we have u(xy,t) = cp(t), which is printed and plotted in PRINT.
N N

The following data in Table 7 are for five runs corresponding to the five test functions:

GALERKIN NUMOL SOLUTION OF ADVECTION EQN - UNIT STEP
0. 2.0 0.01
21 0.0001
GALERKIN NUMOL SOLUTION OF ADVECTION EQN - TRUNCATED RAMP
0. 2.0 0.01
21 0.0001
GALERKIN NUMOL SOLUTION OF ADVECTION E(QN - COSINE STEP
0. 2.0 ¢.01
21 0.0001
GALERKIN NUMOL SOLUTION OF ADVECTION EQN - SMOOTH COSINE STEP
0. 2.0 c.01
21 0.0001
GALERKIN NUMOL SOLUTION OF ADVECTION EQN - COSINE PULSE
0. 2.0 0.01
21 0.0001

END OF RUNS

Table 7: Data for Program 7
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Main program SRKF45 in Appendix 4 was again used to read the data in Table 7 and call
RKF45 (and thus INITAL, DERV and PRINT). The graphical output produced by subroutine PRINT
is in Figures 51 to 55. The SSE values for these runs are tabulated in Table &

51 1.271
52 0.037
53 0.027
54 0.002
55 0.099

Table 8: Summary of the SSE Values for the Galerkin

on Linear Finite Element Solutions

Again, we see numerical osciflation, which is probably to be expected because of the centered
approximation of uy in the RHS of equations (53). This centered approximation results from the
symmetric form of the linear finite element in Figure 6.1. Therefore, we might expect better results
from an upwind finite element, and in fact, we shall explore this possibility next. Generally, however,
the linear finite element of Figure 6.1 produced surprisingly good solutions; the SSE values are close to

those for the five point, biased upwind approximations in subroutine DSS020, e.g.,
Approximation f(t) Figure SSE

Five point Unit step ] 1.392

biased upwind

Five point Cosine pulse 45 0.094

biased upwind

Linear finite Unit step 51 1.271
element
Linear finite Cosine pulse 55 0.099
element
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(7) The Quadratic Upwind/Petrov-Galerkin Finite Element Formulation

We now consider the finite element formulation of the preceding section, with the linear finite
element of Figure 6.1 replaced by the Quadratic Upwind/Petrov-Galerkin element (QU/PG) of Figure
7.1.  This QU/PG element, which has a general form discussed by Brooks and Hughesr-’('?)‘. clearly

weighs the upwind direction {e.g., x < 0 for flow in the positive x direction) more heavily

E'_'"7”"?"'_1l"1'T'_”'l'”'?4
1.0

08 —1
08 4
|

] 0.2 }
G-PO.DB -0.04 ~0.02 o b.o2 0.04 0.06 )

Fig. 7.1: The QU/PG Element

The QU/PG element of Figure 7.1 consists of two sections for x < 0 and x >0, each composed of a
quadratic of the form

q&i(x) =38y +ax+ 32x2 (65)

For x < 0, the coefficients ay, ay and ag are computed so the quadratic passes through the three points

¢i(0) =1
8(-0x/2) = ¢ (56)
¢i(—Ax) =0

where Ax is the half-width of the element, and ¢} is sclected by the analyst. Again, as in the case of
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the linear finite element of Figure 6.1, we take ¢.(x) = 0, x < -Ax.

Similarly, for x > 0, we choose the three coefficients so the quadratic of equation (55) passes

through the three points

¢i(0) =1
¢i(Ax/2) = ¢’R (57}
¢i(Ax) =0

where ¢i(x) =0 x > Ax and ¢R is selected by the analyst. qSi(x) has the following noteworthy

properties:
(1) Continuity at x = 0, with the value ¢,(0) = 1.
(2) Any two basis functions overlap at most by the distance Ax.

(3) As a consequence of (1) and (2), the sums in equation (44) are relatively easy to compute,
and the solution u(xy,t) consists of a single term in the series, i.e., u(xy,t) = cy(t) (again,

¢n(xpn) =1 and q&i(xN) =0,i< N}

The formulas for the three coefficients ag, a; and a, for each of the three sets of points defined by
equations (56) and (57) are derived in Appendix 14. In the case of Figure 7.1, ¢, = 0.75, ¢p = 0.25.

As in the case of the linear finite elements of Figure 6.1, we now must evaluate integrals (1.1)
to (4.4) to use the element of Figure 7.1 (a total of 14 integrals, although some redundancy is reflected
in this figure since several of the integrals follow as special cases of others, but we choose to list and
evaluate them in detail to clarify the discussion). The myriad of details for an analytical integration
(the integrands involve ¢i(x) from equation (55) and its first derivative defined on the two sections of
the element, x < 0 and x > 0) precludes an analysis of reasonable length. We therefore use numerical

integration via a library quadrature routine, QUANCS [Forsythe, et al (1)].

The code for the QU/PG element of Figure 7.1 is listed in Appendix 15. Either of two

elements can be selected: (a) The linear finite element of Figure 6.1, with the intergals computed
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numerically (ITYPE = 1 set in INITAL), and (b) The QU/PG element of Figure 7.1 (ITYPE = 2)

with the integrals computed numerically. The code was tested in two ways:

(1) The solution for the iinear finite element with the integrals computed numerically (ITYPE =
1) was compared with the solution obtained with the integrals done analytically as considered

previously (Program 7).

(2) The solution for the QU/PG element (ITYPE = 2) for the case ¢y = ¢g = 0.5 was
compared with the linear finite element solution obtained with the integrals done analytically as

considered previously (Program 7) (¢; = ép = 0.5 corresponds to the linear finite element}.

In both cases, the three sclutions were essentially identical. Thus all of the code in the program of
Appendix 15 was tested against Program 7 for the case ¢ = ¢g =05 In other words, only the
small portion of the code in functions PHIM, PHIP, PHIDM and PHIDP for ¢; # 0.5 and/or ¢R #
0.5 was not tested. We mention this since the results for the QU/PG element in general were
surprisingly poor; this point is substantiated with a subsequent discussion of the solution for ¢; =
0.75, ¢g = 0.25 (the element in Figure 7.1). In any case, we report exactly how the calculations were

done through the listing of the program in Appendix 15.

The QU/PG solutions for ¢, = 0.75, ¢p = 0.25 and the five test functions are given in
Figures 58 to 60. These solutions are poor in two respects: {a) numerical oscillation exceeds that of the
approximations considered previously, and (b) perhaps more importantly, the solutions have a phase
error (time displacement)(see, in particular, Figure 59). We again mention that these solutions were
produced by the program in Appendix 15, so the reader can check the details of our calculations for
errors. We therefore conclude, that at least for our implementation, the QU/PG element is not

effective.

Also, more generally, the finite element approach has the following disadvantages:

(1} Integrals must be evaluated for all of the terms in a PDE problem system. While some of
the integrals may already be available (e.g., tabulated), a new PDE problem may require
additional integrals, which can be complicated depending on the form of the individual terms in
the PDEs.
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(2) Boundary conditions may be difficult to implement relative to the finite difference method.

(3) The time dependent ODEs resulting from the application of a weighted residual method are
implicitly coupled, and therefore require some additional mathematical programming, e.g., the

solution of tridiagonal equations, or an ODE solver designed specifically for implicit ODEs.
However, the finite element method offers significant advantages, particularly in higher dimensions,
e.g., for irregular geometries, although recent advances in finite difference methods have offset the

advantages of finite element methods to some extent.

(8) Finite Volume Approximation of the Advection Equation

So far, we have considered finite difference and finite element approximations of advection
equation (7). We now consider briefly the third principal method of approximating PDEs, the finite
volume or control volume method. Finite volume methods have the principal advantage of
conservation, e.g., of mass or energy. However, this property does not necessarily guarantee an

accurate solution (conservation might be considered necessary, but not sufficient).

For example, if we consider the finite volume approximation of the advection equation
proposed by Patankar [(8), pp 83-85] we observe that it is just the two point upwind approximation
which we have already noted suffers from excessive numerical diffusion (recall the solutions from
subroutine DSS012 listed in Appendix 2). Other approximations are possible [Lick (9)] which will give

better results than the two point upwind approximations, but we do not consider this further.

(9) The Nonhomogeneous Advection Equation

All of the preceding tests of various approximations are based on equations (7) to (9) for five
different test functions (different f{t) in boundary condition (9)). We now consider the following

extension of equations {7} to (9):

U + vux = c(x,t) (58)
u(x,0) = £(0), u(0,t) = f(t) (59)(60)

Note in particular the nonhomogeneous term, c(x,t), in equation (58). The analytical solution to
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equations (58) to {60), for the special case f(t) = 0, c(x,t) = g(x) is derived in Appendix 16 (with d(x)
used in place of g(x)). In particular, we shall use the following property of the solution expressed as

équation (a.69)

tﬂﬂouxn=sﬁmsmm@=(UﬂJsUN* (81)
0

i.e., the steady state solution is just the integral of g(x).

Equation (61) is the basis for a test problem first proposed by Leonard (4), and subsequently

used by Brooks and Hughes (7). In particular, we consider the nonhomogeneous function

g(x) =(-1.5/6)x+1,0<x<6

g(x) = (0.5/2)(x-8),6 <x <8 (62)
glx) = 0,_75_‘3 <x<15

This g(x) therefore consists of three linear segments.

Program 8 for equations (58) to (62) is similar to the preceding programs, but double precision
versions of main program SRKF45 and integrator RKF45 ivlf_éwilsed (the double precision coding was

used to minimize any errcrs in the steady state solution when compared with equation (61))

SUBROUTINE INITAL

U + VxU = G(X) (1)
T X

U(X,0) = F(0) = 0, U(O,T) = F(T) = O (2)(3)

G(X) IS REPRESENTED GRAPHICALLY BELOW

.(0,1)
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.(6,-0.5)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (N=16)

COMMON/T/ T, NSTOP, NORUN
1 Y/ U(N)
2 /F/  UT(N)
3 /S/ UX(N), XG(N}, XS, GI(N)
LENGTH

X85=15.0D0

SPATIAL GRID

DO 2 I=1,N
XG(I)=XS*«DFLOAT(I-1)/DFLOAT(N-1)
CONTINUE

INITIAL CONDITION (T = 0)

DO 1 I=1,N

U(I)=F(T)

CONTINUE

RETURN

END

SUBROUTINE DERV
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (N=16)

COMMON /T/ T, NSTOP, NORUN
1 /Y U(N)
2 /F/  UT(N)
3 /S/ UX(N), XG(N), XS, GI(N)

BOUNDARY CONDITION AT X = O
U(1)=F(T)
UT(1)=0.0D0

DERIVATIVE UX

V=1.0DO

IF(NORUN.EQ.1)CALL DSS012(0.0D0,XS,N,U,UX,V)
IF(NORUN.EQ.2)CALL DSS020(0.0D0,XS,N,U,UX,V)

PDE

DO 1 I=2,N
UT(I)=-V*xUX(I)+G(I)

CONTINUE

RETURN

END

SUBROUTINE PRINT(NI,NO)
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IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (N=16)

COMMON/T/ T, NSTOP, NORUN
1 Y/ UM
2 /F/  UT(N)
3 /S/ UX(N), XG(N), XS, GI(N)
C...
C... PRINT THE NUMERICAL SOLUTION

IF(T.LT.49.5D0) THEN
WRITE(NO,1)
1 FORMAT(//,9X, *T’>,9X, X’ ,6X, *U(X,T)?,5X, *UT(X,T)*,
+  BX,’UX(X,T)’)
WRITE(NO,2)T,XG(1),U(1),UT(1),UX(1)

2 FORMAT(F10.1,F10.2,3F12.4)
WRITE(NO,3) (XG(I),U(I),UT(I),UX(I),I=2,N)
3 FORMAT( 10X,F10.2,3F12.4)
C..
C. AT STEADY STATE, ALSO PRINT THE EXACT SOLUTIGN
ELSE
CALL EXACT
WRITE(NO,4)
4 FORMAT(//,9X,°T’,9X,°X?,6X, U(X,T)*,5X, *UT(X,T)’,
+  BX,’UX(X,T)’,5X,  EXACT?)
WRITE(NO,5)T,XG(1),U(1),UT(1),UX(1),GI(1)
5 FORMAT (F10.1,F10.2,4F12.4)
WRITE(ND,6) (XG(I),U(1),UT(I),UX(I),GI(I),I=2,N)
6 FORMAT( 10X,F10.2,4F12.4)
C..
C. CREATE AN QUTPUT FILE FOR TOP DRAWER PLOTTING
IF(NORUN.EQ.1)THEN
OPEN (4,FILE="T.TOP’ ,STATUS=’NEW’)
C..
C... WRITE TOP DRAWER FILE FOR PLOTTING NUMERICAL AND EXACT STEADY
C... STATE SOLUTIDNS VS X
C..
C... EXACT SOLUTIDN
WRITE (4,7)
7 FORMAT(’ SET LIMITS X FROM O TO 15 Y FROM 0 TO 2.5°,/,
1 > SET FONT DUPLEX’)
WRITE(4,10) (XG(I),GI(I),I=1,N)
WRITE(4,13)
13 FORMAT(?> JOIN’)
END IF
c..
C. NUMERICAL SOLUTIONS
IF(NORUN.EQ.1)WRITE(4,8)
8 FORMAT(’ SET SYMBOL 1°)
IF (NORUN.EQ.2)WRITE(4,9)
9 FORMAT (> SET SYMBOL 2')
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10

11

12

WRITE(4,10) (XG(I1),U(I),I=1,N)
FORMAT (2F10.3)

WRITE(4,1

1)

FORMAT(®> PLOT’)

IF (NORUN.EQ.2) THEN
WRITE(4,12)
FORMAT (

Gl QDN

END IF
END 1IF
RETURN
END

> Title 5.25 9.5 "Fig. 61: u(x,t) vs x at steady state
./’ TITLE LEFT »” u(x,t)”’

s/’ TITLE BOTTOM ”x”°

,/,’ TITLE 4.5 0.75 °’

’"Solid - exact, 1 - 2PUW, 2 - 5PBUW”?)

DOUBLE PRECISION FUNCTION G(I)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (N=16)
T, NSTOP, NORUN

COMMON/T/
1 Y/ U(N)
2 /F/ UT(N)
3 /S/  UX(N),

NONHOMOGENEOUS TERM

IF((XG(I).GE
XL= 0.0DO
XR= 6.0D0
GL= 1.0D0
GR=-0.5D0
ELSE
+IF((XG(I).GT
XL= 6.0D0
XR= &.0DO
GL=-0.5D0
GR= 0.0DO
ELSE
+IF((XG(I).GT
XL= &.0D0
XR=15.0D0
GL= 0.0DO
GR= 0.0DO
END IF

.0.0DO0) .

.6.0D0) .

.8.0D0) .

SLOPE AND INTERCEPT
S=(GR-GL) / (XR-XL)
B=(GL*XR-GR*XL) / (XR-XL)

XG(N), XS, GI(N)

IN THE ADVECTION EQUATION
AND. (XG(1).LE.6.0D0) ) THEN

AND. (XG(I) .LE.8.0D0) ) THEN

AND. (XG(I).LE.15.0D0) ) THEN
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NUMOL
0.

16
NUMOL
0.

16

FUNCTION G(X)
X=XS=DFLOAT (I-1) /DFLOAT(N-1)
G=SxX+B

RETURN

END

DOUBLE PRECISION FUNCTION F(T)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
F=0.0DO

RETURN

END

SUBROUTINE EXACT
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (N=16)

COMMON/T/ T, NSTOP, NORUN
1 /Y/  U(N)

2 J/F/  UT(N)
3 /S/ UX(N), XG(N), XS, GI(N)

INITIALIZE THE INTEGRATION
AREA=0.0DO
DX=XS/DFLOAT (N-1)

CUMULATIVE AREA BY THE TRAPEZOIDAL RULE

DO 1 I=2,N
GL=G(1-1)
GR=G(I )
AREA=AREA+40.5D0= (GL+GR) »DX
GI(I)=AREA

CONTINUE

RETURN

END

Program 8: Subroutines DERV, INITAL and PRINT, and Subordinate Routines
for the Solution of Equations (58) to (62)

The data for Program 8 are in Table 9

SOLUTION OF NONHOMOGENSOUS ADVECTION EQUATION - DSS012
50.0 10.0
0.0001 :
SOLUTION OF NONHOMOGENEQUS ADVECTION EQUATION - DSS020
50.0 10.0
0.0001

END OF RUNS

59



Table 9: Data for Program 8

The following points should be noted about Program 8:

(1) Initial condition (59) is set in INJITAL via function F(T) (for f{t) = 0).

(2) 'The spatial derivative, uyx, in equation (58) is calculated by the two point upwind
approximations in subroutine DSS012 (NORUN = 1), and the five point biased upwind
approximations in subroutine DSS020 (NORUN = 2). Thus, Table 9 has two sets of data.

(3) g(x) in equation {62) is calculated by function G(I) called at the end of subroutine DERV in
DO loop 1 for equation (58).

(4) Subroutine PRINT calls subroutine EXACT to compute the steady state solution according
to equation (61). The integral in equation (61) is done by the trapezoidal rule, which is exact for
linear functions, e.g., equation (62). Subroutine PRINT: (a) prints the transient (time dependent)

numerical solution and (b) plots the steady state numerical and exact solutions.

A portion of the numerical solution from subroutine PRINT is listed in Table 10

RUN NOD. - 1 NUMOL SOLUTION OF NONHOMOGENEQUS ADVECTION EQUATION
- DSS012

INITIAL T - 0.000E+00
FINAL T - 0.500E+02
PRINT T ~ 0.100E+02
NUMBER OF DIFFERENTIAL EQUATIONS -~ 16

MAXIMUM INTEGRATION ERROR - 0.100E-03

T X U(X,T) UT(X,T) UX(X,T)
0.0 0.00 0.0000 0.0000 0.0000
1.00 0.0000 0.7500 0.0000
2.00 0.0000 0.5000 0.0000
3.00 0.0000 0.2500 0.0000
4.00 0.0000 0.0000 0.0000
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10.

40.

50.

Qb WO

CHNIN A WN=O

e e
b WN=O

AR S -

.00
.00 ¢
.00

.00
.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00
.00
.00
-00
.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00

COO0COOOOOQCO0O0

61

.
oo

COCOTOOC

.2500
.5000
. 2500
. 0000
. 0000
. 0000
.0000
. 0000
.0000
.0000
.0000

UT(X,T)

COO0CQOQ

. 0000
. 0000
. 0004
.0019
. 0069
.0185

UT(X,T)

COQ0O0OCOOOOOO0OOCOQ0O

UT(
¢

loReReNe!

. 0000
.0000
. 0000
.0000
. 0000
. 00060
. 0000
.0000
. 0000
.0000
. 0000
. 0000
. 0000
. 0000
.0000
-0000

X,T)

.0000
. 0000
.0000
. 0000
.0000

COQCOoOOCOO0QOCO0

.0000
.0000
.0000
. 0000
. 0000
. 0000
. 0000
.0000
. 0000
.0000
. 0000

UX(X,T)

0
0.
0.
0.
-0.
-0.

. 7500

7500
4896
2481
6069
2685

UX (X,T)

CCOQOCOO

UX (
(6]

COoQCo

. 7500
. 7500
. 5000
. 2500
.0000
. 2500
-.5000
. 2500
. 0000
. 0000
. 0000
. 0000
. 0000
.0000
-0000
.0000

X,T)

.7500
. 7500
.5000
. 2500
.0000

EXACT
0.0000
0.8750
1.5000
1.8750
2.0000



-0.2500
-0.5000
-0.2500
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000

COQ0OO0OOCO0C

e el S o Gy W P I

.8750
. 5000
.1250
. 0000
. 0000
. 0000
. 0000
. 0000
.0000
. 0000
. 0000

2 NUMOL SOLUTICON OF NONHOMOGENEOUS ADVECTION EQUATION

5.00 1.2500 0.0000
6.00 0.7500 0.0000
7.00 0.5000 0.0000
8.00 0.5000 0.0000
9.00 0.5000 0.0000
10.00 0.5000 0.0000
11.00 0.5000 0.0000
12.00 0.5000 0.0000
13.00 0.5000 0.0000
14.00 0.5000 0.0000
15.00 0.5000 0.0000
RUN NO. -
- DSS020
INITIAL T - 0O.000E+00
FINAL T - 0.500E+02
PRINT T - 0.100E+02
NUMBER OF DIFFERENTIAL EQUATIONS - 16

MAXIMUM INTEGRATION

T
0.0

10.0

OO WNN=O

e Y sl
Gl WO

W= O

X
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00

ERROR - 0.100E-03

U(X,T)
. 0000
. 0000
. 0000
.0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
.0000
. 0000
. 0000
.0000

COCOCOOQOOOCOO0OCCO

U(X,T)
0.0000
0.8417
1.5052
1.9332

UT(X,T)
0.0000
0.7500
0.5000
0.2500
0.0000

~0.2500

~0.5000

-0.2500

.0000

.0000

.0000

.0000

.0000

.0000

. 0000

.0000

CCOQ0OOO0O

UT(X,T)

0.0000
~0.0106
~0.0568
-0.0365

62

UX(X,T)

.0000
. 0000
. 0000
.Q000
.0000
. 0000
. 0000
.0000
.0000
.0000
. 0000
.0000
. 0000
.0000
. 0000
. 0000

sloloNoRojoNoNeloNoleoReloRoReRa

UX(X,T)
0.9165
0.7606
0.5568
0.2865



40.

50.

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
10.00
11.00
12,00
13.00
14.00
15.00

QNI ARWN-O

0 0.00

2.00
3.00

7.00

10.00
11.00
12.00
13.00
14.00
15.00

The following points can be noted about the output in Table 10:

2.0498
1.8627

COCOOOCOOMEPPMNREROO
©
0]
9:4]
o))

0.
0.

0436
0881

UT(X,T)

.0000
. 0000
.0001
. 0001
.0001
.0002
.0001
.0002
.0003
. 0000
. 0004
. 0003
. 0002
.0006
.0004
-0.

0005

UT(X,T)

!

CO0Q0OOOOoOOOQOOOO0OO0O

i

.0000
.0000
. 0000
.0000
. 0000
. 0000
- 0001
. 0000
. 0000
. 0001
. 0000
.0001
. 0001
. 0000
. 0002
.0002

~0.
~0.

0436
3381

UX(X,T)

1

-0

-0

-0.
. 0005

0

.0071
0.
0.
0.
0.

~-0.

-0.

-0.

L0003
0.
0.
0.

-0.

.0006

7500
4999
2499
0001
2498
4999
2502

0000
0004
0003
0002

0004

UX(X,T)

1

Table 10: Abbreviated Ouiput from Program 8
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. 0069
0.
o.
0.
.

-0.

-0.

-0,
0.
0.
0.

-0.

-0.
0.
0.
0.

7500
5000
2500

000G

2500
5001
2500
0000
0001
0000
0001
0001
0000
0002
0002

EXACT

0.
0.
1.
i.
. 0060
L8750
. 5000
, 1250
. 0000
. 0000
. 0000
.0000
. 0000
. 0000
. 0000
. 0000

L V)

0000
8750
5000
8750



(1) The solution starts out according to initial condition (59). Also, since this is a uniform (zero)
solution and therefore ux (x,0) = @ , the only nonzero term in equation (58) initially is g(x), which
appears as u, in the output, i.e, equation at t = 0 is u; = g{x) (keeping in mind that u (0,t) =0
is the boundary condition in subroutine DERV).

(2) The solution reaches steady state by t = 40; observe that the derivative u, is small at ¢t = 40,

and the solution does not change from ¢ = 40 to t = 50.

(3) The numerical solution for the two point upwind of uy in equation (58) reaches the incorrect
value of 0.5 at x = 15 (rather than 1}. This error was previously reported by Leonard (4) and

Brooks and Hughes (7).

(4) The solution for the five point biased upwind approximation of uy reaches a steady state

value of 0.9814 at x = 15 with an error of 0.0186.

The graphical output from subroutine PRINT is given in Figure 61, which is essentially identical to the
plots reported by Leonard (4) and Brooks and Hughes (7).

The solution from Program 8 is for a 16-point grid in x. The output from Program 8 for a 31-

point grid is listed below and in Figure 62

RUN NO. - 1 NUMOL SOLUTION OF NONHOMOGENSOUS ADVECTION EQUATION
- b55012
INITIAL T - 0.000E+00

FINAL T - 0.500E+02
PRINT T - 0.100E+02
NUMBER OF DIFFERENTIAL EQUATIONS - 31

MAXIMUM INTEGRATION ERROR - 0.100E-03

T X U(X,T) UT(X,T) UX(X,T)
0.0 0.00 0.0000 0.0000 0.0000
0.50 0.0000 0.8750 0.0000
1.00 0.0000 0.7500 0.0000
1.50 0.0000 0.6250 0.0000
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Jury

50.0

-
COLCLBVNNOOOUU R BWWNNREROO

el el e
WRNN=RO

13.

.00
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00

.00
.50
.00
.50
.Q0
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00
50

. 0000
.0000
.0000
.0000
.0000
L 0000
.0000
. 0000
. 0000
. 0000
.0000
. 0000
. 0000
. 0000
.0000
. 0000
. 0000

CCOCOO0QCOQOOQCOQOoOCO

U(X,T)
. 0000
.4375
.8125
.1250
.3750
.5625
.6875
. 7500
. 7500
.6875
5625
.3750
.1250
.9375
L8125
7500
. 7500
. 7500
. 7500
. 7500
.7500
. 7500
. 7500
. 7500
. 7500
. 7500
. 7500
. 7500

COCOQOOCOOQOOOORMMERBRMERERL,OOO
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0
-0
-0
-0
-0
-0
-0.2500
-0
0
0
0
0
0

0.5000
0.3750
0.2500
0.1250
. 0000
.1250
. 2500
.3750
.5000
.3750

.1250
. 0000
.0000
.0000
. 0000
.0000

UT(X,T)
. 0000
. 0000
. 0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0000
.0000
.0000
. 0000
.0000
. 0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0000
. 0000
.0000
.0000
.0000
. 0000
.0000

COLOOOCOOORLOLOOOOCOOOCCOOCOOOO

=jeRelajoleReNoloBolololoReNoRe Nl

.0000
. 0000
.0000
. 0000
. 0000
.0000
.0000
. 0000
.0000
.0000
.0000
.0000
.0000
. 0000
. 0000
.0000
.0000

UX(X,T)

CCOOQOOCOQOOOoOOoOCO

.8750
.8750
. 7500
.6250
.5000
.3750
. 2500
.1250
. 0000
.1250
.2500
.3750
.5000
.3750
. 2500
.1250
.0000
. 0000
.0000
. 0000
.0000
. 0000
.0000
. 0000
.0000
. 0000
. 0000
. 0000

EXACT

il e i T e e R e e

.0000
L4688
.B750
L2188
. 5000
LT18R
.B730
9688
.0000
. 9688
L8750
L7188
.5000
L2813
. 1250
0313
. 0000
. 0000
. 0000
- 0000
.0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
.0000



RUN NO.

INITIAL

FINAL

PRINT

14
14
15

.00
.50
.00

0.7500
0.7500
0.7500

0

. 0000

0.0000

-0

. 0001

0
0

. 0000
. 0000
0.

0001

1.
1.
1.

0000
0000
0000

- 2 NUMOL SOLUTION OF NONHOMOGENEOUS ADVECTION EQUATION
- DSS020

T - 0.000E+00

T - 0.500E+02

T - 0.100E+02

NUMBER OF DIFFERENTIAL EQUATIONS -

MAXIMUM INTEGRATION

0.

50.

T
0 0
0
1
1
2
2
3
3
4
4
5
5
6
]
7
T
8
8
9
9
10
T
0

MR- O

X
.00
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00
.50
.00
.30
.00
.50
.00

.00
.50
.00
.50
.00

31
ERROR - 0.100E-03

U(X,T) UT(X,T)
0.0000 0.0000
0.0000 0.8750
0.0000 0.7500
0.0000 0.6250
0.0000 0.5000
0.0000 0.3750
0.0000 0.2500
0.0000 0.1250
0.0000 0.0000
0.0000 -0.1250
0.0000 -0.2500
0.0000 ~0.3750
0.0000 -0.5000
0.0000 -0.3750
0.0000 ~0.2500
0.0000 ~0.1250
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
U(X,T) UT(X,T)
0.0000 0.0000
0.4682 0.0000
0.8750 0.0000
1.2188 0.0000
1.5000 0.0000
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UX(X,T)

OCCOCOOOOQOLCO0OOOOO0OOOCO

. 0000
. 0000
. 0000
. 0000
.0000
. 0000
. 0000
. 0000
.0000
. 0000
. 0000
. 0000
. Q000
.0000
. 0000
. 0000
. 0000
.0000
. 0000
. 0000
. 0000

UX(X,T)

DOoOOw

.0000
.8750
. 7500
. 6250
.5000

EXACT

=+ O0O0

. 0000
L4688
.8750
.2188
. 5000



2.50 1.7187 0.0000 0.3750 1.7188
3.00 1.8750 0.0000 0.2500 1.8750
3.50 1.9688 0.0000 0.1250 1.9688
4.00 2.0000 0.0000 0.0000 2.0000
4.50 1.9689 0.0000 ~0.1250 1.9688
5.00 1.8745 0.0000 ~0.2500 1.8750
5.50 1.7212 0.0000 ~0.3750 1.7188
6.00 1.4883 0.0000 ~0.5000 - 1.5000
6.50 1.2738 0.0000 ~-0.3750 1.2813
7.00 1.1161 0.0000 ~0.2500 1.1250
7.50 1.0198 0.0000 ~0.1250 1.0313
8.00 0.9954 0.0000 0.0000 1.0000
].50 0.9933 -0.0001 0.0001 1.0000
9.00 0.9942 0.0000 0.0000 1.0000
9.50 0.9947 0.0000 0.0000 1.0000
10.00 0.9948 0.0001 -0.0001 1.0000
10.50 0.9948 0.0000 0.0000 1.,0000
11.00 0.9948 -0.0001 0.0001 1.0000
11.50 0.9948 -0.0001 0.0001 1.0000
12.00 0.9948 0.0000 0.0000 1.0000
12.50 0.9948 0.0002 ~0.0002 1.0000
13.00 0.9947 0.0001 ~-0.0001 1.0000
13.50 0.9947 -0.0001 0.0001 1.0000
14.00 0.9948 -0.0002 0.0002 1.0000
14.50 0.9949 -0.0001 0.0001 1.0000
15.00 0.9949 0.0003 -0.0003 1.0000

Table 11: Abbreviated Qutput from Program 8 for a 31-point Grid

Note that for the 31-point grid, the steady state solution for the two point upwind approximation is
u(15,00) = 0.75 and for the five point biased upwind approximation, u(15,00) = 0.9949. These results

are also clear from Figure 62.

Generally, we conclude that the five point biased upwind approximations give a numerical
solution of good acuracy for the nonhomogeneous advection equation (58). Of course, the other
approaches considered previously could be applied to this problem, i.e., subroutines LEO1 and LEO2
and the finite elements of Figure 6.1 and 7.1, but we do not consider these alternatives in order to keep

the discussion of this problem to reasonable length.

(10) Simultaneous PDEs

All of the example we have considered so far have been for one PDE. We now consider an
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example with two simultaneous PDEs for which an analytical solution can be derived by the Laplace

transform [Bateman (10), pp 123-128]. The PDEs mode! a fluid-solid heat transfer system

(¥ +BY)=Ku-v) (63)
oGl = k(v - U) (64)
where
A% temperature of the fluid
U temperature of the solid exchanging heat with the fluid
x position along the system
t time
v pCp of the fluid
u pCp of the solid
c fluid velocity
k heat transfer coefficient

Equations (63) and (64) require two initial conditions and one boundary condition, which will be

designated in general format as

V(x,0), V(0,t) and U(x,0) (65)(66)(67)

The analytical solution of equations {63) to (67) is developed in Appendix 17.

We now consider two types of boundary conditions (specifications of V{0,x)):

(1) A boundary condition which is consistent with the initial condition, and thereby avoids a

discontinuity. An example is
{k/ujt
Vo) = 1-¢ &1 (68)

for which the analytical solution is (see Appendix 18)
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t
Vix,t) = o k/(ve))x (k/u)Ih(A . x/c)e'(k/ WA - x/c) 10{2k {0 x/c)}dA (69)
! |

(2) A boundary condition which is not consistent with the initial condition, and therefore

introduces a discontinuity. Examples are
-(k/ult
V(o.) = & K/ (70)

V(0,t) = h(t) = {‘1’ es : (71)

fow which the analytical solutions are

Vixt) = 6 DR greye F/DA- x/<) To{2k m} (72)
and
Vixt) = ¢ K/ (vellx (k/u)Tlx(A - xjeje K/WIA - x/e) 10{2k m}dx
0
. { E-(k/(vc))xh( ‘- /c)e-(k/u)(,\ - x/c) I {2k m}} (73)
respectively.

These three examples (boundary conditions (68), (70 and (71}) provide a spectrum of test
problems since, by varying k/u, the rate of change of V(0,t) can be varied for both the continuous and
discontinuous cases. These examples are now used to test a computer code that implements a
nurnerical solution of equations (63) and (64) with the same format as the preceding codes for single
PDEs. Thus, the numerical and analytical solutions can be compared. The code is listed first as

Program 9, and is followed by explanatory comments.

SUBROUTINE INITAL
COMMON/T/ T, NSTOP, NORUN
DOUBLE PRECISION T

V(0,T) = 1 - EXP(-(K/U)=*T)
IF (NDRUN.EQ.1)CALL INIT1
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V(0,T) = EXP(-(K/U)«T)
IF (NORUN.EQ.2)CALL INIT2

V(0,T) = 1 (UNIT STEP)
IF(NORUN.EQ.3)CALL INIT3

V(0,T) = T (UNIT RAMP)
IF(NORUN.EQ.4)CALL INIT4
RETURN

END

SUBROUTINE DERV
COMMON /T/ T, NSTOP,
DOUBLE PRECISION T

V(0,T) = t - EXP(-(K/U)=T)
IF(NORUN.EQ.1)CALL DERVI

V(0,T) = EXP(-(K/U)=T)
IF (NORUN.EQ.2)CALL DERV2

V(0,T) = 1 (UNIT STEP)
IF (NDRUN.EQ.3)CALL DERV3

V(0,T) = T (UNIT RAMP)
IF(NORUN.EQ.4)CALL DERV4
RETURN

END

SUBROUTINE PRINT(NI,NO)
COMMON /T/ T, NSTOP,
DOUBLE PRECISION T

V(0,T) = 1 - EXP(-(K/U)=T)
IF(NORUN.EQ.1)CALL PRINT1(NI,NO)

V(0,T) = EXP(-(K/U)=T)
IF(NDRUN.EQ.2)CALL PRINTZ(NI,ND)

V(0,T) = 1 (UNIT STEP)
IF (NORUN,.EQ.3)CALL PRINT3(NI,NO)

V(0,T) = T (UNIT RAMP)
1F(NORUN.EQ.4)CALL PRINT4(NI,NO)
RETURN

END

SUBROUTINE INIT1
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DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, v, C, X, u,
+ EXP1, ARG, VA, VAI, T,
+ U1, v2, U1T, U2T, U1X,
+ BESS10

PARAMETER (NX=21)

COMMON/T/ T, NSTOP, NORUN
+ 7Y/ U1 (NX), U2(NX), VAI
+ JF/  ULT(NX),  U2T(NX), VA
+ /S/  UIX(NX)

+ /C/ Ks v) C‘.! X, U!
+ EXP1, ARG

+ + +

++++

SET THE PROBLEM PARAMETERS
K=1.0D+0
V=1.773D+00
C=2.031D+00
X=1.0D+0
U=1.0D+01

PRECOMPUTE SOME QUANTITIES USED IN THE ANALYTICAL SOLUTIQN
EXP1=DEXP (-K/ (VC) *X)

INITIAL CONDITIONS

PO 1 I=1,NX
U1(I)=0.D+0
U2(1)=0.D+0

CONTINUE

VAI=0.D+0

INITIAL DERIVATIVES
CALL DERV

RETURN

END

SUBROUTINE INIT2

DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, v, c, X, u,
EXP1, ARG, VA,  VAI, T,
U1, U2, UIT, U2T, U1IX,
BESSIO
PARAMETER (NX=21)
COMMON /T/ T, NSTOP, NORUN
/Y/ U1 (NX), U2 (NX) , VAI
/F/  UIT(NX),  U2T(NX), VA
/S/  ULX(NX)
/C/ K, v, c, X, U,
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+ EXP1, ARG

SET THE PROBLEM PARAMETERS
K=1.0D+0
V=1.773D+00
C=2.031D+00
X=1.0D+0
U=1.0D+01

PRECOMPUTE SOME QUANTITIES USED IN THE ANALYTICAL SOLUTION
EXP1=DEXP (-K/ (V=C)*X)

INITIAL CONDITIONS
DO 1 I=1,NX
U1(1)=0.D+0
U2(1)=0.D+0
CONTINUE
VAI=0.D+0

INITIAL DERIVATIVES
CALL DERV

RETURN

END

SUBROUTINE INIT3

DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE FPRECISION K, v, C, X, U,
+ EXP1, ARG, VA, VAT, T,
+ Ui, vz, uiT, U2T, UtX,
+ BESSIO

PARAMETER (NX=21)

COMMON/T/ T, NSTOP, NORUN
+ /Y/ U1 (NX), U2(NX), VAL
+ /F/  UIT(NX),  U2T(NX), VA
+ /S/ U1X (NX)

+ /C/ K, v, C, X, u,
+ EXP1, ARG

SET THE PROBLEM PARAMETERS
K=1.0D+0
V=1.773D+00
C=2.031D+00
X=1.0D+0
U=1.0D+01

PRECOMPUTE SOME QUANTITIES USED IN THE ANALYTICAL SOLUTIODN
EXP1=DEXP ( -K/ (V%C)%X)

72



(o N}

aa ao

OON

INITIAL CONDITIONS

DO 1 I=1,NX
U1(1)=0.D+0
U2(1)=0.D+0

CONTINUE

VAI=0.D+0

INITIAL DERIVATIVES
CALL DERYV

RETURN

END

SUBROUTINE INIT4

DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, Vv, c, X, U,
+ EXP1, ARG, VA,  VAI, T,
+ U1, U2, UIT, U2T, UlX,
+ BESSI0

PARAMETER (NX=21,NT=3)

COMMON/T/ T, NSTOP, NORUN
+ /Y/ U1 (NX), U2(NX), VAI(NT)

+ JF/  UIT(NX), U2T(NX), VA (NT)

+ /S/  ULIX(NX)

+ /C/ K, v, C, X, u,
+ EXP1, ARG

... SET THE PROBLEM PARAMETERS

K=1.0D+0
V=1.773D+00
C=2.031D+400
X=1.0D+0
U=1.0D+01

PRECOMPUTE SOME QUANTITIES USED IN THE ANALYTICAL SOLUTION
EXP1=DEXP (-K/ (V=C) =X)

INITIAL CONDITIDNS

DO 1 I=1,NX
U1(I)=0.D+0
U2(1)=0.D+0

CONTINUE

PO 2 I=1,NT
VAI(I)=0.D+0

CONTINUE

INITIAL DERIVATIVES

CALL DERYV
RETURN
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END
SUBROUTINE DERV1

DECLARE SELECTED VARIABLES AS DDUBLE PRECISION

DOUBLE PRECISION K, v, c, X, U,
EXP1, ARG, VA, VAL, T,
U1, v2, U1T, U2T,  UIX,
BESSIO
PARAMETER (NX=21)
COMMON/T/ T, NSTOP, NORUN
/Y/ U1 (NX), U2(NX) , VAI
/F/  UIT(NX), U2T(NX), VA
/S/  ULX(NX)
/C/ : K, v, C, X, U,
EXP1, ARG

BOUNDARY CONDITION
U1(1)=1.D+0-DEXP( (-K/U)*T)
U1T(1)=0.D+0

UiX

FIVE POINT BIASED UPWIND
CALL DSS020(0.b+0,X,NX,U1,U1X,1.D+0)

PDES
DO 1 I=1,NX
IF(I.NE.1)THEN
ULT(I)=(K/V)»(U2(1)-U1(1))-CxU1X(I)
END IF
UST(I)=(X/U)=(U1(1)-U2(1))
CONTINUE

TEST FOR THE ELAPSED TIME

T - X/C LT O

IF((T-X/C) .LT.0.D+0)THEN
VA=0.D+0

T - X/C GE 0
ELSE
ARG=2 . 0D+0xKxDSQRT ( (X/ (UxV=C) ) = (T-X/C))
VA=EXP1=DEXP (- (K/U) % (T-X/C) ) *BESSI0(ARG)
END IF
RETURN
END

SUBROUTINE DERVZ2
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DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, v, C, X, U,
+ EXP1, ARG, VA,  VAI, T,
+ U1, U2, U1T, U2T, UIX,
+ BESSI10

PARAMETER (NX=21)

COMMON /T/ T, NSTOP, NORUN
+ /Y/ U1 (NX), U2(NX), VAT
+ /F/  ULT(NX), U2T(NX), VA
+ /S/  ULX(NX)

+ /C/ K, v, C, X, U,
+ EXP1, ARG

BOUNDARY CONDITIDN
U1 (1)=DEXP( (~K/U)*T)
U1T(1)=0.D+0

UiX

FIVE POINT BIASED UPWIND
CALL DSS020(0.D+0,X,NX,U1,U1X,1. D+0)

PDES
DO 1 I=1,NX
IF(I.NE.1)THEN
ULT(I)=(K/V)*(U2(I)-U1(1))-CxU1X(I)
END IF
U2T(1)=(K/U)*(U1(I)-U2(I))
CONTINUE

TEST FOR THE ELAPSED TIME

T - X/C LT 0O

IF((T-X/C).LT.0.D+0)THEN
VA=0.D+0

T - X/C GE ©

ELSE
ARG=2.0D+0xK+DSQRT ( (X/ (UxV*C) ) % (T~X/C))
VA=EXP1+DEXP (~ (K/U) % (T-X/C) ) »BESSI0 (ARG)

END IF

RETURN

END

SUBROUTINE DERV3
DECLARE SELECTED VARIABLES AS DOUBLE PRECISION
DOUBLE PRECISION K, v, c, X, U,

+ EXP1, ARG, VA,  VAI, T,
+ U1, U2, U1T, U2T, U1X,

75



OR®]

oNeoNo N

QG

aQa aaao

+

+ 4+ + + +

BESSIO

PARAMETER (NX=21)
COMMON/T/ T, NSTOP, NORUN

/Y/ U1 (NX), U2 (NX), VAT

/F/  UIT(NX), U2T(NX), VA

/S/  UIX(NX)

/C/ K, v, c, X, u,

EXP1, ARG

BOUNDARY CONDITION
U1(1)=1.0+0
UlT(l):O.D+O

U1lx

FIVE POINT BIASED UPWIND
CALL DSS020(0.D+0,X,NX,U1,U1X,1.D+0)

PDES
DO 1 I=1,NX
IF(I.NE.1)THEN
ULIT(I)=(K/V)*(U2(I1)-U1(I))-CxU1X(I)
END IF
U2T (1) =(K/U)*(U1(1)-U2(I))
CONTINUE

TEST FOR THE ELAPSED TIME

T - X/C LT 0

IF((T-X/C).LT.0.D+0)THEN
VA=0.D+0

T - X/C GE ©

ELSE
ARG=2.0D+0+K=DSQRT ( (X/ (UxVxC) )= (T-X/C))
VA=EXP1=DEXP (- (K/U)*(T-X/C) ) =BESSIO (ARG)

END IF

RETURN

END

SUBROUTINE DERV4

DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, vV, C, X, u,
+ EXP1, ARG, VA, VAL, T,
+ U1, U2, UiT, U2T, Uu1lx,
+ BESSI0

PARAMETER (NX=21,NT=3)

COMMON/T/ T, NSTOP, NORUN

+ /Y/ U1 (NX), U2(NX),  VAI(NT)
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JF/  UIT(NX), U2T(NX), VA (NT)

/S/  ULIX(NX)

/C/ K, V. c, X, U,
EXP1, ARG

BOUNDARY CONDITION
IF(T.LE.1.D+0)UL(1)=T
IF(T.GT.1.D+0)U1(1)=1.D+0
U1T(1)=0.D+0

UiX

FIVE POINT BIASED UPWIND
CALL DSS020(0.D+0,X,NX,U1,U1X,1.D+0)

PDES
DO 1 I=1,NX
IF(I.NE.1)THEN
ULT(T)=(K/V)* (U2(1)-U1(I1))-C*xU1X(I)
END 1IF
U2T (1) =(K/U)=(U1(1)-U2(I))
CONTINUE

TEST FOR THE ELAPSED TIME FOR RESPONSE TO STEP AT T =

T - X/C LT ©
IF((T-X/C).LT.0.D+0)THEN
VA(1)=0.D+0

T - X/C GE 0
ELSE

ARG=2.0D+0xK+DSQRT ((X/ (UxVxC) ) » (T-X/C))

VA (1) =EXP1«DEXP (- (K/U) % (T-X/C) ) »BESSI0 (ARG)
END IF

TEST FOR THE ELAPSED TIME FOR RESPONSE TO STEP AT T
T - X/C - 1 LT O
IF((T-X/C-1.D+0}. LT.O.D+O)THEN

VA(2)=0.D+0

T - X/C - 1 GE 0

ELSE
ARG=2.0D+0xK=DSQRT ( (X/ (UxV%C) ) (T-X/C-1.D+0))

VA(2)=-EXP1xDEXP (- (K/U)*(T-X/C-1.D+0) ) +*BESSIO0 (ARG)

END IF

SUPERIMPOSE TWO STEP RESPONSES :

VA (8)=VA(1)+(K/U)*VAI (1) +VA(2)+(K/U) =VAI(2)
RETURN

END
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SUBROUTINE PRINT1{NI,ND)

DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, V. C. X, U,
EXP1, ARG, VA, VAT, T,
U1, vu2, U1T, U2T, U1x,
BESSIO
PARAMETER (NX=21)
COMMON/T/ T, NSTOP, NORUN
/Y/ U1l (NX), U2 (NX) , VAI
JF/ U1T({NX), U2T(NX), VA
77 UIX(NX)
/C/ K, Vv, C, X, U,
EXP1, ARG
ARRAYS TO STORE THE SOLUTION FOR SUBSEQUENT PLOTTING
DOUBLE PRECISION TP(201), VP(2,201)
INITIALIZE A COUNTER FOR THE PRINTING AND PLOTTING
DATA IFP/0/
IP=IP+1

IF(1IP.EQ.1)THEN

MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
AT THE BEGINNING OF THE SOLUTION
CALL MAP

PRINT A HEADING
WRITE(NO,1)
FORMAT(//,14X,’T?,9X, V(X,T)’,4X, V(X,T) ANAL?)
END IF

PRINT THE SOLUTION EVERY 20TH CALL TO SUBROUTINE PRINT
IF(((IP-1)/20%20) .EQ.(IP-1))THEN
WRITE(NO,2)T,U1 (NX), (K/U)*VAI
FORMAT(F15.2,2F15.4)

WRITE NORUN, IP AND T ON THE SCREEN TO MONITOR THE PROGRESS OF
THE CALCULATIONS

WRITE(*,*)*> NDRUN = ?,NORUN,” IP = ?,IP,> T = *,T

END IF

STORE THE SOLUTION FOR PLOTTING
TP(IP)=T

VP(1,IP)=U1 (NX)
VP(2,IP)=(K/U)*VAI
IF(IP.LT.201)RETURN
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MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
AT THE END OF THE SOLUTION
CALL MAP

DPEN A FILE FOR THE PLOTTING
GPEN(1,FILE=’T.TDP’,STATUS=’NEW’)

SCALE THE AXES OF THE PLOT
WRITE(1,6)
FORMAT (> SET LIMITS X FROM O TO 10 Y FROM 0 TQ 1°,/,
1 > SET FONT DUPLEX’)
WRITE(1,7)
FORMAT(’® SET SIZE 6 BY 6°)

WRITE THE ANALYTICAL SOLUTION FOR PLOTTING
WRITE(1,5) (TP(I1),VP(2,1),1=1,IP)
FORMAT (2F10.4)
WRITE(1,4)
FORMAT(’ JOIN 1°)

WRITE THE NUMERICAL SOLUTION FOR PLOTTING
WRITE(1,5) (TP(I),VP(1,1),I=1,IP)
WRITE(1,4)

LABEL THE PLOT
WRITE(1,8)
FORMAT (
> TITLE 1.75 5.8 "Fig. 63: Two First Order PDEs”?
' TITLE LEFT » V(1,t)"?
, ) TITLE BOTTOM "t”?
s TITLE 1.25 0.25 °
>PV(1,t) vs t, V(0,t) = 1 -~ exp(-(k/u)t)”?)
WRITE(1,9)
FORMAT(’ NEW FRAME’)

RESET THE INTEGER COUNTER FOR THE NEXT RUN
1P=0

RETURN

END

SUBROUTINE PRINT2(NI,ND)

DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, vV, c, X, u,
+ EXP1, ARG, VA, VAL, T,
+ U1, Uz, ulT, U2T, u1x,
+ BESSIO

PARAMETER (NX=21)
COMMON /T/ T, NSTOP, NORUN
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/Y/ U1 (NX), U2(NX), VAL

/F/  UIT(NX),  U2T(NX), VA

/S/  ULX(NX)

/C/ i<, v, C, X, U,
EXP1, ARG

ARRAYS TO STORE THE SOLUTION FOR SUBSEQUENT PLOTTING

DOUBLE PRECISION  TP(201), VP(2,201)
INITIALIZE A COUNTER FOR THE PRINTING AND PLOTTING
DATA IP/0/

IP=1P+1

IF(IP.EQ.1)THEN

MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
AT THE BEGINNING OF THE SOLUTION
CALL MAP

PRINT A HEADING
WRITE(NO,1)
FORMAT(//,14X, T’ ,9X,°V(X,T)?,4X, *V(X,T) ANAL’)

END IF

PRINT THE SOLUTION EVERY 20TH CALL TG SUBROUTINE PRINT
IF(((IP~1)/20%20) .EQ. (IP-1))THEN
WRITE(NO,2)T,U1(NX),VA
FORMAT (F15.2,2F15.4)

WRITE NORUN, IP AND T ON THE SCREEN TO MONITOR THE PROGRESS OF
THE CALCULATIONS

WRITE(*,=)? NORUN = ’,NORUN,’ IP = °>,IP,* T = ?,T

END IF

STORE THE SOLUTI1ON FOR PLOTTING
TP (IP)=T

VP (1,IP)=U1 (NX)

VP(2,IP)=VA
IF(IP.LT.201)RETURN

MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
AT THE END OF THE SOLUTION
CALL MAP

OPEN A FILE FOR THE PLOTTING
OPEN(1,FILE="T.TOP’ ,STATUS=’NEW’)

SCALE THE AXES OF THE PLOT

WRITE(1,6)
FORMAT(® SET LIMITS X FROM O TO 10 Y FROM -0.1 TO 1.07,/,
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1 » SET FONT DUPLEX®)
WRITE(1,7)
FORMAT(’ SET SIZE 6 BY G’)

WRITE THE ANALYTICAL SOLUTION FOR PLOTTING
WRITE(1,5) (TP(I),VP(2,1),I=1,IP)
FORMAT (2F10.4)
WRITE(1,4)
FORMAT(> JOIN 1)

WRITE THE NUMERICAL SOLUTION FOR PLOTTING
WRITE(1,5) (TP(1),VP(1,1),I=1,IP)
WRITE(1,4)

LABEL THE PLOT
WRITE(1,8)
FORMAT (

> TITLE 1.75 5.8 "Fig. 64: Two First Order PDEs”°

1
2,/,? TITLE LEFT * vV(1,t)”’?
3,/,’ TITLE BOTTOM ”t”?
4,/,?> TITLE 1.5 0.25 ?
5 MV{1,t) vs t, V(0,t) = exp(~-(k/u)t)”?)
WRITE(1,9)
FDRMAT(’> NEW FRAME?)

RESET THE INTEGER COUNTER FOR THE NEXT RUN
IP=0

RETURN

END

SUBROUTINE PRINT3(NI,NO)

DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, v, C, X, U,
+ EXP1, ARG, VA,  VAI, T,
+ U1, vz, U1T, U2T, U1iX,
+ BESSIO

PARAMETER (NX=21)

COMMON/T/ T, NSTOP, NORUN
+ 7Y/ U1 (NX), U2(NX), VAI
+ /F/  UIT(NX), U2ZT(NX), VA
+ /S/  UIX(NX)

+ /C/ K, v, c, X, U,
+ EXP1, ARG

ARRAYS TO STORE THE SOLUTION FOR SUBSEQUENT PLOTTING

DOUBLE PRECISION TP(201), VP (2,201)

INITIALIZE A COUNTER FOR THE PRINTING AND PLOTTING
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DATA IP/0/
IP=1P+1
IF(1P.EQ.1)THEN

MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
AT THE BEGINNING GF THE SOLUTION
CALL MAP

PRINT A HEADING
WRITE(NO,1)
FORMAT(//,14X, T’ ,9X, V(X,T) > ,4X, *V(X,T) ANAL’)

END IF

PRINT THE SOLUTION EVERY 20TH CALL TO SUBROUTINE PRINT

IF(((IP-1)/20~20) .EQ. (IP-1))THEN
WRITE(NO,2)T,U1 (NX) ,VA+ (K/U)«VAI
FORMAT(F15.2,2F15.4)

WRITE NORUN, IP AND T ON THE SCREEN TO MONITOR THE PROGRESS OF
THE CALCULATIONS

WRITE(=*,=)? NORUN = ?,NORUN,?’ IP = ?,IP,” T = *,T

END IF

STORE THE SOLUTION FOR PLOTTING
TP (IP)=T

VP (1, IP)=U1(NX)

VP (2, IP)=VA+(K/U)*xVAI
IF(IP.LT.201)RETURN

MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
AT THE END OF THE SOLUTION
CALL MAP

OPEN A FILE FOR THE PLOTTING
OPEN(1,FILE="T.TOP’ ,STATUS=>NEW?”)

SCALE THE AXES OF THE PLOT
WRITE(1,6)
FORMAT(’ SET LIMITS X FROM O TO 10 Y FROM -0.1 TO 1.17°,/,
» SET FONT DUPLEX?)
WRITE(1,7)
FORMAT (> SET SIZE 6 BY 6°)

WRITE THE ANALYTICAL SOLUTION FOR PLOTTING
WRITE(1,5) (TP(I),VP(2,1),I1=1,1IP)
FORMAT (2F10.4)
WRITE(1,4)
FORMAT(®> JOIN 17)
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WRITE THE NUMERICAL SOLUTION FOR PLOTTING
WRITE(1,5) (TP(1),VP(1,1),I=1,1IP)
WRITE(1,4) -

LABEL THE PLOT
WRITE(1,8)

FORMAT (
> TITLE 1.75 5.8 "Fig. 65: Two First Order PDEs”’
> TITLE LEFT ” V(1,t)”?

14

, TITLE BOTTOM "t¢”?

y’ TITLE 1.75 0.25 °?

y(1,t) vs t, V(0,t) = unit step”?)
WRITE(1,9)

FORMAT(® NEW FRAME?’)

RESET THE INTEGER COUNTER FOR THE NEXT RUN
I1P=0

RETURN

END

SUBROUTINE PRINT4(NI,NO)

DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, v, c, X, U,
+ EXP1, ARG, VA,  VAI, T,
+ U1, v2, U1T, U2T, UiX,
+ BESSIO

PARAMETER (NX=21,NT=3)

COMMON/T/ T, NSTOP, NORUN
+ /Y/ U1 (NX), U2(NX), VAI(NT)

+ /F/  ULT(NX),  U2T(NX), VA (NT)

+ /S/  ULX(NX)

+ /C/ K, v, C, X, U,
+ EXP1, ARG

ARRAYS TO STORE THE SOLUTION FOR SUBSEQUENT PLOTTING

DOUBLE PRECISION  TP(201), VP(2,201)
INITIALIZE A COUNTER FOR THE PRINTING AND PLOTTING
DATA IP/0/

IP=IP+1

IF(IP.EQ.1)THEN
MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
AT THE BEGINNING OF THE SOLUTION

CALL MAP

PRINT A HEADING
WRITE(NO,1)
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FORMAT(//,14X,*T?*,0X, V(X,T) * ,4X, *V(X,T) ANAL’)
END IF

PRINT THE SOLUTION EVERY 20TH CALL TO SUBROUTINE PRINT
IF(((IP-1)/20%20).EQ. (IP-1))THEN

WRITE(ND,2)T,U1 (NX),VAI(3)

FORMAT (F15.2,2F15.4)

WRITE NORUN, IP AND T ON THE SCREEN TO MONITOR THE PROGRESS OF
THE CALCULATIONS

WRITE(*,%)? NORUN = ? ,NORUN,’ IP = ?,IP,’ T = ',T

END IF

STORE THE SOLUTION FOR PLOTTING
TP (IP)=T

VP(1,IP)=U1(NX)

VP(2,1P)=VAI(3)
IF(IP.LT.201)RETURN

MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
AT THE END OF THE SGLUTION
CALL MAP :

OPEN A FILE FOR THE PLOTTING
OPEN(1,FILE="T.TOP’ ,STATUS="NEW?)

SCALE THE AXES OF THE PLOT
WRITE(1,6)
FORMAT(’> SET LIMITS X FROM O TO 10 Y FROM -0.1 TO 1.17,/,
1 * SET FONT DUPLEX’)
WRITE(1,7)
FORMAT(’ SET SIZE 6 BY 6°)

WRITE THE ANALYTICAL SOLUTION FOR PLOTTING
WRITE(1,5) (TP(I),VP(2,1),I=1,1IP)
FORMAT (2F10.4)
WRITE(1,4)
FORMAT(’ JOIN 17)

WRITE THE NUMERICAL SOLUTION FOR PLOTTING
WRITE(1,5) (TP(1),VP(1,1),I=1,IP)
WRITE(1,4)

LABEL THE PLOT
WRITE(1,8)
FORMAT (

* TITLE 1.75 5.8 ”Fig. 66: Two First Order PDEs”’
’ TITLE LEFT ” V(1,t)”?

1
2!/,
3,/,' TITLE BOTTOM "t
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4,/,” TITLE 1.75 0.25 ?

5 'MY(1,t) vs t, V(0,t) = unit ramp”’)}
WRITE(1,9)
FORMAT (*> NEW FRAME’)

RESET THE INTEGER COUNTER FOR THE NEXT RUN
IP=0

RETURN

END

SUBROUTINE MAP
PARAMETER (N=42)

COMMON/T/ T
1 /Y/  Y(N)
2 /F/  F(N)

SUBROUTINE MAP

(1) CALLS SUBROUTINE JMAP TO MAP THE JACUBIAN MATRIX QOF
NTH-ORDER ODE SYSTEM.

(2) CALLS A SERIES OF EISPACK ROUTINES VIA SUBROUTINE EIGEN
TO COMPUTE THE TEMPORAL EIGENVALUES OF THE ODE SYSTEM,
AND OPTIONALLY, THE ASSOCIATED EIGENVECTORS.

DECLARE SELECTED VARIABLES DOUBLE PRECISION
DOUBLE PRECISION T, Y, F, YOLD(N), FOLD(N)

DEFINE SINGLE PRECISION ARRAYS REQUIRED BY SUBROUTINE JMAP (A)
AND SUBROUTINE EIGEN (WR, WI, Z, RW, IW)

REAL A(N,N), WR(N), WI(N), Z(N,N), RW(N)

INTEGER IW(N)

MAP THE JACOBIAN MATRIX OF THE ODE SYSTEM DEFINED IN SUBROUTINE
DERV, AND COMPUTE ITS TEMPORAL EIGENVALUES. NOTE THAT ARRAY

A CONTAINING THE NUMERICAL JACOBIAN MATRIX ON OUTPUT FROM JMAP
IS SINGLE PRECISION, I.E., IT IS NOT DECLARED IN THE PRECEDING
DOUBLE PRECISION STATEMENT. FURTHER EXPLANATION OF THIS POINT
IS GIVEN IN THE COMMENTS BEFORE THE FOLLOWING CALL TO SUBROUTINE
EIGEN

CALL JMAP(N,A,Y,YOLD,F,FOLD)

SUBROUTINE EIGEN (PART OF DSS/2) CALLS A SERIES QF EISPACK ROU-
TINES TO COMPUTE THE TEMPORAL EIGENVALUES, AND OPTIONALLY, THE
EIGENVECTORS OF THE NTH-ORDER ODE SYSTEM JACOBIAN MATRIX. NOTE
THAT ALL OF THE ARRAYS GOING INTO EIGEN (A, WR, WI, Z, RW, IW)
ARE SINGLE PRECISION. THIS WAS DONE TO ALLOW THE USE OF THE
SINGLE PRECISION EISPACK ROUTINES CALLED BY EIGEN

CALL EIGEN(N,A,WR,WI,Z,RW,IW)
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RETURN
END

Program 9: Subroutines DERV, INITAL and PRINT, and Subordinate Routines
for the Solution of Equations (63) and (64)

——— .

We now consider each section of Program 9.

{1) Subroutine INITAL calls one of four initialization subroutines, INIT1 to INIT4, for four
different test problems, depending on the run counter, NORUN. Subroutines INIT1, INIT2 and
INIT3 are for boundary conditions (68), (70) and (71) respectively; INIT4 is for a unit ramp
boundary condition, V(8,t) = r(t), where r(t) is defined as

r(t),—_{“’ﬁ“*fl (74)

The exact solution for this case is obtained by integration and superposition of the solution for
V(0,t) = h(t), as explained subsequently. Note that four runs are executed (NORUN varies from
1 to 4) for these four boundary cobditions.

(2) Similarly, subroutine DERV calls one of four derivative subroutines, DERV1 to DERV4,
corresponding to the four test problems described for INIT1 to INIT4, respectively.

(3) Finally, subroutine PRINT calls one of four derivative subroutines, PRINT1 to PRINT4,
corresponding to the four test problems implemented in INIT1 to INIT4 and DERV1 to DERV4.

Now we copsider the subroutines for each of the four test problems, starting with INIT1,
DERV1 and PRINTI, which are for boundary condition (68). The following points should be noted
about subroutine INIT1:

(1) The coding is in double precision format. This was done primarily to provide compatibility
with function BESSI0 from Press et al [(14), pp 176-178] which is in double precision; this
function computes the modified Bessel function I, in the analytical solutions, equations (69), (72)

and (73)
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(2) The model parameters are set in a series of statements, e.g., K=1.0D+0, and the exponential
in the analytical solutions, equations (69), (72) and (73), which does not invalve t, and therefore

is constant throughout each solution is computed, i.e., EXP1=DEXP(-K/(V+C)+X).

(3) [Initial conditions (63) and (67) are implemented in DO loop 1 (which are homogeneous).

Alsa, the integral in equation (69) (VAI) is intialized

1
val = ¢ B/tvellx (k/u)J'h(,\ _ xje)e KIWA - x/<) I°{2k [ x/c)}dA (69)
0

Note that VAI = 0 at t = 0. Also, VAI appears as the 43rd element in COMMON/Y/ since it is

evaluated as an equivalent ODE, as explained subsequently,

In summary, INT1 initializes the program and sets the initial conditions for the first problem

with boundary condition (68) (NORUN = 1). Then the ODE integrator calls DERV1 to step along the

solution. DERV] has the following features:

(OR®

(1) Boundary condition (68) is first programmed as

BOUNDARY CONDITION
U1 (1)=1.D+0-DEXP ( (-K/U)=T)
U1T(1)=0.D+0

Note that the temporal derivative U1T(1} is zeroed since U1{(1} is defined by the boundary
condition rather than by an QODE at grid point 1. |

(2) The spatial derivative in equation (63), %}%, is computed by a cali to subroutine DS5020 with
the coding

Ce FIVE POINT BIASED UPWIND

CALL DSS020(0.D+0,X,NX,U1,U1X,1.D+0)

(3) The derivatives %—Y (U1T) and %%J (U2T} in equations {63} and (64) are programmed in DO
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loop 1 as

PDES
DO 1 I=1,NX
IF(I.NE.1)THEN
UIT(I)=(K/V)=(U2(1)-U1(I))-CxU1X(I)
END IF
U2T(1)=(K/U)= (U1 (I)-U2(1))
CONTINUE

Note that U1T(1) is not computed since it was zeroed for boundary condition (68). Also, the
close resemblance of the PDEs, equations {63) and (64), and the coding in DO loop 1 is apparent.

This is one of the major advantages of this approach to PDEs.

(4) The integrand in equation (69}
va = e BN 4 riner - xfeye B/WA - x/e) Lo{2k [ - x/c)} (75)

is programmed after DO loop 1 as

TEST FOR THE ELAPSED TIME

T - X/C LT ©

IF{((T-X/C).LT.0.D+0)THEN
VA=0.D+0

T - X/C GE 0
ELSE

ARG=2 . 0D+0*K=DSQRT ( (X/ (UxV=C) )= (T-X/C))

VA= (K/U) *EXP1*DEXP (- (K/U) % (T-X/C) ) xBESSI0 (ARG)
END IF

With this procedure, we are numerically integrating the ODE
dVAI/dt = VA (76)
to obtain the integral in equation (69). This has the important advantage that additional

programraing outside the framework of the ODE integrator is not required, and also, we can take

advantage of the features of the ODE integrator to insure an accurate value of the integral, i.e.,
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automatic step size adjustment to achieve a user prescribed accuracy. Note also that VA appears
as the 43rd element in COMMON/F/ as required so that it is integrated to VAI (the 43rd
element in COMMON/Y /).

Subroutine PRINTI provides the numerical and graphical output for the first problem, and has

the following features

(1) At the beginning of the solution (IP = 1), a call to subroutine MAP maps the Jacobian
matrix of the first 42 elements in COMMON/Y/ and /F/ and computes their temporal
eigenvalues, which are then printed by MAP (as indicated in the following discussion of the

output). Then a heading for the numerical and analytical solutions is printed via FORMAT 1.

(2) The numerical solution for V(1,t) (UI(NX}) and analytical solution for V(1,t} (VAI} are
printed vs t for every 10th call to subroutine PRINT (PRINT is called 201 times so that enough

points are generated to produce quality plots of the solutions).

(3) The numerical and analytical solutions are stored in array VP, and t is stored in array TP,
for subsequent plotting. The plotting is done at the end of the run, when IP = 201, by the coding
at the end of subroutine PRINT. The plots produced by this coding are subsequently discussed.

The data for Program 9 are listed in Table 12 for the four runs (four test problems)

BATEMAN TEST PRGBLEM - DSS020 - V(0,T) 1 - EXP(-(K/U)=T)

i

0. 10.0 0.05
43 1000 15 1 ABS 0.0001
BATEMAN TEST PROBLEM - DSS020 - V(0,T) = EXP(-(K/U)xT)
0. 10.0 0.05
42 1000 15 1 ABS 0.0001
BATEMAN TEST PROBLEM - DSS020 - V(0,T) = 1
0. 10.0 0.05
43 1000 15 i ABS 0.0001
BATEMAN TEST PROBLEM - DSS020 - unit ramp
0. 10.0 0.05
45 1000 15 1 ABS 0.0001

END OF RLUNS

Table 12: Data for Program 9
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The following points pertain to the data:

(1) Thme ranges over the interval 0 < t < 10, with calls to subroutine PRINTI at intervals of
0.05. Thus, there are 10/0.05 + 1 = 201 calls to PRINT1 (including the initia! condition at t =
0).

(2} 43 ODEs are specified, which agrees with the number of elements in COMMON/Y/ and /F/.

(3) For this problem, subroutine RKF45 called by main program SRKF45 gave erratic results,
e.g., the integration did not proceed to the correct output (print) times. Therefore the ODE
integration was done with DSS/2 integrator 15 [Schiesser (15)], which is an implementation of the
Rungke Kutta Fehlberg formulas [Forsythe, et al (1)], the same integration formulas as in
subroutine RKF45, The additional data for DSS/2 are: (a) 1000 - the ratio of the print interval
{0.05) to the minimum integration interval, so that the minimum allowable integration interval is
0.05/1000, (b) 15 - integrator 15, and (¢} 1 - error messages are printed if the integration error

reaches the minimum of 0.05/1000.

(4) An absolute error of 0.0001 in the solution of the 43 ODEs is specified.

Subroutine PRINT1 produces a substantial amount of numerical and graphical output, which will now

be discussed in several parts.

is

(1) A data summary is first printed for each run. Thus, for NORUN = 1, the data summary

RUN NO. 1 - BATEMAN TEST PROBLEM - DSS020
- V(0,T) = 1 - EXP(-(K/U)=T)

INITIAL VALUE OF TIME = 0.0000D+00

FINAL VALUE OF TIME = (.1000D+02

PRINT INTERVAL OF TIME = 0.5000D-01

NUMBER (OF FIRST-0ORDER DIFFERENTIAL EQUATIONS = 43

PRINT INTERVAL/MINIMUM INTEGRATION INTERVAL = 1000
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INTEGRATION ALGORITHM

1 - RUNGE
2 - RUNGE
3 - RUNGE
4 - RUNGE
5 - RUNGE
6 - RUNGE
7 - RUNGE
& - RUNGE
9 - RUNGE
10 - RUNGE
11 - RUNGE
12 - RUNGE
13 - RUNGE
14 - RUNGE
15 - RUNGE

PRINT OPTION = 1

KUTTA
KUTTA
KUTTA
KUTTA
KUTTA
KUTTA
KUTTA
KUTTA
KUTTA
KUTTA
KUTTA
KUTTA
KUTTA
KUTTA
KUTTA

= 15
EULER
NIESSE
MERSON
TANAKA - 4
TANAKA - 5
CHAI
ENGLAND
WES - 4/1
WES - 4/2
WES - 4/3
WES - 4/4
WES - 4/5
WES - 5/1
WES - 5/2
FEHLBERG - RKF45

NO INTEGRATION ERROR DIAGNOSTICS - O
SUMMARY OF INTEGRATION ERRORS -1

TYPE OF INTEGRATION ERROR

MAXIMUM INTEGRATION

The data summary should be self explanatory.

ABS

ERROR = 0.100D-03

1

(2) The ODE Jacobian map produced by the first call to subroutine MAP appears next in the

output

DEPENDENT VARIABLE COLUMN INDEX J (FOR YJ) IS PRINTED HORIZONTALLY

DERIVATIVE ROW INDEX I (FOR DYI/DT = FI(Y1,Y2,...,YJ,...,YN) IS PRINTED

VERTICALLY

JACOBIAN MATRIX ELEMENT IN THE MAP WITH INDICES I,J IS FOR PFI/PYJ
WHERE P DENOTES A PARTIAL DERIVATIVE

111111111122222222223333333333444
123456789012345678901234567890123456780012

66865
6465
6666
56666
56666
56666

O WM
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10 5660606 4

11 56666 4

12 56666 4

13 56666 4

14 56666 4

15 56666 4

16 56666 4

17 56666 4

18 56666 4
19 56666 4
20 56666 4
21 66776 4
22 3

23 3 3

24 3 3

25 3 3

26 3 3

27 3 3

28 3 3

29 3 3

30 3 3

31 3 3

32 3 3

33 3 3

34 3 3

35 3 3

36 3 3

37 3 3

38 3 3

39 3 3
40 3 3
41 3 3
42 3 3

This map requires some explanation:

{(2.1) An integer index for the ODE dependent variables is listed across the top of the map, i.e., 1
<) € 42. Similarly, an integer index for the QDE derivatives is listed down the left side of the
map, i.e., 1 < i < 42. Thus, a nonblank element in ith row and jth column indicates that the
RHS of ODE i is a function of dependent variable j. 1 < j < 21 is for U in equations (63) and
(64) approximated over the 21 point grid (array U1(21) in COMMON/Y/), and 22 < j < 42 is
for V in equations (63) and (64} (array U2(21) in COMMON/Y/). As a specific example, the
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second row of the map

2 6663 4

indicates dy,/dt = fg(}'2y3y4)=5.y23) or, in terms of the Fortran variables in subroutine DERVI,
UIT(2) = f(U1(2),U1(3),U1(4),U1(5),U2(2)). The latter is just the ODE approximation for
equation (63) at grid point 2; U1(2), U1(3), U1(4) and U1(5) result from the five point biased
upwind approximations in subroutine DS5020 (which has only four points at grid point 2 since
U1(1} is set by boundary condition (68) at x = 0, and not by an ODE), and U2(2) results from
the coupling term involving V in equation (63). Of course, similar interpretations can be given to
all of the other tows in the map. For example, the first row has only blank characters, indicating
U1T(1) does not depend on any of the dependent variables, as expected, since boundary condition

{68) in subroutine DERV includes the programming U1T(1} = 0.

{2.2) The map elucidates the structure of the ODEs. The five diagonals with, for example, 56666
result from the five point biased upwind approximations in subroutine DSS020 (used to calculate
g——z in equation (63)). Also, the outlying diagonal with 3 in rows 1 to 21 is due to the cross
coupling between equations (63} and (64) due to the heat transfer term k{U - V) in equation (63).
Thus, rows 1 to 21 reflect the ODE approximation of equation {63), including boundary condition

(68).

(2.3) Similarly, rows 22 to 42 relect the ODE approximation of equation (64). Note that the
main diagonal is not pentadiagonal since equation (64) does not have a derivative in x, Rather,
the one main diagonal results from U in the heat transfer term k(V - U) in equation (64). The

outlying diagonal with 4 results frem V in this heat transfer term.

Finally, we should note that the numbers printed in the map give an indication of the magnitude of
the elements of the Jacobian matrix. Thus a “6™ indicates an element which can be up to two orders
of magnitude (factor of 102) larger than an element designated with a “4”. Additional information
about how these numbers in the map are generated is available by studying subroutine MAP and the
subroutines it calls (e.g., JIMAP and EIGEN), which are all thoroughly commented. We can conclude
from this map that generally it provides a “picture” of the ODE structure that is unique for the

problem and thereby helps us to understand the QODE equation structure.
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(3) In addition to producing the preceding map. subroutine MAP génerates a numerical
approximation to the Jacobian matrix through finite difference approximation of the elements of the
Jacobian matrix (in subroutine JMAP called by MAP). This numerical Jacobian is then passed to
another subroutine (EIGEN called by MAP) which computes the eigenvalues of the numerical

Jacobian, and prints them. These eigenvalues are tabulated below for the first run (NORUN = 1)

1 REAL IMAG

1 -9.309 47.080

2 -9.309 -47.090
3 -31.279 49,103

4 -31.279 -49.103

5 -31.912 46.532

6 -31.912 ~-46.,532

T -32.885 42.393
8 -32.885 -42.,383

9 -34.045 36.904
10 -34.045 -36.904
11 -35.113 30.321
12 -35.113 -30.321
13 -35.512 22.861
14 -35.512 -22.861
15 -38.129 4.087
16 -38.129 -4.,087
17 -36.802 12.158
18 -36.802 -12.158
19 -33.777 17.307
20 -33.777 -17.307
21 -0.098 0.000
22 -0.098 0.000
23 -0.099 0.001
24 -0.099 -0.001
25 -0.100 0.001
26 -0.100 -0.001
27 -0.099 0.000
28 -0.,099 0.000
29 -0.099 0.001
30 -0.089 -0.001
31 -0.099 0.001
32 -0.089 -0.001
33 -0.099 0.001
34 -0.099 -0.001
35 -0.099 0.001
36 -0.099 -0.001
37 -0.099 0.001
38 -0.099 -0.001
39 -0.099 0.001
40 -0.099 -0.001
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41
42

0.000 0.000
-0.100 0.000

The following points should be noted about these eigenvalues:

(3.1) The real parts are all negative. indicating the numerical solution of equations (63} and {64)
is stable. Also, some of the imaginary parts are nonzero, indicating that some oscillation in the
numerical solution might occur {although, as we shall see in examining the plotted numerical
solution, any such oscillation is small, which is possible if the eigenvectors for the eigenvalues

with nonzero imaginary parts are small).

(3.2) Eigenvalue 41 has both zero real and imaginary parts, at least to the three figures used in
the printing (via a Fortran format used in subroutine EIGEN). This zero eigenvalue results from
boundary condition (68), or in other words, from the first row of the preceding map which has all
blank characters. More generally, each row of a Jacobian map with nothing but blanks (or all

zeros in the row) will produce a zero eigenvalue,

(3.3) The smallest nonzero real part in the list of eigenvalues defines the problem time scale. In
this case, this smallest value is -0.0910, which defines a time scale of approximately 100 since
e-0.910(100) will be essentially negligible in comparison to 1. However, the numerical solution
was calculated only over the interval 0 < t < 10 as noted previously (see the preceding sets of
data in Table 12) in order to elucidate the initial part of the solution, i.e,, the calculation could
have been continued to t = 100, but the plotted solutions would indicate mostly the steady state

solution rather than the transient which is of primary interest in comparing the numerical and

analytical solutions.

(3.4) The eigenvalue with the largest real part (in an absolute sense) defines the ODE system
stiffness. In this case, this real part is -38.129, and when ratioed to the smallesi value noted in
(3.3), i.e., -38.128/-0.0910 = 419, indicates that the system of 42 QDEs is moderately stiff; we
are able to use a nonstiff (explicit) time integrator, in this case the Runge Kutta Fehlberg
method, and still have reasonable computer run times. More generally, the stiffness ratio would
have to be about at least 1000 to consider the problem stiff, and therefore require a stifl {implicit)

integrator. Another way to state the onset of stiffness is the condition
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(Jlargest eigenvalue|}{problem time scale) >> 1

In the present case, this product is {38.128){100) = 3812.8, which again indicates moderate

stiffness (a product of 106, for example, would indicate a stiff problem).

(4} The numerical and analytical solutions are next printed by subroutine PRINT!

T V(X,T) V(X.T) ANAL
0.00 0.0000 0.0000
1.00 0.0378 0.0378
2.00 0.1082 0.1082
3.00 0.1737 0.1737
4.00 0.2346 0.2346
5.00 0.2911 0.2912
6.00 0.3436 0.3437
7.00 0.3924 0.3925
].00 0.4377 0.4377
9.00 0.4797 0.4798

10.00 0.5187 0.5187

The agreement between the numerical and exact solutions is generally to about 3+ figures. The
differences between the numerical and analytical solutions can be better understood by considering
Figure 63 to 66 produced by subroutine PRINT1 from the four runs (the four sets of data in Table 12
corresponding to NORUN =1 to 4).

(1) Figure 63: Boundary condition (68) is smooth in the sense of no inconsistency between it and
the initial conditions (equations (65) and {67} with V(x,0) = U(x.0) = 0). Therefore, the
differences between the numerical and analytical solution are imperceptible. As an incidental
point, note that the solution has not reached steady state condition at t = 10, as noted
previously, but if we continued the calculation beyond t = 10, the initial transient to t = 10

would be less obvious; this point is clearer in Figures 64 and 65.

{2) Figure 64: Boundary condition {70} introduces a step change at x = 0 and t = 0, so that the
numerical solution oscillates slightly for short t. Generally, however, the agreement between the
numerical and analytical solutions is acceptable, indicating again that the five point biased

upwind approximations perform satisfactorily for this problem. Note also that if the calculation
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were continued to t = 100, the initial response to the discontinuity would be difficult to discern.

(3) Figure 65: Boundary condition {71) again introduces a discontinuity at x = 0 and v = 0, so the

conclusions for Figure 64 also apply here.

(4) Figure 66: Boundary condition (71), a unit step change, is modified to a ramp with a finite slope.
As in preceding problems with a single PDE, when the ramp is used, the numerical and analytical
solutions agree closely. We should also indicate how the analytical solution for the ramp function is
computed. The unit ramp can be considered as the time integration of the sum of two step functions

according to the equation

t
vmm:f@uyhu-npx (77)
0

The integrand of equation (77) is computed in two parts in DERV4, as VA(1) and VA(2). These
terms are integrated to VAI(1) and VAI(2Z}. The analytical solution is then the integral of the sum of
these four terms, i.e., V{0,t) = VAI(3), for which the integrand is programmed as .

VA(3)=VA(1)+VAI(1)+VA(2)4+VAI(2)

Therefore, three integrals, VAI(1), VAI(Z) and VAI(3), are computed, and the data specfies 42 + 3 =
45 ODEs for NORUN = 4. The unit ramp itself, r(t}, is programmed in DERV4 as

BOUNDARY CONDITION
IF(T.LE.1.D+0)U1(1)=T
IF(T.GT.1.D+0)U1(1)=1.D+0
U1T(1)=0.D+0

In conclusion, we observe that the approximation of PDEs by systems of ODEs produces

solutions of acceptable accuracy, and the coding of the PDEs is straightforward.

(11) Nonlinear Advection - Burgers’ Equation

We conclude this discussion of numerical methods for strongly convective flows by considering
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a famous test problem, Burgers’ equation
up = -uug + puxx {(78)

where y is a “viscosity” that can be used to adjust the relative magnitudes of the nonlinear convective
term, -uuy. and the linear diffusion term, puyy. Thus, for small u, equation (78} is strongly
hyperbolic, while for large u, it is parabolic. The nonlinear advection term, -uuy, produces some
interesting properties in u(x,t) which did not occur with the linear advection equation (7). If we
consider u to be a velocity in the term -uuy, in analogy with the velocity v in the term -vuy of
equation {7), we see for large u, the velocity is large (in -uuy). Thus, if u is large for small x, and
small for large x, the velocity at the left end of the system is higher than at the right end, and the
solution will tend toward a steep front for flow from left to right, a so-called “front sharpening” feature
of the solution; we will observe this front sharpening in a solution to be discussed next. If, however, u
is small for small 1, and large for large u, the velocity at the left end of the system is smaller than at

the right end, and the solution will tend to smooth out with t.

Eqguation (78) requires one initial condition and twe boundary conditions, which we take as

u(0,x) = ¢(0,x) (79)
u(t,0) = #(,0), u(1,t) = ¢(1,t) (80}(81})

where
$(t,x) = 0.1e® + 0.5e'b +e® (82)

e? 4 e'b +e°

a = (0.05/p)(x - 0.5 + 4.95t)
b = (0.25/u)(x - 0.5 + 0.75t)
¢ = (0.5/p)(x - 0.375)

Additionally, ¢(t.x) is the solution to equation (78) [Madsen and Sincovec (16)].

We can now list the reasons why Burgers’ equation is considered a good test problem
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(1) It is nonlinear, but has a known exact solution.

(2) It propagates steep fronts, depending on the choice of y; in other words, its character can be

changed from predeminanily parabolic to predominantly hyperbolic.

(3) The solution has the front sharpening characteristic mentioned previously due to the

nonlinear term -uuy, and it therefore provides a stringent test of any numeriocal method of

solution .

(4) Burgers’ equation can easily be extended to two and three dimensions (with known exact

solutions).

(5) The advection group u; + uuy plays an important role in many applications, e.g., it appears

in the Euler equations and the Navier Stokes equations.

We now consider the programming of a numerical solution of equations (78) in the format

developed for the previous example, i.e., through a set of approximating ODEs. Subroutines INITAL,
DERYV and PRINT, and function PHI, which implements equation (82), is listed below

SUBROUTINE INITAL
BURGERS? EQUATION IN ONE DIMENSION

SET NUMBER OF SPATIAL GRID PDINTS
PARAMETER (NX=101)

COMMON/T/ T, NFIN, NORUN
/Y/ U(NX)
JF/ UT(NX)
/Sb/ UX(NX),  UXX(NX)
/C/ XL, XU, DX, VIS
PROBLEM PARAMETERS
XL=0.
XU=1.
DX=(XU-XL) /FLOAT(NX-1)
VIS=0.003

INITIAL CONDITION
DO 1 I=1,NX
X=DX~FLOAT (I-1)
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U(1)=PHI(0.,X)
CONTINUE

INITIALIZE THE DERIVATIVES, UX, UXX AND UT FOR PRINTING IN SUB-
ROUTINE PRINT

CALL DERV

RETURN

END

REAL FUNCTION PHI(T,X)

FUNCTION PHI(T,X) COMPUTES THE EXACT SOLUTION TO BURGERS
EQUATIDON. IT IS USED IN THREE PLACES

(1) TO PROVIDE THE EXACT SOLUTION IN SUBROUTINE PRINT FOR
COMPARISON WITH THE NUMERICAL SOLUTION.

(2) TO PROVIDE THE INITIAL CONDITION IN SUBROUTINE INITAL.
(3) TO PROVIDE THE BOUNDARY CONDITIONS IN SUBROUTINE DERV.

ARGUMENT LIST

T  INITIAL-VALUE INDEPENDENT VARIABLE IN BURGERS EQUATION
(INPUT)

X BOUNDARY-VALUE INDEPENDENT VARIABLE IN BURGERS EQUATION
{ INPUT)

THE VALUE OF THE FUNCTION (PHI) IS THE EXACT SOLUTION TO BURGERS
EQUATION AT X AND T.

TYPE REAL VARIABLES AS SINGLE PRECISION

COMMON /C/ XL, XU, DX, VIS
A=(0.05E+00/VIS) «(X-0.5E+00+4 . 95E+00=T)
B=(0.25E+00/VIS) = (X-0.5E+00+40 . 75E+00*T)

C=( 0.5E+00/VIS)=(X-0.375E+00)

EA=FEXP(-A)

EB=EXP (-B)

EC=EXP (-C)

THE FOLLOWING IF WAS ADDED FOR SHORT WORD LENGTH COMPUTERS, E.G.,
32-BIT COMPUTERS SUCH AS THE VAX, WHICH CANNOT ACCOMMODATE WIDE
VARIATIONS IN THE EXP FUNCTION. THE INTENTION IS TO EFFECTIVELY
AVOID A DIVISION BY ZERO. IT 1S BASED ON THE OBSERVATION THAT
WHEN THE DIVISION BY ZERO OCCURS, EC MLT EB MLT EA MLT (WHERE
MLT DENOTES "MUCH LESS THAN") SO THE EQUATION FOR PHI BECOMES
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PHI = 0.1«EA/EA = 0.1

1F (ABS (EA+EB+EC) .LT.1.0E-35) THEN
PHI=0.1E+00

ELSE
PHI=(0.1E+00%EA+0.5E+00~EB+EC) / (EA+EB+EC)

END IF

RETURN

END

SUBROUTINE DERV
PARAMETER (NX=101)

COMMON /T/ T, NFIN, NORUN
1 /Y/ U (NX)

2 JE/ UT(NX)

3 /SD/ UX(NX),  UXX(NX)

4 /C/ XL, XU, DX,

L

BOUNDARY CONDITIONS
U( 1)=PHI(T,0.)
U(NX)=PHI(T,1.)

UT( 1)=0.

UT(NX)=0.

UXX BY FIVE POINT CENTERED APPROXIMATIONS
NL=1

NU=1

CALL DSS044 (XL ,XU,NX,U,UX,UXX,NL,NU)

UX BY FIVE POINT BIASED UPWIND APPROXIMATIONS
CALL DSS020(XL,XU,NX,U,UX,1.)

PDE

NM1=NX-1

DO 1 I=2,NM1
UT(I1)=VIS«UXX(I)-U(T1)=UX(I)
CONTINUE

RETURN

END

SUBROUTINE PRINT(NI,NO)

NP IS THE NUMBER OF SOLUTION CURVES TO BE PLOTTED

PARAMETER (NX=101 ,NP=5)

COMMON/T/ T, NFIN, NORUN
/Y/ U(NX)
/¥/ UT(NX)
/SD/ UX(NX),  UXX(NX)
/C/ XL, XU, DX,

101

VIS

VIS
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DIMENSION THE ARRAYS FOR STORING THE ANALYTICAL AND NUMERICAL
SOLUTIONS

DIMENSION UNP(NP,NX), UAP(NP,NX), XP(NX)

DATA 1P/0/

BECAUSE OF THE VOLUME OF PRINTED DUTPUT, THE NUMERICAL AND EXACT
SOLUTIONS ARE PRINTED ONLY AT THE BEGINNING AND END OF THE RUN,
1.E., T = 0, 0.8

IP=IP+1

IF{((IP.EQ.1).0R. (IP.EQ.NP))THEN

PRINT A HEADING FOR THE NUMERICAL SOLUTION
WRITE(NO,3)T

FORMAT(1H ,//,5H T = ,F5.2,/,

9X, 1HX,5X,5HU NUM,4X,GHU ANAL,5X,5HERROR,3X,7HVIS=UXX,5X ,5H-UxUX,

2 8X,2HUT)

1

COMPUTE THE EXACT SOLUTION, ERROR IN THE NUMERICAL SOLUTION AND
THE INDIVIDUAL TERMS IN THE PDE

DO 1 I=1,NX

X=DX«FLOAT(I-1)

UANAL=PHI (T,X)

ERROR=U (1) -UANAL

DIFF=VIS=UXX(I)

CONV=-U(I)*UX(I)

PRINT THE VARIOUS ELEMENTS OF THE NUMERICAL SOLUTION, INCLUDING
UT COMPUTED BY DERV AND AVAILABLE THROUGH COMMON/F/
WRITE(NO,2)X,U(I),UANAL,ERROR,DIFF,CONV,UT(1)
FORMAT(F10.3,6F10.5)

CONTINUE

END IF

STORE THE NUMERICAL AND ANALYTICAL SOLUTIONS FOR PLOTTING
PO 4 I=1,NX

XP (1)=DX~FLOAT(I-1)

UNP(IP,I)=U(I)

UAP(IP,1)=PHI(T,XP(I))
CONTINUE

CREATE AN OUTPUT FILE FOR TOP DRAWER PLOTTING
IF((NORUN.EQ.1).AND. (IP.EQ.NP) ) THEN
OPEN(4,FILE="T.TOP’ ,STATUS=>NEW’)
WRITE(4,5)
FORMAT(®> SET LIMITS X FROM 0 TO 1 Y FROM O TO 1.25°,/,
» SET FONT DUPLEX?)
END IF
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WRITE TOFP DRAWER F/ILE FOR PLOTTING NUMERICAL AND ANALYTICAL
SOLUTIONS
IF(IP.EQ.NP)THEN

ANALYTICAL SOLUTION

DO 11 IP=1,NP
WRITE(4,6) (XP(1) ,UAP(IP,I),I=1,NX)
FORMAT (2F10.4)
WRITE(4,7)
FORMAT (* JOIN’)

CONT INUE

NUMERICAL SOLUTION

DO 12 IP=1,NP
WRITE(4,8)IP
FORMAT(’ SET SYMBOL ’,I1)
WRITE(2,6) (XP(1),UNP(IP,I),I=1,NX)

WRITE(4,9)
FORMAT (> PLOT?)
CONTINUE
TITLES
WRITE(4,10)
FORMAT (
+ ’ Title 4.0 9.5 " Fig. 67: u{x,t) vs x,’
+ 't =0, 0.2, 0.4, 0.6, 0.87?
+ »/,? TITLE LEFT ™ u{(x,t)"’
+ s/’ TITLE BOTTOM "x»?
+ »/,> TITLE 4.5 0.75 *
+ ?”Solid - exact; 1, 2, 3, 4, 5 - numerical ”?)
IP=0
END IF
RETURN
END

Program 10: Subroutines INITAL, DERV, PRINT and Function PHI
for Equations (78) to (82)

We can note the following points about Program 10:
(1} In INITAL we see the solution is computed on a 101 point grid in x (NX=101), and x =
0.003 (VIS = 0.003). Initial condition (79} is set through the use of function PHI{T,X) in DO

loop 1 (with T = 0). PHI follows INITAL in the listing of Program 10; the coding is apparent
from equation (82).
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(2} In DERYV, boundary conditions (80) and (81) are first defined using function PHI{T,X) (with
X = 0 and 1, respectively). Then the derivative uxx in equation (78) is computed by a call to
subroutine DSS044 which accepts u (array U{NX)} as an input and differentiates it to uyy (array
UXX(NX)). If Dirichlet boundary conditions are specified, as they are in this case, i.e., equations
(80) and (81), NL = NU = 1. Subroutines DSS044 also can accept uy at the boundaries as an
input (if boundary conditions in uy are specified, i.e., Neumann boundary conditions, for which

NL = NU =2). The details of the differentiation formulas in DDS5044 are discussed elsewhere
[Schiesser {2)].

{(3) The derivative uy in equation (78) is then computed from u in the usual way by subroutine

DSS020 for positive velocity (since the solution, u, is positive).

(4) Equation (78) is then implemented in DO loop 1 over the grid points i = 2 to NX-1. Note
that the derivatives UT(1) and UT(NX) were previously set as part of boundary conditions (80)

and (81). Also, the nonlinear term -uuy is easily programmed.

(5) Subroutine PRINT prints the numerical and analytical solutions, as well as all of the terms
in equation (78), at the initial and final values of t (t = 0 and t = 0.8). The two solutions are

then stored in arrays for subsequent plotting which produces Figure 67.

The data read by the DSS/2 main program are

MADSEN, ET AL, LAPIDUS, ET AL, NUM METH DIFF SYSTEMS, PP. 236-237

0

0.8 0.2

101 9999 15 1 REL 0.001

END OF RUNS

Table 13: Data for Program 10

Again, the QDE integration is done by the Rungke Kutta Fehlberg method in integrator 15.

Abbreviated numerical output from Program 10 is listed in Table 14

RUN NO. 1 - MADSEN, ET AL, LAPIDUS, ET AL, NUM METH
DIFF SYSTEMS, PP. 236-237
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INITIAL VALUE OF TIME = 0.0000E+00

FINAL VALUE OF TIME = 0O.&8000E+Q0

PRINT INTERVAL OF TIME = 0.2000E+00

NUMBER OF FIRST-ORDER DIFFERENTIAL EQUATIONS = 101

PRINT INTERVAL/MINIMUM INTEGRATION INTERVAL = 99899

INTEGRATION ALGORITHM = 15
1 - RUNGE KUTTA EULER
2 -~ RUNGE KUTTA NIESSE
3 - RUNGE KUTTA MERSON
4 - RUNGE KUTTA TANAKA - 4
5 - RUNGE KUTTA TANAKA - 5
6 - RUNGE KUTTA CHAI
7 - RUNGE KUTTA ENGLAND
& -~ RUNGE KUTTA WES - 4/1
9 - RUNGE KUTTA WES - 4/2
10 -~ RUNGE KUTTA WES - 4/3
11 - RUNGE KUTTA WES - 4/4
12 -~ RUNGE KUTTA WES - 4/5
13 -~ RUNGE KUTTA WES - 5/1
14 ~ RUNGE KUTTA WES - 5/2
15 - RUNGE KUTTA FEHLBERG - RKF45

PRINT OPTION = 1
NO INTEGRATION ERROR DIAGNOSTICS -~ O
SUMMARY OF INTEGRATION ERRORS -1

TYPE OF INTEGRATION ERROR

REL

I

MAXIMUM INTEGRATION ERROR 0.100E-02
T = 0.00
X U NUM U ANAL ERROR VIS»UXX -U=UX UT
. 00000 0.00000 . 00000 0.00000
. 00000 0.00000 .00000 0.00000

0.060 1.00000 1.00000
0.010 1.00000 1.00000

c o
oo

.00000 00015 0.00011

0.100 1 1.00000 0.00000 -0.00004 0

0.110 1.00000 1.G60060 0.00600 -0.00009 0.00037 0.00028
0.120 0.99999 0.99999 0.00000 -0.00020 0.00085 0.000653
0.130 0.99998 0.99998 G.000G0O -0.00047 0.00192 0.00145
0.140 0.99995 0.99995 0.0006G -~0.00109 0.00441 0.00332
0.150 0.99988 0.99988 0.06G000 -0.00248 0.01015 0.00767
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=lejejoRalelololejegoolsfaloololeRololelsRoelloBolololoNoloNoNoRoNoRoRaNoNoNoRuloYoRaNoloNoNoN ol e

.160
.170
180
.190
. 200
.210
.220
.230
. 240
. 250
. 2680
.270
. 280
. 290
. 300
.310
. 320
. 330
.340
.350
.360
.370
. 380
.390
. 400
.410
.420
. 430
.440
. 450
. 460
470
.480
.490
.500
.510
.520
.530
. 540
. 550
. 560
.B70
.580
.590
. 600
.610
. 620
.630
. 640

jeRolololojoleNollelojojlolojoleNololoRoBolofoleololoBeoNoRoloNoNoNaNoRaoleoNoNeoNoNoRoRoNoNaNoRolNe Ne;

. 99972
.99936
. 90854
. 99665
. 99237
98278
. 96207
. 92057
. 84853
. 75000
.65147
. 57943
.53793
.51722
. 50763
.50335
.50146
.50063
. 50027
. 50010
.50002
.49995
. 49088
.49974
.49949
.49901
. 49808
. 49627
.49281
. 48622
. 47401
. 45232
.41656
. 36430
.30000
.23570
. 18344
.14768
.12599
.11378
.10719
.10373
.10192
.10099
.10051
.10026
.10013 .
.100607
.10004

jlelojeRojsRololsjojololosacBolasBojololaololoRolololoNololoNolaloRsNoNoNoNsNeoNeoloNoRoNololoNeNale)

. 99972
. 99936
. 99854
. 99665
. 99237
LOB27S8
. 96207
. 920567
.84853
. 75000
.65147
.57943
.53793
. 51722
. 50763
.50335
.50146
. 50063
. 50027
.50010
. 50002
.49995
. 49988
.49974
.49949
.49501
. 49808
.49627
. 49281
.48622
.47401
. 45232
.41656
~36430
. 30000
.23570
. 18344
.14768
.12599
.11378
.10719
.10373
.10192
. 10099
.10051
.10026
.10013
.10007
.10004

COOOQOOCOQCOOUOOOOOOCOOOOCOO0O0O0O000OLDOOCoO0OOLDOCOOULUOOCOO

. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
.00000
. 00000
.00000
. 00000
. 00000
.00000
.00000
. 00000
. 00000
.00000
. Q0000
.00000
. 00000
.00000
. 00000
. 00000
. 00000
.00000
. 00000
. 00000
.00000
.00000
.00000
.00000
. 00000
.00000
. 00000
.G0000
.00000
. 00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
. 00000
. 00000
.00000
.00000
. 00000
. 00000
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COQ0QOOCOoCOOCOO0O

CCOO0QO0OCCCO

COCCOO0O0COOCOOOCOC0

.00572
.01312
.03001
. 06812
.15176
.32386
62384
.95035
.850904
. 00001
85097
. 95031
.62385
.32386
.15176
.06810
. 028988
.01306
.00559
. 00225
. 00061
.00044
. 00158
. 00338
.00670
.01305
. 02521
. 04825
. 09082
.16541
. 28270
. 42746
.51192
.38047
. 00000
.38047
.51192
. 42747
L 28270
.168542
. 09082
. 04826
.02522
.01306
.00674
. 00347
.00178
.00092
.00047

COOCQOOOOCOOLOOORNNFFHOOODOOOOLOLOCOQOQOOORULOMINI~NNUINROOOOO

.02329
. 056354
12264
27925
.62762
. 36955
. 80639
.07642
. 39095
.86123
. 84359
.22002
.52434
. 70024
. 31937
.14331
.06339
.02789
.01241
00588
.00347
.00331
.00493
. 00893
01709
. 03305
. 06387
. 12275
.23304
. 43225
.T8772
.26212
B2387
.17092
.00833
.42093
. 80926
. 40984
. 20167
.10029
. 05059
. 02575
.01316
.00674
.00346
.00178
. 00091
. 00047
. 00024

COQCOOQQOOOOOOrHHRNMFHRFRLOOQCQCOOOOCOOOOOCOOOORNLOIOEN,DOOOOD

.01756
. 04042
. 09263
21114
. 47586
. 04570
. 18255
. 12607
. 54001
. 86123
. 69455
.17033
. 14818
. 02410
.47113
21140
. 09337
. 04095
.01800
.00812
. 00408
. 00286
.00335
. 00556
.01038
. 02000
. 03866
. 07449
.14222
. 26684
. 48502
. 83466
.31185
. 79044
. 00834
.80140
.32118
. 83731
. 48437
. 26570
.14141
.07401
. 03838
.01881
.01020
. 00524
. 00269
.00138
.00071



QOO0 0OQ

-0

CQOQOOQOOOCOOT

COO0QUOLV0OLCOO0OO0CCOOD

.G50
.660
.670
.680

. 690
. 700

. 990
.000

G.80

X
. 000
.010
. 020
.030
. 040
. 050
. 060
.070
. 080
. 090
.100

710
. 720
.730
.740
.750
760
770
. 780
. 790
.800
.810
.820
. 830

. 840
.850

. 860
870
.880
.890
. 900

OO0QOQCCC

Qoo

P R ek b e b peb e e pe

COQOOOOOOCOOCOOO-rERERK

.10002
.10001
. 10000
.10000
.10000
.10000

.10000

10000

U NUM

, 00000
. 00000
. 00000
. 00000
.00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000

. 00000
. 00000
. 00000
. 00002
. 00000
. 99921
-99269
. 95842
.83463
.56480
. 28422
.14962
.11169
.10314
.10099
.10034
.10012
.10005
. 10002
.10001

loNeoRolaNole

oo

T i Vo U (PN

COCOOOO0OOOOCOQOOLOODC

. 10002
.10001
.10000
. 10000
. 10000
.10000

.10000
. 100600

U ANAL
. 00000
. 00000
- 00000
. 00000
. 00000
-00000
. 00000
. 00000
.00000
. 00000
.G0000

OCOO0O0

SO

SO0COOO0O0CCO0O

. 00000
.00000
. 00000
. 00000
. 00000
. 00000

. 006060
.00000

ERROR
. 00000
.00000
.00000
. 00000
.00000
. 00000
. 00000
. 00000
. 00000
.0G000
. 00000

.00000
.00001
.00004
.00016
.00054
.00137
.00170
. 00389
.02037
.02188
.00510
.00196
. 00092
. 00001
.00015
.00007
.00002
. 00001
. 00000
. 00000
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.00024
.00012
.00006
.00003
. 00002
.00001

QOO QCQCQC

0.006000
-0.00001

VIS*UXX
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

-0.00003
0.00016
0.00068
0.00005

-0.02111

-0.18150

-0.95186

-3.17697

-4.69094
0.8g814
4.92708
2.46054
0.58251
0.11039
0.02858
0.00953
0.00311
0.00101
0.00037
0.00015

oBoNoReNoNe)

COO0COCOCOO0OCOO o0

]

(ST
COCTCO0OQoUYNI~NNCOOoODD

.00012
. 00006
.00003
. 00002
.00001
. 00000

. 00000
. 00000

~UxUX

.00000
. 00000
. 00000
.00000
. 00000
. 00000
. 00000
.G0000
. 0000
. Q0000
. 00000

.00010
. 00001
.00096
.00021
.03819
.35503
.01338
. 76351
. 83987
97342
. 77132
.65958
- 09650
. 04788
.01739
. 00465
.00128
. 00044
. 00018
. 00008

0

oSO

o0

jeReleRoojeNolololale)

QCOOCOOoOOW

.00036
0.
.00010
. 00005
. 00002
. 000061

00019

. 00000
. 00000

LT

. 00000
.00000
.00000
.00000
. 00000
. 00000
. 00000
. Q0000
.00000
. 00000
. 00000

. 00007
.00016
. 00029
.000186
.01707
.17336
. 05549
. 48263
.37053
. 16959
. 01829
.07189
.B7684
. 15800
. 04595
.01418
. 00440
.00143
. 00055
. 00023



0.980 0.10000 0.10000 0.00000 0.00000 0.00000 0.00000
0.890 0.10000 0.10000 0.00000 0.00000 0.00000 0.00000
1.0600 0.10000 0.10000 0.00000 -0.00001 0.00000 0.00000

Table 14: Abbreviated Output from Program 10

As expected, the numerical and analytical solutions are the same at t = (. They are both computed
from ¢{0,x). The agreement between the two solutions is generally good, as indicated in Figure 67.
Also, Figure 67 indicates how the solution front sharpens with increasing t, as discussed previously
(note that u for small x is greater than u for large x initially, the condition for front sharpening). If
the front cannot be resolved with sufficient accuracy, additional grid points may be required, or an
adaptive grid that concentrates the grid points where the solution is changing rapidly in space may be

required.

In summary, Program 10 demonstrates: -

(1) The ease with which numerical solutions of nonlinear PDEs can be computed (the

implementation of the nonlinear term -uuy is straightforward).

(2) The detailed examination of all of the terms in a PDE (e.g., via the printout in DO loop 1 of
PRINT) which can be used to determine the behavior of the individual terms, and which terms

dominate in the computation of the solution.

(12) Conclusion

We have investigated numerically a series of approximation methods for PDEs with strongly
convective properties. In each case, the PDE had a known analytical solution that could be used to
evaluate the numerical solution. The results of the tests of the various approximations are summarized
in Figures 1 to 67. We conclude from these tests that the five point biased upwind approximations in
subroutine DSS020 gave the best performance for the selected test problems, and can easily be used in
the soluition of systems of PDEs, both linear and nonlinear, We have included all of our code so that

other investigators can understand and replicate what we have done, and hopefully, improve on our
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methods. In any case, we think the testing has been reported here in sufficient detail that there is no
question about what we have done. If we have incorrectly applied numerical methods reported by
others, we ask that our errors be reported so we can correct our code and then repeat the tests. For

this purpose, we ask that communications concerning this work be directed to W. E. Schiesser.

We hope that the details of using the various numerical methods will be useful to others. In
particular, the series of spatial differention routines and finite element routines can be applied to a
spectrum of PDE problems with dominant convective properties. \We hope that this software is useful
to scientists and engineers who need to produce solutions to PDEs with these properties, and we
welcome inquiries about our results. The software is available as Fortran 77 source code on DOS-

formatted 3.5 inch 1.44 mb or 5.25 inch 1.2 mb diskettes.
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Appendix 1: Solution of the Homogeneous Advection Equation

We derive here the analytical solution to the problem

u, + vug =0 (a.1)

u(x,0) = g(x), u(0,t) = {(t) (a.2){a.3)

which is just a restatement of equations (7) to (9).

If the Laplace transform of ufx,t) with respect to t is defined as

Lt{u(x,t)}z Tu(x,t)e’Stdt = §(x,s) (a.4)
0
equations (a.1) to (a.3) transform to
st(x,s) - g(x) + vdii(x,s)/dx = 0 (a.5)
u(0,s) = f(s) (a.6)

If the Laplace transform of T(x,s) with respect to x is defined as

m -
Lx{u(x s)} I fi(x,s)e PXax = i{p,s) (a.7)
0
equations (a.5) and (a.6) transform to
su(p.s) - &(p) + v{pl(ps) - f(s)} = 0 (a8)
Solution of equation (a.8) for U(p,s) gives
i(p,s) = (1/v )(S/V ¥ p)g(p) + (S/V + P) (S) (69)

Equation (a.9) can now be inverted, first with respect to p
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x B
a(x,s) = L*l{ﬁ(p,s)} = (1/v) J M- N a4 RCALE B
0

X
= ame® "”‘J S + RUALE

0

= (1/v) G(xs) + e-{s/v)x i(s) (a.10)

where
Glxs) = e "’"J A 00dn (a.11)

0
Then, inversion with respect to s gives

u(x,t) = L'l{ﬁ(x,s)} = (1/V)G(xt) + f(t - x/V)h(t - x/v) (a.12)

where
G(x,t) = L‘I{G(x,s)} (a.13)
h(t) = {(1]‘ 'S : (2.14)

Some special cases can now be considered:

(1) g(x) = 0 and equation (a.12) reduces to
u{x,t) = f{t - x/v)h(t - x/v) (a.15)

which is equation (10). Two other special cases follow which could be used as test problems for

numerical approximations.

(2) g(x) = 1 and equations (a.11) te (a.13) give

X :
G(xs) = e-(s/v)xJ’ e(S/v)’\d/\ = (v/s}{l1 - e—(s/v)x} (a.16)
and 0
G(x,t) = v{h(t) -t - x/v)}

and from equation (a.12)
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u(x,t) = {h(t) - h{t - x/v)} + £(t - x/V)h(t - x/v)

For t > x/v, this reduces to
u(x,t) = {1 - 1} + f(t - x/v} = f(t - x/v)

(3) e(x) = x and equations (a.11) to (a.13) give

% X
Gls) = e_(S/V)xJ Mgy = O/ {(V/s)e(S/V)A)‘I ’ (V/S)J e(s/v)'\d'\}
0 0

— E‘(S/V)x{(\f/s)e(s/v)xx _ (v/s)2[e(5/v)x . 1]}
= v/ (v/P0 - € )
and '
G(x,t) = vxh(t) - v2[t - (¢t - x/V)h(t - x/¥)]
u(x,t} = xh(t) - ¥t - (t - x/v)h{t - x/v)] + {{t - x/v}h(t - x/v)

For t > x/v, this reduces to

u(x,t) = x- v[t-(t-x/v)] +£(t-x/v) =1t - x/v)

(a.17)

(a.18)

(a.19)

(a.20)

(a.21)

(2.22)

Thus, in all three cases, the solution is the same for t > x/v indicating that by this time, the initial

condition u(x,0) = g(x) has no effect (i.e., the initial condition has “left or flowed out of the system”).
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Appendix 2: Listing of Subroutine DS5012

SUBROUTINE DSS0O12(XL,XU,N,U,UX,V)

SUBROUTINE DSS012 IS AN APPLICATIGON OF FIRST-ORDER DIRECTIONAL
DIFFERENCING IN THE NUMERICAL METHOD OF LINES. IT IS INTENDED
SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MUDELLED BY
FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS WITH THE
SIMPLEST FORM

U + vxU =0 (1)
T X

THE FIRST FIVE PARAMETERS, XL, XU, N, U AND UX, ARE THE SAME

AS FOR SUBROUTINES DSS002 TO DSS010 AS DEFINED IN THOSE ROUTINES.
THE SIXTH PARAMETER, V, MUST BE PROVIDED TG DSS012 SO THAT THE
DIRECTION OF FLOW IN EQUATION (1) CAN BE USED TO SELECT THE
APPROPRIATE FINITE DIFFERENCE APPROXIMATION FOR THE FIRST-0ORDER
SPATIAL DERIVATIVE IN EQUATION (1), U . THE CONVENTION FOR THE

SIGN OF V IS X
FLOW LEFT TO RIGHT V GT 0
(I.E., IN THE DIRECTION (I.E., THE SIXTH ARGUMENT IS
OF INCREASING X) POSITIVE IN CALLING DSS012)
FLOW RIGHT TO LEFT V LT O
(I.E., IN THE DIRECTION (I.E., THE SIXTH ARGUMENT IS
OF DECREASING X) NEGATIVE IN CALLING DSS012)

DIMENSION U(N),UX(N)

COMPUTE THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFERENCE
APPROXIMATION DEPENDING ON THE SIGN OF V IN EQUATION (1). THE
ORIGIN OF THE FINITE DIFFERENCE APPROXIMATIONS USED BELOW IS GIVEN
AT THE END OF SUBROUTINE DSS012.

DX= (XU-XL) /FLOAT (N-1)

IF(V.LT.0.)GO TO 10

(1) FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V
UX(1)=(U(2)-U(1)) /DX
DO 1 I=2,N
UX(1)=(U(1)-U(I-1))/DX
CONTINUE
RETURN

(2) FINITE DIFFERENCE APPROXIMATION FOR NEGATIVE V
NMi=N-1
DO 2 I=1,NM1
UX(I)=(U(I+1)-U(1))/DX
CONTINUE
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UN(N)=(U(N)-U(N-1)) /DX
RETURN

THE BACKWARD DIFFERENCES IN SECTION (1) ABOVE ARE BASED ON THE
TAYLOR SERIES

2 3
UI-1 = UI + UI (-DX) + UI (-DX) + UI (-DX) +
X 1F 2X 2F 3X 3F

2
IF THIS SERIES 1S TRUNCATED AFTER THE DX TERM AND THE RESULTING
EQUATION SOLVED FOR U , WE OBTAIN IMMEDIATELY
x

Ul = (Ul - UI-1)/DX + 0(DX)
X

WHICH IS THE FIRST-ORDER BACKWARD DIFFERENCE USED IN DO LOQP 1.

THE DERIVATIVE U1 IS COMPUTED BY USING THE POINT T{) THE RIGHT OF
X

Ui, I.E., U2, SINCE THIS IS THE ONLY POINT AVAILABLE I¥ FICTITIOUS

POINTS TO THE LEFT OF Ui ARE TO BE AVOIDED.

THE FORWARD DIFFERENCES IN SECTION (2) ABOVE ARE BASED ON THE
TAYLOR SERIES

2 3
UI+1 = UI + Ul ( DX) + UL ( DX) + UI ( DX) +
X 1F 2X 2F 3X 3F

2
IF THIS SERIES IS TRUNCATED AFTER THE DX TERM AND THE RESULTING
EQUATION SOLVED FOR U , WE OBTAIN IMMEDIATELY
X

UI = (UI+1 - UI)/DX + D(DX)
X

WHICH IS THE FIRST-ORDER FORWARD DIFFERENCE USED IN DD LOOP 2.
THE DERIVATIVE UN IS COMPUTED BY USING THE POINT TO THE LEFT OF

X
UN (UN-1), SINCE THIS IS THE ONLY POINT AVAILABLE IF FICTITIDUS

POINTS TO THE RIGHT OF UN ARE TO BE AVDIDED.
END
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Appendix 3;: Numerical Diffusion in the Two Point Upwind

Approximation of the Advection Equation

Consider again equation (16)

ﬂlj
dt

Y - “i-l)
Ax

= - v (a.23)
which is the two point upwind approximation of the advection equation (7). Typically, in the method
of lines, dui/dt is integrated by an ODE library routine such as RKF45 which automatically adjusts
the integration step size in t, At, to meet a user-specified error criterion. However, for the purpose of
analyzing the effect of the two point upwind approximation in the RHS of equation (a.23), we
approximate the derivative by a first order forward difference, which would correspond to a fixed step

integration tn t

n+l n n_.n
s I M 5

AT Az ) (2.24)

where n and i are the time and space indices, respectively.

u?'H can be expanded in a Taylor series as
n 2 n 3 n
ntl _ a9 A .V
U Fup o+ At + PR + 53 o +... (a.25)

Similarly, u;ll can be expanded in a Taylor series as

n 2 n 9 3 n 3
n _.n, %Y, g U (-Ax) d Y4 (-Ax)
Vi T g (AN F oy g (2.26)
From equation (a.25), the LHS of equation (a.24) can be written as
A O AL PV
At ezt et (2.27)
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Similarly, from equation (a.26), the RHS of equation (a.24) can be written as

—

a.28)

2 3. 2
B i S N L . (L (S
xt G2 @ t3 s too

Subtraction of equation (a.28) from equation (a.27) then gives

u{I+l_ n

i +V{u?4;;£1}=

3.n 3 n
N R L
+{ Gar "’é\-"-}+... (a.29)

Cansidering the RHS terms of equation (a.29),

6uin c"»'u;i
ot Vax

is just the advection group at grid points i and n. Thus, the additional terms represent departures

from the advection group due to the finite differencing of the LHS, i.e., errors resulting from the

approximation of the advection group by

n+l n n_.n
5% v{“i - “i-l}
At Ax

The second RHS group
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a2 2 T2 (a-30)

can be rewritten by differentiating the advection equation (6)

%—% = -v% (a.31)

Differentiation of equation (a.31) with respect to t gives
%ig = v gfgt (2.32)

Differentiation of equation {a.31) with respect to x gives
aﬁt_";gx - -vr;_i% (2.33)

If the mixed partials of equations (a.32) and (a.33) are assumed to be equal, then equations (a.32) and

(a.33) can be combined to give the second order wave equation.

2

hwb

2
u_ V2Q—-% (2.34)
ox

%

‘;——; from equation (a.34), evaluated at grid points i and n, can now be substituted in group {a.30)
t

2.n 2,p 240
1,26 U At +v 4 U (4x) = v2At . YAx 9 ! (a.35)
ot 2 axe 2 2! 2 ax? .

If equation (a.35) is substituted in equation (a.29), and the third derivatives terms are considered as

higher order terms, the finite difference approximation of the advection equation becomes

n+1 . n

: At = "{u?;ﬁl} =

n n 2n
@i + v_a_u_i + V2At _vAx o o +
X 2' 2' ax2
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= = + vy - DLt ... (2.36)
at ax axz
where D is a numerical diffusivity, i.e.,
2
D= {——"%x -¥ Q!AL} (a.37)

In other words, the finite difference approximation of equation (a.24) includes a numerical diffusion
term which accounts for the numerical diffusion observed in the solutions produced by the two point

upwind approximations in subroutine DS5012.

The effect of this diffusion term can be negated if the RHS of equation (a.37) is set to zero, l.e.,

2

vﬁx — VQI!St (338)

or 1’5‘%{! = 1. This is the Courant-Friedrichs-Lewy (CFL} stabilty condition [Myint-U et a) (5)]. In

other words, setting D = 0 places the finite difference solution just at the border of instability.
vAL

Practically, this cannot be done, and we require Ax < 1 for stability, but this means the diffusion

term in equation (a.36) remains.

Similar diffusion terms are introduced by the nine other approximations considered previously,
which accounts for the observed numerical diffusion in all of the solutions in Figures 1 to 50. An
analysis of the numerical diffusion of some of these approximations, particularly of the five point

biased upwind approximations, is given by Carver and Hinds (3).
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Appendix 4: Main Programi SRKF45

PROGRAM SRKF45

PROGRAM SRKF45 CALLS: (1) SUBROUTINE INITAL TO DEFINE THE ODE
INITAL CONDITIONS, (2) SUBROUTINE RKF45 TO INTEGRATE THE ODES,
AND (3) SUBROUTINE PRINT TO PRINT THE SOLUTION.

THE FOLLOWING CODING IS FOR 450 ODES. IF MORE ODES ARE TO BE INTE-
GRATED, ALL OF THE 450°S SHOULD BE CHANGED TO THE REQUIRED NUMBER
COMMON /T/ T, NSTOP, NORUN

/Y/ Y (450)

JE/ F(450)

THE NUMBER OF DIFFERENTIAL EQUATIONS IS IN COMMDN/N/ FOR USE IN
SUBROUTINE FCN
COMMON /N/ NEQN

COMMON AREA TO PROVIDE THE INPUT/OUTPUT UNIT NUMBERS TO OTHER
SUBROUTINES
COMMON/10/ NI, NO

ABSOLUTE DIMENSIONING OF THE ARRAYS REQUIRED BY RKF43
DIMENSION YV(450), WORK(3000), IWORK(5)

EXTERNAL THE DERIVATIVE ROUTINE CALLED BY RKF45
EXTERNAL FCN

ARRAY FOR THE TITLE (FIRST LINE OF DATA), CHARACTERS END OF RUNS
CHARACTER TITLE(20)~4, ENDRUN(3)x4

DEFINE THE CHARACTERS END OF RUNS
DATA ENDRUN/’END °,°0F R?,’UNS */

DEFINE THE INPUT/OUTPUT UNIT NUMBERS
NI=5
NO=6

OPEN INPUT AND QUTPUT FILES
OPEN(NI,FILE= °’DATA’,STATUS="0LD?)
OPEN(NO,FILE=’0UTPUT’ ,STATUS=>NEW?)

INITIALIZE THE RUN COUNTER
NORUN=0O

BEGIN A RUN
NORUN=NORUN+1

INITIALIZE THE RUN TERMINATION VARIABLE
NSTOP=0
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READ THE FIRST LINE OF DATA
READ(NI . 1000,END=999) (TITLE(I).I=1,20)

TEST FOR END OF RUNS IN THE DATA
DO 2 I=1,3
IF(TITLE(1).NE.ENDRUN(I))GO TO 3
CONTINUE

AN END OF RUNS HAS BEEN READ, S0 TERMINATE EXECUTION
STOP

READ THE SECOND LINE OF DATA
READ(NI.1001,END=999)TO,TF,TP

READ THE THIRD LINE OF DATA
READ (NI, 1002,END=999)NEQN, ERROR

PRINT A DATA SUMMARY
WRITE(NO, 1003)NORUN, (TITLE(I),I=1,20),
TO,TF, TP,
NEQN, ERROR

INITIALIZE TIME
T=TOQ

SET THE INITIAL CONDITIONS
CALL INITAL

SET THE INITIAL DERIVATIVES (FOR POSSIBLE PRINTING)
CALL DERV

PRINT THE INITIAL CONDITIONS
CALL PRINT(NI,NO)

SET THE INITIAL CONDITIONS FOR SUBROUTINE RKF45
TV=TO

DO 5 I=1,NEQN

YV(I)=Y(I)

CONTINUE

SET THE PARAMETERS FOR SUBROUTINE RKF45
RELERR=ERROR

ABSERR=ERROR

IFLAG=-1

TOUT=TO+TP

CALL SUBROUTINE RKF45 TQ START THE SOLUTION FROM THE INITIAL
CONDITION (IFLAG = 1 DR COMPUTE THE SOLUTION TD THE NEXT PRINT
POINT (IFLAG = 2)
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BECAUSE OF THE MANY QUTPUT POINTS, THE INTEGRATION INTERVAL

OF RKF45 IS S0 SEVERELY RESTRICTED THE USUAL FREE-RUNNING MODE
MAY NOT OPERATE CORRECTLY (RKF45 REPDRTS AN ERROR IFLAG = 7;
SEE THE DOCUMENTATION IN SUBROUTINE RKF45 FOR THE MEANING OF
THE VARIOUS VALUES OF IFLAG). THEREFORE THE ONE-STEP MODE 1S

USED BY SETTING IFLAG = -1 (RATHER THAN THE USUAL INITIALIZATION
IFLAG = 1)
IFLAG=-1

CALL RKF45(FCN,NEQN.YV,TV,TOUT,RELERR ,ABSERR, IFLAG,WORK, IWORK)

PRINT THE SOLUTION AT THE NEXT PRINT POINT
T=TV

DO 6 I=1,NEQN

Y(1)=YV(I)

CONTINUE

CALL DERV

CALL PRINT(NI,ND)

TEST FOR AN ERROR CONDITION
IF(IFLAG.NE.2)THEN

PRINT A MESSAGE INDICATING AN ERROR CONDITION
WRITE(NO,1004) IFLAG

GO ON TO THE NEXT RUN
GO TO 1
END IF

CHECK FOR A RUN TERMINATION
IF(NSTOP.NE.0O)GO TO 1

CHECK FOR THE END OF THE RUN
TOUT=TV+TP
IF(TV.LT. (TF-0.5%xTP))G0O TO 4

THE CURRENT RUN IS COMPLETE, SO GO ON TO THE NEXT RUN
GO TO 1

ok 3k ke 3 ke 3 he 3k 3K i S 3k e e Sk K 3 K S Sk e S ok oK S Sk ke e 3k 3 3k sk 3 o ok sk sk e oK ok S 3 e 3k 3k 3k 3 31 3 o 3K ok 3K ok 3 e e 3K sk ke 3¢ ke ok oK
FORMATS

FORMAT (20A4)
FORMAT(3E10.0)
FORMAT(15,20X,E10.0)
FORMAT (1M1,
> RUN NO. ~ ’,13,2X,20A4,//,
> INITIAL T - ’,E10.3,//,
>  FINAL T - °,E10.3,//,
> PRINT T - °,E10.3,//,
> NUMBER OF DIFFERENTIAL EQUATIONS - °,13,//,
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6 ? MAXIMUM INTEGRATION ERROR - ’,E10.3.//,

7 1H1)
1004 FORMAT(1H ,//,® IFLAG = ',13,//,
1 > INDICATING AN INTEGRATION ERROR, SO THE CURRENT RUN’ /s
2 ’ IS TERMINATED. PLEASE REFER TO THE DOCUMENTATION FOR’>  ,/,
3 ° SUBROUTINE’,//,25X, RKF45°,//,
4 ' FOR AN EXPLANATION OF THESE ERROR INDICATORS’ )
END
SUBROUTINE FCN(TV,YV,YDOT)
C..
C... SUBROUTINE FCN IS AN INTERFACE ROUTINE BETWEEN SUBROUTINES RKF45
C... AND DERV
C..
C... NOTE THAT THE SIZE OF ARRAYS Y AND F IN THE FOLLOWING COMMON AREA
C... IS ACTUALLY SET BY THE CORRESPONDING COMMON STATEMENT IN MAIN
C... PROGRAM PRO1P3
COMMON /T/ T, NSTOP, NORUN
1 /Y/ Y(1)
2 JF/ F(1)
C..
C... THE NUMBER OF DIFFERENTIAL EQUATIONS IS AVAILABLE THROUGH COMMON
C... /N/
COMMON /N / NEQN
C..
C... ABSOLUTE DIMENSION THE DEPENDENT VARIABLE, DERIVATIVE VECTORS
REAL YV(450), YDOT(450)
C..
C... TRANSFER THE INDEPENDENT VARIABLE, DEPENDENT VARIABLE VECTOR
C... FOR USE IN SUBROUTINE DERV
T=TV
DO 1 I=1,NEQN
Y(I)=YV(I)
1 CONTINUE
C..
C. EVALUATE THE DERIVATIVE VECTOR
CALL DERV
C..
C... TRANSFER THE DERIVATIVE VECTOR FOR USE BY SUBROUTINE RKF45
DD 2 I=1,NEGN
YDOT(I)=F(1)
2 CONTINUE
RETURN

END
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Appendix 5: Listing of Subroutine DS5014

SUBROUTINE DSS0O14(XL,XU,N,U,UX,V)

SUBROUTINE DS$S014 1S AN APPLICATION OF SECOND-ORDER DIRECTIONAL
DIFFERENCING IN THE NUMERICAL METHOD OF LINES. 1IT IS INTENDED
SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MODELLED BY
FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS AS DIS-
CUSSED IN SUBROUTINE DSS012. THE COEFFICIENTS OF THE FINITE
DIFFERENCE APPROXIMATIONS USED HEREIN ARE TAKEN FROM BICKLEY, W.
G., FORMULAE FOR NUMERICAL DIFFERENTIATION, THE MATHEMATICAL
GAZETTE, PP. 19-27, 1941, N= 2, M =1, P =0, 1, 2,

DIMENSION U(N),UX(N)

COMPUTE THE COMMON FACTOR FOR EACH FINITE DIFFERENCE APPROXIMATION
CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER-
ENCE APPROXIMATION DEPENDING ON THE SIGN OF V (SIXTH ARGUMENT).
DX=(XU-XL) /FLOAT(N-1) .
R2FDX=1./(2.=DX)

IF(V.LT.0.)GO TO 10

(1) FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V
UX (1)=R2FDX=

1¢ -3,  «U( 1) +4., «U( 2) 1. *U( 3)
UX (2) =R2FDX~

1( 1. «U( 1) +0. «U( 2) +#1. «U( 3))
DO 1 I=3,N

UX (1)=R2FDXx

1( 1. =U(I-2) -4, *U(1-1) +3. =U( 1))
CONTINUE

RETURN

(2) FINITE DIFFERENCE APPROXIMATION FOR NEGATIVE V
NM2=N-2
DO 2 I=1,NM2
UX (I1)=R2FDXx

1¢( -3. «U( I) +4. «*U(I+1) -1. «U(I1+2))
CONTINUE

UX (N-1) =R2FDXx

1¢ D1, <U(N-2) +0.  *U(N-1) 1. =U( N))
UX (N)=R2FDX =

1¢ 1. =U(N-2) -4.  *U(N-1) +3.  «U( N))
RETURN

END
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Appendix 6: Listing of Subroutine DSS018

SUBROUTINE DSSO18&(XL,XU,N,U,UX,V)

SUBROUTINE DSS018 IS AN APPLICATION OF THIRD-ORDER DIRECTIONAL
DIFFERENCING IN THE NUMERICAL METHOD OF LINES. IT IS INTENDED
SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MODELLED BY
FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS AS DIS- -
CUSSED IN SUBROUTINE DSS012. THE COEFFICIENTS OF THE FINITE
DIFFERENCE APPROXIMATIONS USED HEREIN ARE TAKEN FROM BICKLEY, W.
G., FORMULAE FOR NUMERICAL DIFFERENTIATION, THE MATHEMATICAL
GAZETTE, PP. 19-27, 1941, N =3, M =1, P =0, 1, 2, 3. THE
IMPLEMENTATION IS THE »«FOUR-POINT BIASED UPWIND FORMULAx= OF
M. B. CARVER AND H. W. HINDS, THE METHOD OF LINES AND THE
ADVECTION EQUATION, SIMULATION, VOL. 31, NO. 2, PP. 59-69,
AUGUST, 1978

DIMENSION U(N),UX(N)

COMPUTE THE COMMON FACTOR FOR EACH FINITE DIFFERENCE APPROXIMATION

CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER-
ENCE APPROXIMATION DEPENDING ON THE SIGN OF V (SIXTH ARGUMENT) .
DX=(XU-XL) /FLOAT (N-1)

R3FDX=1. /(6. =DX)

IF(V.LT.0.)GO TO 10

(1) FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V
UX( 1)=R3FDXx

1( -11.=U( 1) +18.%U( 2) -9.xU( 3) +2.xU( 4))

UX( 2)=R3FDXx

1( -2.%U( 1) =3.=U( 2) +6.xU( 3) -1.=U( 4))

NM1=N-1
DO 1 I=3,NM1
UX( I)=R3FDXx

1( +1.=U(I-2) -6.%U(1-1) +3.xU( I) +2.xU(I+1))

CONTINUE
UX( N)=R3FDXx

1( -2.+«U(N-3) +9.%xU(N-2) -18.xU(N-1) +11.xU( N))

RETURN

(2) FINITE DIFFERENCE APPROXIMATION FOR NEGATIVE V
UX( 1)=R3FDXx

1( -11.xU( 1) +18.xU( 2) -9.»U( 3) +2.xU( 4))

NM2=N-2
DO 2 I=2,NM2
UX( 1)=R3FDX=

1( -2.=U(I-1) -3.xU( I) +6.xU(I+1) -1.xU(I+2))

CONTINUE
UX (N-1)=R3FDXx

1( +1.xU(N-3) -6.xU(N-2) +3.xU(N-1) +2.xU( N))
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UX( N)=R3FDX=

1( -2.=U(N-3) +9.=U(N-2) -1&. =U(N-1) +11.=U( N))
RETURN

END

Appendix 7: Listing of Subroutine DSSG19

SUBRDUTINE DSSO19(XL,XU,N,U,UX,V)

SUBROUTINE DSS019 IS AN APPLICATION OF THIRD-ORDER DIRECTIONAL
DIFFERENCING IN THE NUMERICAL METHGD OF LINES. IT IS INTENDED
SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MODELLED BY
FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS AS DIS-
CUSSED IN SUBROUTINE DSS012. THE COEFFICIENTS OF THE FINITE
DIFFERENCE APPROXIMATIONS USED HEREIN ARE TAKEN FROM BICKLEY, Ww.
G., FORMULAE FOR NUMERICAL DIFFERENTIATION, THE MATHEMATICAL
GAZETTE, PP. 19-27, 1941, N=3, M =1, P =0, 1, 2, 3. THE
IMPLEMENTATION IS THE ==~FOUR-POINT BIASED UPWIND FORMULAxx~ OF
M. B. CARVER AND H. W. HINDS, THE METHOD OF LINES AND THE
ADVECTION EQUATION, SIMULATION, VDL. 31, NO. 2, PP. 59-69,
AUGUST, 1978 '

SUBROUTINE DSS019 DIFFERS FROM DSS018 IN THE USE OF TWQ POINT
APPROXIMATIONS AT THE BOUNDARIES (THE DETAILS ARE OBVIQUS FROM
THE FOLLOWING CODE}.

DIMENSIOGN U(N} ,UX(N)

COMPUTE THE COMMON FACTOR FOR EACH FINITE DIFFERENCE APPROXIMATION
CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER-
ENCE APPROXIMATION DEPENDING ON THE SIGN OF V (SIXTH ARGUMENT).
DX=(XU-XL) /FLOAT (N-1)

R3FDX=1./(6.=DX)

IF(V.LT.0.)GO TO 10

(1) FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V
UX{ 1)=(1.90/DX)= _
1( -1.xU( 1) +1.=U( 2))

UX( 2)=(1.0/DX)=

1( -1.%U( 1) F1.=U( 2))

NM1i=N-1

DO 1 I=3,NM1

UX( I)=R3FDX~

1( +1.xU(I-2) -6.-U(I-1) +3.xU( I) +2.=U(I+1))
CONTINUE

UX(N )=(1.0/DX)=

1( =-1.xU(N-1) +41.«U(N ))

RETURN



C... (2) FINITE DIFFERENCE APPROXIMATION FOR NEGATIVE V
10 UX( 1)=(1.0/DX)=

1( -1.=U( 1) +1.=U( 2))

NM2=N-2

DO 2 I=2.NM2

UX( 1)=R3FDX=

1( -2.%U(I-1) -3.=U( 1) +6.»U(I+1) -1.=U(I+2))
2 CONTINUE

UX(N-1)=(1.0/DX) =

1( -1.%xU(N-1) +1.=U(N )

UX(N )=(1.0/DX)~=

1( -1.xU(N-1) +1.=U(N ))

RETURN .

END
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Appendix 8: Listing of Subroutine DSS020

SUBROUTINE DSS020 (XL,XU,N,U,UX,V)

SUBROUTINE DSS020 1S AN APPLICATION OF FOURTH-ORDER DIRECTIONAL
DIFFERENCING IN THE NUMERICAL METHOD OF LINES., IT IS INTENDED
SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MODELLED BY
FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS AS DIS-
CUSSED IN SUBROUTINE DSS012. THE COEFFICIENTS OF THE FINITE
DIFFERENCE APPROXIMATIONS USED HEREIN ARE TAKEN FROM BICKLEY, W.
G., FORMULAE FOR NUMERICAL DIFFERENTIATION, THE MATHEMATICAL
GAZETTE, PP, 19-27, 1941, N= 4, M =1, P =0, 1, 2, 3, 4. THE
IMPLEMENTATION IS THE *xFIVE-POINT BIASED UPWIND FORMULA~x QOF
M. B. CARVER AND H. W. HINDS, THE METHOD OF LINES AND THE
ADVECTION EQUATION, SIMULATION, VOL. 31, NO. 2, PP. 59-69,
AUGUST, 1978

DIMENSION U(N),UX(N)

COMPUTE THE COMMON FACTOR FOR EACH FINITE DIFFERENCE APPROXIMATION
CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER-
ENCE APPROXIMATION DEPENDING ON THE SIGN OF V (SIXTH ARGUMENT).
DX=(XU-XL) /FLOAT(N-1)

R4FDX=1./(12.=DX)

IF(V.LT.0.)GO TO 10

OOOO sNoNeNoReoNoNeEoNo oo NoNe Ne]

a0

(1) FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V
UX( 1)=RAFDXx
1( -25.+U( 1) +48.xU( 2) -36.=U( 3) +16.xU( 4) -3.xU( 5))
UX( 2)=R4FDXx
1( -3.=U( 1) -10.=U( 2) +18.~U( 3) -~6.=U( 4) +1.=U( 5))
UX( 3)=R4FDX=
1( +1.+U( 1) =8.%U( 2) +0.xU( 3) +8.xU( 4) -1.=L( 5))
NM1=N-1
DO 1 I=4,NM1
UX( I)=R4FDX=
1( -1.%U(I-3) +46.%U(I-2) -18.xU(I-1) +10.xU{ 1) +3.=U(I+1))
1 CONTINUE |
UX( N)=R4FDX=
1( 3.+U(N-4) -16.xU(N-3) +36.xU(N-2) -48.=U(N-1) +25.=U( N))

RETURN

C...

C... (2) FINITE DIFFERENCE APPROXIMATION FOR NEGATIVE V

10 UX({ 1)=R4FDX=
1( -25.%U( 1) +48.«U( 2) -36.xU( 3) +16.=U( 4) -3.~U( 5))
NM3=N_3

DO 2 I=2,NM3

UX( 1)=R4FDX=

1( -3.xU(I-1) -10.%U( I) +18.%U(I+1) -6.+U(1+2) +1.=U(I43))
2 CONTINUE



UX(N-2)=RJFDX~

1¢ +1.=U(N-4) -8.=U(N-3) +0.=U(N-2) +&.=U(N=1) -1.=U( N))
UN(N-1)=R4FDX~

1( -1.=U(N-4) +6.=U(N-3) -18.=U(N-2) +10.=U(N-1) +3.=U( N))
UX( N)=R4FDX~=

1(  3.%«U(N-4) -16.=U(N-3) +36.=U(N-2) -4&.xU(N-1) +25.=U( N))
RETURN

END
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Appendix 9: Listing of Subroutine DSS021

SUBROUTINE DSS021 (XL,XU,N,U,UX,V)

SUBROUTINE DSS$021 1S AN APPLICATIOCN OF FOURTH-ORDER DIRECTIONAL
DIFFERENCING IN THE NUMERICAL METHOD OF LINES. IT IS INTENDED
SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MODELLED BY
FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS AS DIS-
CUSSED IN SUBROUTINE DSS012. THE COEFFICIENTS OF THE FINITE
DIFFERENCE APPROXIMATIONS USED HEREIN ARE TAKEN FROM BICKLEY, W.
G., FORMULAE FOR NUMERICAL DIFFERENTIATION, THE MATHEMATICAL
GAZETTE, PP. 19-27, 1941, N=4, M =1, P = 0, 1, 2, 3, 4. THE
IMPLEMENTATION IS THE »=FIVE-POINT BIASED UPWIND FORMULA=x QOF
M. B. CARVER AND H. W. HINDS, THE METHOD OF LINES AND THE
ADVECTION EQUATION, SIMULATION, VOL. 31, NO. 2, PP. 59-69,
AUGUST, 1978.

SUBROUTINE DSS021 DIFFERS FROM DSS020 IN THE USE OF TwD POINT
APPROXIMATIONS AT THE BOUNDARIES (THE DETAILS ARE OBVIOUS FROM
THE FOLLOWING CODE) .

DIMENSION U(N) ,UX(N)

COMPUTE THE COMMON FACTOR FOR EACH FINITE DIFFERENCE APPROXIMATION
CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER-
ENCE APPROXIMATION DEPENDING ON THE SIGN OF V (SIXTH ARGUMENT).
DX= (XU-XL) /FLOAT(N-1)

R4FDX=1, /(12.~DX)

IF(V.LT.0.)GO TO 10

(1) FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V

UX( 1)=(1.0/DX)x

1( -1.+U( 1) 41.xU( 2))

UX( 2)=(1.0/DX)x*

1( -1.%U( 1) +1.=U( 2))

UX( 3)=R4FDX~

1( +1.=U( 1) -8.%xU( 2) +0.xU( 3) +8.=U( 4) -1.xU( 5))
NM1=N-1

DO 1 I=4,NM1

UX( 1)=R4FDXx

1( -1.xU(1-3) +6.%U(1-2) —18.=U(I-1) +10.=U( I) +3.%U(I+1))
CONTINUE

UX(N )=(1.0/DX)x
1( -1.xU(N-1) +1.=U(N ))

RETURN

(2) FINITE DIFFERENCE APPROXIMATION FOR NEGATIVE V
UX( 1)=(1.0/DX)=
1( -1.xU( 1) +1.«U( 2))
NM3=N-3
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DO 2 I=2,NM3
UX{ TI)=R4FDXx
1( -3.=U(I-1) -10.
CONTINUE
UX(N-2)=R4FDXx
1( +1.=U(N-4) -8,
UX(N-1)=(1.0/DX) =
1( -1.=U(N-1) +1.
UX(N )=(1.0/DX)=
1( -1.=U(N-1) +1.
RETURN
END

«U( T) +18.=U(I+1)

wU(N-3) +0.=U(N-2)
«U(N )
«*U(N 1))
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Appendix 10: Listing of Subreutine LEO1

SUBROUTINE LEO1 (XL,XU,.N,U,UX,V)

C..
C.. SUBROUTINE LEO1 IS AN APPLICATION OF LEONARD=S FOUR POINT
C.. APROXIMATIONS. THE COEFFICIENTS OF THE APPRONIMATIONS ARE
C.. GIVEN IN LEONARD, B. P., xxA STABLE AND ACCURATE CONVECTIVE
C.. MODELLING PROCEDURE BASED ON QUADRATIC UPSTREAM INTERPULATIONsxx*,
C.. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, VOL. 19,
GC.. NO. 1, JUNE, 1979. REPUBLISHED IN COMPUTER METHODS IN APPLIED
C.. MECHANICS AND ENGINEERING, SPECIAL EDITION, PP 59-38, AUGUST,
C.. 1990, FOUR POINT APPROXIMATIONS ARE USED AT THE BOUNDARIES.
C..
DIMENSION U(N),UX(N)
C..
C.. COMPUTE THE COMMON FACTOR FOR EACH SPATIAL APPROXIMATION
C. CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER-
C. ENCE APPROXIMATIGN DEPENDING ON THE SIGN OF V (SIXTH ARGUMENT).
DX=(XU-XL) /FLOAT(N-1)
REDX=1./(8.=DX)
IF(V.LT.0.)GO TO 10
C..
C. (1) APPROXIMATIONS FOR POSITIVE V
C..
C. FINITE DIFFERENCES
UX( 1)=(1.0/(6.0xDX))=
1( -11.xU( 1) +18.%U( 2) -9.xU( 3) +2.=U( 4))
UX( 2)=(1.0/(6.0xDX))=*
1( -2.xU( 1) =-3.%xU( 2) +6.xU( 3) -1.xU( 4))
C... LEDONARDxS COEFFICIENTS
NM1=N-1
DO 1 I=3,NM1
UX{( I)=R8DX=
1( +1.xU(I-2) -7.xU(I-1) +3.xU( 1) +3.*xU(I+41))
i CONTINUE
C.
C FINITE DIFFERENCE
UX(N )=(1.0/(6.0«DX)}) )}
1( -2.%U(N-3) +9.xU(N-2) -18.xU(N-1) +11.xU{( N))
RETURN
C..
C... (2) APPROXIMATION FOR NEGATIVE V
C...
C... FINITE DIFFERENCE
10 UX( 1)=(1.0/(6.0%xDX) )=
1( -11.xU( 1) +18.xU(C 2) -9.xU( 3) +2.xU( 4))
C..
C.. LEONARD*S COEFFICIENTS

NM2=N-2
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DO 2 I=2,NM2

UX(  1)=R3FDX=x

1( +3.xU(1-1) +3.xU{ 1) -7.xU(I+1)
CONTINUE

FINITE DIFFERENCES
UX(N-1)=(1.0/(6.0%DX) )=

1( +1.%U(N-3) -6.xU(N-2) +3.=U(N-1)
UN(N  )=(1.0/(6.0%DX))=

+1.=U(1+2))

+2 . =U(

1( -2.=U(N-3) +9.xU(N-2) -18.*xU(N-1) +11.=U(

RETURN
END
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Appendix 11: Listing of Subroutine LEO2

SUBROUTINE LEO2(XL,XU,N,U,UX,V)

SUBROUTINE LED2 IS AN APPLICATION OF LEONARD=S FOUR POINT
APROXIMATIONS., THE COEFFICIENTS OF THE APPROXIMATIONS ARE
GIVEN IN LEONARD, B. P., =xA STABLE AND ACCURATE CONVECTIVE
MODELLING PROCEDURE BASED ON QUADRATIC UPSTREAM INTERPOLATIONw%=,
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, VOL. 19,
NO. 1, JUNE, 1979. REPUBLISHED IN COMPUTER METHODS IN APPLIED
MECHANICS AND ENGINEERING, SPECIAL EDITION, PP 59-98, AUGUST,
1990. TWO POINT APPROXIMATIONS ARE USED AT THE BOUNDARIES.

DIMENSION U(N),UX(N)

COMPUTE THE COMMON FACTOR FOR EACH SPATIAL APPROXIMATION
CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER-
ENCE APPROXIMATION DEPENDING ON THE SIGN DF V (SINTH ARGUMENT).
DX=(XU-XL)/FLOAT(N-1)

RSDX=1./(8.=DX)

IF(V.LT.0.)GD TD 10

(1) APPROXIMATIONS FOR POSITIVE V

FINITE DIFFERENCES

UX( 1)=(1.0/DX)=

1( -1.xU( 1) +1.+U( 2))
UX( 2)=(1.0/DX)x*

1¢ -1.xU( 1) +1.xU( 2))

LEONARD=S COEFFICIENTS
NM1=N-1

DO 1 I=3,NM1

UX( I)=RS8DXx

1( +1.x=U(1-2) -7.+U(I-1) +3.xU( 1) +3.=U(I+1))
CONTINUE

FINITE DIFFERENCE

UX(N )=(1.0/DX)=

1( -1.xU(N-1) +1.xU(N )
RETURN

(2) APPROXIMATION FOR NEGATIVE V
FINITE DIFFERENCE
UX( 1)=(1.0/DX)=
1 -1.xU( 1) +1.xU{ 2))
LEONARD=S CDEFFICIENTS
NM2=N-2
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DO 2 1=2,NM2
UX( 1)=R3FDX~

1( +3.%=U(I-1) +3.=U(

CONTINUE

FINITE DIFFERENCES

UNX(N-1)=(1.0/DX) =
1( -1.*U(N-1) +1
UX(N  )=(1.07/DX)x
1{( -1.%U(N-1) +1
RETURN

EXND

U (N

U(N

9]

)
))

~7.xU(I41)
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Appendix 12: Listing of Subroutine DS5002

SUBROUTINE DSS002(XL.XU,N,U,UX)

SUBRQUTINE DSS002 COMPUTES THE FIRST DERIVATIVE, U , OF A

VARIJABLE U OVER THE SPATIAL DOMAIN XL LE X LE XU :
ARGUMENT LIST
XL LOWER BOUNDARY VALUE OF X (INPUT)
Xu UPPER BOUNDARY VALUE OF X (INPUT)
N NUMBER OF GRID POINTS IN THE X DOMAIN INCLUDING THE
BOUNDARY POINTS (INPUT)
U ONE-DIMENSIONAL ARRAY CONTAINING THE VALUES OF U AT

THE N GRID POINT POINTS FOR WHICH THE DERIVATIVE 1S
TO BE COMPUTED (INPUT)

UX ONE-DIMENSIONAL ARRAY CONTAINING THE NUMERICAL
VALUES OF THE DERIVATIVES OF U AT THE N GRID POINTS
(OUTPUT)

SUBROUTINE DSS002 COMPUTES THE FIRST DERIVATIVE, U , OF A

X
VARIABLE U OVER THE SPATIAL DOMAIN XL LE X LE XU FROM THE
CLASSICAL THREE-POINT, SECOND-ORDER FINITE DIFFERENCE APPROXI-
TIONS

2

Ut = (1/2DX)(-3U1 + 4U2 - U3) + O(PX ) (LEFT BOUNDARY, (1)

X X = XL)

2

UI = (1/2DX)(UI+1 - UI-1) + O(DX ) (INTERIOR POINT, (2)

X X NE XL, XU)

2

UN = (1/2DX)(3UN - 4UN-1 + UN-2) + O(DX ) (RIGHT BOUNDARY, (3)

X X = XU)

EQUATIONS (1) TO (3) APPLY OVER A GRID IN X WITH CORRESPONDING
VALUES OF THE FUNCTION U(X) REPRESENTED AS

Ut U2 U3 Ul UN-2 UN-1 UN

X=XL X=XL+4DX X=XL+2DX ... X=XI ... X=XU-2DX X=XU-DX X=XU
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THE ORIGIN OF EQUATIONS (1) TO (3) IS OUTLINED BELOW.
CONSIDER THE FOLLOWING POLYNOMIAL IN X OF ARBITRARY ORDER

2 3
U(X) = A0 + A1(X - X0) + A2(X - X0) + A3(X - X0) + .... (4)

WE SEEK THE VALUES OF THE COEFFICIENTS AG, Al, A2, ... FOR A
PARTICULAR FUNCTION U(X). IF X = X0 IS SUBSTITUTED IN EQUATION
(4), WE HAVE IMMEDIATELY A0 = U(X0). NEXT, IF EQUATION (4) IS
DIFFERENTIATED WITH RESPECT TO X,

2
DU(X)/DX = U (X) = Al + 2A2(X - X0) + 3A3(X - X0) + ... (5)
X

AGAIN, WITH X = X0, Al = DU(X0)/DX = U (X0). DIFFERENTIATION
X
OF EQUATICN (5) IN TURN GIVES

D2U(X)/DX2 = U (X) = 2A2 + 6A3(X - X0) +
' 2x

AND FOR X = X0, A2 = U (X0)/2F (2F = 1x2, I.E., 2 FACTORIAL).
2X

WE CAN CONTINUE THIS PROCESS OF DIFFERENTIATION FOLLOWED BY THE
SUBSTITUTION X = X0 TO OBTAIN THE SUCCESSIVE COEFFICIENTS IN
EQUATION (4), A3, A4, ... FINALLY, SUBSTITUTION OF THESE CO-
EFFICIENTS IN EQUATION (4) GIVES

2
U(X) = U(X0) + U (XO)(X - X0) + U (X0)(X - X0) +
X 1F 2X 2F
(6)
3 4
U (XO)(X - X0) + U (X0)(X - X0) +
3X 3F 4x 4F

THE CORRESPONDENCE BETWEEN EQUATION (6) AND THE WELL-KNOWN
TAYLOR SERIES SHOULD BE CLEAR. THUS THE EXPANSION OF A
FUNCTION, U(X), AROUND A NEIGHBORING POINT X0 IN TERMS OF U(X0)
AND THE DERIVATIVES OF U(X) AT X = X0 IS EQUIVALENT TO APPROXI-
MATING U({X) NEAR X0 BY A POLYNOMIAL.

EQUATION (6) IS THE STARTING POINT FOR THE DERIVATION OF THE
CLASSICAL FINITE DIFFERENCE APPROXIMATIONS OF DERIVATIVES SUCH
AS THE THREE-POINT FORMULAS OF EQUATIONS (1), (2) AND (3). WE
WILL NOW CONSIDER THE DERIVATION OF THESE THREE-POINT FORMULAS
IN A STANDARD FORMAT WHICH CAN THEN BE EXTENDED TO HIGHER
MULTI-POINT FORMULAS IN OTHER SUBROUTINES, E.G., FIVE-POINT
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FORMULAS IN SUBROUTINE DSS004.
THREE-POINT FORMULAS
(1) LEFT END, POINT I =1

IF EQUATION (6) IS WRITTEN AROCUND THE POINT X = XL FOR X = XL +
DX AND X = XL + 2DX, FOR WHICH THE CORRESPONDING VALUES OF U(X)
ARE U1, U2 AND U3 (Ui AND U2 ARE SEPARATED WITH RESPECT TO X BY
DISTANCE DX AS ARE U2 AND U3, I.E., WE ASSUME A UNIFORM GRID
SPACING, DX, FOR INDEPENDENT VARIABLE X)

2 3
UZ = Ul + Ul ( DX) + U1 (DX) + Ul (DX) + ... (7)
X 1F 2X 2F 3X 3F
2 3
U3 = Ul + Ul (2DX) + Ul (2DX) + Uil (2DX) + ... (8)
X 1F 2X 2F 3X 3F

WE CAN NOW TAKE A LINEAR COMBINATION OF EQUATIONS (7) AND (8)
BY FIRST MULTIPLYING EQUATION (7) BY A CONSTANT, A, AND EQUA-
TION (8) BY CONSTANT B

2 3 :
AUZ = UL + UL ( DX) + Ul ( DX) + Ul ( DX) + ...) (9)
X 1F 2X 2F 3X 3F
2 3
B(U3 = Ul + Ul (2DX) + Ul (2DX) + Ul (2DX) + ...) (10)
X 1F 2X 2F 3X 3F

CONSTANTS A AND B ARE THEN SELECTED SO THAT THE COEFFICIENTS OF
THE U1l TERMS SUM TO ONE (SINCE WE ARE INTERESTED IN OBTAINING
X

A FINITE DIFFERENCE APPROXIMATION FOR THIS FIRST DERIVATIVE).
ALS0, WE SELECT A AND B SO0 THAT THE COEFFICIENTS OF THE U1

2X
TERMS SUM TO ZERO IN ORDER TO DROP OUT THE CONTRIBUTION OF THIS
SECOND DERIVATIVE (THE BASIC IDEA IS TO DROP OUT AS MANY 0OF THE
DERIVATIVES AS POSSIBLE IN THE TAYLOR SERIES BEYOND THE DERI-
VATIVE OF INTEREST, IN THIS CASE U1l , IN ORDER TO PRODUCE A

X

FINITE DIFFERENCE APPROXIMATIDN FOR THE DERIVATIVE OF MAXIMUM
ACCURACY). 1IN THIS CASE WE HAVE ONLY TWO CONSTANTS, A AND B,
TO SELECT SO WE CAN DROP OUT ONLY THE SECOND DERIVATIVE, U1

2X
IN THE TAYLOR SERIES (IN ADDITION TO RETAINING THE FIRST DERI-
VATIVE) . THIS PROCEDURE LEADS TO TWO LINEAR ALGEBRAIC EQUA-
TIONS IN THE Tw0O CONSTANTS
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A+ 2B = 1
A+ 4B = 0

SOLUTION OF THESE EQUATIONS FOR A AND B GIVES

A=2,B=-1/2
SOLUTION OF EQUATIONS (9) AND (10) FOR Ul WITH THESE VALUES OF
A AND B GIVES EQUATION (1) X
2
Ul = (1/2DX)(-3U1 + 4U2 - U3) + 0(DX ) (1)
X

2

THE TERM O(DX ) INDICATES A PRINCIPAL ERROR TERM DUE TO TRUNCA-
2
TION OF THE TAYLOR SERIES WHICH IS OF ORDER DX . THIS TERM IN
2

FACT EQUALS Ul DX /3F, WHICH IS EASILY OBTAINED IN DERIVING

3X

EQUATION (1).

THIS SAME BASIC PROCEDURE CAN NOW BE APPLIED TO THE DERIVATION
OF EQUATIONS (2) AND (3).

(2) INTERIOR POINT I

2 3
A(UI-1 = Ul + UI (-DX) + UI (-DX) + UI (-DX) + ...)
X 1F 2X 2F 3X 3F
2 3
B(UI+1 = UI + UI ( DX) + UI ( DX) + UL  (DX) + ...)
X 1F 2X 2F 3X 3F
-A+B=1
A+B=20
A=1/2, B = -1/2
2
Ul = (1/2DX)(UI+1 - UI-1) + 0O(DX ) (2)
X
(3) RIGHT END, POINT I = N
2 3
A(UN-2 = UN 4+ UN (-2DX) + UN (-2DX) + UN (-2DX) + ...)
X iF 2X 2F 3X 3F
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2 3
B(UN-1 = UN + UN ( -DX) + UN ( -DX) + UN ( -DX) + ...)
X 1F 2X 2F 3X 3F

-2A - B =1

4A + B = 0

A= -2, B=1/2

2
UN = (1/2DX)(3UN - 4UN-1 + UN-2) + 0(DX ) (3)
X

THE WEIGHTING COEFFICIENTS FOR EQUATIONS (1), (2) AND (3) CAN
BE SUMMARIZED AS

WHICH ARE THE COEFFICIENTS REPORTED BY BICKLEY FOR N = 2, M =
1, P=0, 1, 2 (BICKLEY, ¥. G., FORMULAE FOR NUMERICAL DIFFER-
ENTTIATION, MATH. GAZ., VOL., 25, 1941).

EQUATIONS (1), (2) AND (3) CAN NOW BE PROGRAMMED TO GENERATE

THE DERIVATIVE U (X) OF FUNCTION U(X) (ARGUMENTS U AND UX OF
X

SUBROUTINE DSS002, RESPECTIVELY).

DIMENSION U(N) ,UX(N)

COMPUTE THE SPATIAL INCREMENT
DX=(XU-XL) /FLOAT(N-1)
R2FDX=1./(2.%DX)

NM1=N-1

EQUATION (1) (NOTE - THE RHS OF THE FINITE DIFFERENCE APPROXI-
TIONS, EQUATIONS (1), (2) AND (3) HAVE BEEN FORMATTED SO THAT
THE NUMERICAL WEIGHTING COEFFICIENTS CAN BE MORE EASILY ASSOCI-
ATED WITH THE BICKLEY MATRIX LISTED ABOVE)

UX (1) =R2FDXx

1( -3. «U({ 1) +4. =U(  2) -1. «U( 3))

EQUATION (2)

DO 1 I=2,NM1

UX (I)=R2FDXx*

1( -1. «*U(I-1) +0. «U( 1) +1. «*U(I+1))
CONTINUE
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EQUATION (3)
UX (N) =R2FDXx
1¢( 1.
RETURN

END

«U(N-2)

-4,

«U(N-1)
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Appendix 13: Listing of Subroutine DS5004

SUBROUTINE DSS004 (XL,XU,N,U.UX)

SUBROUTINE DSS004 COMPUTES THE FIRST DERIVATIVE, U , OF A
X

VARIABLE U OVER THE SPATIAL DOMAIN XL LE X LE XU FROM CLASSICAL
FIVE-POINT, FOURTH-ORDER FINITE DIFFERENCE APPROXIMATIONS

ARGUMENT LIST

XL LOWER BOUNDARY VALUE OF X (INPUT)
XU UPPER BOUNDARY VALUE OF X (INPUT)
N NUMBER OF GRID POINTS IN THE X DOMAIN INCLUDING THE

BOUNDARY POINTS (INPUT)

U ONE-DIMENSIONAL ARRAY CONTAINING THE VALUES OF U AT
THE N GRID POINT POINTS FOR WHICH THE DERIVATIVE 18
TG BE COMPUTED (INPUT)

UX ONE-DIMENSIONAL ARRAY CONTAINING THE NUMERICAL
VALUES OF THE DERIVATIVES OF U AT THE N GRID POINTS
(OUTPUT)

THE MATHEMATICAL DETAILS OF THE FOLLOWING TAYLOR SERIES (OR
POLYNOMIALS) ARE GIVEN IN SUBROUTINE DSS002.

FIVE-POGINT FORMULAS

(1) LEFT END, POINT I = 1

2 3 4
A(U2 = U1 + U1l (DX) +Ut (DX) + Ut (DX) + Ul ( DX)
X 1F 2X  2F 3X 3F 4X 4F
5 6 7
+ Ul (DX} + U1 (DX) + U1 (DX + ...)
BX &F 6X 6F 77X 7F
2 3 4
B(U3 = Ul + Ul (2DX) + Ul (2DX) + Ul (2DX) + Ul (2DX)
X 1F 2X 2F 3X 3F 4X 4F
5 6 7
+ Ul (2DX) + Ul (2DX) + Ut (2DX) + ...)
5X &F 6X 6F T™X T7F
2 3 4

143



'OPQQ‘OQF)_OQ.OQPQQQQQQOOOOOOOOOOOQOOOOOOOOOOOOOOOOOOOOC’}

C(U4 = Ul + Ul (3DX) + Ut (3DX) + Ul (3DX) + U1 (3DX)
X 1F 2X 2F 3X 3F AX  4F
5 6 T
+ Ul (3DX) + Ul (3DX) + Ul (3DX) + ...)
5X 5F 6X GF 7X  7F
2 3 4
D(US = Ul + Ul (4DX) + Ul (4DX) + Ul (4DX) + Ul (4DX)
X 1F 2X ©2F 3X 3F 4X  4F
5 6 7
4+ UL (4DX) + Ul (4DX) + Ul (4DX) + ...)
5X 5F 6X 6F 7X  7F

CONSTANTS A, B, C AND D ARE SELECTED SO THAT THE COEFFICIENTS

OF THE Ul TERMS SUM TO ONE AND THE COEFFICIENTS OF THE U1l
X 2X

U1l AND U1 TERMS SUM TO ZEROD
3X 4X

+ 2B + 3C + 4D = 1

4B + 9C + 16D = 0

- =
+

+ 8B + 27C + 64D o

A+ 16B + 81C + 256D = 0

SIMULTANEQUS SOLUTION FOR A, B, C AND D FOLLOWED BY THE SDOLU-
TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U

4X
TERMS, FOR Ul GIVES THE FOLLOWING FIVE-POINT APPROXIMATION
X
4
Ul = (1/12DX)(-25U1 + 48U2 - 36U3 + 16U4 - 3U5) + O(DX ) (1)
X
(2) INTERIOR POINT, I = 2
2 3 4
AUl = U2 + U2 (-DX) + U2 (-DX) + U2 (-DX) + U2 (-DX)
X 1F 2X 2F 3X 3F 4AX  4F
5 6 7
+ U2 (-DX) 4+ U2 (-DX) + U2 (-DX) + ...)
5X 5F 6X G6F 7X  TF
2 3 4
B(U3 = U2 4+ U2 ( DX) + U2 ( DX) + U2 (DX) + U2 ( DX)
X 1F 2X  2F 3X 3F 4X 4F
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5 6 7

+ U2 (DX) + U2 (DX) + U2 (DX + ...)
5X 5F 6X &6F X 7F
2 3 4
C(U4 = U2 4+ U2 (2DX) + U2 (2DX) + U2 (2DX) + U2 (2DX)
X 1F 2X 2F 3X &F 4X 4F
5 6 7
+ U2 (2DX) + U2 (2DX) + U2 (2DX) + ...)
5X 5F 6X &6F X TF
2 3 4
D(U5s = U2 + U2 (3DX) + U2 (3DX) + U2 (3DX) + U2 (3DX)
X 1F 2X  2F 3X 3F 4X 4F
5 6 7
+ U2 (3DX) + U2 (3DX) + U2 (3DX) + ...)
5X BF 6X 6F 77X 7F
-A + B+ 2C + 30 =1
A+ B+ 4C + 9D = O
-A + B+ 8B8C+ 27D =0
A+ B + 16C + 81D = 0

SIMULTANEQUS SOLUTION FDR A, B, C AND D FOLLOWED BY THE SOLU-
TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U

ax
TERMS, FOR U1 GIVES THE FOLLOWING FIVE-POINT APPROXIMATION
X
4
U2 = (1/12DX)(-3U1 - 10U2 + 18U3 - 6U4 + UB) + O(DX ) (2)
X _
(3) INTERIOR POINT I, I NE 2, N-1
2 | 3
A(UI-2 = UI + UI (-2DX) + UI (-2DX) + UI (-2DX)
X 1F 2X  2F 3X  3F
4 5 6
+ UL (-2DX) + UI (-2DX) + UI (-2DX) + ...)
4X  4F 5X  SF 6X  6F
2 3
B(UI-1 = UI + Ul ( -DX) + UI ( -DX) + UI ( -DX)

X 1iF 2X 2F 3X 3F
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4 5 6
+ UL ( -DX) 4+ UI ( -DX) + UI ( -DX) + ...)
4X 4F 5X 5F 6X 6F
2 3
C(UI+1 = Ul + UI ( DX) + UI ( DX) + UI ( DX)
X 1F 2X 2F 3X 3F
4 5 6
+ Ul ( DX) +UI ( DX) +UI ( DX) + ...)
4X 4F 5X 5F 6X 6F
2 3
D(UI+2 = UI + UL ( 2DX) + UI ( 2DX) + UI ( 2DX)
X 1F 2X 2F 3X 3F
4 5 6
+ Ul ( 2DX) + UI ( 2DX) + UI ( 2DX) + ...)
4X 4F 5X 5F 6X 6F

-2A - B+ C+ 2D=1
4A + B + C+ 4D =0
-84 - B+ C+ 8 =0
16A + B + C + 16D = 0

SIMULTANEOUS SOLUTION FOR A, B, C AND D FOLLOWED BY THE SOLU-
TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U

4x
TERMS, FOR Ul GIVES THE FOLLOWING FIVE-POINT APPROXIMATION
X
4
UI = (1/12DX)(UI-2 - 8UI-1 + OUI + 8UI+1 - UI+2) + 0(DX ) (3)
X
(4) INTERIOR POINT, I = N-1
2 3
A(UN-4 = UN-1 + UN-1 (-3DX) + UN-1 (-3DX) + UN-1 (-3DX)
X 1F 2X  2F 3X 3F
4 5 6
+ UN-1 (-3DX) + UN-1 (-3DX) + UN-1 (-3DX) +
4X  4F 5X SF 6X  6F
2 3
B(UN-3 = UN-1 + UN-1 (-2DX) + UN-1 (-2DX) + UN-1 (-2DX)
X 1F 2X 2F 3X 3F
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i 5 6
+ UN-1 (-20X) + UN-1 (-2DX) + UN-1 (-2DX) -+
4X 4F 5X 5F 6X 6F
2 3
C(UN-2 = UN-1 + UN-1 ( -DX) + UN-1 (- -X) + UN-1 ( -DX)
X 1F 2X 2F 3X 3F
4 5 6
+ UN-1 ( -DX) + UN-1 ( -DX) + UN-1 ( -DX) +
44X 4F 53X 5F 6X 6F
2 3
D (UN = UN-1 + UN-1 ( bX) + UN-1 ( DX) + UN-1 ( DX)
X 1F 2X 2F 3X 3F
4 5 6
+ UN-1 ( DX) + UN-1 { DX) + UN-1 ( DX) +
4X 4F 5X 5F 6X 6F
-3A -~ 2B - C + =1

D
9A + 4B + C + D=0
D o

-27A -~ 8B - Cc +

81A 4+ 16B + C + D 0

SIMULTANEQUS SOLUTION FOR A, B, C AND D FOLLOWED BY THE SOLU-
TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U

4X
TERMS, FOR Ul GIVES THE FOLLOWING FIVE-POINT APPROXIMATION
X
4
UN-1 = (1/12DX)(-UN-4 + 6UN-3 - 18UN-2 4+ 10UN-1 + 3UN) + O(DX )
X
(4)
(5) RIGHT END, POINT I = N
. 2 3
A(UN-4 = UN 4+ UN (-4DX) + UN (-4DX) + UN (-4DX)
X 1F 2X  2F 3X 3F
4 5 6
+ UN  (-4DX) + UN (-4DX) + UN (-4DX) + ...)
4X  4F 5X  5F 6X  6F
2 3

B(UN-3 = UN + UN (-3DX) + UN (-3DX) + UN (-3DX)
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X 1F 2X 2F 3X 3F

4 5 6
+ UN  (-3DX) +4 UN (-3DX) + UN (-3DX) + ...)
4X 4F 5X 5F 6X 61
2 3
C(UN-2 = UN + UN (-2DX) + UN (-2DX) + UN (-2DX)
X iF 2X 2F 3X 3F
4 5 6
+ UN (-2DX) + UN (-2DX) + UN (-2DX) + ...)
4X 4F 5X 5F 6X 8F
2 3
D(UN-1 = UN + UN ( -DX) + UN ( -DX) + UN ( -DX)
X 1F 2X 2F 3X 3F
4 5 6
+ UN ( -DX) + UN ( -DX) + UN ( -DX) + ...)
4X 4F 5X 5F 6X 6F
-4A - 3B - 2C - D=1

16A + 9B + 4C + D=20
-64A - 27B - 8C - D=0
256A + 81B + 16C + D =20

SIMULTANEOUS SOLUTION FOR A, B, C AND D FOLLOWED BY THE SOLU-
TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U

4X
TERMS, FOR Ul GIVES THE FOLLOWING FIVE-POINT APPROXIMATION
X .
4
UN = (1/12DX)(3UN-4 - 16UN-3 + 36UN-2 - 48UN-1 + 25UN) + O(DX )
X
(3)

THE WEIGHTING COEFFICIENTS FOR EQUATIONS (i) TO (5) CAN BE
SUMMARIZED AS

25 48 -36 16 -3

-3 -10 18 -6 1

1/12 1 -8 0 8 -1
-1 6 -18 10 3
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1( -1.%xU(N-4) +6.xU(N-3)

1(  3.4U(N-4) -16.%U(N-3) +36.xU(N-2) -48.=U(N-1) +25,

3 -16 36 -48 23

WHICH ARE THE COEFFICIENTS REPORTED BY BICKLEY FOR N = 4, M =
i. pP=0,1, 2, 3, 4 (BICKLEY, W. G., FORMULAE FOR NUMERICAL
DIFFERENTIATION, MATH. GAZ., VOL. 25, 1941. NOTE - THE BICKLEY
COEFFICIENTS HAVE BEEN DIVIDED BY A COMMON FACTOR OF TwD).

EQUATIONS (1) TO (5) CAN NOW BE PROGRAMMED TO GENERATE THE

DERIVATIVE U (X) OF FUNCTION U(X) (ARGUMENTS U AND UX OF SUB-
X

ROUTINE DSS004 RESPECTIVELY).

DIMENSION U(N),UX(N)

COMPUTE THE SPATIAL INCREMENT
DX=(XU-XL) /FLOAT(N-1)
R4FDX=1./(12.xDX)

NM2=N-2

EQUATION (1) (NOTE - THE RHS OF EQUATIONS (1), (2), (3), (4)
AND (5) HAVE BEEN FORMATTED SO THAT THE NUMERICAL WEIGHTING
COEFFICIENTS CAN BE MORE EASILY ASSOCIATED WITH THE BICKLEY -
MATRIX ABOVE)

UX( 1)=R4FDXx

1( -25.%U( 1) +48.«U( 2) -36.xU( 3) +#16.~U( 4) -3.=U( 35))

EQUATION (2)
UX( 2)=R4FDX=
1( -3.%U( 1) -10.xU( 2) +18.4«U( 3) -6.=U( 4) +1.=U( 5))

EQUATION (3)

DO 1 I=3,NM2

UX( I)=R4FDXx

1( +1.%U(I-2) -8.xU(I-1) +0.xU( I) +8.=U(I+1) -1.=U(I+2))
CONTINUE

EQUATION (4)
UX (N-1) =R4FDXx

18.%xU(N-2) +10.~U(N-1) +3.*=U( X))

EQUATION (5)
UX( N)=R4FDXx

ug N))
RETURN
END
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Appendix 14: Formulas for Aj, Ay, A, in Equations (56} and (57}

The QU/PG element of Figure 7.1 consists of two parts for x < 0 and x > 0, each of which

consists of the quadratic
oi(x) =ag+apx+ a2x2 {(a.39)

From qﬁi((]) =1, ag = 1.

Also, for x < 0
6.(-Ax/2) = 8p = 1 + a (-Dx/2) + ay(-Dx/2)?

4,(-Ax) = 0 = 1 4 a,(-Ax) + ay(-Ax)? (2.40)
If equation (a.40} is multiplied by (-1/2)

6, (-Ax/2) = ¢ = 1-a)(Bx/2) + an(Ax/2)

(a.41)
(-1/2)¢,(-Bx) = 0 = -1/2 + a;(Ax/2) - (1/2)ag(Ax)
Then solution of equations (a.41) for a,, followed by a;, gives
by = 1/2- (1/4)agAx’
ag = (-4/8x%)(o - 1/2)
ayAx = 1- (4/ax%)(4p - 1/2)(Ax°)
3 = (1/A%)[1 - 4(6y, - 1/2)
Thus, the equation for the QU/PG element for x < 0 is
6i(x) = 14 (1/A0[1 - 48y, - Y2D)x - (4/6x)(9y - 1/2)x2 (a-42)
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which can be checked by at the three points x = 0, -Ax/2 and -Ax:

¢,(0) =1

G- Ax/2) = 1+ (1/Ax)[1 - oy, - 1/2)](-8x/2) - (4/3x*)(9y, - Y2(-ax/2)? =

=1-(1/2[1- 4(¢L -1/2)]) - (éy - 1/2) = 29

$,(-Ax) = 1 + (1/Ax)[1- 4(6p, - 1/2)](-Ax) - (4/Ax%)(8, - 1/2)(-Ax)2
=1-[1-4(gp, - 1/2)] - (4N$y, - 1/2) = 0

Also, we have for ¢y = 0.5, a) = 1/ Ax, ag = 0, q&i(x) =1+ x/Ax as expected.

For the section x > 8, we can arrive at the final result from equation (a.42) merely by

replacing -x — x, ¢R — @1 ie,

6,(x) = 1 - (1/Ax)[1 - 4(dg - 1/2)]x - (4/Ax>)(gp - 1/2)x> (a.43)

which can be checked at the three points x = 0, Ax/2 and Ax:

¢i(0) =1

8,(Bx/2) = 1- (1/Ax)[1 - 4(op - 1/D)(Ax/2) - (4/Ax%) (0 - L/2)(Ax/2)? =

=1- (1/2)(1 - 4(dp - 1/2)] - (b - 1/2) = o

6,(8%) = 1- (1/Ax)1 - 4 - 1/2HAX) - (4/AxD)(By, - 1/2)(Bx)?
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=1-[1-4(¢g - 1/2)] - (46R - 1/2) =0

Also, we have for ¢g = 0.5, 8; =-1/Ax, a5 = 0, ¢(x) = 1 - x/Ax as expected.

Equations (a.42) and (a.43) are coded in functions PHIM and PHIP of Program B in Appendix
15. Also, the derivatives of q&i(x) from equations (a.42) and (a.43) are programmed in functions
PHIDM and PHIDP of Program 8 since these derivatives are required in the evaluation of integrals 2.1
to 2.3 and 4.1 to 4.3.
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Appendix 13: Subroatines INITAL, DERV and PRINT, and Subordinate
Routines for the QU/PG Solution of Advection Equation (7)

The following points should be noted about this program:

(1} Integrals 1.1 to 4.4 are evaluated in subroutine COEFF1 via the numerical quadrature

routine QUANCS,

{2) The integrands of integrals 1.1 to 4.4 are evaluated in functions F1P1 to F4P4, respectively,
which are called by QUANCS. In each of these functions, two integrands can be computed for:
(a} the linear finite element of Figure 6.1 (ITYPE = 1) (the solution from this numerical
integration agrees closely with the solution from the analytical integration in Program 7, and (b)

the QU/PG element of Figure 7.1 (ITYPE = 2).

(3) Equations (a.42) and (a.43) are evaluated in functions PHIM and PHIP respectively, and
their derivatives are evaluated in functions PHIDM and PHIDP, respectively. Note that in each
of these four functions, ¢y or qu is defined numerically (as PHIL and PHIR, respectively].

{(4) Main program SRKF45 of Appendix 4, in combination with ODE integrator RKF45, was

used, along with the data of Table 7 for the five test functions.

SUBROUTINE INITAL

PURE CONVECTION THROUGH A TUBE WITH A UNIFORM VELOCITY PROFILE CAN

BE DEPICTED AS

---------------------------------------------

Voo, +.
Vooo.o.. +. .
Voo .. +.DX. U(X,T)
Voos.., +. .
V.o, +.
X=0 X=XL

IF A MASS OR ENERGY BALANCE IS WRITTEN FOR A DIFFERENTIAL SECTION

OF THE TUBE, THE WELL-KNOWN ADVECTION EQUATION RESULTS

U + VU = 0
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SINCE EQUATION (1) IS FIRST-0RDER IN THE SPATIAL VARIABLE, X, AND
THE TEMPORAL VARIABLE, T, IT REQUIRES ONE BOUNDARY CONDITION AND
ONE INITIAL CONDITION

U(o,T) = F(T), U(X,0) = G(X) (2)(3)
FOR WHICH THE EXACT SOLUTION TO EQUATIONS (1) TO (3) IS

U(X,T) = 0, X GT VxT
(4)
U(X,T) = F(T - X/V), X LT V=T

THE SPATIAL DERIVATIVE IN EQUATION (1), U IS REPLACED BY A FINITE
X

ELEMENT APPROXIMATION OVER A GRID OF N (= 21) POINTS IN X. A

SYSTEM OF N INITIAL-VALUE ORDINARY DIFFERENTIAL EQUATIONS IN T

RESULTS, ONE DIFFERENTIAL EQUATION FOR EACH GRID POINT. THIS

SYSTEM OF ODES IS THEN INTEGRATED SIMULTANEOUSLY TO OBTAIN THE

NUMERICAL SOLUTION TO EQUATIONS (1) TO (3).

PARAMETER (N=21)

SO QN =

COMMON /T/ T, NSTOP, NORUN
/Y/  UN)
/F/ UT(N)
/SD/  UX(N)
/C/ v, SSE, FT
/FE/ DX, ITYPE,CW(3,3),
AL(N), BM(N), CU(N),DRHS(N)
/1/ 1P
COMMON AREA FOR I/0 UNIT NUMBERS
COMMON/1G/ NI, NQ

SET THE VELOCITY, LENGTH OF THE SYSTEM, NUMBER OF SPATIAL GRID
POINTS, LENGTH OF THE GRID INTERVAL, SUM OF SQUARES OF ERRORS OF
THE NUMERICAL SOLUTION, COUNTER FOR THE PLOTTED SOLUTION USED IN
SUBROUTINE PRINT

V=1.

X1=0.

XN=1.

DX=(XN-X1) /FLOAT(N-1)

SSE=0.

IP=0

SELECT THE BASIS FUNCTIONS

ITYPE

1, LINEAR FINITE ELEMENTS (HAT FUNCTIONS)

ITYPE = 2, QUADRATIC UPWIND/PETROV-GALERKIN (QU/PG)
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ITYPE=2

SET UP THE COEFFICIENT MATRIX IN BAND STORAGE MODE. THIS IS

DONE ONLY ONCE SINCE THE COEFFICIENT MATRIX IS CONSTANT
CALL COEFF1

INITIAL CONDITION (5)
DO 1 I=1.,N

U(I)=0.

CONTINUE

INITIALIZE THE TEMPORAL DERIVATIVES IN COMMON/F/
CALL DERV

PRINT THE COEFFICIENT MATRIX FOR VERIFICATION
IF (NORUN.EQ.1) THEN
DD 2 I=1,N
WRITE(NG,3)I,AL(I),BM(1),CU(I)
FORMAT(15,3F12.4)
CONTINUE
END IF
RETURN
END

SUBROUTINE DERV
PARAMETER (N=21)

COMMON/T/ T, NSTOP, NORUN
/Y/  U(N)
/F/ UT(N)
/SD/  UX(N)
/C/ v, SSE, FT
/FE/ DX, ITYPE,CW(3,3),
AL(N), BM(N), CU(N),DRHS(N)
/1/ IP

UNIT STEP FUNCTION
IF(NORUN.EQ. 1) THEN
FT=1.0EO

TRUNCATED RAMP FUNCTION
ELSE IF(NORUN.EQ.2)THEN
$=5.0
IF(T.LT.0.)FT=0.
IF(T.GT.(1./S))FT=1.
IF((T.GE.0.) .AND. (T.LE. (1./S)))FT=8T

COSINE STEP FUNCTION
ELSE IF({NDRUN.EQ.3)THEN
W=5.
PI=4.=ATAN(1.)
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IF(T.LT.0.)FT=0.
IF((W=T).GT.(P1/2.))FT=1.
IF(((W=T).GE. (0.0)).AND. ((W«T).LE. (PI/2.)))FT=1.-00S(W~=T)

SMDOTH COSINE STEP FUNCTIDN
ELSE IF(NORUN.,EQ.4)THEN

W=5.

PI=4.=ATAN{1.)

IF(T.LT.0Q0.)FT=0.

IF((W=T).GT.(PI))FT=1.

IF(((W=T) .GE. (0.0G)) .AND. ((W=xT).LE. (PI1}))
+ FT=(1.-COS(W=T))/2.0

COSINE PULSE FUNCTION
ELSE IF(NORUN.EQ.5)THEN
W=5,
PI=4.xATAN(1.)
IF(T.LT.0.)FT=0.
IF((W=T).GT.(PI))FT=0.
IF(((W=T).GE.(0.0)).AND. ((W«T).LE. (PI1/2.)))FT=1.-COS(W=T)
IF{((W=T).GT.(PI/2.)) .AND. ((W«T).LE.{(PI})) FT=1.+COS(W=T)
END IF

APPLY BOUNDARY CONDITION (4) AS A CONSTRAINT
U(1)=FT

RIGHT HAND SIDE VECTOR
Do 1 I=1,N
IF(1.EQ.1)THEN
DRHS (1) =-V={(CW(1,1)=U(1)+

+ CW(1,2)=U(2))

ELSE

+  IF(I.EQ.N)THEN

DRHS (N)=-Vx (CW(3,1)=U(N-1)+

+ CW(3,2)=U(N))
ELSE
DRHS (I1)=-V*(CW(2,1)=U(I-1)+
+ CW(2,2)=U(I)+
+ CW(2,3)=U(I+1))
END IF
CONTINUE

SOLVE THE LINEAR ALGEBRAIC EQUATIONS BY SUBROUTINE TRIDAG. WHICH
RETURNS THE DERIVATIVE VECTOR UT IN COMMON/F/

CALL TRIDAG(AL,BM,CU,DRHS,UT,N)

RETURN

END

SUBROUTINE PRINT(NI,NO)

PARAMETER (N=21)
COMMON/T/ T, NSTOP, NORUN
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1 /Y, UN)

2 /F/ UT(N)

3 /SD/  UX(N)

2 /C/ v, SSE, FT

5 JFE/ DX, ITYPE,CW(3,3),
8 AL(N), BM(N). CU(N),DRHS(N)

T /1/ IP

DIMENSION THE ARRAYS FOR PLOTTING THE SOLUTION
DIMENSION TPE(201),TPN(201),UPE(201),UPN(201)

PRINT A HEADING FOR NUMERICAL BSOLUTION
IF(IP.EQ.0)WRITE(NO,1)
FORMAT (9X, 1HT,6X,6HU(0,T) ,6X,6HU(1,T),7X,5HEXACT, 11X, 1HE)

STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING
X=1.0

TXV=T-X/V

DO 3 I=1,NP

UNIT STEP FUNCTION

IF (NORUN.EQ.1)THEN
IF(TXV.LE.O.)EXACT=0.
IF(TXV.GT.0.)EXACT=1.0

TRUNCATED RAMP FUNCTION
ELSE IF(NORUN.EQ.2)THEN
$=5.0
IF(TXV.LT.0.)EXACT=0.
IF(TXV.GT. (1./5))EXACT=1.
IF((TXV.GE.0.).AND. (TXV.LE. (1./8)))EXACT=S=TXV

COSINE STEP FUNCTION
ELSE IF(NORUN.EQ.3)THEN
W=5.0 '
PI=4.~ATAN(1.)
IF(TXV.LT.0.)EXACT=0.
IF ((W=TXV) .GT. (PI/2.))EXACT=1.
IF(((W«TXV).GE. (0.0)) .AND. ((W=TXV) .LE. (P1/2.)))
+ EXACT=1.-COS (W=TXV)

SMODTH COSINE STEP FUNCTION
ELSE IF(NORUN.EQ.4)THEN
W=5.0
PI=4.=ATAN(1.)
IF (TXV.LT.0.)EXACT=0.
IF((W=TXV) .GT. (PI))EXACT=1,
IF({((W=TXV) .GE. (0.0)) .AND. ( (W=TXV) .LE. (PI)))
+ EXACT=(1.-COS (W«TXV)) /2.

.COSINE PULSE FUNCTION
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ELSE IF(NORUN.EQ.3)THEN
W=5.0
PIl=4.=ATAN(1.)
IF(TXV.LT.0.)YEXACT=0.
IF((W=TXV).GT. (PI))EXACT=0.
IF(((W=TXV).GE.(0.0)) .AND. ((W=TXV) .LE. (PI/2.)})))

EXACT=1 . -C0S (W=TXV)
IF(((W=TXV).GT.(P1/2.)) .AND. ((W=TXV).LE. (PI)))
EXACT=1.+C0S (W=TXV)
END IF
CONTINUE

COMPUTE THE ERROR AT X = XN, FIGURE OF MERIT, SSE
=U(N) -EXACT
SSE=SSE+Ex=2

PRINT THE NUMERICAL AND EXACT SOLUTIONS, ERROR
IF((IP/10=10) .EQ. IP)

WRITE(ND,20)T,FT,U(N) .EXACT,E
FORMAT(F10.2,4F12.3)

STORE THE NUMERICAL SOLUTION FOR SUBSEQUENT PLOTTING VIA TOP
DRAWER

IP=IP+1

UPN(IP)=U(N)

STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING
UPE(IP)=EXACT

STORE THE INDEPENDENT VARIABLE FOR SUBSEQUENT PLOTTING VIA TOP
DRAWER

NP=201

TPE(IP)=2.0=FLOAT (IP-1)/FLOAT(NP-1)

TPN(IP)=TPE( IP)

TEST FOR THE END OF A RUN
IF(IP.LT.NP)RETURN

OPEN FILE FOR TOP DRAWER PLOTTING
OPEN(4,FILE='T.TOP’ ,STATUS=’NEW’)

WRITE TOP DRAW FILE FOR PLOTTING
WRITE(4,17)
FORMAT(’ SET LIMITS X FROM O TO 2 Y FROM -0.5 TO 1.57,/,
’ SET FONT DUPLEX’)
WRITE(4,13)
FORMAT(’ SET WINDOW X 2 TO 6 Y 2 TO 8°)
WRITE(4,14) (TPE(1) ,UPE(I),I=1,NP)
FORMAT (2F10.4)
WRITE(4,16)
FORMAT(’ JDIN 1°)
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WRITE(4,14) (TPN(I),UPN(1),1=1,NP)
WRITE(4,16)

WRITE(4,18)NORUN+55,SSE

FPORMAT (

1> Title 3.5 9.0 "Fig., *,I12,’'"?
2,/,° TITLE LEFT "u(1,t)”
3,/," TITLE BOTTOM "t”’
4,/, Title 3.0, 0.75 "SSE = ' ,F6.3,'77)
WRITE(4,15)

FORMAT(’ NEW FRAME®)

LEGEND OF RUNS AT THE END
IF (NORUN.EQ.5) THEN

WRITE(4,19)

FORMAT(

1° Title 3.25 9.0 "QU/PG Basis Functions, L = 0.75, R = 0.25”°,/,
1’ Title 3.25 8.5 "Fig. 56: Heaviside Unit Step Function”?’,/,

1’ Title 3.25 8.0 "Fig. 57: Truncated Ramp”’,/,

1’ Title 3.25 7.5 "Fig. 58: Cosine Step”’,/,
1’ Title 3.25 7.0 "Fig. 59: Smooth Cosine Step”’,/,
1’ Title 3.25 6.5 "Fig. 60: Cosine Pulse”?,/,
1° Title 3.25 6.0 ”"All solutions are for a 21-point grid”?)

PLOT THE BASIS FUNCTION AND ITS DERIVATIVE (ARRAYS TPE, UPE

AND UPN ARE REUSED)

DG 21 I=1,NP
TPE(I)=-DX+42.0+DXx (FLOAT(1-1) /FLOAT(NP~1))
IF(TPE(I) .LE.0.0)UPE(I)=PHIM (TPE(I))
IF(TPE(I).LE.O.0)UPN(I)=PHIDM(TPE(I))
IF(TPE(I).GT.0.0)UPE(I)=PHIP (TPE(I))
IF(TPE(1).GT.0.0)UPN(I)=PHIDP(TPE(I))

CONTINUE
WRITE(4,23)

FORMAT (> SET LIMITS X FROM -0.05 TO 0.05
1 Y FROM -0.5 TO 1.5’,/,’ SET FONT DUPLEX?’)

WRITE(4,24)

FORMAT (> SET WINDOW X 2 TO 8 Y 2 TO 8’)

BASIS FUNCTION

WRITE(4,15)

WRITE(4,26) (TPE(I),UPE(I),1=1,NP)
FORMAT(2F10.5)

WRITE(4,16)

DERIVATIVE OF BASIS FUNCTION
WRITE(4,15)
WRITE(4,26) (TPE(1) ,UPN(I),1=1,NP)
WRITE(4,16)

END IF

RETURN

END
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SUBROUTINE CDEFF1

SUBROUTINE COEFF EVALUATES THE COEFFICIENT MATRIX FOR THE
TRIDIAGONAL ODES (WHICH REQUIRES NUMERICAL QUADRATURE FOR
A SERIES OF INTEGRALS)

PARAMETER (N=21)

COMMON/T/ T, NSTOP, NORUN
/Y[ U(N)
/F/  UT(N)
/SD/  UX(N)
/C/ v, SSE, FT
/FE/ DX, ITYPE,CW(3,3),
AL(N), BM(N), CU(N),DRHS(N)
/1/ IP

COMMON FDR 1I/0 UNIT NUMBERS
COMMON/10/ NI, NO

EXTERNAL THE FUNCTIONS USED BY SUBROUTINE QUANC8 (A NUMERICAL
QQUADRATURE ROUTINE) TO EVALAUTE THE INTEGRANDS OF INTEGRALS
5.1 TO 8.4

EXTERNAL F1P1, F1P2, F1P3,

F2P1, F2P2, F2P3,
F3P1, F3P2, F3P3, F3P4,
F4P1, F4P2, F4P3, F4P4

INTEGRAL 1.1

CALL QUANC8(F1P1,-DX,DX,1.0E-05,1.0E-05,C1P1,EST,NFUN,FLAG)
WRITE(NO,110)C1P1,EST

FORMAT(® C1P1 = ’,F8.5,’ EST = ’,E11.3)
IF(FLAG.NE.O.0)WRITE(NO,111)FLAG
FORMAT(’ C1P1 MAY BE UNRELIABLE, FLAG = ’.F6.2)

INTEGRAL 1.2

CALL QUANC&(F1P2,0.0,DX,1.0E-05,1.0E-05,C1P2,EST,NFUN,FLAG)
WRITE(NO,112)C1P2,EST

FORMAT(?> Ci1P2 = ’,F8.5,’ EST = ’,E11.3)
IF(FLAG.NE.O.O)WRITE(ND,113)FLAG
FORMAT(’> C1P2 MAY BE UNRELIABLE, FLAG = ’,.F6.2)

INTEGRAL 1.3

CALL QUANCEB(F1P3,-DX,0.0,1.0E-05,1.0E-05,C1P3,EST,NFUN,FLAG)
WRITE(NO,114)C1P3,EST

FORMAT(® Ci1P3 = ’,F8.5,7 EST = ’,E11.3)
IF(FLAG.NE.O.O)YWRITE(NQ,115)FLAG
FORMAT{’> C1P3 MAY BE UNRELIABLE, FLAG = ' ,F6.2)

INTEGRAL 2.1

CALL QUANC8(F2P1,-DX,DX,1.0E-05,1.0E-05,C2P1,EST,NFUN, FLAG)
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WRITE(NO,116)C2P1 .EST

FORMAT(® C2P1 = *,F&.3.' EST = ’,E11.3)
IF(FLAG.NE.O.0)WRITE(NO,117)FLAG
FORMAT(’® C2P1 MAY BE UNRELIABLE, FLAG = ’,F6.2)

INTEGRAL 2.2

CALL QUANCS8(F2P2,0.0.DX,1.0E-05,1.0E-05,C2P2,EST,NFUN, FLAG)
WRITE(ND,118)C2P2,EST

FORMAT(® C2P2 = > ,FR.5,’ EST = ’,E11.3)
IF(FLAG.NE.O.0)WRITE (NO, 119)FLAG
FORMAT(’ C2P2 MAY BE UNRELIABLE, FLAG = ’,F6.2)

INTEGRAL 2.3

CALL QUANCS(F2P3,-DX.0.0,1.0E-05,1.0E-05,C2P3,EST,NFUN,FLAG)
WRITE(NO,120)C2P3,EST

FORMAT(’ C2P3 = ’,F&.5,’ EST = ’,E11.3)

IF (FLAG.NE.0.Q)WRITE(NO,121)FLAG

FORMAT(® C2P3 MAY BE UNRELIABLE, FLAG = ’,F6.2)

INTEGRAL 3.1

CALL QUANCS8(F3P1,0.0,DX,1.0E-05,1.0E-05,C3P1,EST,NFUN, FLAG)
WRITE(NO, 122)C3P1,EST

FORMAT(’ C3P1 = ’,F&.5,° EST = ?,E11.3)
IF(FLAG.NE.O.0Q)WRITE(NO,123)FLAG
FORMAT(’> C3P1 MAY BE UNRELIABLE, FLAG = ’,F6.2)

INTEGRAL 3.2

CALL QUANC8(F3P2,0.0,DX,1.0E-05,1.0E-05,C3P2,EST ,NFUN,FLAG)
WRITE(NO,124)C3P2,EST

FORMAT(® C3P2 = ’,FR.5,° EST = ’,E11.3)
IF(FLAG.NE.0.0)WRITE(ND, 125)FLAG
FORMAT(’ C3P2 MAY BE UNRELIABLE, FLAG = ’,F6.2)

INTEGRAL 3.3

CALL QUANCB(F3P3,-DX,0.0,1.0E-05,1.0E-05,C3P3,EST,NFUN,FLAG)
WRITE(NO,126)C3P3,EST

FORMAT(’> C3P3 = ',FR&.5,° EST = ',Ei1.3)
IF(FLAG.NE.O.0)WRITE(NQ, 127)FLAG
FORMAT(’ C3P3 MAY BE UNRELIABLE, FLAG = ’,F6.2)

INTEGRAL 3.4

CALL QUANC8(F3P4,-DX,0.0,1.0E-05,1.0E-05,C3P4,EST,NFUN, FLAG)
WRITE(NO,128)C3P4,EST

FORMAT(> C3P4 = *,F&.5,’ EST = ’,E11.3)
IF(FLAG.NE.O.0)WRITE(NO,129)FLAG

FORMAT(> C3P4 MAY BE UNRELIABLE, FLAG = ’,F6.2)

INTEGRAL 4.1

CALL QUANC&(F4P1,0.0,DX,1.0E-05,1.0E-05,C4P1,EST,NFUN,FLAG)
WRITE(NO,130)C4P1 ,EST
FORMAT(’> C4P1 = ’,F8.5,° EST = ’,E11.3)
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IF(FLAG.NE.0.0)WRITE(NO, 131)FLAG

131 FORMAT(’> C4P1 MAY BE UNRELIABLE, FLAG = ’,F6.2)
cC...
C... INTEGRAL 4.2

CALL QUANC&(F4P2,0.0,DX,1.0E-05,1.0E-05,C4P2,EST,NFUN,FLAG)
WRITE(NO,132)C4P2,EST

132 FORMAT(® C4P2 = ’,F8.5,® EST = ’,E11.3)
IF(FLAG.NE.G.0)WRITE(NQ, 133)FLAG

133 FORMAT(’ C4P2 MAY BE UNRELIABLE, FLAG = ’,F6.2)

C...

C... INTEGRAL 4.3

CALL QUANC&(F4P3,-DX,0.0,1.0E-05,1.0E-05,C4P3,EST,NFUN,FLAG)
WRITE(NO, 134)C4P3,EST

134 FORMAT(’ C4P3 = ',F8.5,’ EST = ’,E11.3)
1F (FLAG.NE.O.0)WRITE(NO, 135)FLAG
135 FORMAT(’ C4P3 MAY BE UNRELIABLE, FLAG = ’,F6.2)
C...
C... INTEGRAL 4.4

CALL QUANCS(F4P4,-DX,0.0,1.0E-05,1.0E-05,C4P4,EST,NFUN,FLAG)
WRITE (NG, 136)C4P4,EST

136 FORMAT (> C4P4 = °,F8.5,’ EST = ’,E11.3)
IF(FLAG.NE.O.0)WRITE(NO,137)FLAG

137 FORMAT(® C4P4 MAY BE UNRELIABLE, FLAG = ’,F6.2)

c...

C... LOWER DIAGONAL

DO 23 I=1,N
IF(I.EQ.1)THEN
AL(1)=0.0E0
ELSE
+ IF(I.EQ.N)THEN
AL(N)=C3P4
ELSE
AL(I)=C1P3
END IF
23 CONTINUE

C... MAIN DIAGONAL
DO 24 I=1,N
IF(I.EQ.1)THEN
BM(1)=C3P1
ELSE
+  IF(I.EQ.N)THEN
BM (N)=C3P3
ELSE '
BM(1)=C1P1
END IF
24 CONTINUE

C... UPPER DIAGDNAL
DO 25 I=1,N
IF(I.EQ.1)THEN
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CU(1)=C3p2

ELSE
+  IF(I.EQ.N)THEN
CU(N)=0.0EQ

ELSE
CU(1)=C1P2
END IF
25 CONTINUE
C..
C... WEIGHTING COEFFICIENTS IN CONVECTIVE TERM (TRANSFERRED THROUGH
C... ARRAY CW(3,3) FOR USE IN SUBROUTINE DERV)
c..
C... EQUATION 1
CW(1,1)=C4P1
CW(1,2)=C4P2
C..
C EQUATIONS 2 TO N-1
CW(2,1)=C2P3
CW(2,2)=C2P1
CW(2,3)=C2P2
C...
C... EQUATION N
CW(3,1)=C4P4
CW(3,2)=C4P3
RETURN
END
REAL FUNCTION F1P1(X)
C..
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 1.1
C..
COMMON /FE/ DX, ITYPE
C..
C... LINEAR BASIS FUNCTIONS
IF(ITYPE.EQ.1)THEN
IF(X.LE.0.0)F1P1=( (X+DX) /DX) %2
IF(X.GT.0.0)F1P1=( (DX-X) /DX) =2
C..
C QUADRATIC BASIS FUNCTIONS
ELSE IF(ITYPE.EQ.2)THEN
IF(X.LE.0.0)F1P1=PHIM(X) #*2
IF(X.GT.0.0)F1P1=PHIP (X) =2
END IF
RETURN
END
REAL FUNCTION FiP2(X)
C..
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 1.2
C..

COMMON /FE/ DX, ITYPE

163



a0

a0 Qa0

aQa

Q. aon

Qo

LINEAR BASIS FUNCTIONS
IF(ITYPE.EQ.1)THEN
F1P2=( (DX~X) /DX)~(X/DX)

QUADRATIC BASIS FUNCTIONS

ELSE IF(ITYPE.EQ.2)THEN
F1P2=PHIP (X)=PHIM(X~DX)

END IF

RETURN

END

REAL FUNCTION F1P3(X)

FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 1.3
COMMON /FE/ DX, ITYPE

LINEAR BASIS FUNCTIONS
IF(ITYPE.EQ.1)THEN
F1P3=((X+DX) /DX) ={ (-X) /DX)

QUADRATIC BASIS FUNCTIONS

ELSE IF(ITYPE.EQ.2)THEN
F1P3=PHIM(X) ~PHIP (X+DX)

END IF

RETURN

END

REAL FUNCTION F2P1(X)
FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 2.1
COMMON /FE/ DX, ITYPE

LINEAR BASIS FUNCTIONS

IF(ITYPE.EQ.1)THEN
IF(X.LE.O0.0)F2P1=((X+DX)/DX)*( 1.0/DX)
IF(X.GT.0.0)F2P1=( (DX-X)/DX)*(-1.0/DX)

QUADRATIC BASIS FUNCTIONS
ELSE IF(ITYPE.EQ.2)THEN
1F (X.LE.Q.0)F2P1=PHIM(X) «PHIDM(X)
IF(X.GT.0.0)F2P1=PHIP(X)=PHIDP (X)
END IF
RETURN
END

REAL FUNCTION F2P2(X)

FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 2.2

164



oNoRENeNoR®!

oG

oo

SN ReN e

COMMON/FE/ DX, ITYPE

LINEAR BASIS FUNCTIONS
IF(ITYPE.EQ.1)THEN
F2P2=( (DX-X) /DX)=(1.0/DX)

QUADRATIC BASIS FUNCTIONS

ELSE IF(ITYPE.EQ.2)THEN
F2P2=PHIP (X)=PHIDM(X-DX)

END IF

RETURN

END

REAL FUNCTION F2P3(X)
FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 2.3
COMMON/FE/ DX, ITYPE
LINEAR BASIS FUNCTIONS
IF(ITYPE.EQ.1)THEN
F2P3= ( (X+DX) /DX)=(-1.0/DX)
QUADRATIC BASIS FUNCTIONS
ELSE IF(ITYPE.EQ.Z2)THEN
F2P3=PHIM (X) «PHIDP (X4DX)
END IF
RETURN
END
REAL FUNCTION F3P1(X)

FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 3.1,

WHICH IS THE SAME AS THE INTEGRAND OF INTEGRAL 1.1

F3P1=F1P1 (X)
RETURN

END

REAL FUNCTION F3P2(X)

FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 3.2,

WHICH IS THE SAME AS THE INTEGRAND OF INTEGRAL 1.2

F3P2=F1P2(X)
RETURN
END

REAL FUNCTION F3P3(X)

165



OO0

aan

QOO0

aac

CaQaQ

[oN®]

FUNCTION COMPUTES THE INTEGRAND OF
WHICH IS THE SAME AS THE INTEGRAND
F3P3=F1P1(X)

RETURN

END

REAL FUNCTION F3P4(X)

FUNCTION COMPUTES THE INTEGRAND OF
WHICH IS THE SAME AS THE INTEGRAND
F3P4=F1P3(X)

RETURN

END

REAL FUNCTION F4P1 (X)

FUNCTION COMPUTES THE INTEGRAND OF
WHICH IS THE SAME AS THE INTEGRAND
F4P1=F2P1 (X)

RETURN

END

REAL FUNCTION F4P2(X)

FUNCTION COMPUTES THE INTEGRAND OF
WHICH IS THE SAME AS THE INTEGRAND

F4P2=F2P2 (X)
RETURN
END

REAL FUNCTION F4P3(X)

FUNCTION COMPUTES THE INTEGRAND OF
WHICH IS THE SAME AS THE INTEGRAND
F4P3=F2P1 (X)

RETURN

END

REAL FUNCTION F4P4(X)

FUNCTION COMPUTES THE INTEGRAND OF
WHICH IS THE SAME AS THE INTEGRAND

F4P4=F2P3(X)
RETURN
END

REAL FUNCTION PHIM(X)

FUNCTION PHIM COMPUTES THE QU/PG FUNCTION FOR X LE 0 WHICH GOES
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THROUGH THE THREE POINTS
PHI(-DX) = ©
PHI(-DX/2) = PHIL
PHI(O) = 1

COMMON/FE/ DX
PHIL=0.75
AQO=1.0
Al=(1.0/DX)=(1.0-4.0%x(PHIL-1.0/2.0))
A2=(~4.0/DX==2)=(PHIL-1.0/2.0)
PHIM=AO+AL=N+A2=Xuwx22

RETURN

END

REAL FUNCTION PHIDM(X)
FUNCTION PHIDM COMPUTES THE DERIVATIVE OF PHIM

COMMON /FE/ DX
PHIL=0.75
A1=(1.0/DX)=(1.0-4.0%(PHIL-1.0/2.0))
A2=(-4.0/DX=%2)=(PHIL-1.0/2.0)
PHIDM=A1+2.0xA2xX

RETURN

END

REAL FUNCTION PHIP(X)

FUNCTION PHIP COMPUTES THE QU/PG FUNCTION FOR X GT O WHICH GOES
THROUGH THE THREE POINTS

PHI(0) = 1
PHI(DX/2) = PHIR
PHI(DX) = O

COMMON/FE/ DX
PHIR=0.25
AO=1.0
A1=-(1.0/DX)*(1.0-4.0=(PHIR-1.0/2.0))
A2=(-4.0/DX=x2)=(PHIR-1.0/2.0)
PHIP=AO+A1=X+A2xX#%2

RETURN

END

REAL FUNCTION PHIDP({X)
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FUNCTION PHIDP COMPUTES THE DERIVATIVE OF PHIP

COMMON/FE/ DX
PHIR=0.25
A1=~(1.0/DX)=(1.0-4.0=(PHIR-1.0/2.0))
A2=(-4.0/DX==2)=(PHIR-1.0/2.0)
PHIDP=A1+2.0%A2=X

RETURN

END
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Appendix 16: Analytical Solution of the Nonhomogeneous Advection Equation

The nonhomogensous advection equation is
0 + vux = e(x,t) (a.44)
which requires an initial condition and a boundary condition
u(x,0) = g(x), u(0,t) = f{t) (a.45)(a.46)
Equations (a.44) to (a.46) are a restatement of equations (58) to (608). We now proceed to an

analytical solution of equations (a.44) to (a.46} which can be used as a test of various numerical

procedures.

If the Laplace transform of u(x,t) and c(x,t) with respect to t are defined as

Lt{u(x,t)}z Tu(x,t)e'Stdt = T(x,) (2.47)

0

oo
L, {c(x,t)}: | e{x,t)e Stdt = (x,s) (a.48)

0

equations (a.44) to (a.46) transform to

sl(x,s) - g(x) + vdl(x,s)}/dx = &x,s) (2.49)
(0,5) = I(s) (a.50)

If the Laplace transform of u(x,s) and £(x,s) and with respect to x are defined as

Ly {ﬁ(x,s)} = Tﬁ(x,s)e'p"dx = B(p:s) (a.51)
0

Ly {E(x,s)} =Tﬁ(x,s)e-p *dx = (pis) (a.52)
0
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equations (2.49) and (a.50} transform to
s(p;s) - E(P} + v{pT(pss) - [(s)} = &p.s) (a.53)
Solution of equation (a.53) for T(p,s) gives

i(ps) = (1/v) )g(p)

1
TR G e Ak )(S/ T5)Ps) (a.54)

(SIV + p)
Equation (a.54) can now be inverted, first with respect to p

-(s/v)x

X
B(x,5) = L'l{'ﬁ(p,s)} = (1/v) J e A 4 e i(s)

¢

X
+ (1/v) J /I N5 9da
0

= (I/V) e-(S/V)xI S/V)A d)‘ +e (S/ )x f( ) + (I/V) (/v)xf (S/V)A—(A )dA

0 0
= (1/v) G(x,s) + e—(s/v)x 1(s) + (1/v) C(x,s) {(a.55)
where
T (s
Glxs) = e & ")"J L0 (a.56)
0
Oxys) = o X j 505,54 (a.57)
0
Then, inversion with respect to s gives
u(x,t) = L'l{ﬁ(x,s)} = (1/V)G(x,t) + £t - x/v)h(t - x/v) + (1/v)C(x,8) (2.58)

where
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G(x.t) = L'l{é(x,s)} (2.59)

Clx,t) = L‘l{(‘:(x,s)} (a.60)
and again
0,t<0
ORI ; 0 (a.61)

Some special cases can now be considered:

(1) ¢(x,t) = d(x} and equations (a.48), (8.52) and (2.54) give

o0

L {d)} = Jd(x)e’Stdt = d(x)/s (.62)
0 |
[« @]
Lx{d(x)/s} = J [d(x)/sle PXdx = d(p)/s (2.63)
0
o) = - 1 w1 3
i(ps) = (1/V)(S/v " p)g(p) + /v + p)f(s) +(1/ )S(s/v T p)d(p) (a.64)

Inversion with respect to p then proceeds as before

X
i) = a0} = o/ [ Vgonan 4 P g
0

X
+ (1/v) J e
]

(s/v)x - »\)[d(,\)/s]dA

X X
= () e ")"J £ enar + X 56 4 amyags) e ")"I 004

¢ 0
= (1/v) G(x,8) + e—(s/v)x f(s) + (1/v) D(x,s) {2.65)
where
x
Glxs) = e &/ ")"J M 0an (a.66)
g

in



X
D(x.s) = (1/s) e'(s/")xf AT (a.67)
i

Then, inversion with respect to s gives

u(x,t) = L-l{ﬁ(x,s)} = (1/V)G(x,t) + f(t - x/V)h(t - x/¥) + (1/v)D(x.t) (a.68)

where
G(xt) = L'I{G(x.s)} (2.69)
D(x,t) = L'l{ﬁ(x,s)} (2.70)

We can also consider the limiting condition for u(x,t} as t = oo using the final value theorem of the

Laplace transform

X
t-!:rgo u(x,t) = Sli_r:’lo sti{x,s) = (I/V)J d(A)dA (a.71)
0
where we have assumed
" _fin;o f(t) = sh-r'n(! sf(s) = 0 (a.72}

Thus, for this limiting condition, the solution is merely the integral of d{x) with respectt to x, which
can be used as a convenient check of the steady state numerical solution. This follows also from

equations (a.44} and (a.45) written at steady state

vuy = d(x) (a.73)

u(0) =10 (a.74)
(2) e(x,t) = ¢(t) and equations {a.51), (a.52) and (a.64) give

o @]

Lt{e(t)}= Ie(t)e'Stdt = &(s) (2.75)
0
00
Ly {é(s)} = J é(s)e_pxdx = §(s)/p (a.76)
0
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§ = ” I B — L1 7 V)Lt & 1
U(ps) = (llv)(sf\‘ + p)g(p) + /v + p)f(s) +( /V)p(s/vv T p)e(s) (8.77)
Inversion with respect to p then proceeds as before

X
wxs) =1 o) = (10 | IE Vgmar + gy
0

X
+ (1[V)§(S)J e—(s/V)'\dA

0

= ) <[ EMP a1+ S5 5 e -

0
= (1) Bxs) + <& He) 1 (1) Bss) (a.78)
where
X
Tlxs) = & VX J /A dx (a.79)
0

E(x,s) = é(s)(-\.r/s)[e—(slv)x -1) (a.80)

Then, inversion with respect to s gives

u(x,t) = L'l{ﬁ(x,s)} = (1/V)G(x,t) + f{t - x/V)h{t - x/¥) + (1/V)E(x,t) (a.81)

where
G(x,t) = L'I{G(x,s)} (2.82)
E(x,t) = L‘I{E(x,s)} (a.83)

We can also consider the limiting condition for u(x,t) as t - oo using the final value theorem of the

Laplace transform applied to equation (a.78)

M ulat) =

lim. im sa(xe) = Jm s - (2849

1
$ =

where we have again assuined equation {a.72) applies.
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If e(t) = h(t), &s) = 1/s, by 'Hospital’s rule

lim
t = o0

im s = Im 1/ - e )= xn (2.89)

u(x,t) = 5 s—0

0

which is the solution to the problem
vugy = 1 ~ (a.86)

u(0) =10 (a.87)

as expected.
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Appendix 17: Analytical Solution of the Simultaneous PDEs

We consider here the solution of equations (62) to (66), which are renumbered here

v(-@-\ti + cé—g) =k(U-V) {a.88)
u%l—tj =k(V-U) (a.89)
V(x,0), V(0,t) and U{x,0) (2.90)(2.91)(a.92)

If Laplace transforms of V(x,t}) and U(x,t} with respect t are deflred as
o0
L [V(xt) = J V(x,t)estdt = V(x.5) (2.93)
0
o0
Ly [U(x,t)] = j U(x,t)eStdt = T(x,s) (a.94)
0

Application of these transforms to equations {a.88) to (a.92) gives

v{sV(x,s) - V(x,0) + cd—v;i%’—s—)} = k(T(x,s) - V(x,8)) (a.95)
u{sﬁ(x,s) - U(x,O)} = - k(T(x,s) - V(x,8)) (2.96)

Equation (2.96) can be solved for U(x,s)

kV{(x,s) + ul(x,0)

U(x8) = = i s P L {a.97)
Substitution of equation (a.97) in equation (a.95} then gives
d¥V - —
vel08) 4 (vs 4+ 1) T(xs) = KT(xs) + VW (x,0) (2.98)

173



Equation (a.98) is easily rearranged to

eV | (ke T = RO Ly (2.99)
or if {(s) is defined as
9
f(s) = (vs +k- Gs—k_l.—:-!—()/vc (a.100)
equation (a.99) becomes
ﬂa(_’f) + () V(xs) = Es)li(’:(“) + (1) V(x,0) (.101)

Equation (a.101) is a first order ordinary differential equation defining V(x,s) as a function of

fi
x. If both sides of equation (a.101) are multiplied by e (s)x’ which introduces an integrating factor

[Strang (11), pp 472-473)

slxs dV — s ku |
() | ) T(xg)) = o )"(("C;)U———J;(ik@ +(1/9V(x,0)) - (2.102)

integration of both sides of equation (a.102) with respect to x gives

RIOXS x,5) - V(0,5) = J f(s)’\(( v )V 0)+(1/c)V(A,0))dA

us + k
or 0
Vixs) = V(0g)e % 4 Jf(s)(A x)(%o—) + (1/c)¥(A,0))dA (2.103)
0

V(x,t) can now be obtained by an inverse Laplace transform
Vix,t) = _L‘I{V(x,s)}

+

J {V(o,s)e'“s)" Jf(s)()" ")(( nzﬂ(iﬂ) (1/c)V(A,0))dA}eStds (a.104)

If
MI_

-ix 0
Equation (a.104) is the final solution we seek. However, in order to produce a solution which
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can be evaluated numerically with reasonable effort, we take the initial conditions, equations {a.90) and

(a.92), to be homogeneous
Vi{x,0) = U(x,0) =0 (a.105)(a.106)

and equation {a.104) reduces to

V(xt) = ,_;-1 eStds

¥ + oo 2
J {V(O,S)e‘ ((VS +k- e k)/(vc))x} o
Zioo

¥

which rearranges to

¥ + oo K lave)
V(xt) = 5k J e &/ ("c))"{vm,s)e'(s/ N, sk }eStds (a.167)
¥ - ico

At this point, we can consider two types of boundary conditions (specifications of V(0,x)):

(1) A boundary condition which is consistent with the initial condition, and thereby avoids a

discontinuity. An example is

- t
V(o)) = 1- & KW (a.108)
for which the transform is
= ~1_kju
V(0,s) = 3 ST i (a.109)

(2) A boundary condition which is not consistent with the initial condition, and therefore

introduces a discontinuity. Examples are

V(o) = o /0 (a.110)
V(05) = - +1k 7 (a.111)

and
V(0,) = h(t) = {‘l’ (s g (@.112)
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V(0,s) = 1/s (a.113)

We now consider each of these examples.

We first note the foliowing transform pairs

L'l{éekls} = Io(24%t) (a.114)
[Carslaw and Jaeger. (12), p 495)
| L‘l{f(s + a)} = e abi(t) (a.115)
L'l{e'asf(s)} = h(t - a)i(t - a) (a.116)
L'l{gf(s)} = j‘f(,\)d)« (a.117)
0

[Beyer {13), p 600]

V{x,t) for boundary condition (a.108) is therefore (from substituting equation (a.109) in equation

(a.107))

(sz(uvc))x
V(xg) = e MvDx L‘l{ 1- i‘/}‘: /ue‘(sl e s+ kfu (a.118)

or

t
V(xt) = ¢ /(O (k/u)Jh(A ; x/c)e'(k/ u)(A - x/c) 10{2k EXE x/c)}dA (2.119)
0

A special case of equation (a.119) can be checked by applying the final value theorem of the Laplace

transform to equation (a.118)

(kz/(u\rc))x
tli’n;oV(X,l) = sli—!;nl) s V(x;s) = sl.i.-r,nﬁ e'(k/(vc))x {s i/;:/_ue-(sfc)xe s+ k/u

s/ vax B/ve)x _
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-(k/u)t .
as expected (i.e,, V(O.t) = 1- e (k/u) at x = 0 gives V(x,00) = 1).

For boundary condition (a.110) we have (from substituting equation (a.111} in equation

(a.107))

(kz/(uvc))
Vix) = e RN 1 { L Ol } (a.120)
or
Vixt) = e X 0y o (B/0)A - x/e) 10{2k [ &0r- x/c)} (a.121)
The final value theorem of the Laplace transform applied to equation (a.120) gives
(k /(u\-'c))
tlLII;oV(\c t)= s Vixns) = l_i_'.“o e‘(k/(vc))xs { . +1k/u (s/c)x s+ k/u =0

/)t

as expected (i.e., V{0,t) = gives V{x,00) = 0).

For boundary condition {a.112) we have (from substituting equation {a.113) in equation

(a.107))

kzl(uvc))
Vixs) = S { 1 J6/ex s ¥ k/u (0.122)

or

k2 /(uve)

(s + k/u

X

V{x,t) = e-(k/(vc))x L'I{ ( 1 + % k/u )e—(s/c)x (2.123)

s+ k/fu s+ k/u

Equation {(a.123) is just a superposition of equations (a.118) and (a.120). Thus, from equation (a.123),

t
Vixt) = & F/ON% oy J B - xfee K/ DA - /<) Io{2k [&(h- x/c)}d,\
0 (a.124)

[ g 11 o [

The final value theorem of the Laplace transform applied to equation {a.123) gives
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hm V(xt) =

Lm0 m s V(x,s) = 1

li
s—0
as expected (i.e., V(0,t) = h(t) gives V(x,00) = 1).

These three examples provide a spectrum of test problems since, by varying k/u, the rate of
change of V{0,t) can be varied for both the continuous and discontinuous cases. These examples can

therefore be used to test a computer code which implements a numerical solution of equations (a.88)

and (a.89) (or equations (63) and (64)).
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Fig. 64: Two First Order PDEs

Fig. 63: Two First Order PDEs
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10

10

V({1,t) vs t, V(0O,t) = exp(—(k/u)t)

V(1,t) vs t, V(O,t) = 1 — exp(—(k/ult)



Fig. 66: Two First Order PDEs

Fig. 65: Two First Order PDEs
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unit step
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v{1,t) vs t, V(O,t)
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