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Abstract

The simulation of physical systemswith strongly convective flow is a particularly challenging

numerical problem becausesuch systemstend to propagatesteep spatial fronts e.g., in temperature,

and even discontinuities shocks which are difficult to representnumerically. Much effort has been

devoted to this problem by numerical analysts,scientists and engineers,and this report is another

attempt to arrive at a computationallyuseful procedure. Within the context of the SSC, the flow of

supercritical helium He throughthe magnetsis a processthat must be understoodto assureadequate

cooling of the magnetsaccording to an acceptabletime schedule. Thus, the propagation of sharp

temperaturefronts along the magnetsis a phenomenawhich mustbe understoodthroughmodelingand

simulation.

In this study, we investigateapproximationsof the basic advectiongroup

8uOu 1at ôt

which we write in subscriptnotationto facilitate the discussionand analysis

ut + VUx 2

is a linear, constant velocity, although the numerical proceduresto be developedand evaluatedcan

be applied to nonlinearvariantsof 1 and 2, including two and threedimensions.

Ten approximations,which are essentially finite differences,are evaluatedthrough a seriesof

five test problemsof varying difficulty, all of which have an exact solution which can be used to assess

the quality of the numericalsolutions. We concludeas a result of these50 tests10 approximationsx

five test problems 50 cases that the five point biased upwind approximation with five point

approximationsat the boundariesis the best of the 10 approximations. We also include listings of our

code so that other investigatorscan know exactly how we did the calculations,and thereby evaluate

our work. Finally, a set of subroutinesis providedwhich canbe easily called for use in applications.

In addition to finite differences,finite volumes are mentionedbriefly, and then the five test

problems are executedwith two different finite elementsapproximations,giving an additional 10 tests
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two appoximationsx five test problems= 10 cases. The study concludeswith two testsbasedon the

nonhomogeneousadvectionequation,four tests basedon a problem involving two PDEsand one test

basedon the nonlinear Burgers’ equation,a total of sevenadditional tests. Thus, the completetest set

has 67 cases. In all of thesecases,analyticalsolutionswere used to evaluatethe numericalsolutions.
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1 The Advection Equation

We start by analyzing the convective system illustrated in Figure 1 in terms of an energy

balancewritten for an incremental length Ax

rateof accumulationof energy =

rateof heat flowing in - rate of heatflowing out

AACçf = AvpCpTx- AvpCpT 3

Division by the coefficient of the t derivative, followed by Ax-. 0, gives

OT_ OT 4
Ot Ox

We havemadeseveralassumptionsin deriving equation4, e.g., no heat transferto the fluid, constant

fluid temperatureindependentproperties, constant velocity, all of which can be relaxed, i.e., in

applying the numerical approximationsto be discussedto moregeneral and realistic problem systems.

lix Tix+&

V

V

V

x x+Ax

Figure 1.1: One-dimensionalConvectiveSystem

Equation 4 is termed the adrcction equation since it basically modelsflow. The group of derivatives

-+ is termed the advection yrovp, and essentially what we are considering are ways to
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approximatethis advectiongroup. Somewhat ironically. although equation4 is one of the simplest

partial differential equationsPDEs we can conceive, it also is one of the most difficult to integrate

numerically for reasonswhich will soon be apparent. Mathematically, it is termed a first order

hyperbolicPDE.

Before proceedingwith the numericalanalysisof equation4, we introducesome notation that

will simplfy the discussion,and the programmingof numericalapproximationsfor the advectiongroup.

If, instead of using the full derivative notation, we use a subscript to denote a partial derivative,

equation4 can be written simply as

Tt-1-vTx=0 5

An independentvariable appearingas a subscript denotesa partial derivative with respect to that

independentvariable. Thus, is denotedas Tt, and is denotedas T. Other subscriptsnot

with respect to the independentvariables of a POE are interpreted in the usual way as just

subscripts. Finally, in order to follow the usual convention of the numerical analysisliterature for

PDEs, we denotethe dependentvariable as "u" not to be confusedwith internal energy,so equations

4 and 5 become

Ou - yOu 60t Ox

ut+vux=O 7

Since equation7 or 6 is first order in t and x, it requires one initial condition and one

boundarycondition

ux,0 = gx, u0.t = ft, 89

We now consider some approximations for the basic advection or convective problem,

equations7 to 9. First, we again state that equation7 is deceptivelysimple; it is one of the mast

difficult .PDEs to integrate nvmerica!ly. To illustrate this point, we first consider the analytical

solution to equations7, 8 and 9 for the specialcasegx 0 andft = 0 for t < 0

ux,t = ft - x/vht - x/v 10

ht is the Heavisideunit step function
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ht={?’ 11

Equation 10 is derived in Appendix 1.

This solution can easily be verified. If we define A t - x/v, then from equation10, ux.t =

fAhA , i.e., u is a function of only A. The terms in equation7 become

= du/dAOA/Ot = du/dA

vux = vdu/dAOA/Ox vdu/dA-1/v

and, upon addition of these two equations,we see that equation7 is satisfied. Also, equation 10

satisfiesthe initial and boundaryconditions,equations8 and 9 again, for the specialcasegx = 0

andft = 0 for t < 0.

Now, considerthe additional special case FS = 1, t > 0, so that at x = 0, the entering

temperatureundergoesa unit stepchangeat t = 0

f10_J0,t<0
12

- ii, t > 0

i.e., ft definedby equation12 is the Heavisideunit step function, ht.

In physical terms, the temperatureis initially zero sincegx = 0 this doesnot imply absolute

zero, but rather, that the datum upon which the temperatureis defined is zero, e.g., zero degrees

centigrade. Then, at t = 0, the enteringtemperatureat x = 0 jumps from zero to one accordingto

equation12,

u0,t = ht

It then follows from equation10

ux,t = ht - xJv 13

i.e., the unit step in temperatureat z = 0 propagatesleft to right at velocity r, eventually,at t = L/v,

the unit step will reach the other end of the systemL is the overall length. At any position x when t

= x/v, an observerwould seea unit step function passby. In other words, equation7 propagatesa

finite discontinuity for this specialcase,which is a major sourceof numericaldifficulties.
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Why does this causea problem in computing a numerical solution? Considerthe slope of the

solution at any point x when t = x/v; the slope x in equation 7 is infinite! which follows from

equation13. Clearly, any numericalprocedurebasedon well behavedfunctions will fail under this

condition. In a sense,we are asking the impossibleof any numerical approximationwe might consider

for calculatingspatial derivativessuch as ux in equation 7. With this rather sobering conclusionin

mind, we can now consider what we might do to approximateequation 7 and, again, recall it is

probablythe simplestpossibledescriptionof convection.

2 Numerical Approximationof the Advection Equation

We now consider how equation 7 might be approximated for numerical solution. One

approach,within the context of the numerical method of lines [Schiesser1] is to replace the spatial

derivative, u, in equation 7 with a discrete approximation such as a first order óackward finite

dzfference

uxx,t
ux,t -ux-Ax,t

+ OAx 14

where OAx is interpreted as "of order Ax" and means that the principal truncation error of

equation14 in calculating ux is proportional to Ax. Substitution of equation 14 in equation7

gives
dux,t

- J ux,t - ux-Ax,t
15

dt -

- "1 Ax

Note that equation 15 is now an ODE since x has essentially been removed as an independent

variable,andonly t remainsas an independentvariable.

We can now useequation15 at eachof the N points in a spatial grid in x, i.e., at i = 1, 2,

N, with grid spacingAx = L/N - 1, so that x = i - 1Ax and,of course,L = N - 1Ax. Thus, if

ux,t = u, ux-Ax,t = u.1, equation7 canbe written as

du. u. - u

.di’ -v
‘Ax’

16

At i = 1, we cannot use equation 6.27 since it would involve u11 = u0 which is a fictitious point

outside the left boundaryof the grid. Rather, for i = 1, we use a first order forward finite difference

approximation

uxx,t
ux-j-A,t- ux,t

+ OAx 17
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which when substitutedin equation7 gives

dti1 =
- v

u.-u
18

Note that from boundarycondition 9, u1 = 1t in equation18. Thus, as an alternativeto equation

18, we can directly apply boundarycondition 9 as u1 = fS, with du1/dt = 0 or du1Jdt= dftJdt;

either of theselast two ODEsfor du1/dt will lead to the samenumericalsolution.

Thus, we now havea systemof N ODEs for the N dependentvariablesu1, u2,..., uN. All that

remainsis to specify the initial conditionsfor theseN ODEs,which come from equation8

uO = gi - flAx, i = 1, 2,..., N 19

For flow in the negativex direction right to left, modeledby

20

equation7 becomes

du. U. .. U.
* i+l i .

" N i 21
dt

- v Ax j,I- *** -

du ii, i-Ut
11 - f 111 22

dt ‘ Ax ‘

Equation 8 again providesthe initial conditions for equations21 and 22. However, in order to

programflow in both the positive and negativex directions,we must havesome logic in the coding to

selecteither equations16 and 18, or equations21 and 22. Theseequationsare generally termed

two point upwind approximationssince they involve two points along the spatial grid, e.g., u1_1 and u

in equation16, and one of theseis the upwind or upstreampoint, e.g.,uiin equation16.

In summary, through the use of first order forward and backward finite difference

approximations, we have replaced the advection equation, equation 7 for flow in the positive x

direction, or equation20 for flow in the negativex direction, with a set of approximatingODES that

can be integrated by a library routine for ODEs,e.g., RXF45 or LSODES. This is the essenceof the
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methodof lines.

3 ProgrammingTwo Point Upwind Approximations

Equations 16 and 18, and 21 and 22, can now be put in a general.purposelibrary

routine for the calculation of ux in equations 7 and 20, respectively or in any advection-like

equation as will be discussedsubsequently. Here is the coding for steppingalong the spatial grid,

which appearsin subroutineDSSO12listed in Appendix 2

DX=XU-XL/FLOATN-1
IFV.LJT.O.GO TO 10

C...
C... 1 FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V

UX1=U2-Ulfl/DX
DO 1 I=2,N
UXI=UI-UI-lfl/DX
CONTINUE
RETURN

C...
C... 2 FINITE DIFFERENCE APPROXIMATION FOR NEGATIVE V
10 NM1=N-1

DO 2 I=1,NM1
UXJ=UI+1-UI/DX

2 CONTINUE
UXN=UN-UN-1/DX
RETURN

Program1: Coding for Two Point Upwind Approximations

taken from SubroutineDSSO12 in Appendix 2

The following pointsshouldbe noted about this code:

1 The left and right valuesof x, XL and XR, are availableas inputs through the argumentsof

subroutineDSSO12,along with the total numberof grid points in the spatial grid, N. Then, the

grid spacing, DX = Ax can be calculated.

2 The velocity in equations7 and 20 also is available through an argumentof DSSO12, and

can be used to select either equation 16 programmedfirst or equation 21 programmedat

statement10.
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3 DO loopl and 2 are straightforwardimplementationsof equations16 and 18, or 21 and

22, respectivelyarray U is also available throughan argumentof subroutineDSSO12.

Thus, this coding returns the first derivative UX ux in equation7 or equation16 to the cafling

program through an argumentof DSSOI2. SubroutineDSSOI2 can then be called in the derivative

subroutinefor ODEs to implementequations16 and 18, or 21 and 22 dependingon the sign of

v. This is illustratedby the following coding for:

1 Subroutine INITAL which defines the initial conditions for equations16 and 18, or

equations21 and 22. i.e., equation19.

2 SubroutineDERV where the derivativesin equations16 and 18, or equations21 and

22 are programmedafter DSSO12 is called for the first run, NORUN = 1. Note also the

implementationof boundarycondition 9 at the beginning of subroutine DERV, i.e., u0,t =

ft = ht U1 = 1 in Fortran, followed by du1/dt = 0 UT1 = 0 in Fortran. Also, the

coding of equation 7 in DO loop 1 bears a close resemblanceto equation 7, which is a

significant advantageof the method of lines.

3 Subroutine PRINT which prints the numerical and analytical solutions, and plots these

solutions.

SUBROUTINE INITAL
C...
C... PURE CONVECTION THROUGH A TUBE WITH A UNIFORM VELOCITY PROFILE CAN
C... BE DEPICTED AS
C...
C...
C...
C... V
C... V -i-. -

C... . V +.DX. UX,T
C... V
C... V
C...
C... X=O X=XL
C...
C... IF A MASS OR ENERGY BALANCE IS WRITTEN FOR A DIFFERENTIAL SECTION
C... OF THE TUBE, THE WELL-KNOWN ADVECTION EQUATION RESULTS
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C... SINCE EQUATION 1 IS
C... THE TEMPORAL VARIABLE,
C... ONE INITIAL CONDITION
C...

= 0X

C... SET THE VELOCITY, LENGTH OF THE SYSTEM, NUMBER OF SPATIAL GRID
C... POINTS, LENGTH OF THE GRID INTERVAL, SUM OF SQUARES OF ERRORS
C... THE NUMERICAL SOLUTION, COUNTER FOR THE PLOTTED SOLUTION USED
C... SUBROUTINE PRINT

V=1.
XL=1.
N= 21
DX=XL/FLOAT N-i
SSE=O.
I P=O

C... INITIALIZE THE TEMPORAL DERIVATIVES
CALL DERV
RETURN

IN COMMON/F!

C...
C...
C...
C...

U + V*U = 0
T X

C... UO,T = FT, UX,O
C...

1

FIRST-ORDER IN THE SPATIAL VARIABLE, X, AND
T, IT REQUIRES ONE BOUNDARY CONDITION AND

2 3

TO 3 IS

4

IS REPLACED BY A FINITE

C... FOR WHICH THE EXACT SOLUTION TO EQUATIONS 1
C...
C... UX,T = 0, X GT V-T
C...
C... UX,T FT - X/V, X LT V*T
C...
C... THE SPATIAL DERIVATIVE IN EQUATION 1, U
C...
C...
C...
C...
C...
C...
C...

C...

X

1
2
3
4

T, NSTOP, NORUN

DIFFERENCE APPROXIMATION OVER A GRID OF N = 21 POINTS IN X. A
SYSTEM OF N INITIAL-VALUE ORDINARY DIFFERENTIAL EQUATIONS IN T
RESULTS, ONE DIFFERENTIAL EQUATION FOR EACH GRID POINT. THIS
SYSTEM OF ODES IS THEN INTEGRATED SIMULTANEOUSLY TO OBTAIN THE
NUMERICAL SOLUTION TO EQUATIONS 1 TO 3.

COMMON/T/
/Y/ U21
/F/ UT2i

/SD/ UX21
/0/ V, XL, N, DX, SSE, IP

OF
IN

C...
C... INITIAL CONDITION

DO 1 I=i,N
UI=zO.

1 CONTINUE
C...
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END

SUBROUTINE DERV
COMMON/T/ T, NSTOP, NORUN

1 /Y/ U21
2 /F/ UT21
3 /SD/ UX21
4 /0/ V, XL, N, DX, SSE, IP

C...
C... UNIT STEP FUNCTION

Ui=1
UTi=0.

C...
C... COMPUTE THE SPATIAL DERIVATIVE IN EQUATION 1 BY ONE OF A
C... SERIES OF SPATIAL DISCRETIZATIONS
C...
C... TWO POINT UPWIND

IFNORUN.EQ.1CALL DSSO120. ,XL,N,U,UX,V
C...
C... PDE

DO 1 I=2,N
UT I =-V*UX I

1 CONTINUE
RETURN
END

SUBROUTINE PRINTNI ,NO
COMMON/T/ T, NSTOP, NORUN

1 /Y/ U21
2 /F/ UT21
3 /SD/ UX21
4 /C/ V, XL, N, DX, SSE, IP

C..
C... DIMENSION THE ARRAYS FOR PLOTTING THE SOLUTION

DIMENSION TPE201 ,TPN201 ,UPE201 ,UPN201
C...
C... PRINT A HEADING FOR NUMERICAL BSOLUTION

IFIP. EQ. 0WRITENO, 1
1 FORMATQX,1HT,6X,6HUO,T,6X,6HU1,T,7X,5HEXACT,11X,1HE
C...
C... STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING

X=1 .0
TXV=T-X/V
DO 3 I=1,NP

C...
C... UNIT STEP FUNCTION

IFTXV.LE.0.EXACTcJ.
IFTXV.GT.0.EXACT=1 .0

3 CONTINUE
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C...
C... COMPUTE THE FIGURE OF MERIT, SSE

E=UN-EXACT
SSE=SSE÷E*-2

C...
C... PRINT THE NUMERICAL AND EXACT SOLUTIONS, ERROR

IFIP/1O-1O .EQ.IP
1 WRITENO,2OT,U1.UN,EXACT,E

20 FORMATF1O.2,4F12.3
C...
C... STORE THE NUMERICAL SOLUTION FOR SUBSEQUENT PLOTTING VIA TOP
C... DRAWER

I P=I P+1
UPNIP=UN

C...
C... STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING

UPE IP=EXACT
C..
C... STORE THE INDEPENDENT VARIABLE FOR SUBSEQUENT PLOTTING VIA TOP
C... DRAWER

NP=2O1
TPEIP=2 .0*FLOATIP-1/FLOATNP-1
TPNIP=TPEIP

C...
C... TEST FOR THE END OF A RUN

IFIP.LT.NPRETURN
C...
C... OPEN FILE FOR TOP DRAWER PLOTTING

OPEN4 ,FILE=’T.TOP’ ,STATUS=’NEW’
C...
C... WRITE TOP DRAW FILE FOR PLOTTING

WRITE4 ,17
17 FORMAT’ SET LIMITS X FROM 0 to 2 Y FROM -0.5 TO 1.5’,!,

1 ‘ SET FONT DUPLEX’
WRITE4, 13

13 FORMAT’ SET WINDOW X 2 TO 6 Y 2 TO 8’
WRITE4, 14 TPNI ,UPNI ,I=1 ,NP

14 FORMAT2F10.3
WRITE4,16

16 FORMAT’ JOIN 1’
WRITE4,14TPEI,UPEI,I=1,NP
WRITE4,16
WRITE4 , 18NORUN ,SSE

18 FORMAT
1’ Title 3.5 9.0 "Fig. ‘ ,I2, ‘"

2,/,’ TITLE LEFT "ul,t"
3,/,’ TITLE BOTTOM "t"’
4,/,’Title 3.0, 0.75 "SSE= ‘,F6.3,"’

WRITE4 ,15
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FORMAT’ NEW FRAME’15
C..
C... LEGEND OF RUNS AT THE

IFNORUN .EQ. 10THEN
WRITE4, 19

19 FORMAT
1’ Title 3.25
1’ Title 3.25
1’ Title 3.25

END IF
RETURN
END

Program2: SubroutinesINITAL, DERV and PRINT for Equations7 to 9

with gx = 0, ft = ht Unit StepFunction

The numerical and graphical output from subroutine PRINT is listed in Table 1 and Figur I the

figures appearin one place at the end of this report so that can be moreeasily compared

RUN NO. - 1 METHOD OF LINES SOLUTION OF THE ADVECTION EQUATION - DSSO12

9.0
8.5
3.5

END

"Heaviside Unit Step Funtion"’,/,
"Fig. 1: Two Point Upwind"’,/,
"All solutions are for a 21-point grid"’

INITIAL T - O.000E+O0

FINAL T - 0.200E+01

PRINT T - O.100E-01

NUMBER OF DIFFERENTIAL EQUATIONS - 21

MAXIMUM INTEGRATION ERROR - 0.100E-03

T UO,T U1,T EXACT E
0.00 1.000 0.000 0.000 0.000
0.10 1.000 0.000 0.000 0.000
0.20 1.000 0.000 0.000 0.000
0.30 1.000 0.000 0.000 0.000
0.40 1.000 0.000 0.000 0.000
0.50 1.000 0.003 0.000 0.003
0.60 1.000 0.021 0.000 0.021
0.70 1.000 0.077 0.000 0.077
0.80 1.000 0.188 0.000 0.188
0.90 1.000 0.349 0.000 0.349
1.00 1.000 0.530 0.000 0.530
1.10 1.000 0.694 1.000 -0.306
1.20 1.000 0.820 1.000 -0.180
1.30 1.000 0.903 1.000 -0.097

13



1.40 1.000.’ 0.952 1.000 -0.048
1.50 1.000 0.978 1.000 -0.022
1.60 1.000 0.991 1.000 -0.009
1.70 1.000 0.996 1.000 -0.004
1.80 1.000 0.999 1.000 -0.001
1.90 1.000 0.999 1.000 -0.001
2.00 1.000 1.000 1.000 0.000

Table 1: Numerical Outputfrom Program 2

The following pointsshould be noted about the tabularand graphicaloutoput in Table 1 and Figure 1.

1 The numerical solution only approximatesthe exact solution. in particular, the numerical

solution is "smoothed" which is generally termed numerical diffusion. This is a featureof the two

point, upwind approximationsand results from an additional diffusion term introducedinto the

advectionequationequation7 by the upwind approximations,as demonstratedin Appendix 3.

Recall again that this is essentiallyan impossible problem since ux in equation7 is infinite at

the point of discontinuity in the solution ux,t = ht - x/v, so that the numericalsolution can

only be an approximation in some fashion.

2 A sum of squaresof errors,SSE the sum of squaresof the differencesbetweenthe exact and

numerical solutions, is computedin subroutinePRINT. SSE is then printed at the end of the

run in the graphicaloutput of Figure 1; in this case,SSE = 5.263. SSE can then be usedas a

figure of merit in judging the performanceof variousapproximationsof the advectionequationto

be consideredsubsequently.

In order to provide the complete Fortran program SRKF45 used to compute the results in

Table 1, we have listed the main program in Appendix 4 which calls library integrator RKF45

[Forsythe,et al 1]. Also, SRKF4S reads three lines of data to control the integration via formats

1000, 1001 and 1002 that are listed below

METHOD OF LINES SOLUTION OF THE ADVECTION EQUATION -. DSSO12
0. 2.0 0.01

21 0.0001
END OF RUNS

Table 2: Datafor Program2 Readby Main ProgramSRKF45
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The dataare printed in a summaryat the beginnir.gof eachrun seeTable 1 and ate explainedbelow:

1 Line 1 - a documentationtitle which is merely read,then printed at the beginningof the run

readwith the format 20A4.

2 Line 2 - the initial, final and print interval valuesof time TO, TF and TP in main program

SRKF45 read with the format 3E10.O. In the caseof Table 2, the solution is storedfor plotting

via calls to subroutinePRINT every 0.01 time units, so that there area total of 2/0.01 + I =

201 points stored, including the initial condition at t = 0 this large number was selectedto give

smooth plots such as in Figure 1. Note however,that the solution is printed every 0.1 time units

via FORMAT 20 through the logic of the counter IP so that a reasonablenumberof solution

points are printed21 rather than201.

3 Line 3 - the numberof ODEs and the error tolerance, in this case 21 and 0.0001, read with

the format IS, 20X,El0.0.

Finally, the charactersEND OF RUNS in columnsIto 11 are read to terminatethe run.

In summary,although the two point upwind approximationis generallystablecomputationally

in the sensethat the solutions are boundedin this case 0 ux,t S 1, it suffers from numerical

diffusion which may be an unacceptabledistortion of the solution. We thereforenow considera series

of approximations,someof which offer betterperformance.

4 An Evaluationof Approximationsfor Advection Equation

We now considerhow some alternativeapproximationsfor ux in equation7. We can start

with the idea that if two point upwind approximationsproducesignificant distortion in the numerical

solution Figure 1, then additional points might improve the solution. We thereforeconsider three

point upwind approximations in which two rather than one points upwind of the point where the

derivative Ux is to be computedare used. The finite difference equationscan be derivedby a Taylor

series analysis,or by a simple algorithm developedby Fornberg [Schiesser1.2]; the resulting three

point upwind approximationsare secondorder correct, i.e., OAx2, which would lead one to believe

that the solutions shouldbe better than for the two point upwind approximationsof equations16 and
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18, or 21 and 22 which are Ox.

SubroutineDSSO14with threepoint upwind approximationsis listed in Appendix 5. The code

to call DSSQ14 in subroutineDERV for NORUN = 2 is

C...
C... COMPUTE THE SPATIAL DERIVATIVE IN EQUATION 1 BY ONE OF A
C... SERIES OF SPATIAL DISCRETIZATIONS
C.
C... TWO POINT UPWIND

JFNORUN.EQ.1CALL DSSO12O. ,XL,N,U,UX,V
C...
C... THREE POINT UPWIND

IFNORUN.EQ.2CALL DSSO140. ,XL,N,U,UX.V

In order for the code to executea secondrun and thereby call DSSO14, an additional set of datamust

be added,i.e.,

METHOD OF LINES SOLUTION OF THE ADVECTION EQUATION - DSSO12
0. 2.0 0.01

21 0.0001
METHOD OF LINES SOLUTION OF THE ADVECTION EQUATION - DSSO14
0. 2.0 0.01

21 0.0001
END OF RUNS

Thus, the first set of data is read NORUN = 1 and a run executedwith DSSO12. Then the second

set of data is read NORUN = 2 and a secondrun is executedwith DSSO14. Additional sets of data

can be addedand main program SRKF45 will continueto executeruns until the END OF RUNS data

line is read.

Becauseof the many finite differenceapproximations,and associatedsubroutinesand outputs

to be considered,we will now discussthe performanceof the various approximationsonly through the

graphicaloutput. For example, the output from the threepoint upwind approximationsin subroutine

DSSO14 is plotted in Figure 2. We note the secondmajor form of numerical distortion, numerical

oscillation, to the left of the discontinuity. Thus, we conclude that merely adding more points to an

upwind schemedoes not improve the performanceof the method of lines solution although SSE =

3.494 which is somewhatlower than for the two point upwind approximationfor which SSE = 5.263
.

Ve therefore considerthe performanceof four point biased upwind approximationswhich use

two points upstreamand one point downstreamof the point where ux is calculated. Again, these
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approximationscan be derived by a Taylor seriesanalysisor by Fornberg’s algorithm, and they are

OAx3. The final results are codedin subroutine DSSO18listed in Appendix 6. We see in Figure 3

that the numerical solution is substantially improved over Figures 1 and 2. with SSE = 1.711. We

therefore conclude that biasing does help i.e., using downstreamand well as upstreampoints,, but

more upstreamthan downstreampoints, which is the reason for the term -biased". Note also that

four point approximationsare used at the boundariesin subroutineDSSO18at x XL and XR, but

they cannot be four point biasedupwind approximationsif we are to avoid going outside the spatial

grid running from x = XL to XR.

We can therefore considera variant of DSSO18 in which we use two point approximationsat

the pointson and near the boundaries,then switch to four point biasedupwind approximationsat the

interior points. This combination is programmed in subroutine DSSO19 in Appendix 7. The

correspondinggraphical output is given in Figure 4, which appearsto be essentially equivalent to

Figure 3, but with a slightly higher SSE 2.157 vs 1.711 for Figure 3. Thus, we conclude that

switching to lower order approximationsat the boundariesdoes not offer any advantage,and this

conclusion is confirmed with subsequentexamples.

Since biasingappearsto improve the performanceof the spatialdifferentiatorsused to calculate

ux in equation7, we considerfive point biased upwind approximationsoriginally proposedby Carver

and Hinds 3, which use three points upwind and one point downwind, and are OAx4. These

approximationsare programmedin subroutineDSSO2Oin Appendix 8. The graphicaloutput is given

in Figure 5, which has the lowest SSE so far 1.392. Also, two point approximations at the

boundariesrather than five point approximationsare programmedin subroutineDS5021 in Appendix

9. The output is in Figure 6, which has a higher SSE = 2.036 than Figure 5, so againwe conclude

that using lower order approximationsat the boundariesoffers no advantage.

Next, we consider a four point biased upwind approximation proposedby Leonard 4, as

codedin subroutineLEOI in Appendix 10. The solution is plotted in Figure 7 for which SSE = 1.881.

This example illustrates that the SSE figure of merit tends to emphasizediscrepanciesin vertical

distancesdue to numerical diffusion more than due to numerical oscillation. Also, two point

approximations at the boundaries rather than four point approximationsare used in LEO2 in

Appendix 11; the solution is plotted in Figure 8 with SEE = 2.133. As might be expected, the two

point approximationstend to reducethe oscillation recall the oscillation-freesolution of Figure 1 at

the expenseof increasingthe numericaldiffusion.
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Finally, since biasinghas producedbetternumericalsolutions relative to pure upwinding, we

might concludethat further biasing, say to centeredapproximations,should improve the solution. In

subroutineDSSOO2 listed in Appendix 12 we have three point approximationsprogrammedwhich are

OAx2. The numericalsolution is given in Figure 9, with SSE = 3.654. The obviousproblem hereis

excessivenumerical oscillation. We might consider using more points in a centeredapproximation.

This is done in subroutineDSSQO4 in Appendix 13 with graphical output in Figure 10, for which SSE

= 2.456. Clearly the numerical oscillation is worse, and we can therefore generally conclude that

centeredapproximationsshouldnot used in the method of lines solution of the advectionequation if the

forcing function has a discontinuity.

This last statement also suggeststhat the performance of these various finite difference

approximations may be strongly dependenton the characteristicsof the forcing function, ft in

equation 9. In other words,as we move away from the unit step function, ft = ht, which has a

finite discontinuity and a first derivative dht/dt = 6t, the unit impulse or Dirac function, that

really cannotbe representedby any of the finite differenceapproximationsconsideredpreviously, and

consider smoother functions, the performanceof the various approximationsshould improve. This is

indeed the case, as we now demonstrate. We concludethis section by noting that ft = ht is not

realistic in physical problems anyway. Some degree of smoothnesswill occur in all realistic

applications.

5 The Effect of SmootherTest Functions

We consideras a test function ft = rt where rt is a truncatedramp function defined as

rt = 0, t < 0

rt=s,0<t< 1/s 23

rt = 1, t > i/s

where we take s = 5. rt has a steep, but finite, slope. Therefore, it is continuous, but its first

derivative is discontinuous,so it is a stringent testproblem.

The exact solution to equation7 with ft = rt in boundarycondition 9 is

ux,t = rt - x/vht - x/v 24
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which follows immediately from equation10 with ft rt and which can be used to evaluatethe

10 finite differenceapproximationsconsideredpreviously. Before proceedingto the final results,we list

subroutine: 1 DERV with equation23 programmedas a boundarycondition forcing function for

the 10 finite differenceapproximation NORUN = I to 10 and 2 subroutinePRINT with equation

24 programmedas the exact solution and the extensionof the plotting for all 10 finite difference

approximationsv. FORMAT 19;

SUBROUTINE DERV
COMMON/T/ T, NSTOP, NORUN

1 /Y/ U21
2 /F/ UT21
3 /SD/ UX21
4 /C! V, XL, N, DX, SSE, IP

C...
C... TRUNCATED RAMP FUNCTION

5=5 .0
IFT .LT.0 .U1=0.
IFT.GT. 1 ./SflU1=1.
IFT.GE.O..AND.T.LE.I
UT 1 =0

C...
C... COMPUTE THE SPATIAL DERIVATIVE IN EQUATION 1 BY ONE OF A
C... SERIES OF SPATIAL DISCRETIZATIONS
C...
C... TWO POINT UPWIND

IFNORUN.EQ.1CALL 0550120. ,XL,N,U,UX,V
C..
C... THREE POINT UPWIND

IFNORUN.EQ.2CALL DSSO14O. ,XL,N,U,UX,V
C...
C... FOUR POINT BIASED UPWIND WITH FOUR POINT APPROXIMATIONS
C... AT THE BOUNDARIES

IFNORUN.EQ.3CALL DSSO180. ,XL,N,U,UX,V
C...
C... FOUR POINT BIASED UPWIND WITH TWO POINT APPROXIMATIONS
C... AT THE BOUNDARIES

IFNORUN.EQ.4CALL DSSO190. ,XL,N,U,UX,V
C...
C... FIVE POINT BIASED UPWIND WITH FIVE POINT APPROXIMATIONS
C... AT THE BOUNDARIES

C
IFNORUN.EQ.5CALL DSSO2O0.,XL,N,U,UX,V

C::: FIVE POINT BIASED UPWIND WITH TWO POINT APPROXIMATIONS
C... AT THE BOUNDARIES

C
IFNORUN.EQ.6CALE. DSSO210.,XL,N,U,UX,V
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C... LEONARD WITH FOUR POINT APPROXIMATIONS AT THE BOUNDARIES
IFNORUN.EQ.7CALL LEO1O.,XL,N,U,UX,V

C..
C... LEONARD WITH TWO POINT APPROXIMATIONS AT THE BOUNDARIES

IFNORUN.EQ.8CALL LEO20. ,XL,N,U,UX,V
C...
C... THREE POINT CENTERED

IFNORUN.EQ.9CALL DSSOO20. ,XL,N,U,UX
C...
C... FIVE POINT CENTERED

IFNORUN.EQ.10CALL DSSOO40.,XL,N,U,UX
C...
C... PDE

DO 1 I=2,N
UTI=-V*UXI

1 CONTINUE
RETURN
END

SUBROUTINE PRINTNI,NO
COMMON/T/ T, NSTOP, NORUN

1 /Y/ U21
2 /F/ UT21
3 /SD/ UX21
4 /C/ V, XL, N, DX, SSE, IP

C...
C... DIMENSION THE ARRAYS FOR PLO’IlTING THE SOLUTION

DIMENSION TPE201 ,TPN201 ,UPE201 ,UPN201

C...
C... PRINT A HEADING FOR NUMERICAL BSOLUTION

IFIP. EQ .0WRITENO, 1
1 FORMAT9X,1HT,6X,6HU0,T,oX,6HU1,T,7X,5HEXACT,11X,1HE

C...
C... STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING

X=1 .0
TXV=T-X/V
S=5 .0
DO 3 I=1,NP

C...
C... TRUNCATED RAMP FUNCTION

IFTXV. LT.O. EXACT=0.
IFTXV.GT. 1 ./SEXACT=1.
IFTXV.GE.0. .AND. TXV.LE.1./SEXACT=S*TXV

3 CONTINUE
C...
C... COMPUTE THE FIGURE OF MERIT, SSE

E=UN -EXACT
SSE=SSE+Es*2

C...
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C... PRINT THE NUMERICAL AND EXACT SOLUTIONS, ERROR
IFIP/lOs.10 .EQ.IP

1 WRITENO,20T,U1,uN.EXACT,E
20 FORMATFIO.2,4F12.3
C...
C... STORE THE NUMERICAL SOLUTION FOR SUBSEQUENT PLOTTING VIA TOP
C... DRAWER

IP=IP+1
UPNIP=UN

C...
C... STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING

UPEIP=EXACT
C...
C... STORE THE INDEPENDENT VARIABLE FOR SUBSEQUENT PLOTTING VIA TOP
C... DRAWER

NP=2O1
TPEIP=2 .0*FLOATIP-1/FLOATNP-1
TPNIP=TPEIP

C...
C... TEST FOR THE END OF A RUN

IFIP .LT.NPRETURN
C...
C... OPEN FILE FOR TOP DRAWER PLOTTING

OPEN4,FILE=’T.TOP’ ,STATUS=’NEW’
C...
C... WRITE TOP DRAW FILE FOR PLOTTING

WRITE4 ,17
17 FORMAT’ SET LIMITS X FROM 0 TO 2 Y FROM -0.5 TO 1.5’,/,

1 ‘ SET FONT DUPLEX’
WRITE 4 , 13

13 FORMAT’ SET WINDOW X 2 TO 6 Y 2 TO 8’
WRITE4,14 TPNI ,UPNI ,I=1 ,NP

14 FORMAT2F10.3
WRITE 4,16

16 FORMAT’ JOIN 1’
WRITE4, 14 TPEI ,UPEI ,1=1 ,NP
WRITE4 ,16
WRITE4, 18NORUN+10 ,SSE

18 FORMAT
1’ Title 3.5 9.0 "Fig. ‘,12,"’
2,/,’ TITLE LEFT "ul,t"
3,/,’ TITLE BOTTOM "t"’
4,/,’Title 3.0, 0.75"SSE ‘,F6.3,"’
WRITE4 ,15

15 FORMAT’ NEW FRAME’
C...
C... LEGEND OF RUNS AT THE END

IFNORUN .EQ. 10THEN
WRITE4 ,19
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19 FORMAT
1’ Title
1’ Title
1’ Title
1’ Title
1 Title
1’ Title
1’ Title
1’ Title
1’ Title
1’ Title
1’ Title
1’ Title

END IF
RETURN
END

Program 3: SubroutinesDERV and PRINT for tbe TruncatedRamp

The precedingsubroutineDERV also requires10 setsof data for NORUN = Ito NORUN = 10. Since

theseare essentiallyreplicationsof the data in Table 2, they

FORMAT 19 servesas an index for

Figures 11 to 20. The SSEvaluesare tabulatedbelow:

11 2.636

12 0.892

13 0.121

14 0.326

15 0.037

16 0.242

17 0.192

18 0.323

19 1.069

20 0.141

Table 3: Summaryof the SSE Valuesfor the RampFunction

As in the case of the unit step function, the five point biased upwind approximationsin subroutine

3.25 9.0 "Truncated Ramp Funtion"’,/,
3.25 8.5 "Fig. 11: Two Point Upwind"’,/,
3.25 8.0 "Fig. 12: Three Point Upwind"’,/,
3.25 7.5 "Fig. 13: Four Point Biased Upwind, 4PB"
3.25 7.0 "Fig. 14: Four Point Biased Upwind, 2PB"
3.25 6.5 "Fig. 15: Five Point Biased Upwind, 5PB"
3.25 6.0 "Fig. 16: Five Point Biased Upwind, 2PB"
3.25 5.5 "Fig. 17: Leonard, 4PB"’,/,
3.25 5.0 "Fig. 18: Leonard, 2P8"’,/,
3.25 4.5 "Fig. 19: Three Point Centered"’,/,
3.25 4.0 "Fig. 20: Five Point Centered"’,/,
3.25 3.5 "All solutions are for a 21-point grid"’

/
‘I ‘

are not presentedhere. The preceding

the figures produced by the 10 finite differenceapproximations,
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Program4: Programmingfor the CosineStep

The SSE valuesfor the graphical solutions in Figures 21 to 30 are

21

22

23

24

25

26

27

28

29

30

2.155

0.564

0.063

0.201

0.024

0.148

0.101

0.196

0.637

0.058

Table4: Summaryof the SSE Valuesfor the CosineStepFunction

As before, the five point biased upwind approximationsin subroutineDSS02Ohavethe smallestvalue

of SSE, and the numericalsolution closely approximatesthe exact solution Figure25.

Next, we considera cosinestepfunction which hascontinuousleft and right derivatives

sct = 0, wt < 0

sct = [1 - cosu4j/2, 0 < wt < ,r

sct = 0, wt > r

27

1’
1’
1’
1’
1’
1’
1’
1’
1’
1’
1’

Title
Title
Title
Title
Title
Title
Title
Title
Title
Title

Two Point Vpwind"’,/,
Three Point Upwind"’,/,

3.25 8.5 "Fig.
3.25 8.0 "Fig.
3.25 7.5 "Fig.
3.25 7.0 "Fig.
3.25 6.5 "Fig.
3.25 6.0 "Fig.
3.25 5.5 "Fig.
3.25 5.0 "Fig.
3.25 4.5 "Fig.
3.25 4.0 "Fig.

All

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

Four Poi
Four Poi
Five Poi
Five Poi
Leonard,
Leonard,

Title 3.25 3.5

nt Biased Upwind, 4PB"’,/,
nt Biased Upwind, 2PB"’,/,
nt Biased Upwind, 5PB"’,/,
ut Biased Upwind, 2PB"’,/,
4PB"’ ,/,
2P8" ‘ , /,

Three Point Centered",/,

Five Point Centered"’,!,
solutions are for a 21-point grid"’
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DSSO2Ohavethe lowest value of SSE Figure 15, and give a good approximationto the exact solution.

Next we considera cosinestep function with a continuousleft derivativeand a discontinuous

right derivativewhich can be used to investigatethe local effect of continuity in the derivative

ct = 0, wt C 0

ct = 1 coswt, 0 < wt < r/2 25

ct = 1, wt > ir/2

The exact solution for this boundarycondition function again follows immediately from equation10

since1t = ct

ux,t = ct - x/vht - x/v 26

The programmingof equation25 as the boundarycondition in subroutineDERV is

C...
C... COSINE STEP FUNCTION

w=5.
P1=4. ATAN1.
IFT.LT.0.U1=0.
IFW*T.GT.PI/2.U1=1.
IFW*T.GE.0.0.AND.W*T.LE.PI/2.U1=1.-CDSWs.T
UT 1 =0

and the programmingof the exact solution, equation26 is subroutinePRINT, plus FORMAT 19,

which servesas an index for the graphical solutionsis

X=1 .0
TXV=T-X/V
W=5 .0
PI=4.scATAN1.
DO 3 I=1,NP

C...
C... COSINE STEP FUNCTION

IFTXV.LT.0.EXACT=0.
IFWsTXV .GT. P1/2 .EXACT1.
JFWTXV .GE. 0.0 .AND. W-TXV .LE. PI/2.ExACT=1 .-COSW*TXV

3 CONTINUE

WRITE4 ,19
19 FORMAT

1’ Title 3.25 9.0 "Cosine Step Funtion"’,/,
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The exact solution for this boundarycondition function again follows immediately from equation10

since ft = sct

ux,t = sct . x/vht - x/v 28

C..

The programmingof equation27 as the boundarycondition in subroutineDERV is

C... SMOOTH COSINE STEP FUNCTION
"‘=5.
PI=4.ATANl.
IFT. LT.0 .U1=0.
IFW*T .GT. PIUl=1.
IFW.T .CE. 0.0 .AND. W...T .LE.
UT 1 =0

PIflU11.-COSWscTfl/2.O

C..

and the programmingof the exact solution, equation 28 in subroutinePRINT, plus FORMAT 19,

which servesas an index for the graphical solutions is

X=1 .0
TXV=T-X/V
W=5 .0
PI=4.sATAN1.
DO 3 I=1,NP

C... SMOOTH COSINE STEP FUNCTION
IFTXV. LT. 0.EXACT=0.
IFW*TXV .GT.PIExACT=1.
IFW*TXV .GE. 0.0 .AND. W*TXV.LE. P1

+ EXACT=1 . -COSWTxV/2.
3 CONTINUE

WRITE4 ,19
19 FORMAT

1’ Title 3.25 9.0 "Smooth Cosine Step Funtion"’,/,
1’ Title 3.25 8.5 "Fig. 31: Two Point Upwind"’,/,
1’ Title
1’ Title

3.25
3.25

8.0
7.5

"Fig. 32: Three Point Upwinci"’,/,
"Fig. 33: Four Point Biased Upwind,

1’ Title 3.25 7.0 "Fig. 34: Four Point Biased Upwind,
1’ Title 3.25 6.5 "Fig. 35: Five Point Biased Upwind,
1’ Title 3.25 6.0 "Fig. 36: Five Point Biased Upwind,
1’ Title 3.25 5.5 "Fig. 37: Leonard, 4PB"’,/,
1’ Title 3.25 5.0 "Fig. 38: Leonard, 2PB"’,/,
1’ Title 3.25 4.5 "Fig. 39: Three Point Centered"’,/,

4P8"
2PB"
SPB"
2P8"

/,, ‘

‘ /
‘/

‘I,, ‘

1
‘I ‘

25



1’ Title 3.25 4.0 "Fig. 40: Five Point Centered"’,/,
1’ Title 3.25 3.5 "All solutions are for a 21-point grid"’

Program5: Programmingfor the Smooth Cosine Step

The SSE valuesfor the graphicalsolutions in Figures 31 to 40 are

31 0.99303

32 0.07744

33 0.00224

34 0.03109

35 0.00049

36 0.02384

37 0.00487

38 0.02851

39 0.04865

40 0.00118

Table 5: Summaryof the SSE Valuesfor the SmoothCosineStepFunction

As before, the five point biased upwind approximationsin subroutineDSSO2Ohavethe smallestvalue

of SSE,and the numericalsolution is essentially indistinguishablefrom the exact solution Figure 35.

Also, as expected, the various finite differencesapproximatethe exact solution more closely as the

forcing or boundarycondition function becomessmoother. This is an important result sincefor many

applications,the forcing function has the necessarysmoothnessfor the various approximations,with

the possibleexceptionof centereddifferences,to produceaccuratenumericalsolutions. Also, it may be

possible in some cases to choose the boundarycondition function to be smooth enough to ensurean

accuratesolution; for example, if only the steadystate solution spatial profile is required, then the

boundary condition function u0,t = ft can change slowly, with the only requirement that ft

approachthe correctsteadystatevalue.

We concludethis section with one more forcing function which again providesa stringent test

of the various approximations
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pt = 0, wt < 0

pt = 1 - coswt, 0 C wt C ir/2 29

pt = 1 + coswt, r/2 < wt C ,r

pt = 0, wt > if

The exactsolution for this cosinepulse from equation10 is

ux.t = pt. x/vht. x/v 30

The programmingof equation29 as the boundarycondition in subroutineDERV is

C...
C... COSINE PULSE FUNCTION

w=5.
P1=4. *ATAN1.
IFT. LT.O.U1=0.
IFW*T .GT. PIU1=O.
IFW*T.GE.O.O.AND.WT.LE.PI/2.U1=1.-COSW*T
IFW>4cT.GT.PI/2..AND.W*T.LE.PI U1=1.+COSWscT
UT 1 =0

and the programmingof the exact solution, equation30 in subroutinePRINT, plus FORMAT 19,

which servesas an index for the graphical solutions is

X=1 .0
TXV=T-X/V

.0
PI=4.scATAN1.
DO 3 I=1,NP

C...
C... COSINE PULSE FUNCTION

IFTXV. LT.0.EXACT=O.
IFW*TXV .GT. PIEXACT=O.
JFW*TXV.GE.o.0.AND.w*TxV.LE.PI/2.ExACT1._CuswTxv
IFWTXV.GT.PI/2..AND.wTxV.LE.PI EXACT=1.-i.COSW*TXV

3 CONTINUE

WRITE4, 19
19 FORMAT

1’ Title 3.25 9.0 "Cosine Pulse Function"’,/,
1’ Title 3.25 8.5 "Fig. 41: Two Point lipwind"’,/,
1’ Title 3.25 8.0 "Fig. 42: Three Point Upwind"’,/,
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The SSEvaluesfor the graphicalsolutions in Figures 41 to 50 are

4.645

1.947

0.244

0.680

0.094

0.498

0.384

0.671

2.335

0.235

Table 6: Summaryof the 5SF Valuesfor the CosinePulseFunction

As before, the five point biasedupwind approximationsin subroutineDSSO2O havethe smallestvalue

of SSE by a substantialmargin Figure 45. Also, we see from these results that using two point

approximationsat the boundariesrather than approximationsof the same order as at the interior

points has an obviousnegativeeffect on the accuracyof the numericalsolution, e.g., comparethe 5SF

valuesfor Figures45 and 46.

In conclusion, basedon the results from the five test functions, we recommendthe use of the

five point biased upwind finite differencesin subroutine DSSO2O for problems which have strongly

convective characteristics.Of course,anotherway to improve the accuracyof numericalsolutions is to

1’ Title 3.25 7.5 "Fig. 43: Four Point Biased Upwind, 4PB"’,/,
1’ Title 3.25 7.0 "Fig. 44: Four Point Biased Upwind, 2PB"’,/,
1’ Title 3.25 6.5 "Fig. 45: Five Point Biased Upwind, 5PB"’,/,
1’ Title 3.25 6.0 "Fig. 46: Five Point Biased Upwind, 2P8"’,/,
1’ Title 3.25 5.5 "Fig. 47: Leonard, 4PB"’,/.
1’ Title 3.25 5.0 "Fig. 48: Leonard, 2PB"’,/,
1’ Title 3.25 4.5 "Fig. 49: Three Point Centered"’,/,
1’ Title 3.25 4.0 "Fig. 50: Five Point Centered"’,/,
1’ Title 3.25 3.5 "All solutions are for a 21-point grid"’

Program6: Programmingfor the CosinePulse

41

42

43

44

45

46

47

48

49

50
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increasethe numberof grid points. Experiencehasindicated that 21 points is minimal for forcing or

boundaryconditions functions which change rapidly with time. Thus. the rule.of-thumb that only a

small numberof grid points or cells is required to obtain accuratesolutions is generallynot valid; even

with very smoothor slowly varying boundarycondition functions, the spatial discretizationerrorscould

be large if only a small number of grid points is used, and these errors would appeareven at steady

state.

6 Numerical Solutions to the Advection Equation Finite Elements

So far, we have consideredapproximatenumerical solutions computedby finite differences.

We now consider two other generalapproachesto numericalsolutions: finite elementsand in the next

section, finite volumes. The problem to be considered is again equations7 to 9. The general

approach in finite elements is to assumea trial solution consisting at least in part of selected

approximating functions, then attempt to complete the solution so as to minimize its error. In the

present case of equations7 to 9, we assumea separatedsolution a solution with the x and t

dependencyin separatefunctions of the form

N
ux,t ct#x 31

i= 1

Note that this solution is separatedsince the ct dependonly on t and the 4x, which are termed

the basis functions,dependonly on x. Equation31 is thenbasedon the assumptionthat an adequate

numerical solution can be computed as a sum or superpositionof N of the products of these two

functions.

Next, we choosethe basis or shape functions, *x, somewhatarbitrarily or perhapsmore

accurately,basedon knowledgeof the problem and experiencewith the finite elementmethod. In the

presentcase,we make the simplest choice, linear or triangular finite elements,also termedhat, roof or

chapeaufunctions,as depictedin Figure 6.1. Note that #x is centeredat x = x, and consistsof two

linear segmentswhich intersectthe x axis at x1 ± Ax = x+i and x1, respectively;also x = 1.

Theselinear finite elementsmake the analysis required to complete the trial solution, equation31,

relatively easysince they are easily differentiatedand integrated.
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x

Figure 6.1: A Linear Finite Element

Also, they have the property of local support since, for any given x, only three terms in the sum of

equation 31 need be considered which is apparent from a considerationof Figure 6.1 only the

functions and 0i+l are nonzeroin the interval x ± Ax.

We now substitute equation 31 in equation 7 where we see a major advantageof the

separatedform of equation31, that is, the partial derivatives in equation7 are easily computed

N
utx,t E c!t#x 32

i= 1

N
uxx,t ct.’x 33

1=1

where I denotesdifferentiation and, again, there is no confusion about this differentiation sincect

and 1x are functions of only one variable. Substitution of equations32 and 33 in equation7

gives

N N
c! tØ x .v> c1 t! x 34

i=1 i=1

Equation 31 will probably, at best, be only an approximatesolution, and thereforeequation 34 will

not be truly satisfied. Thus we arrangeit as

N N
c!tax + v ct#!x = Rx,t 35

i=1 i=l

I

xi_1 = xj+I =

XLLtX x1+Ax
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where Rx,t is a residual, which ideally is zero for all x and t if we could findthe exact solution to

equation7. Since equation31 will only be approximate,we attempt to minimize Rx,t in some

fashion. Generally,this is done by forming the integral

XN

J wxRx,tdx = 0 36

xl

where x1 and xN are the left and right boundary valuesof x, respectively,and wx is a weighting

function selected by the analyst. Thus the use of equation 36 is called the method of weighted

residuals as suggestedby the integrand in equation 36. Basically, we are making the residual,

1lx,t, orthogonalto the weightingfunction, wt.

The solution resulting from the use of equation36 is said to be of the weak form sinceit does

not satisfy equation 7 for all x and t. Severalwell known choicesfor wx can be considered. We

considerherejust one, wx = 6x - x1 the unit impulse or .Dirac delta function, for which equation

36 becomes

xN

J 6x - xItx,tdx = Rx,t = 0 37

where we havemadeuse of the sifting propertyof the delta function,

Jbtxfx = 10 38

Equation 37 indicates that we merely set the residual to zero at the z1, which is the collocation

method; the x i = 1, 2, . . ., N, are called the collocation points. It is also a strong form of the

solution at these collocation points since the residuals are zero at these points, or in other words,

equation7 is satisfiedexactly at the collocation points.

We apply the collocation method, equation37, to equation35 at x, j = 1, 2, . . ., N the N

collocation points, by multiplying equation35 by 6x - x and integratingfrom x1 to

xN
N XN

NJ 6x - xj> c.’txdx + vJ 6x- xjEct!xdx
= J tx - xRxtdx =

i1 x1 i1

or
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xN xN xN

6x
- xjøxdx + vEc1tJ bx - x.’xdx

= J 6x - x9Rx.tdx = 0 39
i=1 x1 i=1 x1 xl

where we have interchangedthe order of integration and summation which can be done for finite

sums. Then, making use of equation37,

N N
+ v>ct.’x. = 0 40

i=1 i=1

From the propertiesof *x in Figure 6.1, i.e.,

xj {
we have

N
Ec.’tix = cRt 41
i=l

i.e., there is only onenonzeroterm in this sum correspondingto i = j.

However, we encountersome difficulties with the sum

N
Lct*! xi 42

since ‘x. is discontinuousat i = j - 1, j and j + 1 v. Figure 6.1; in other words, it’s not clear

what values we should use for Ø’ x9 in equation 42 this can perhaps be better understoodby

selectingspecific valuesof i and j as examplesand sketching*! x say j = 4, i = 3, 4 and 5 or i = 4,

j = 3, 4 and 5. We therefore concludethat collocation cannot be applied to the solution of equation

7 with the linear finite elementsof Figure 6.1. Higher order finite elements,e.g., quadraticsor

cubics, with continuous first derivatives would circumvent this problem; B-splines [Strang, 5] are

widely usedbasisfunctions which meet this conditionof continuity in various derivatives.

However, we will continue with the linear finite elementsof Figure 6.1, and use a different

weighting function, wx, in equation 36. Specifically, we use the basis functions as the weighting

functions, which is the Galerkin method

xN

J jxRxtdx = 0 43
xl
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In other words, we make the residual, Rr,t, orthogonal to the basis functions. Multiplying equation

35 by cx and integratingfrom x1 to xN, we have

xN xN XN
NN

J .x c!txdx + vJ .xEc.t!xdx
= J .xRx,tdx = 0

i1

or

N
xN xN XN

N
Lc.’tJ Øx.xdx + vLc.tJ x#.’xdx

= J 3xRx,tdx = 0 44
i1 x1 i1 x1

where we haveinterchangedthe order of integrationand summation.

We now must considerthreecasesfor eachof the two LHS integrals in equation44. For the

first integral

xN

1 J Øx#1xdx

1.1 i=j

xN x 2

J o1xxdx -

fx
-
x1 1

_____

-J .xuJ dx+J {:::}2dx

xi+1
= -1--x - x. 3 J - -_-i-_2x.+i

- 3
J = 2/3.Sx

3Sx2 ‘ Xj.1 3Sx 9

1.2 i = j-4-l or j = i-i

xN xi+i
x-x. 1 e x.x+ij1_x-x. 1j 01xØi+ixdx = J :x.JIL+l .Jxijth = -J lxi+1 - xijlxi+l

.‘xijthc
xl
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Using integration by parts,we have

xi+l
x.x+ilI_x-x. +

/24 x - xi2dx}I -utxi÷1 x1j1x.1 .‘x.Jdx = 2{x - x+i1/2x
-

- 1/6 x-x

so

XN

J xøi+zxdx =

xl

1.3 i =j-l orj = i+l

xN xi x.{ x.xi’If_x.-x ‘
‘

x-x’j x-x. 1J ii-i@ J x. xiij1xJxiijth J jx
- xilflxi

- ‘jth

= l/6x

which follows from the precedingcasewith k-i i.

xN

2 J ØxØ!xdx

2.1 i=j

xN x÷iI

{ ‘dx + I 1’÷’ -J X1 x11Jx lXi+iXiJAx
xl x11 xi
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= Xi O2 2i+l
- x2 = - = 0

2.2 i = j+1 or j = i-i

XN x+i x.

J xø. xdx
= j }.dx = 2’i+l

- x2
i+l

xl xi

2.3 i = j-1 on = k-i

xdx =i’ {:14}A1dx = ---2x- xi2 -

Thus, equation44 becomes

or

.Ax/6c.1 + 4Ax/6c! + Ax/6c.’1 = -v{l/2cj÷i - l/2c11}

l/6c. + 4/6c! + 1/6c.f1 = _v{+7’1} 45

Equation 45 is the Galerkin approximation to the advectionequation7 based on the linear

finite elementof Figure 6.1. It has the following properties;

1 The LUS is a linear combination of three time derivatives, c.f1 , c., c1 = dc+j/dt

dc/dt, dcj/dt so that equation 45 is linearly implicit; in other words, it is not possible to

explicitly compute each time derivative as in preceding approximations,and therefore library

routines such as RXF45, which are for explicit ODEs cannot be used directly. We have

essentially two choices:a apply a linear equationsolver to equation 45 to obtain c.+’i , c!
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and c.ç explicitly which can then be sent to a solver like RKF4S, or b use an ODE integrator

designedspecifically for implicit ODEs,such as LSODI or DASSL. We will use the former in the

subsequentcoding so that we can retain the useof RKF45.

2 The RHS of equation 45 is just the usual two point, centered approximation of the

derivative in ux in equation7.

In summary, weightedresidualmethodssuch as Galerkin’s methodgenerally lead to implicit ODEs such

as equation45.

In order to completethe Galerkin formulation of equation7, we must also include the initial

and boundaryconditions, equations8 and 9. For the initial condition, we take gx = 0 as in the

precedingexamples.in which casect = 0, 1 = 1, 2 N in equation31 so that ux,0 = 0. For

the boundarycondition, we havefrom equation31

u0,t = ft = c1tØ10 + c2t020 + . . . +

But, we seefrom Figure 6.1 that = I andO = 0, i = 2, 3, . . . , N so that

c1t = 1t 46

However, this result is rather specific to the linear finite elementin Figure 6.1. We shall thereforealso

considerthe integralsat x = x1 which leadto this result to demonstratehow we canuse finite elements

other than the linear finite element in Figure 6. Theseintegralsresult from applying equation44

with x = Ø1x, and neglectingany integrationsfor x C x1.

x xN xN

EcRtJ1x1xdx + vLc;tJ ô1x.’xdx
= J 01xRx,tdx = 0 47

il x1 i=1 x1

Becauseof the propertiesof the linear finite elementin Figure 6.1, equation47 becomes
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X2

c tJ Ø1x1xdx + c tJ 01x#2xdx
x1

48

x2 x2
+ vcitJ 01xØ1’ xdx + vc2tJ Ø1x xdx = 0

xl

Thus, we havefour integralsto evaluatein equation48.

Also, we are primarily interestedin uxN.t for which we require an equation. If in equation

44 we take dx = ØNx and neglectany integrationsfor x > xNl we againarrive at four integrals

resulting from the applicationof Galerkin’s method

c!tNxoxdx + v citmNx!xdx =:Nxaxtdx
= 0

which, becauseof the propertiesof the linear finite elementin Figure 6.1, becomes

XN 9.4

cNi tf *Nx*N4xdx + c tJ *NxØNxdx
XN1 xNl

50

xN XN

÷ YeN 1t4 *NxN’i xdx + YCNWJ #NXN xdx = 0

xN1 9.41

Thus, we againhavefour integralsto evaluate.

XN

3 J xoxdx

xN 1
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3.1 i=j=1

2x2 - X
x2 - x3 1/3Ax

= J {x2 - x15 dx
=

xl

which is 1/2 of the result from integral 1.1 as expected.

3.2 i=2,j= 1

x9 x2

___ ___

çx-x2fx-x1
-

- J 1x2
-
xJx2 - J1Jdx

= -J 1x2 - x1fx2 - }dx
x1

Using integrationby parts,we have

X2 X2

rIx.xç Ixxi dx=1xx21/2x.xl2?.l/2Jxxi2dx}-J 1x2 - ilflx2 - xiJ Ax21 x1

a12{

x2
= - 1/6x- xi I } = l/6Ax

x1

which agreeswith integral 1.2.

3.3 i=j=N

xN xN 2f x - xN1
dx = x - xN13

N
= 1/3AxJ NxNxdx

= J xN - xNIJ xN 1
xNi xNl

which is 1/2 of the result from integral 1.1 as expected.

3.4 i = N-l,j = N
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xN xN XN

xNllI xN.x

}dx -

j
{x.xNl ‘If x.xNJ øNxNlxdx

= J {;-- xN lflxN - xNl -. xN
- xN 1JIXN - xNl}dx

N1 xNl XN1

Using integrationby parts,we have

XN
x-xNl I x.xN 1 I xN

xN

2dx}x - xN 1/2x - x&2 J - 1/24 x - xN
j {x

- xNl}lXxN1f l XN1
xNlxN 1

2{

xN
= - 1/6x- xN J = 1/6x

xN 1

which agreeswith integral 1.3.

xN

4 J ØxØ ‘xdx

xN 1

4.1 i=j=1

x2
I f x2 - xJ øi@ xdx

= J - = th&xQ - x2 I =
- 1

2

which agreeswith the first part of integral 2.1 as expected.

4.2 i=2,j=1

x2
I

I’2’lid 2 = 1J #i xdx
= j 1X2 -

Xij x xi 2

which agreeswith integral 2.2.
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4.3 i=j=N

xN xN
xxNlJ xdx

= j { - XJ x xNl2
N

xNl
xN1 XN1

which agreeswith the first part of integral 2.1.

4.4 i = N-1,j = N

xN xN
Ix.xNi }.kdx=4xx -J NNIl xdx

= J - xf ax 2Ax x1 - 2
xNl XN1

which agreeswith integral 2.3.

Thus,for x = x1, we have in place of equation45

2/6c? + 1/6c’ = -v
1c2 -

2 t2AxI

or

4/6c + 2/6c’ = .v12_- 1] 512 taxI

Also, for x = xN, we have in placeof equation45

1/6cN’l + 2/6cr4
= .v{N2N1}

or

2/6cN’l + 4/6c4 = v{cN -cN1}
52

We can now summarize the entiresystemof ODEsfrom equations45, 51 and 52
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4/6c + 2/6c = .v{c21}

1/6c + 4/6c + 1/6c =

1/6c2’ + 4/6c + 1/6c4’ = .{42}

53

1/6cN + 4/6c2 + 1/6cN’l =

1/6cN’2 + 4/6CN’l -4- 1/6c =

2/6cN’l + 4/6c = -v{ N-1}

We haveequation from 46, c1 = 1t, and it follows that cc = f’t. However, since cj is

then integratedby the ODE solver to producec1, we could equivalentlyset c1 = ft and usecc = 0 as

the first equation in equations53, i.e., use the boundarycondition c1 = 1t to set c1 rather than use

the ODE integrator to compute c1. However, this approachis rather specific to the linear finite

element in Figure 6.1, and therefore we will use the more general approachof equations53 in the

subsequentprogramming.

We note that the LBS weighting coefficients of equations53 form a tridiagonal matrix.

Therefore, we can invert the LBS using a tridiagonal solver to obtain c? , c , . . .
,
c1

explictly, then send this vector of derivativesto an explicit ODE solver,e.g., RKF45. The solution of

particular interest is uxN,t, which, from equation31, is

uxN,t C1,t 54

and CNt is computedby simultaneoussolution of equations50.

The programmingof equations53 in subroutineDERV is listed in Program 7 a]ong with the

data files in Table 7 for the five testfunctions NORIJN = I to 5. Program7 also includesa listing of

subroutineINITAL which hasbeenextendedto set the tridiagonal coefficientmatrix of equations53.

SubroutinePRINT hasalso beenmodified slightly to give the correct titles to the plots
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x=O
C...
C... IF A MASS OR ENERGY BALANCE IS WRITTEN FOR A DIFFERENTIAL SECTION
C... OF TIlE TUBE, THE WELL-KNOWN ADVECTION EQUATION RESULTS
C...

U +V*U =0 1
T

C... SINCE EQUATION 1 IS FIRST-ORDER IN THE SPATIAL VARIABLE, X, AND
C... THE TEMPORAL VARIABLE, T, IT REQUIRES ONE BOUNDARY CONDITION AND
C... ONE INITIAL CONDITION
C...
C... UO,T = FT, UX,O = GX 23
C...
C... FOR WHICH THE EXACT SOLUTION TO EQUATIONS 1 TO 3 IS
C...
C... UX,T = 0, X GT V*T
C...
C... UX,T = FT - X/V, X LT V-T
C...
C... THE SPATIAL DERIVATIVE IN EQUATION 1, U IS REPLACED BY
C... X

ELEMENT APPROXIMATION OVER A GRID OF N = 21 POINTS IN X. A
SYSTEM OF N INITIAL-VALUE ORDINARY DIFFERENTIAL EQUATIONS IN T
RESULTS, ONE DIFFERENTIAL EQUATION FOR EACH GRID POINT. THIS
SYSTEM OF ODES IS THEN INTEGRATED SIMULTANEOUSLY TO OBTAIN THE
NUMERICAL SOLUTION TO EQUATIONS 1 TO 3.

COMMON/T/ T, NSTOP, NORUN
1 /Y/
2
3 /SD/
4 /C/
5 /FE/
6 AL21,

SUBROUTINE INITAL
C...
C... PURE CONVECTION THROUGH A TUBE WITH A UNIFORM VELOCITY PROFILE CAN
C... BE DEPICTED AS
C...
C...
C...
C... V
C... V
C... V +.DX. UX,T
C... V
C... V
C...
C... X=XL

C...
C...
C...

X

C...
C...
C...
C...
C...
C...

4

A FINITE

U21
UT 21
UX21

xl,
BM21,

SSE, FT
XN, DX,

CU21 ,BRHS21
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C... UPPER DIAGONAL
DO 25 I=1,N

IFI .EQ.1THEN
C...
C... FIRST ODE NOT USED
C CU1=0.OEO
C...
C... FIRST ODE USED

CU1=2.OEO/6 .OEO
ELSE

+ IFI.EQ.NTHEN
CU N =0 . OEO

ELSE
CUI=1 .OEO/6 .OEO

END IF
25 CONTINUE
C...
C... INITIAL CONDITION 5

DO 1 I=1,N
UI=0.

1 CONTINUE
C...
C... INITIALIZE THE TEMPORAL DERIVATIVES IN COMMON/Fl

CALL DERV
C...
C... PRINT THE COEFFICIENT MATRIX FOR VERIFICATION

IFNORUN .EQ. 1THEN
DO 27 I=1,N

WRITENO,28I,ALI,BMI,CUI
28 FORMATI5,3F12.4
27 CONTINUE

END IF
RETURN
END

SUBROUTINE DERV
COMMON/T/ T, NSTOP, NORUN

1 /Y/ U21
2 /F/ UT21
3 /SD/ UX21
4 /C/ V, SSE, FT
5 /FE/ Xi, XN, DX,
6 AL21, BM21, CU21,BRIIS21
7 /1/ IP, N

C...
C... UNIT STEP FUNCTION

IFNORUN .EQ. 1THEN
FT=1 .OEO

C...
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7 /1/ IP, N
C...
C... COMMON AREA FOR I/O UNIT NUMBERS

COMMON/IO/ NI, NO
C...
C... SET THE VELOCITY, LENGTH OF THE SYSTEM, NUMBER OF SPATIAL GRID
C... POINTS, LENGTH OF THE GRID INTERVAL, SUM OF SQUARES OF ERRORS OF
C... THE NUMERICAL SOLUTION, COUNTER FOR THE PLOTTED SOLUTION USED IN
C... SUBROUTINE PRINT

V=1.
X1r0.
XN=1.
N=2 1
DX=XN-X1/FLOATN- 1
SSE=0.
I P=O

C.
C... SET UP THE COEFFICIENT MATRIX IN BAND STORAGE MODE. THIS IS
C... DONE ONLY ONCE SINCE THE COEFFICIENT MATRIX IS CONSTANT
C...
C... LOWER DIAGONAL

DO 23 I=1,N
IFI .EQ.1THEN

AL1=0.OEO
ELSE

+ IFI.EQ.NTHEN
ALN=2 .OEO/6 .OEO

ELSE
ALI=1 .OEO/6.OEO

END IF
23 CONTINUE
C...
C... MAIN DIAGONAL

DO 24 I=1,N
IFI .EQ.1THEN

C...
C... FIRST ODE NOT USED
C BM1=1.OEO
C...
C... FIRST ODE USED

BM1=4.OEO/6 .OEO
ELSE

+ IFI.EQ.NTHEN
BMN=4.OEO/6.OEO

ELSE
BM I =4. OEO/6 . OEO

END IF
24 CONTINUE
C...
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C... TRUNCATED RAMP FUNCTION
ELSE IFNORUN.EQ.2THEN

5=5 .0
IFT.LT.0.FT=0.
IFT.GT. 1 ./SflFT=1.
IFT.GE.0..AND.T.LE.l./SIflFT=S*T

C...
C... COSINE STEP FW9CTION

ELSE IFNORUN .EQ.3THEN
W=5.
P1=4. *ATAN1.
IFT.LT.0. FT=O.
IFWsT .GT. PI/2.FT=1.
IFWsT .GE. 0.0 .AND.W*T .LE. PI/2.flFT=1 .-COSWT

C...
C... SMOOTH COSINE STEP FUNCTION

ELSE IFNORUN.EQ.4THEN
W=5.
PI=4.-ATAN1.
IFT.LT.0.FT=0.
IFW*T .GT. PIFT=1.
IFW’T .GE. 0.0 .AND. Ws.T .LE. P1

+ FT=1.-COSW*T/2.0
C...
C... COSINE PULSE FUNCTION

ELSE IFNORUN.EQ.5THEN
W=5.
P1=4. .sATAN1.
IFT.LT.0.FT=O.
IFW*T .GT. PIFT=0.
IFWT.GE.O.0.AND.W*T.LE.PI/2.FT=1.-COSWT
IFW*T.GT.PI/2..AND.W*T.LE.PI FT=1.+COSW*T

END IF
C...
C... APPLY BOUNDARY CONDITION 4 AS A CONSTRAINT

U1=FT
C...
C... RIGHT HAND SIDE VECTOR

DO 1 I=1,14
IFI .EQ.1THEN

C...
C... FIRST ODE NOT USED
C BRHSi=O.OEO
C...
C... FIRST ODE USED

BRHS1=-V/1.0E0DXU2-U1
ELSE

+ IFI.EQ.NTHEN
BRHSN=-’/1.0E0*DXUN-UN-1
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ELSE
BRHSI=-V/2 .oE0DXUI+1-UI-1

END IF
1 CONTINUE
C...
C... SOLVE THE LINEAR ALGEBRAIC EQUATIONS BY SUBROUTINE TRIDAG, WHICH
C... RETURNS THE DERIVATIVE VECTOR UT IN COMMON/F/

CALL TRIDAGAL,BM.CU,BRHS,UT,N
RETURN
END

SUBROUTINE PRINTNI ,NO
COMMON/T/ T, NSTOP, NORUN

1 /Y/ U21
2 /F/ UT21
3 /SD/ UX21
4 V, SSE, FT
5 /FE/ Xl, XN, DX,
6 AL21, BM2l, CU21,BR-IS2l
7 /1/ IP, N

C...
C... DIMENSION THE ARRAYS FOR PLOTTING THE SOLUTION

DIMENSION TPE201,TPN201,UPE201,UPN201
C...
C... PRINT A HEADING FOR NUMERICAL USOLUTION

IFIP.EQ.0WRITENO,1
1 FORMAT9X,1HT,6X,6HU0,T,6X,6HU1,T,7X,5HEXACT,11X,1HE
C...
C... STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING

X=1 .0
TXV=T-X/V
DO 3 I=1,NP

C...
C... UNIT STEP FUNCTION

IFNORUN.EQ . iTHEN
IFTXV. LE.0 .EXACT=O.
IFTXV.GT.0. EXACT=1 .0

C...
C... TRUNCATED RAMP FUNCTION

ELSE IFNORUN.EQ .2THEN
5=5 .0
IFTXV.LT.0.EXACT=0.
IFTXV.GT. 1 ./SEXACT=1.
IFTXV.GE.0..AND.TXV.LE.1./SflEXACT=S*TXV

C...
C... COSINE STEP FUNCTION

ELSE IFNORUN.EQ.3THEN
W=5 .0
PI=4. *ATANl.
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IFTXV .LT.0. EXACT=0.
IFW-TXV .GT. PI/2.flEXACT=1.
IFWTXV.GE.0.0.AND.W*TXV.LE.PI/2.fl

+ EXACT=1 . -COSW-TXV
C...
C... SMOOTH COSINE STEP FUNCTION

ELSE 1FNORUN.EQ.4THEN
W=5 .0
PI=4.ATAN1.
IFTXV.LT.0.EXACT=O.
IFW*TXV .GT.PIflEXACT=1.
IFWTXV .GE. 0.0 .AND. W*TXV .LE. P1

+ EXACT=1 . -COSW*TXV/2.
C...
C... COSINE PULSE FUNCTION

ELSE IFNORUN.EQ.5THEN
W=5 .0
PI=4.*ATAN1.
IFTXV.LT.0.EXACT=0.
IFW*TXV .GT. PIEXACT=O.
IFW*TXV .GE.0.0 .AND.W.cTXV .LE. P1/2.

+ EXACT=1 .-COSWscTXV
IFW*TXV .GT. P1/2. .AND. W-TXV .LE. P1

-f EXACT=1 .+COSW*TXV
END IF

3 CONTINUE
C.
C... COMPUTE THE FIGURE OF MERIT, SSE

E=UN-EXACT
SSE=SSE+E2

C...
C... PRINT THE NUMERICAL AND EXACT SOLUTIONS, ERROR

IFIP/i0*lO.EQ.IP
1 WRITENO,20T,FT,UN,EXACT,E

20 FORMATF10.2,4F12.3
C..
C... STORE THE NUMERICAL SOLUTION FOR SUBSEQUENT PLOTTING VIA TOP
C... DRAWER

IP=IP+l
UPNIP=UN

C...
C... STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING

UPEIP=EXACT
C...
C... STORE THE INDEPENDENT VARIABLE FOR SUBSEQUENT PLOTTING VIA TOP
C... DRAWER

NP=201
TPEIP=2 .OFLOATIP-1/FLOATNP-l
TPNIP=TPEIP
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TEST FOR THE END OF
IFIP. LT.NPRETURN

OPEN FILE FOR TOP
OPEN4,FILE’T.

DRAWER PLOTTING
TOPS .STATUS=’NEW’

C... WRITE TOP DRAW FILE FOR PLOTTING
WRITE4,

17 FORMAT’

WRITE4,
13 FORMAT’

WRITE4 ,14
14 FORMAT2F10.4

END IF
RETURN
END

JOIN
14 TPN I ,UPNI , I=1 ,NP

Program7: SubroutinesDERV and PRINT for the Galerkin

Solutionwith Linear Finite Elements.Five Test Functions

The following points should be noted about the programming in subroutines DERV and

C...
C...

C...
C...

C...

A RUN

1

17
SET LIMITS X FROM 0 TO 2 Y
SET FONT DUPLEX’

13
SET WINDOW X 2 TO 6 Y

TPEI ,UPEI ,I=1 ,NP
2 TO 8’

1’
WRITE4, 16

16 FORMAT’
WRITE4,
WRITE4,
WRITE 4

18 FORMAT
1’ Tit
2,/,’

4,/,’Title 3.0, 0.75 "SSE
WRITE4, 15
FORMAT’ NEW FRAME’

16
18NORUN+50 ,SSE

le 3 5 9 0 "Fig. ‘,I2,"’
TITLE LEFT "ul,t"
TITLE BOTTOM "t"’

FROM -0.5 TO 1.5’,/,

, I‘I’

,F6.3 "

15
C..
C... LEGEND OF RUNS AT THE END

IFNORUN.EQ .5THEN
WRITE4 ,19

19 FORMAT
"Galerkin1’ Title 3.25 9.0

1’ Title 3.25 8.5 "Fig.
1’ Title 3.25 8.0 "Fig.
1’ Title 3.25 7.5 "Fig.
1’ Title 3.25 7.0 "Fig.
1’ Title 3.25 6.5 "Fig.
1’ Title 3.25 6.0 "All

with Linear FInite Elements"’
51: Heaviside Unit Step Function"
52: Truncated Ramp" ,/,
53: Cosine Step"’,/,
54: Smooth Cosine Step"’,/,
55: Cosine Pulse"’ ,/,

solutions are for a 21-point grid"’
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PRINT:

1 Tridiagonal equations53 are programmedin two steps:

1.1 In INITAL, the subdiagonalis stored in array AL, the main diagonalin array BM, and

the superdiagonain array CU. This is done only once in INITAL since these diagonalsare

constant.

1.2 In DERV, after the boundarycondition function, 1t, is computedfor NORUN = ito

5, the RHS vectorof equations53 is storedin array BRHS.

2 After the tridiagonal matrix and RUS vector ate defined, subroutineTRIDAG [Press,et a!,

6] is calledat the end of DERV to computec to c array UT. Then, in the usual way, UT

is sent through COMMON/F/ to RKF45, which returns array U c1 to cN in COMMON/Y/.

3 From equation54, we haveuXN,t = cNt, which is printed and plotted in PRINT.

The following datain Table 7 are for five runs correspondingto the five testfunctions:

GALERKIN NUMOL SOLUTION OF ADVECTION EQN - UNIT STEP
0. 2.0 0.01

21 0.0001
GALERKIN NUMOL SOLUTION OF ADVECTION EQN - TRUNCATED RAMP
0. 2.0 0.01

21 0.0001
GALERKIN NUMOL SOLUTION OF ADVECTION EQN - COSINE STEP
0. 2.0 0.01

21 0.0001
GALERKIN NUMOL SOLUTION OF’ ADVECTION EQN - SMOOTH COSINE STEP
0. 2.0 0.01

21 0.0001
GALERKIN NUMOL SOLUTION OF ADVECTJON EQN - COSINE PULSE
0. 2.0 0.01

21 0.0001
END OF RUNS

Table 7: Data for Program7
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Main program SItKF45 in Appendix 4 was again used to read the data in Table 7 and call

RKF45 and thus INITAL, DERY and PRINT. The graphicaloutput producedby subroutinePRINT

is in Figures 52 to 55. The SSE values for theseruns are tabulatedin Table S

51 1.271

52 0.037

53 0.027

54 0.002

55 0.099

Table 8: Summaryof the SSE Valuesfor the Gaerkin

on Linear Finite ElementSolutions

Again, we see numerical oscillation, which is probably to be expected becauseof the centered

approximation of ux in the RHS of equations53. This centeredapproximationresults from the

symmetric form of the linear finite element in Figure 6.1. Therefore, we might expect better results

from an upwind finite element,and in fact, we shall explore this possibility next. Generally,however,

the linear finite elementof Figure 6.1 producedsurprisingly good solutions;the SSE valuesare close to

those for the five point, biased upwind approximationsin subroutineDSSO2O,e.g.,

Approximation ft Figure SSE

Five point Unit step 5 1.392

biased upwind

Five point Cosinepulse 45 0.094

biased upwind

Linear finite Unit step 51 1.271

element

Linear finite Cosinepulse 55 0.099

element
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7 Lit OuadraticUpwind/Petrov-GalerkinFinite Element Formulation

We now considerthe finite dementformulation of the precedingsection, with the linear finite

elementof Figure 6.1 replacedby the QuadraticUpwind/Petrov.GalerkinelementQU/PG of Figure

7.1. This QU/PG element, which has a general form discussedby Brooks and flughes7$, clearly

weighsthe upwind direction e.g., x c 0 for flow in the positive x direction more heavily

o L.

0.8

-

0.8 - J
0.4

0.2 -

00
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Fig. 7.1: The QU/PG Element

The QU/PU elementof Figure 7.1 consistsof two sections for x C 0 and x >0, each composedof a

quadraticof the form

= 80 + a1x + a2x2 55

For x C 0, the coefficientsa0, a1 anda2 are computedso the quadraticpassesthrough the threepoints

= I

..Ax/2
= 56

Ø..Ax = 0

where Ax is the hall.width of the element, and
L’

selectedby the analyst. Again, as in the caseof
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the linear finite elementof Figure 6.1, we take 1x = 0, x C -Ax.

Similarly, for x > 0, we choosethe threecoefficients so the quadratic of equation55 passes

through the three points

O = 1

1Ax/2
= R 57

= 0

where 4.x = 0, x > ax and is selectedby the analyst. x has the following noteworthy

properties:

1 Continuity at x = 0, with the value ØO = 1.

2 Any two basisfunctions overlapat most by the distanceAx.

3 As a consequenceof 1 and 2, the sums in equation44 are relatively easy to compute,

and the solution uxN,t consists of a single term in the series, i.e., uxN,t = cNt again,

NXN = 1 and xN = 0, i <N.

The formulas for the three coefficients a9, a1 and a2 for each of the three sets of points defined by

equations56 and 57 are derived in Appendix 14. In the caseof Figure 7.1, 4’L = = 0.25.

As in the caseof the linear finite elementsof Figure 6.1, we now must evaluateintegrals 1.1

to 4.4 to use the elementof Figure 7.1 a total of 14 integrals,although some redundancyis reflected

in this figure since several of the integralsfollow as special casesof others, but we choose to list and

evaluatethem in detail to clarify the discussion. The myriad of details for an analytical integration

the integrandsinvolve Øx from equation55 and its first derivativedefined on the two sectionsof

the element,x C 0 and x > 0 precludesan analysisof reasonablelength. We therefore use numerical

integrationvia a library quadratureroutine, QUANC8 [Forsythe,et al 11.

The code for the QU/PG element of Figure 7.1 is listed in Appendix 15. Either of two

elementscan be selected: a The linear finite element of Figure 6.1, with the intergals computed
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numerically ITYPE = 1 set in INITAL, and b The QU/PO elementof Figure 7.1 ITYPE = 2

with the integralscomputednumerically. The codewastested in two ways:

1 The solution for the linear finite elementwith the integralscomputednumerically ITYPE =

1 was comparedwith the solution obtained with the integrals done analytically as considered

previously Program7.

2 The solution for the QU/PG element ITYPE = 2 for the case = = 0.5 was

comparedwith the linear finite elementsolution obtainedwith the integrals doneanalytically as

consideredpreviously Program7 = R = 0.5 correspondsto the linear finite element.

In both cases, the three solutions were essentially identical. Thus all of the code in the programof

Appendix 15 was tested against Program 7 for the case = #R = 0.5. In other words, only the

small portion of the code in functions PRIM, PUlP, PHIDM and P1110?for L 0.5 and/or 4SR

0.5 was not tested. We mention this since the results for the QU/PG element in general were

surprisingly poor; this point is substantiatedwith a subsequentdiscussionof the solution for =

0.75, # = 0.25 the element in Figure 7.1. In any case,we reportexactly how the calculationswere

donethrough the listing of the programin Appendix15.

The QU/PO solutions for = 0.75, 0R = 0.25 and the five test functions are given in

Figures 56 to 60. Thesesolutionsare poor in two respects:a numerical oscillation exceedsthat of the

approximationsconsideredpreviously, and b perhapsmore importantly, the solutions have a phase

error time displacementsee,in particular, Figure 59. We again mention that thesesolutions were

producedby the program in Appendix 15, so the readercan check the details of our calculationsfor

errors. We therefore conclude, that at least for our implementation, the QU/PG element is not

effective.

Also, more generally,the finite elementapproachhasthe following disadvantages:

1 Integralsmust be evaluatedfor all of the terms in a PDE problem system. While some of

the integrals may already be available e.g., tabulated, a new POE problem may require

additional integrals,which can be complicateddependingon the form of the individual terms in

the POEs.
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2 Boundaryconditionsmay be difficult to implementrelative to the finite difference method.

3 The time dependentODEs resulting from the applicationof a weighted residual method are

implicitly coupled, and therefore require some additional mathematicalprogramming,e.g., the

solution of tridiagonal equations,or an ODE solver designedspecifically for implicit ODEs.

However, the finite element method offers significant advantages,particularly in higher dimensions,

e.g., for irregular geometries,although recent advancesin finite difference methods have offset the

advantagesof finite elementmethodsto some extent.

8 Finite Volume Approximation of the Advection Equation

So far, we have consideredfinite difference and finite elementapproximations of advection

equation 7. We now considerbriefly the third principal method of approximating PDEs, the finite

volume or control volume method. Finite volume methods have the principal advantage of

conservation,e.g., of mass or energy. However, this property does not necessarilyguaranteean

accuratesolution conservationmight be considerednecessary,but not sufficient.

For example, if we consider the finite volume approximation of the advection equation

proposedby Patankar[8, pp 83-85] we observe that it is just the two point upwind approximation

which we have already noted suffers from excessive numerical diffusion recall the solutions from

subroutineDSSO12listed in Appendix 2. Other approximationsare possible[Lick 9] which will give

better resultsthan the two point upwind approximations,but we do not considerthis further.

9 Ih& NonhomogeneousAdvection Equation

All of the precedingtestsof various approximationsare basedon equations7 to 9 for five

different test functions different ft in boundary condition 9. We now consider the following

extensionof equations7 to 9:

ut + vux = cx,t 58

ux,0 = f0, u0,t = ft 5960

Note in particular the nonhomogeneousterm, cx,t, in equation 58. The analytical solution to
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equations58 to 60, for the specialcase1t = 0, cx,t = gx is derived in Appendix 16 with dx

used in place of gx. In particular, we shall use the following property of the solution expressedas

equationa.69

ux,t
=

sux,s = 1/vJ gAdA 61

i.e., the steadystatesolution is just the integral of gx.

Equation 61 is the basis for a test problem first proposedby Leonard 4, and subsequently

usedby Brooksand Hughes7. In particular,we considerthe nonhomogeneousfunction

gx = -1.5/6x + 1, 0 x 6

gx = 0.5/2x - 8, 6 C x C 8 62

gx 0, 8 <x 15

This gx thereforeconsistsof threelinear segments.

Program8 for equations58 to 62 is similar to the precedingprograms,but double precision

versionsof main program SRKF45 and integrator RKF45 wre ised the double precision coding was

used to minimize any errorsin the steadystatesolution when comparedwith equation61

SUBROUTINE INITAL
C...
C... U + V*U = GX 1
C... T X
C-..
C... UX,O = FO = 0, U0,T = FT = 0 23
C...
C... GX IS REPRESENTEDGRAPHICALLY BELOW
C
C
C .O,1
C
C GX.
C .

C . . 8,0 15,0
C
C X=O X .
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C .6,-0.5
C

IMPLICIT DOUBLE PRECISION A-H,O-Z
PARAMETER N=16
COMMON/T/ T, NSTOP, NORUN

1 /Y/ UN
2 /F! UTN
3 /S/ UXN, XGN, XS, GIN

C...
C... LENGTH

XS=15 .000
C..
C... SPATIAL GRID

DO 2 I=1,N
XGI=XSDFLOATI-1/DFLOATN--1

2 CONTINUE
C...
C... INITIAL CONDITION T = 0

DO 1 I=1,N
UI=FT

1 CONTINUE
RETURN
END

SUBROUTINE DERV
IMPLICIT DOUBLE PRECISION A-H,O-Z
PARAMETER N=16
COMMON/T/ T, NSTOP, NORUN

1 fYI UN
2 /F/ UTN
3 /S/ UXN, XGN, xS, GIN

C...
C... BOUNDARY CONDITION AT X = 0

U1=FT
UT 1 =0 . ODO

C...
C... DERIVATIVE UX

V=1 . ODO
IFNORUN .EQ . 1CALL DSSO120.ODO ,XS ,N,U,UX,V
IFNORUN.EQ.2CALL DSSO2O0.000 ,XS ,N,U,UX,V

C...
C... POE

00 1 I=2,N
UTI=-.V-sUXI+GI

1 CONTINUE
RETURN
END

SUBROUTINE PRINTNI ,NO
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IMPLICIT DOUBLE PRECISION A-H,0-Z
PARAMETER N=16
COMMON/T/ T, NSTOP, NORUN

1 /Y/ UN
2 /F/ UTN
3 /S/ UXN, XGN, xS, GIN

C...
C... PRINT THE NUMERICAL SOLUTION

IFT. LT.49.5D0THEN
WRITENO,1

1 FORMAT//,QX,’T’,9X,’X’,6X,’UX,T’,5X,’UTX,T’,

+ 5X,’UXX,T’
WRITENO,2T,XG1 ,U1 ,UT1 ,UX1

2 FORMATF10.1,F1O.2,3F12.4
WRITENO,3 XGI ,UI ,UTI ,UXI ,I=2,N

3 FORMAT 1OX,F10.2,3F12.4
C...
C... AT STEADY STATE, ALSO PRINT THE EXACT SOLUTION

ELSE
CALL EXACT
WRITENO,4

4 FORMAT//,QX,’T’,QX,’X’,6X,’UX,T’,5X,’UTX,T’,
+ 5X,’UXX,T’,SX,’EXACT’

WRITENO,5T,XG1,U1,UT1,UX1,GI1
5 FORMATF1O.1,F1O.2,4F12.4

WRITENO,6 XGI ,UI ,UTI ,UXI ,GII ,I=2,N
6 FORMAT 1OX,F10.2,4F12.4
C...
C... CREATE AN OUTPUT FILE FOR TOP DRAWER PLOTTING

IFNORUN .EQ. 1THEN
OPEN4,FILE=’T.TOP’ ,STATUS=’NEW’

C...
C... WRITE TOP DRAWER FILE FOR PLOTTING NUMERICAL AND EXACT STEADY
C... STATE SOLUTIONS VS X
C...
C... EXACT SOLUTION

WRITE4 ,7
7 FORMAT’ SET LIMITS X FROM 0 TO 15 Y FROM 0 TO 2.5’,/,

I ‘ SET FONT DUPLEX’
WRITE4,1OXGI,GII,I=1,N
WRITE4 ,13

13 FORMAT’ JOIN’
END IF

C...
C... NUMERICAL SOLUTIONS

IFNORUN.EQ. 1WRITE4,8
8 FORMAT’ SET SYMBOL 1’

IFNORUN .EQ .2WRITE4 ,9
9 FORMAT’ SET SYMBOL 2’
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WRITE4,10XGI ,UI ,I=1 ,N
10 FORMAT2F10.3

WRITE4,11
11 FORMAT’ PLOT’

IFNORUN.EQ.2THEN
WRITE 4 , 12

12 FORMAT
1 ‘ Title 5.25 9.5 "Fig. 61: ux,t vs x at steady state"’
2 ,/,‘ TITLE LEFT" ux,t"’
3 ,/,‘ TITLE BOTTOM "x"’
4 ,/,‘ TITLE 4.5 0.75
5 "Solid - exact, 1 - 2PUW, 2 - 5PBUW"’

END IF
END IF
RETURN
END

DOUBLE PRECISION FUNCTION GI
IMPLICIT DOUBLE PRECISION A-H,O-Z
PARAMETER N=16
COMMON/T/ T, NSTOP, NORUN

1 /Y/ UN
2 /F/ UTN
3 /S/ UXN, XGN, XS, GIN

C...
C... NONHOMOGENEOUS TERM IN THE ADVECTION EQUATION

IFXGI.GE.0.ODO.AND.XCI.LE.6.ODOTHEN
XL= 0.ODO
XR= 6.ODO
GL= 1.ODO
GR=-0 . 5D0

ELSE
+IF XG I .GT.6 . 000 .AND. XG I . LE.8. 000 THEN

XL= 6.000
XR= 8.000
GL=-O . 5D0
GR= 0.ODO

ELSE
+IF XG I . GT.8. 000 .AND . XG I . LE. 15. ODO THEN

XL= 8.ODO
XR=15 . ODO
GL= 0.000
GR= 0.ODO

END IF
C...
C... SLOPE AND INTERCEPT

S= GR-GL / XR-XL
8= GL*XR-GR*XL / XR-XL

C...
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C... FUNCTION GX
X=XS*DFLOAT I-i /DFLOATN- 1
G=S*X+B

RETURN
END

DOUBLE PRECISION FUNCTION FT
IMPLICIT DOUBLE PRECISION A-H,O-Z
F=O.ODO
RETURN
END

SUBROUTINE EXACT
IMPLICIT DOUBLE PRECISION A-H,O-Z
PARAMETER N=16
COMMON/T/ T, NSTOP, NORUN

1 /Y/ UN
2 /F/ UTN
3 /S/ UXN, XGN, XS, GIN

C...
C... INITIALIZE THE INTEGRATION

AREA=0.ODO
DX=XS/DFLOATN-1

C...
C... CUMULATIVE AREA BY THE TRAPEZOIDAL RULE

DO 1 I=2,N
GL=GI-1
GR=GI
AREA=AREA+O . 5D0* GL+GR scDX
G I I =AREA

1 CONTINUE
RETURN
END

Program8: SubroutinesDERV, INITAL andPRINT, andSubordinateRoutines

for the Solution of Equations 58 to 62

The datafor Program8 are in Table 9

NUMOL SOLUTION OF NONHOMOGENSOUS ADVECTION EQUATION - DSSO12
0. 50.0 10.0

16 0.0001
NUMOL SOLUTION OF NONHOMOGENEOUS ADVECTION EQUATION - DSSO2O
0. 50.0 10.0

16 0.0001
END OF RUNS
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Table 9: Datafor Program 8

The following pointsshould be noted about Program8:

1 Initial condition 59 is set in INJTAL via function FT for ft = 0.

2 The spatial derivative, ux, in equation 58 is calculated by the two point upwind

approximations in subroutine DSSO12 NORUN = 1, and the five point biased upwind

approximationsin subroutineDSSO2ONORUN = 2. Thus, Table 9 has two sets of data.

3 gx in equation62 is calculatedby function GI called at the end of subroutineDERV in

DO loop I for equation58.

4 SubroutinePRINT calls subroutineEXACT to computethe steadystate solution according

to equation61. The integral in equation61 is done by the trapezoidalrule, which is exact for

linear functions,e.g., equation62. SubroutinePRINT: a prints the transienttime dependent

numericalsolution and b plots the steadystatenumericalandexactsolutions.

A portion of the numericalsolution from subroutinePRINT is listed in Table 10

RUN NO. - 1 NUMOL SOLUTION OF NONHOMOGENEOUS ADVECTION EQUATION
- DSSO12

INITIAL T - 0.000E+00

FINAL T - 0.500E+02

PRINT T - 0.100E+02

NUMBER OF DIFFERENTIAL EQUATIONS - 16

MAXIMUM INTEGRATION ERROR - 0.100E-03

T X UX,T UTX,T UXX,T
0.0 0.00 0.0000 0.0000 0.0000

1.00 0.0000 0.7500 0.0000
2.00 0.0000 0.5000 0.0000
3.00 0.0000 0.2500 0.0000
4.00 0.0000 0.0000 0.0000
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5.00 0.0000 -0.2500 0.0000

6.00 0.0000 -0.5000 0.0000

7.00 0.0000 -0.2500 0.0000

8.00 0.0000 0.0000 0.0000

9.00 0.0000 0.0000 0.0000

10.00 0.0000 0.0000 0.0000

11.00 0.0000 0.0000 0.0000
12.00 0.0000 0.0000 0.0000

13.00 0.0000 0.0000 0.0000

14.00 0.0000 0.0000 0.0000

15.00 0.0000 0.0000 0.0000

T X UX,T UTX,T UXX,T

10.0 0.00 0.0000 0.0000 0.7500

1.00 0.7500 0.0000 0.7500
2.00 1.2496 0.0004 0.4996

3.00 1.4977 0.0019 0.2481
4.00 1.4907 0.0069 -0.0069
5.00 1.2222 0.0185 -0.2685

T X UX,T UTX,T UXX,T
40.0 0.00 0.0000 0.0000 0.7500

1.00 0.7500 0.0000 0.7500
2.00 1.2500 0.0000 0.5000
3.00 1.5000 0.0000 0.2500
4.00 1.5000 0.0000 0.0000
5.00 1.2500 0.0000 -0.2500
6.00 0.7500 0.0000 -0.5000
7.00 0.5000 0.0000 -0.2500
8.00 0.5000 0.0000 0.0000
9.00 0.5000 0.0000 0.0000

10.00 0.5000 0.0000 0.0000
11.00 0.5000 0.0000 0.0000
12.00 0.5000 0.0000 0.0000
13.00 0.5000 0.0000 0.0000
14.00 0.5000 0.0000 0.0000
15.00 0.5000 0.0000 0.0000

T X UX,T UTX,T UXX,T EXACT
50.0 0.00 0.0000 0.0000 0.7500 0.0000

1.00 0.7500 0.0000 0.750b 0.8750
2.00 1.2500 0.0000 0.5000 1.5000
3.00 1.5000 0.0000 0.2500 1.8750
4.00 1.5000 0.0000 0.0000 2.0000
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5.00 1.2500 0.0000 -0.2500 1.8750
6.00 0.7500 0.0000 -0.5000 1.5000
7.00 0.5000 0.0000 -0.2500 1.1250
8.00 0.5000 0.0000 0.0000 1.0000
9.00 0.5000 0.0000 0.0000 1.0000

10.00 0.5000 0.0000 0.0000 1.0000
11.00 0.5000 0.0000 0.0000 1.0000
12.00 0.5000 0.0000 0.0000 1.0000
13.00 0.5000 0.0000 0.0000 1.0000
14.00 0.5000 0.0000 0.0000 1.0000
15.00 0.5000 0.0000 0.0000 1.0000

RUN NO. - 2 NUMOL SOLUTION OF NONHOMOGENEOUS ADVECTION EQUATION
- DSSO2O

INITIAL T - 0.000E+00

FINAL T - 0.500E+02

PRINT T - 0.100E+02

NUMBER OF DIFFERENTIAL EQUATIONS - 16

MAXIMUM INTEGRATION ERROR - 0.100E-O3

T X UX,T UTX,T UXX,T
0.0 0.00 0.0000 0.0000 0.0000

1.00 0.0000 0.7500 0.0000
2.00 0.0000 0.5000 0.0000
3.00 0.0000 0.2500 0.0000
4.00 0.0000 0.0000 0.0000
5.00 0.0000 -0.2500 0.0000
6.00 0.0000 -0.5000 0.0000
7.00 0.0000 -0.2500 0.0000
8.00 0.0000 0.0000 0.0000
9.00 0.0000 0.0000 0.0000

10.00 0.0000 0.0000 0.0000
11.00 0.0000 0.0000 0.0000
12.00 0.0000 0.0000 0.0000
13.00 0.0000 0.0000 0.0000
14.00 0.0000 0.0000 0.0000
15.00 0.0000 0.0000 0.0000

T X UX,T UTX,T UXX,T
10.0 0.00 0.0000 0.0000 0.9165

1.00 0.8417 -0.0106 0.7606
2.00 1.5052 -0.0568 0.5568
3.00 1.9332 -0.0365 0.2865
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4.00 2.0498 0.0436 -0.0436
5.00 1.8627 0.0881 -0.3381

T X UX,T UTX,T UXX,T

40.0 0.00 0.0000 0.0000 1.0071
1.00 0.8777 0.0000 0.7500
2.00 1.5023 0.0001 0.4999
3.00 1.8775 0.0001 0.2499
4.00 1.9999 -0.0001 0.0001
5.00 1.8868 -0.0002 -0.2498
6.00 1.4564 -0.0001 -0.4999
7.00 1.0927 0.0002 -0.2502
8.00 0.9885 0.0003 -0.0003
9.00 0.9758 0.0000 0.0000

10.00 0.9787 -0.0004 0.0004
11.00 0.9810 -0.0003 0.0003
12.00 0.9816 0.0002 -0.0002
13.00 0.9812 0.0006 -0.0006
14.00 0.9807 0.0004 -0.0004
15.00 0.9807 -0.0005 0.0005

T X UX,T UTX,T UXX,T EXACT
50.0 0.00 0.0000 0.0000 1.0069 0.0000

1.00 0.8776 0.0000 0.7500 0.8750
2.00 1.5023 0.0000 0.5000 1.5000
3.00 1.8776 0.0000 0.2500 1,8750
4.00 2.0000 0.0000 0.0000 2.0000
5.00 1.8868 0.0000 -0.2500 1,8750
6.00 1.4562 0.0001 -0.5001 1.5000
7.00 1.0925 0.0000 -0.2500 1.1250
8.00 0.9886 0.0000 0.0000 1.0000
9.00 0.9761 -0.0001 0.0001 1.0000

10.00 0.9789 0.0000 0.0000 1.0000
11.00 0.9808 0.0001 -0.0001 1.0000
12.00 0.9811 0.0001 -0.0001 1.0000
13.00 0.9811 0.0000 0.0000 1.0000
14.00 0.9812 -0.0002 0.0002 1.0000
15.00 0.9814 -0.0002 0.0002 1.0000

Table 10: AbbreviatedOutput from Program8

The following points can be noted about the output in Table 10:
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1 The solution startsout accordingto initial condition 59. Also, since this is a uniform zero

solution and thereforeuxx,O = C , the only nonzeroterm in equation58 initially is gx, which

appearsas ut in the output, i.e., equationat t = 0 15 Ut = gx keepingin mind that u4O,t = 0

is the boundarycondition in subroutineDERV.

2 The solution reachessteadystateby t = 40; observethat the derivative ut is small at t = 40,

and the solution doesnot changefrom t = 40 to t = 50.

3 The numericalsolution for the two point upwind of ux in equation58 reachesthe incorrect

value of 0.5 at x = 15 rather than I. This error was previously reported by Leonard 4 and

Brooksand Hughes7.

4 The solution for the five point biased upwind approximation of ux reachesa steady state

valueof 0.9814at x = 15 with an error of 0.0186.

The graphicaloutput from subroutinePRINT is given in Figure 61, which is essentiallyidentical to the

plots reportedby Leonard4 and Brooks andHughes7.

The solution from Program8 is for a 16-point grid in x. The output from Program8 for a 31-

point grid is listed below and in Figure 62

RUN NO. - 1 NUMOL SOLUTION OF NONHOMOGENSOUS ADVECTION EQUATION
- DSSO12

INITIAL T - 0.000E+00

FINAL T - 0.500E+02

PRINT T - 0.100E÷02

NUMBER OF DIFFERENTIAL EQUATIONS - 31

MAXiMUM INTEGRATION ERROR - 0.100E-03

T X UX,T UTX,T UXX,T
0.0 0.00 0.0000 0.0000 0.0000

0.50 0.0000 0.8750 0.0000
1.00 0.0000 0.7500 0.0000
1.50 0.0000 0.6250 0.0000
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T
50.0

2.00 0.0000 0.5000 0.0000

2.50 0.0000 0.3750 0.0000
3.00 0.0000 0.2500 0.0000

3.50 0.0000 0.1250 0.0000
4.00 0.0000 0.0000 0.0000
4.50 00000 -0.1250 0.0000
5.00 0.0000 -0.2500 0.0000
5.50 0.0000 -0.3750 0.0000
6.00 0.0000 -0.5000 0.0000
6.50 0.0000 -0.3750 0.0000

7.00 0.0000 -0.2500 0.0000

7.50 0.0000 -0.1250 0.0000

8.00 0.0000 0.0000 0.0000

8.50 0.0000 0.0000 0.0000
9.00 0.0000 0.0000 0.0000

9.50 0.0000 0.0000 0.0000

10.00 0.0000 0.0000 0.0000

X UX:T UTX:T UXX,T EXACT

0.00 0.0000 0.0000 0.8750 0.0000
0.50 0.4375 0.0000 0.8750 0.4688
1.00 0.8125 0.0000 0.7500 0.8750
1.50 1.1250 0.0000 0.6250 1.2188
2.00 1.3750 0.0000 0.5000 1.5000
2.50 1.5625 0.0000 0.3750 1.7188
3.00 1.6875 0.0000 0.2500 1.8750
3.50 1.7500 0.0000 0.1250 1.9688
4.00 1.7500 0.0000 0.0000 2.0000
4.50 1.6875 0.0000 -0.1250 1.9688
5.00 1.5625 0.0000 -0.2500 1.8750
5.50 1.3750 0.0000 -0.3750 1.7188
6.00 1.1250 0.0000 -0.5000 1.5000
6.50 0.9375 0.0000 -0.3750 1.2813
7.00 0.8125 0.0000 -0.2500 1.1250
7.50 0.7500 0.0000 -0.1250 1.0313
8.00 0.7500 0.0000 0.0000 1.0000
8.50 0.7500 0.0000 0.0000 1.0000
9.00 0.7500 0.0000 0.0000 1.0000
9.50 0.7500 0.0000 0.0000 1.0000

10.00 0.7500 0.0000 0.0000 1.0000
10.50 0.7500 0.0000 0.0000 1.0000
11.00 0.7500 0.0000 0.0000 1.0000
11,50 0.7500 0.0000 0.0000 1.0000
12.00 0.7500 0.0000 0.0000 1.0000
12.50 0.7500 0.0000 0.0000 1.0000
13.00 0.7500 0.0000 0.0000 1.0000
13.50 0.7500 0.0000 0.0000 1.0000
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14.00 0.7500 0.0000 0.0000 1.0000
14.50
15.00

0.7500 0.0000
0.7500 -0.0001

0.0000 1.0000
0.0001 1.0000

RUN NO. - ADVECTION EQUATION
- DSSO2O

INITIAL T - 0.000E+00

FINAL T - 0.500E+02

PRINT T - 0.100E+02

NUMBER OF DIFFERENTIAL EQUATIONS - 31

2 NUMOL SOLUTION OF NONHOMOGENEOUS

MAXIMUM INTEGRATION ERROR 0. 100E-03

T X UX,T UTX,T UXX,T
0.0 0.00 0.0000 0.0000 0.0000

0.50 0.0000 0.8750 0.0000
1.00 0.0000 0.7500 0.0000
1.50 0.0000 0.6250 0.0000
2.00 0.0000 0.5000 0.0000
2.50 0.0000 0.3750 0.0000
3.00 0.0000 0.2500 0.0000
3.50 0.0000 0.1250 0.0000
4.00 0.0000 0.0000 0.0000
4.50 0.0000 -0.1250 0.0000
5.00 0.0000 -0.2500 0.0000
5.50 0.0000 -0.3750 0.0000
6.00 0.0000 -0.5000 0.0000
6.50 0.0000 -0.3750 0.0000
7.00 0.0000 -0.2500 0.0000
7.50 0.0000 -0.1250 0.0000
8.00 0.0000 0.0000 0.0000
8.50 0.0000 0.0000 0.0000
9.00 0.0000 0.0000 0.0000
9.50 0.0000 0.0000 0.0000

10.00 0.0000 0.0000 0.0000

T X UX,T UTX,T UXX,T EXACT
50.0 0.00

0.50
1.00
1.50
2.00

0.0000
0.4688
0.8750
1.2188
1.5000

0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.8750
0.7500
0.6250
0.5000

0.0000
0.4688
0.8750
1.2188
1.5000
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2.50 1.7187 0.0000 0.3750 1.7188
3.00 1.8750 0.0000 0.2500 1.8750
3.50 1.9688 0.0000 0.1250 1.9688
4.00 2.0000 0.0000 0.0000 2.0000
4.50 1.9689 0.0000 -0.1250 1.9688
5.00 1.8745 0.0000 -0.2500 1.8750

5.50 1.7212 0.0000 -0.3750 1.7188

6.00 1.4883 0.0000 -0.5000 1.5000
6.50 1.2738 0.0000 -0.3750 1.2813
7.00 1.1161 0.0000 -0.2500 1.1250
7.50 1.0198 0.0000 -0.1250 1.0313
8.00 0.9954 0.0000 0.0000 1.0000

8.50 0.9933 -0.0001 0.0001 1.0000
9.00 0.9942 0.0000 0.0000 1.0000
9.50 0.9947 0.0000 0.0000 1.0000

10.00 0.9948 0.0001 -0.0001 1.0000
10.50 0.9948 0.0000 0.0000 1.0000
11.00 0.9948 -0.0001 0.0001 1.0000
11.50 0.9948 -0.0001 0.0001 1.0000
12.00 0.9948 0.0000 0.0000 1.0000
12.50 0.9948 0.0002 -0.0002 1.0000
13.00 0.9947 0.0001 -0.0001 1.0000
13.50 0.9947 -0.0001 0.0001 1.0000
14.00 0.9948 -0.0002 0.0002 1.0000
14.50 0.9949 -0.0001 0.0001 1.0000
15.00 0.9949 0.0003 -0.0003 1.0000

Table 11: AbbreviatedOutput from Program8 for a 31-point Grid

Note that for the 31.point grid, the steadystatesolution for the two point upwind approximation is

uU5,oo = 0.75 and for the five point biased upwind approximation,u15,oo = 0.9949. Theseresults

are also clear from Figure 62.

Generally, we conclude that the five point biasedupwind approximationsgive a numerical

solution of good acuracy for the nonhomogeneousadvection equation 58. Of course, the other

approachesconsideredpreviously could be applied to this problem, i.e., subroutinesLEO! and LEO2

and the finite elementsof Figure 6.! and 7.1, but we do not considerthesealternativesin order to keep

the discussionof this problem to reasonablelength.

10 SimultaneousPDEs

All of the example we have consideredso far havebeen for one PDE. We now consideran
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examplewith two simultaneousPDEs for which an analytical solution can be derived by the Laplace

transform [Baternan10, pp 123.128]. The PDEsmodel a fluid-solid heat transfersystem

v%+c=kU-v 63

= lcV - U 64

where

V temperatureof the fluid

U temperatureof the solid exchangingheatwith the fluid

x position along the system

t time

v pCp of the fluid

u pCp of the solid

c fluid velocity

k heattransfercoefficient

Equations 63 and 64 require two initial conditions and one boundary condition, which will be

designatedin generalformat as

Vx,O, V0,t and Ux,O 656667

The analyticalsolution of equations63 to 67 is developedin Appendix 17.

We now considertwo typesof boundaryconditionsspecificationsof V0,x:

1 A boundarycondition which is consistentwith the initial condition, and thereby avoids a

discontinuity. An exampleis

V0,t = 1 - 68

for which the analytical sotution is seeAppendix 18
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Vx,t = k/uJhA - x/cek/uA - x/c
10{2k A - x/c}dA 69

2 A boundary condition which is not consistent with the initial condition, and therefore

introducesa discontinuity. Examplesare

V0,t = e’1t 70

V0,t = ht
= { 71

fow which the analyticalsolutionsare

Vx,t = e ktvcxhA
- x/ce ,‘u@ - x/c

10{2k .itkA - xfc} 72

and

Vx,t = k/uJhA - x/ceV - x/c
10{2k 4A x/c}dA

0 73

+ { CxhA - x/ceu x/
10{2k 41hA - xlc}}

respectively.

These three examples boundary conditions 68, 70 and 7! provide a spectrum of test

problems since, by varying k/u, the rate of changeof V0,t can be varied for both the continuousand

discontinuouscases. These examples are now used to test a computer code that implements a

numerical solution of equations63 and 64 with the sameformat as the precedingcodesfor single

PDEs. Thus, the numerical and analytical solutions can be compared. The code is listed first as

Program 9, and is followed by explanatorycomments.

SUBROUTINE INITAL
COMMON/T/ T, NST0P, NORUN
DOUBLE PRECISION T

C...
C... V0,T = 1 - EXP-K/U*T

IFNORUN.EQ.1CALL INIT1
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C...
C... V0,T = EXP-R/U*T

IFN0RIIN.EQ.2CALL INIT2
C...
C... V0,T = I UNIT STEP

IFNORUN.EQ.3CALL INIT3
C...
C... V0,T = T UNIT RAMP

IFNORUN.EQ.4CALL INJT4
RETURN
END

SUBROUTINE DERV
COMMON/T/ T, NSTOP, NORUN
DOUBLE PRECISION T

C...
C... V0,T = 1 - EXP-K/UT

IFNORUN.EQ.1CALL DERV1
C...
C... V0,T = EXP_O/U*T

IFNORUN.EQ.2CALL DERV2

C...
C... V0,T = 1 UNIT STEP

IFNORUN. EQ.3CALL DERV3
C...
C... V0,T = T UNIT RAMP

IFNORUN.EQ.4CALL DERV4
RETURN
END

SUBROUTINE PRINTNI,NO
COMMON/T/ T, NSTOP, NORUN

DOUBLE PRECISION T
C...
C... V0,T = 1 - EXP-h/UT

IFNORUN.EQ.1CALL PRINT1NI ,NO

C...
C... V0,T = EXP-1/UscT

IFNORUN.EQ.2CALL PRINT2NI ,NO
C...
C... V0,T = 1 UNIT STEP

IPNORUN.EQ.3CALL PRINT3NI,NO
C...
C... V0,T = T UNIT RAMP

IFNORUN.EQ.4CALL PRINT4NI,NO
RETURN
END

SUBROUTINE INIT1
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C...
C... DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, V, C, X, U,
+ EXP1, ARG, VA, ‘AI, T,
+ Ui, U2, U1T, U2T, U1X,
+ BESSIO

PARAMETER NX=21
COMMON/T/ T. NSTOP, NORUN

+ /Y/ U1NX, U2NX, VAI
+ /F/ U1TNX, U2TNX, VA
+ /5/ U1XNX
+ K, V, C, X, U,
+ EXP1, ARG

C...
C... SET THE PROBLEM PARAMETERS

K=1 .OD+0
V=1 - 773D+00
C=2 . 031D÷00
X=1 .OD+0
U=1 .OD+01

C..
C... PRECOMPUTE SOME QUANTITIES USED IN THE ANALYTICAL SOLUTION

EXP1=DEXP-K/Vs.C*X
C...
C... INITIAL CONDITIONS

DO 1 I=1,NX
U1I=O .D+0
U2I=0 .D+0

1 CONTINUE
VA 1=0. D+0

C...
C... INITIAL DERIVATIVES

CALL DERV
RETURN
END

SUBROUTINE INIT2
C...
C... DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, V, C, U,
+ EXP1, ARG, VA, VAI, T,
+ Ui, U2, UJT, U2T, U1X,
+ BESSIO

PARAMETER NX=21
CDMMON/T/ T, NSTOP, NORUN

+ /Y/ U1NX, U2NX, VAI
+ /F/ U1TNX, U2TNX, VA
+ JS/ U1XNX
+ /C/ K, V, C, X, U,
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+ EXP1, ARG
C...
C... SET THE PROBLEM PARAMETERS

FC=i .OD+0
V=1 . 773D+OO
C=2 . O3iD+O0
X=1 .OD+O
U=1 . OD+O1

C...
C... PRECOMPUTE SOME QUANTITIES USED IN THE ANALYTICAL SOLUTION

EXP1=DEXP_K/V*C*X
C...
C... INITIAL CONDITIONS

DO 1 I=I,NX
U1I=O.D+O
U2I=0.D+O

1 CONTINUE
VAI=O .D+O

C...
C... INITIAL DERIVATIVES

CALL DERV
RETURN
END

SUBROUTINE INIT3
C...
C... DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, V, C, X, U,
+ EXP1, ARG, VA, VAI,
+ 01, U2, U1T, U2T, U1X,
+ BESSIO

PARAMETER NX=21
COMMON/T/ T NSTOP, NORUN

+ /Y/ U1NX, U2NX, VAI
+ /F/ U1TNX, U2TNX, VA
+ /S/ U1XNX
+ K, V, C, X, U,
+ EXP1, ARG

C. -.

C... SET THE PROBLEM PARAMETERS
K=1 . OD+O
V=i .773D+OO
C=2 . 031D+OO
X=1 .OD+O
U=1 .OD+O1

C...
C... PRECOMPUTE SOME QUANTITIES USED IN THE ANALYTICAL SOLUTION

EXP1=DEXP-1 V*C *X
C...
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C... INITIAL CONDITIONS
DO 1 I=1,NX

Ui I =0 . D+0
U2 I =0 . D+O

1 CONTINUE
VAI=0.D4-0

C...
C... INITIAL DERIVATIVES

CALL DER’
RETURN
END

SUBROUTINE INIT4
C...
C... DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, V, C, X, U,
+ EXP1, ARG, VA, VAI, T,
+ Ui, U2, U1T, U2T, U1X,

+ BESSIO
PARAMETER NX=21 ,NT=3
COMMON/T/ T, NSTOP, NORUN

+ /Y/ U1NX, U2NX, VAINT
+ /F/ U1TNX, U2TNX, VANT
+ /S/ U1XNX
+ K, V, C, X, U,
+ EXP1, ARC

C...
C... SET THE PROBLEM PARAMETERS

K=1 .OD+O
V=i . 773D+0O
C=2 . 031D+OO
X=1 .OD+O
U=1 .OD+01

C...
C... PRECOMPUTE SOME QUANTITIES USED IN THE ANALYTICAL SOLUTION

EXP1=DEXP-K/ V*C ‘icX
C...
C... INITIAL CONDITIONS

DO 1 I=1,NX
Ui I=0 .D+O
U2I=O.D+O

1 CONTINUE
DO 2 I=1,NT

VA I I =0. D+O
2 CONTINUE
C...
C... INITIAL DERIVATIVES

CALL DERV
RETURN
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END

SUBROUTINE DERV1
C...
C... DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION IC. V, C, X, U.
+ EXP1, ARG. VA, VAI, T,
+ UI, U2, U1T, V2T, U1N,
+ BESSIO

PARAMETER NX=21
COMMON/T/ T, NSTOP, NORUN

+ /Y/ U1NX, U2NX, VAI
+ /F/ U1TNX, U2TNX, VA
+ /S/ U1XNX
+ K, C, U,
+ EXP1, ARC

C...
C... BOUNDARY CONDITION

UI 1=i .D+O-DEXP-K/U-T
U1Ti=0.D+0

C...
C... UIX
C...
C... FIVE POINT BIASED UPWIND

CALL DSSO2O0.D+O,X,NX,U1,U1X,1.D+0
C...
C... PDES

DO 1 I=1,NX
IFI .NE. 1THEN

U1TI=K/V*U2I-Ui I -C*U1XI
END IF

U2TI=K/UmU1I-U2I
1 CONTINUE
C...
C... TEST FOR THE ELAPSED TIME
C... T - X/C LT 0

IFT-X/C .LT.0.D+0THEN
VA=0 . D+O

C...
C... T-X/CGEO

ELSE
ARG=2 . OD+OwK*DSQRTX/U*V.icC*T_X/C
VA=EXPiDEXP-K/UT-X/CBESSI0ARC

END IF
RETURN
END

SUBROUTINE DERV2
C...
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C... DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, V, C, X, U,
+ EXP1, ARC, VA, ‘AI, T,
+ Ui, U2, U1T, U2T, U1X,
+ BESSIO

PARAMETER NX=2i
COMMON/T/ T, NSTOP, NORUN

+ /Y/ UiNX, U2NX, VAI
+ /17 U1TNX, U2TNX, VA
+ /S/ U1XNX
+ K, V, C, U,
+ EXP1, ARG

C...
C.., BOUNDARY CONDITION

Ui1=DEXP..K/UT
U1T1=0.D+0

C...
C... U1X
C...
C... FIVE POINT BIASED UPWIND

CALL DSSO2O0.D+0,X,NX,U1,U1X,i .D+0
C...
C... PDES

DO 1 I=1,NX
IFI .NE. iTHEN

U1TI=K/V*U2I-U1I-C*U1XI
END IF

U2TI=K/U*U1 I-U2I
1 CONTINUE
C...
C... TEST FOR THE ELAPSED TIME
C... T-X/CLTO

IFT-X/C .LT.0.D+0THEN
VA=0.D+0

C.
C... T-X/CGEO

ELSE
ARG=2 . OD+OscK*DSQRTX/ U*V*C * T-X/C
VA=EXP1s.DEXP

- K/U * T-X/C .i.BE5S10ARC
END IF
RETURN
END

SUBROUTINE DERV3
C...
C... DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, V, C, X, U,
+ EXP1, AltO, VA, VAI, T,
+ Ui, U2, U1T, U2T, U1X,
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+ BESSIO
PARAMETER NX=21
COMMON/T/ T, NSTOP, NORUN

+ /V/ UiNX, U2NX, VAI
+ /F/ U1TNX, U2TNX, VA
+ /5/ U1XNX
+ /C/ K, V, C, U,
+ EXP1, ARC

C...
C... BOUNDARY CONDITION

Ui 1=1 .D+O
U1TirO.D+O

C...
C... U1X
C...
C... FIVE POINT BIASED UPWIND

CALL DSSO2O0.D+0,X,NX,U1,U1X,i.D+O
C...
C... PDES

DO 1 I=i,NX
IFI .NE. 1THEN

U1TI=K/V*U2I-U1I-CscUiXI
END IF

U2TI=K/U*UiI-U2I
1 CONTINUE
C...
C... TEST FOR THE ELAPSED TIME
C... T-X/CLTO

IFT-X/C .LT.0.D+OTHEN
VA=0.D+0

C...
C... T-X/CGEO

ELSE
ARC=2 . OD+0*K.KDSQRT X/ U*V*C - T-X/C
VA=EXP1 -DEXP - K/U s. T-X/C -BESSIOARC

END IF
RETURN
END

SUBROUTINE DERV4
C...
C... DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, V, C, X, U,
+ EXP1, ARG, VA, VAI, T,
+ Ui, U2, UIT, U2T, U1X,
+ BESSIO

PARAMETER NX=2i ,NT=3
COMMON/T/ T, NSTOP, NORUN

+ /Y/ UiNX, U2NX, VAINT
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+ /17 U1TNX, U2TNX, VANT
+ /S/ U1XNX
+ K, V. C, X, U,
+ EXP1, ARG

C...
C... BOUNDARY CONDITION

IFT.LE.1 .D+0U1l=T
IFT.GT. 1 .D+0Ui i=1 .D+0
U1T1=0 .D+0

C...
C... U1X
C...
C... FIVE POINT BIASED UPWIND

CALL DSSO2O0.D+0,X,NX,U1 ,U1X,1 .D+0
C...
C... PDES

DO 1 I=1,NX
IFI .NE. 1THEN

U1TI=K/V*U2I-U1 I-C*U1XI
END IF

U2TI=K/U-UiI-U2I
1 CONTINUE
C...
C... TEST FOR TI-fE ELAPSED TIME FOR RESPONSE TO STEP AT T = 0
C... T-X/CLTO

IFT-X/C .LT.0.D+0THEN
‘Ai=O . D+0

C...
C... T-X/CGEO

ELSE
ARG=2 . OD+O*K*DSQRTX/U*V*C.KT.-X/C
VA 1 =EXP1 -DEXP - K/U * T-X/C *8E55 JO ARG

END IF
C...
C... TEST FOR TI-fE ELAPSED TIME FOR RESPONSE TO STEP AT T = 1
C... T-X/C-1LTO

IFT-X/C-1.D+O.LT.O.D+OTHEN
VA 2 =0 . D+O

C...
C... T-X/C-iGEO

ELSE
ARG=2.0D+0K*DSQRTX/UV*CT-X/C_1 .D+0
VA2=-EXP1*DEXP-K/U*T-X/C-i.D+o*BESSIOARQ

END IF
C...
C... SUPERIMPOSE TWO STEP RESPONSES

‘A3=VA1.i-K/U*VAIi+VA2+K/U*VAI2
RETURN
END
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SUBROUTINE PRINTl NI ,NO
C...
C... DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, V, C. X, U,
+ EXP1, ARC, VA, VAI,
+ Ui, U2, U1T, U2T, U1X,
+ BESSIO

PARAMETER NX=21
COMMON/T/ T, NSTOP, NORUN

+ /Y/ UiNX, U2NX, VAI
+ /F/ U1TNX, U2TNX, VA
+ /S/ U1XNX
+ K, V, C, U,
+ EXP1, ARC

C..
C... ARRAYS TO STORE THE SOLUTION FOR SUBSEQUENT PLOTTING

DOUBLE PRECISION TP20i, VP2,201
C...
C... INITIALIZE A COUNTER FOR THE PRINTING AND PLOTTING

DATA IP/0/
IP=IP+i
IFIP.EQ.1THEN

C...
C... MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
C... AT THE BEGINNING OF THE SOLUTION

CALL MAP
C...
C... PRINT A HEADING

WRITENO, 1
1 FORMAT//,i4X,’T’,9X,’VX,T’,4X,’VX,T ANAL’

END IF
C...
C... PRINT THE SOLUTION EVERY 20TH CALL TO SUBROUTINE PRINT

IFIP-i/20*20.EQ.IP-iTHEN
WRITENO,2T,U1NX ,K/U*VAI

2 FORMATF15.2,2Fi5.4
C...
C... WRITE NORUN, IP AND T ON THE SCREEN TO MONITOR THE PROGRESS OF
C... THE CALCULATIONS

WRITE*,*’ NORUN = ‘,NORUN,’ IP = ‘,IP,’ T =

END IF
C...
C... STORE THE SOLUTION FOR PLOTTING

TPIP=T
VP1 , IP=U1 NX
VP2, IP=I-C/U*VAI
IFIP.LT.201RETURN

C...
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C... MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
C... AT THE END OF THE SOLUTION

C...
CALL MAP

C... OPEN A FILE FOR THE PLOTTING
OPEN1,FILE=’T.TOP’,STATUS=’NEW’

C...
C... SCALE THE AXES OF THE PLOT

WRITEi ,6
6 FORMAT’

C... LABEL THE PLOT
WRITEi ,8

8 FORMAT
1’ TITLE 1.
2,/,’ TITLE
3,/,’ TITLE
4,/,’ TITLE

C... RESET THE INTEGER COUNTER FOR THE NEXT RUN

C..

I P=0
RETURN
END

SUBROUTINE PRINT2NI ,NO

C... DECLARE SELECTED VARIABLES AS
DOUBLE PRECISION K, V,

+ EXP1, ARC,
+ UI, U2,
+ BESSIO

PARAMETER NX=21
COMM ON /T/

1
SET LIMITS X FROM 0 TO 10
SET FONT DUPLEX’

WRITE1 ,7
7 FORMAT’ SET SIZE 6 BY 6’
C...
C... WRITE THE ANALYTICAL

WRITE1 ,5TPI,
5 FORMAT2F10.4

WRITE1 ,4
4 FORMAT’ JOIN 1’
C...
C... WRITE THE NUMERICAL

WRITE1 ,5TPI
WRITEi ,4

C...

V FROM 0 TO i’,/,

PDEs"’

SOLUTION FOR PLOTTING
VP2, I, 1=1, IP

SOLUTION FOR PLOTTING
,VP1 , I ,I=l, IP

63: Two First Order

5

75 5.8 "Fig.
LEFT "

BOTTOM "t"’
1.25 0.25

"Vl,t vs t, VO,-t
WRITE1 ,9
FORMAT’ NEW FRAME’9

C...

Vi ,t"

= 1 - exp-k/ut"’

DOUBLE PRECISION
C, X, U,

VA, VAI, T,
U1T, U2T, U1X,

NSTOP, N ORUN
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+ /Y/ UiNX, U2NX, VAI
+ /F/ U1TNX, U2TNX , VA
+ /S/ U1XNX
+ K, V, C, X, U,
+ EXP1, ARC

C...
C... ARRAYS TO STORE THE SOLUTION FOR SUBSEQUENT PLOTTING

DOUBLE PRECISION TP201, VP2,20i
C...
C.., INITIALIZE A COUNTER FOR THE PRINTING AND PLOTTING

DATA IP/0/
IP=IP+1
IFIP.EQ.iTHEN

C...
C... MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
C... AT THE BEGINNING OF THE SOLUTION

CALL MAP
C...
C... PRINT A HEADING

WRITENO,i
1 FORMAT//,i4X,’T’,9X,’VX,T’,4X,’VX,T ANAL’

END IF
C..
C... PRINT THE SOLUTION EVERY 20TH CALL TO SUBROUTINE PRINT

IFIP-1/20*20 .Eq. IP-1flTHEN
WRITENO,2T,U1NX ,VA

2 FORMATFi5.2,2F15.4
C...
C... WRITE NORUN, IP AND T ON THE SCREEN TO MONITOR THE PROGRESS OF
C... THE CALCULATIONS

WRITE*,*’ NORUN = ‘,NORUN,’ IP = ‘,IP,’ T =

END IF
C...
C... STORE THE SOLUTION FOR PLOTTING

TP I P =T
VPI , IP=Ui NX
VP2, IP=VA
IFIP .LT.201RETURN

C...
C... MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
C... AT THE END OF THE SOLUTION

CALL MAP
C...
C... OPEN A FILE FOR THE PLOTTING

OPEN1 ,FILE=’T.TOP’ ,STATUS=’NEW’
C...
C... SCALE THE AXES OF THE PLOT

WRITEi ,6
6 FORMAT’ SET LIMITS X FROM 0 TO iO Y FROM -0.i TO 1.0’,/,
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1 ‘ SET FONT DUPLEX’
WRITE1 ,7

7 FORMAT’ SET SIZE 6 BY 6’
C...
C... WRITE THE ANALYTICAL SOLUTION FOR PLOTTING

WRITEi ,5 TPI ,VP2, I , I=i , IP

5 FORMAT2F10.4
WRITEi ,4

4 FORMAT’ JOIN 1’
C...
C... WRITE THE NUMERICAL SOLUTION FOR PLOTTING

WRITE1 ,5 TPI ,VPi .1 ,I=1, IP
WRITEi ,4

C...
C... LABEL THE PLOT

WRITEi ,8
8 FORMAT

1’ TITLE 1.75 5.8 "Fig. 64: Two First Order PDEs"’
2,/,’ TITLE LEFT "

3,/,’ TITLE BOTTOM "t"’
4,/,’ TITLE 1.5 0.25
5 "Vi,t vs t, V0,t = exp-k/ut"’

WRITE1 ,9
9 FORMAT’ NEW FRAME’
C...
C... RESET THE INTEGER COUNTER FOR THE NEXT RUN

JP=O
RETURN
END

SUBROUTINE PRINT3NI ,NO
C...
C... DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, V, C, X, U,
+ EXP1, ARG, VA, VAI, T,
+ Ui, U2, U1T, U2T, U1X,
+ BESSIO

PARAMETER NX=2i
COMMON/T/ NSTOP, NORUN

+ /Y/ UiNX, U2NX, VAI
+ /F/ UiTNX, U2TNX, VA
+ /S/ U1XNX
+ /C/ K, V, C, X, U,
+ EXP1, ARC

C...
C... ARRAYS TO STORE THE SOLUTION FOR SUBSEQUENT PLOTTING

DOUBLE PRECISION TP201, VP2,20i
C...
C... INITIALIZE A COUNTER FOR THE PRINTING AND PLOTTING
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DATA IP/0/
I P= I P+1
IFIP.EQ.1THEN

C...
C... MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
C... AT THE BEGINNING OF THE SOLUTION

CALL MAP
C...
C... PRINT A HEADING

WRITENO , 1
1 FORMAT//,14X,’T’,9X,’VX,T’,4X,’VX,T ANAL’

END IF
C...
C... PRINT THE SOLUTION EVERY 20TH CALL TO SUBROUTINE PRINT

lFIP-1/2O2O.EQ.IP-1flTHEN
WRITENO,2T,U1NX ,VA+K/U*VAI

2 FORMATF15.2,2F15.4
C...
C... WRITE NORUN, IP AND T ON THE SCREEN TO MONITOR THE PROGRESS OF
C... THE CALCULATIONS

WRITE*,*’ NORUN = ‘,NORUN,’ IP = ‘,IP,’ T =

END IF
C...
C... STORE THE SOLUTION FOR PLOTTING

TPIP=T
VP1 , IP=U1NX
VP2, IP=VA+K/UsVAI
IFIP. LT. 201RETURN

C...
C... MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
C... AT THE END OF THE SOLUTION

CALL MAP
C...
C... OPEN A FILE FOR THE PLOTTING

OPEN1,FILE=’T.TOP’ ,STATUS=’NEW’
C...
C... SCALE THE AXES OF THE PLOT

WRITE1 ,6
6 FORMAT’ SET LIMITS X FROM 0 TO 10 V FROM -0.1 TO 1.1’,/,

1 ‘ SET FONT DUPLEX’
WRITE1 ,7

7 FORMAT’ SET SIZE 6 BY 6’
C...
C... WRITE THE ANALYTICAL SOLUTION FOR PLOTTING

WRITE1 ,5 TPI ,VP2, I, 1=1 ,IP
5 FORMAT2F1O.4

WRITE1 ,4
4 FORMAT’ JOIN 1’
C...
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C... WRITE THE NUMERICAL SOLUTION FOR PLOTTING

WRITE1 ,5 TPI ,VP1 , I ,I=1, IP

WRITE1,4
C...
C... LABEL THE PLOT

WRITE1 ,8
S FORMAT

1’ TITLE 1.75 5.8 "Fig. 65; Two First Order PDEs"’

2,/,’ TITLE LEFT " V1,t"’

3,!,’ TITLE BOTTOM "t"’
4,!,’ TITLE 1.75 0.25
5 "Vl,t vs t, VO,t = unit step"’

WRITE1 ,9
P FORMAT’ NEW FRAME’
C...
C... RESET THE INTEGER COUNTER FOR THE NEXT RUN

IP=0
RETURN
END

SUBROUTINE PRINT4NI ,NO
C...
C... DECLARE SELECTED VARIABLES AS DOUBLE PRECISION

DOUBLE PRECISION K, V, C, X, U,
+ EXP1, ARC, VA, VAI, T,
+ Ui, U2, U1T, U2T, U1X,

+ BESSIO
PARAMETER NX=21 ,NT=3
COMMON/T/ T, NSTOP, NORUN

+ /Y/ U1NX, U2NX, VAINT

+ /F/ U1TNX, U2TNX, VANT
+ /S/ U1XNX
+ /C/ K, V, C, X, U,
+ EXP1, ARG

C...
C... ARRAYS TO STORE THE SOLUTION FOR SUBSEQUENT PLOTTING

DOUBLE PRECISION TP201, VP2,201
C...
C... INITIALIZE A COUNTER FOR THE PR1NTING AND PLOTTING

DATA I P/0/
IP=IP+1
IFIP.EQ. 1THEN

C...
C... MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
C... AT THE BEGINNING OF THE SOLUTION

CALL MAP
C...
C... PRINT A HEADING

WRITENO,1
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1 FORMAT//,14X,’T’,9X,’VX,T’,4X,’VX,T ANAL’
END IF

C..
C... PRINT THE SOLUTION EVERY 20TH CALL TO SUBROUTINE PRINT

IFIP-1/20s20 .EQ. IP-1flTHEN
WRITENO,2T,U1NX ,VAI3

2 FORMATF15.2,2F15.4
C...
C... WRITE NORUN, IP AND T ON THE SCREEN TO MONITOR THE PROGRESS OF
C... THE CALCULATIONS

WRITE*,sc’ NORUN = ‘,NORUN,’ IP = ‘,IP,’ T =

END IF
C...
C... STORE THE SOLUTION FOR PLOTTING

TPIP=T
VP1 , IP=U1NX
VP2, IP=VAI3
IFIP. LT.201RETURN

C...
C... MAP THE ODE JACOBIAN MATRIX AND COMPUTE THE TEMPORAL EIGENVALUES
C... AT THE END OF THE SOLUTION

CALL MAP
C...
C... OPEN A FILE FOR THE PLOTTING

OPEN1 ,FILE=’T.TOP’ ,STATUS=’NEW’
C...
C... SCALE THE AXES OF THE PLOT

WRITE1 ,6
6 FORMAT’ SET LIMITS X FROM 0 TO 10 V FROM -0.1 TO 1.1’,/,

1 ‘ SET FONT DUPLEX’
WRITE1 ,7

7 FORMAT’ SET SIZE 6 BY 6’
C...
C... WRITE THE ANALYTICAL SOLUTION FOR PLOTTING

WRITE1 ,5 TPI ,VP2, I ,I=1, IP
5 FORMAT2F10.4

WRITE1 ,4
4 FORMAT’ JOIN 1’
C...
C... WRITE THE NUMERICAL SOLUTION FOR PLOTTING

WRITE1 ,5 TPI ,VP1 , I , I=i , IP
WRITEi ,4

C...
C... LABEL THE PLOT

WRJTEi,8
8 FORMAT

1’ TITLE 1.75 5.8 "Fig. 66: Two First Order PDES"’
2,/,’ TITLE LEFT "

3,/,’ TITLE BOTTOM "t"’
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4,/,’ TITLE 1.75 0.25
5 "Vl,t vs t, V0,t = unit ramp"’

WRITE1 ,9
9 FORMAT’ NEW FRAME’
C...
C... RESET THE INTEGER COUNTER FOR THE NEXT RUN

IP=0
RETURN
END

SUBROUTINE MAP
PARAMETER N=42
COMMON/T/ T

1 /Y/ YN
2 /F/ FN

C...
C... SUBROUTiNE MAP
C...
C... 1 CALLS SUBROUTINE JMAP TO MAP THE JACOBIAN MATRIX OF
C... NTH-ORDER ODE SYSTEM.
C...
C... 2 CALLS A SERIES OF EISPACK ROUTINES VIA SUBROUTINE EIGEN
C... TO COMPUTE THE TEMPORAL EIGENVALUES OF THE ODE SYSTEM,
C... AND OPTIONALLY, THE ASSOCIATED EIGENVECTORS.
C...
C... DECLARE SELECTED VARIABLES DOUBLE PRECISION

DOUBLE PRECISION T, Y, F, YOLDN, FOLDN
C...
C... DEFINE SINGLE PRECISION ARRAYS REQUIRED BY SUBROUTINE JMAP A
C... AND SUBROUTINE EIGEN WR, WI, Z, RW, 1W

REAL AN,N, WRN, WIN, ZN,N, RWN
INTEGER IWN

C...
C.,. MAP THE JACOBIAN MATRIX OF THE ODE SYSTEM DEFINED IN SUBROUTINE
C... DERV, AND COMPUTE ITS TEMPORAL EIGENVALUES. NOTE THAT ARRAY
C... A CONTAINING THE NUMERICAL JACOBIAN MATRIX ON OUTPUT FROM JMAP
C... IS SINGLE PRECISION, I.E., IT IS NOT DECLARED IN THE PRECEDING

.C... DOUBLE PRECISION STATEMENT. FURTHER EXPLANATION OF THIS POINT
C... IS GIVEN IN THE COMMENTS BEFORE THE FOLLOWING CALL TO SUBROUTINE
C... EIGEN

CALL JMAPN,A,Y,YOLD,F,FOLD
C...
C... SUBROUTINE EIGEN PART OF DSS/2 CALLS A SERIES OF EISPACK ROU
C... TINES TO COMPUTE THE TEMPORAL EIGENVALUES, AND OPTIONALLY, THE
C... EIGENVECTORS OF THE NTH-ORDER ODE SYSTEM JACOBIAN MATRIX. NOTE
C... THAT ALL OF THE ARRAYS GOING INTO EIGEN A, WR, WI, Z, RW, IW
C... ARE SINGLE PRECISION. THIS WAS DONE TO ALLOW THE USE OF THE
C... SINGLE PRECISION EISPACK ROUTINES CALLED BY EIGEN

CALL EIGENN,A,WR,WI,Z,RW,IW
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RETURN
END

Program 9: Subroutines DERV, JNITAL and PRINT, and SubordinateRoutines

for the Solution of Equations 63 and 64

We now consider each section of Program 9.

1 Subroutine INITAL calls one of four initialization subroutines, INITI to INIT4, for four

different test problems, depending on the run counter, NORUN. Subroutines INT1, INIT2 and

INIT3 are for boundary conditions 68, 70 and 71 respectively; INIT4 is for a unit ramp

boundary condition, VO,t = rt, where rt is defined as

It, 0 < t C I
rt1it;i - 74

The exact solution for this case is obtained by integration and superposition of the solution for

VO,t = ht, as explained subsequently. Note that four runs are executed NORUN varies from

1 to 4 for these four boundary cobditions.

2 Similarly, subroutine DERV calls one of four derivative subroutines, DERV1 to DERV4,

corresponding to the four test problems described for INIT1 to INIT4, respectively.

3 Finally, subroutine PRINT calls one of four derivative subroutines, PRINT1 to PRINT4,

corresponding to the four test problems implemented in INIT1 to INIT4 and DERV1 to DERV4.

Now we consider the subroutines for each of the four test problems, starting with INJTI,

DERV1 and PRINTI, which are for boundary condition 68. The following points should be noted

about subroutine INIT1:

1 The coding is in double precision format. This was done primarily to provide compatibility

with function BESSIO from Press et al [14, pp 176-178] which is in double precision; this

function computes the modified Bessel function I in the analytical solutions, equations 69, 72

and 73
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2 The model parameters are set in a series of statements, e.g., K1.OD+O, and the exponential

in the analytical solutions, equations 69, 72 and 73, which does not involve t, and therefore

is constant throughout each solution is computed, i.e., EXP1DEXP-K/V*C*X.

3 Initial conditions 65 and 6? are implemented in DO loop I which are homogeneous.

Also, the integral in equation 69 VAI is intialized

VAI = k/uJhA - x/ce
- x/t

10{2k 4A - x/c}dA 69

Note that VAI = 0 at t = 0. Also, VAI appears as the 43rd element in COMMONlY! since it is

evaluated as an equivalent ODE, as explained subsequently.

In summary, INTl initializes the program and sets the initial conditions for the first problem

with boundary condition 68 NORUN = 1. Then the ODE integrator calls DERVI to step along the

solution. DERV1 has the following features:

1 Boundary condition 68 is first programmed as

C...
C... BOUNDARY CONDITION

U11=1 .D+O-DEXP-K/U*T
U1T1=O .D+O

Note that the temporal derivative U1Tl is zeroed since U11 is defined by the boundary

condition rather than by an ODE at grid point 1.

2 The spatial derivative in equation 63, is computed by a call to subroutine DSSO2O with

the coding

C...
C. . * FIVE POINT BIASED UPWIND

CALL DSSO2OO.D+O,X,NX,U1,U1X,1.D+O

3 The derivatives U1T and U2T in equations63 and 64 are programmed in DO
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loop 1 as

C...
C... PDES

DO 1 I=1,NX
IFI. NE. lTHEN

U1TI=l</VscU2I_U1Ifl-C*U1XI
END IF

U2TI=K/U*U1I-U2I
CONTINUE

Note that U1T1 is not computed since it was zeroed for boundary condition 68. Also, the

close resemblance of the PDEs, equations 63 and 64, and the coding in DO loop 1 is apparent.

This is one of the major advantages of this approach to PDEs.

4 The integrand in equation 69

VA = ek/ k/uhA - x/ce’"
- x/c

10{2k 1 3.A - x/c} 75

is programmed after DO loop 1 as

C. . -

C... TEST FOR THE ELAPSED TIME
C... T-X/CLTO

IFT-X/C .LT.O.D+OTHEN
VA=O.D+O

C...
C... T-X/CGEO

ELSE
ARG=2 . OD+Os.K-DSQRT X/ U*V-C * T-X/C
VAK/U*EXP1*DEXP-k/U*T-X/C*BESSIOARG

END IF

With this procedure, we are numerically integrating the ODE

dVAI/dt = VA 76

to obtain the integral in equation 69. This has the important advantage that additional

programming outside the framework of the ODE integrator is not required, and also, we can take

advantage of the features of the ODE integrator to insure an accurate value of the integral, i.e.,
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automatic step size adjustment to achieve a user prescribed accuracy. Note also that VA appears

as the 43rd element in COMMON/F/ as required so that it is integrated to VA! the 43rd

elementin COMMON/Y/.

Subroutine PRINTI provides the numerical and graphical output for the first problem, and has

the following features

1 At the beginning of the solution IP = 1, a call to subroutine MAP maps the Jacobian

matrix of the first 42 elements in COMMON/Y/ and /F/ and computes their temporal

eigenvalues, which are then printed by MAP as indicated in the following discussion of the

output. Then a heading for the numerical and analytical solutions is printed via FORMAT 1.

2 The numerical solution for V1,t U1NX and analytical solution for V1,t VA! are

printed vs t for every 10th call to subroutine PRINT PRINT is called 201 times so that enough

points are generated to produce quality plots of the solutions.

3 The numerical and analytical solutions are stored in array VP, and t is stored in array TP,

for subsequent plotting. The plotting is done at the end of the run, when IP = 201, by the coding

at the end of subroutine PRINT. The plots produced by this coding are subsequently discussed.

The data for Program 9 are listed in Table 12 for the four runs four test problems

BATEMAN TEST PROBLEM - 055020 - V0,T = 1 - EXP.-K/UscT
0. 10.0 0.05

43 1000 15 1 ABS 0.0001
BATEMAN TEST PROBLEM - DSSO2O - VO,T = EXP-K/U*T
0. 10.0 0.05

42 1000 15 1 ABS 0.0001
BATEMAN TEST PROBLEM - DSSO2O - VO,T = 1
0. 10.0 0.05

43 1000 15 1 ABS 0.0001
BATEMAN TEST PROBLEM - DSSO2O - unit ramp
0. 10.0 0.05

45 1000 15 1 ABS 0.0001
END OF RUNS

Table 12: Data for Program U
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The following points pertain to the data:

1 Time ranges over the interval 0 t 10, with calls to subroutine PRINT1 at intervals of

0.05. Thus, there ate 10/0.05 + 1 = 201 calls to PRINT1 including the initial condition at t =

0.

2 43 ODEs are specified, which agrees with the number of elements in COMMONlY! and /F/.

3 For this problem, subroutine RKF46 called by main program SRKF4S gave erratic results,

e.g., the integration did not proceed to the correct output print times. Therefore the ODE

integration was done with DSS/2 integrator 15 [Schiesser 15], which is an implementation of the

Rungke Kutta Fehlberg formulas [Forsythe, et al 11, the same integration formulas as in

subroutine RKF45. The additional data for DSS/2 are: a 1000 - the ratio of the print interval

0.05 to the minimum integration interval, so that the minimum allowable integration interval is

0.05/1000, b 15 - integrator 15, and c 1 - error messages are printed if the integration error

reaches the minimum of 0,05/1000.

4 An absolute error of 0.0001 in the solution of the 43 ODEs is specified.

Subroutine PRINT1 produces a substantial amount of numerical and graphical output, which will now

be discussed in several parts.

1 A data summary is first printed for each run. Thus, for NORUN = 1, the data summary

is

RUN NO. 1 - BATEMAN TEST PROBLEM - 055020
- V0,T = 1 - EXP-K/U*T

INITIAL VALUE OF TIME = 0.0000D-t-00

FINAL VALUE OF TIME = 0.1000D+02

PRINT INTERVAL OF TIME = 0.5000D-01

NUMBER OF FIRST-ORDER DIFFERENTIAL EQUATIONS = 43

PRINT INTERVAL/MINIMUM INTEGRATION INTERVAL = 1000
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INTEGRATION ALGORITHM = 1.5
1 - RUNGE KUTTA EULER
2 - RUNGE KUT1’A NIESSE
3 - RUNGE KUTTA MERSON
4 - RUNGE KUTTA TANAKA - 4

5 - RUNGE KUTTA TANAKA - 5
6 - RUNGE KUTFA CHAI
7 - R.UNGE KUTTA ENGLAND
8 - RUNGE KUTFA WES - 4/1
9 - RUNGE KUTTA WES - 4/2

10 - RUNGE KUTTA WES - 4/3
11 - RUNGE KUTFA WES - 4/4
12 - RUNGE KUTTA WES - 4/5
13 - RUNGE KUTTA WES - 5/1
14 - RUNGE KUTTA WES - 5/2
15 - RUNGE KUTTA FEHLBERG - RKF45

PRINT OPTION = 1
NO INTEGRATION ERROR DIAGNOSTICS - 0
SUMMARY OF INTEGRATION ERRORS - 1

TYPE OF INTEGRATION ERROR = ABS

MAXIMUM INTEGRATION ERROR = 0.100D-03

The data summary should be self explanatory.

2 The ODE Jacobian map produced by the first call to subroutine MAP appears next in the

output

DEPENDENT VARIABLE COLUMN INDEX J FOR YJ IS PRINTED HORIZONTALLY

DERIVATIVE ROW INDEX I FOR DYI/DT = FIY1,Y2,... ,YJ,. . . ,YN IS PRINTED
VERTICALLY

JACOBIAN MATRIX ELEMENT IN THE MAP WITH INDICES J,J IS FOR PFI/PYJ
WHERE P DENOTES A PARTIAL DERIVATIVE

111111111122222222223333333333444
123456789012345678901234567890123456789012

1
2 6665 4
3 6465 4
4 6666 4
5 56666 4
6 56666 4
7 56666 4
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8 56666 4
9 56666 4

10 56666 4
11 56666 4
12 56666 4
13 56666 4
14 56666 4
15 56666 4
16 56666 4
17 56666 4
18 56666 4
19 56666 4
20 56666 4
21 66776 4
22 3
23 3 3
24 3 3
25 3 3
26 3 3
27 3 3
28 3 3
29 3 3
30 3 3
31 3 3
32 3 3
33 3 3
34 3 3
35 3 3
36 3 3
37 3 3
38 3 3
39 3 3
40 3 3
41 3 3
42 3 3

This map requires some explanation:

2.1 An integer index for the ODE dependent variables is listed across the top of the map, i.e., 1

J 42. Similarly, an integer index for the ODE derivatives is listed down the left side of the

map, i.e., I i 42. Thus, a nonblanlc element in ith row and jth column indicates that the

RI-IS of ODE i is a function of dependent variable j. 1 21 is for U in equations 63 and

64 approximated over the 21 point grid array U121 in COMMON/Y/, and 22 j < 42 is

for V in equations 63 and 64 array U221 in COMMON/Y/. As a specific example, the
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second row of the map

2 6665 4

indicates dy2/dt = f2y9v3y4y5,y23 or, in terms of the Fortran variables in subroutine DERVI,

U1T2 = fU12,U13,U14,U15,U22. The latter is just the ODE approximation for

equation 63 at grid point 2; U12, 1313, U14 and 1315 result from the five point biased

upwind approximations in subroutine DSSO2O which has only four points at grid point 2 since

U11 is set by boundary condition 68 at x = 0, and not by an ODE, and U22 results from

the coupling term involving V in equation 63. Of course, similar interpretations can be given to

alE of the other rows in the map. For example, the first row has only blank characters, indicating

U1T1 does not depend on any of the dependent variables, as expected, since boundary condition

68 in subroutine DERT1 includes the programming U1T1 = 0.

2.2 The map elucidates the structure of the ODEs. The five diagonals with, for example, 56666

result from the live point biased upwind approximations in subroutine DSSO2O used to calculate

in equation 63. Also, the outlying diagonal with 3 in rows 1 to 21 is due to the cross

coupling between equations 63 and 64 due to the heat transfer term kU . V in equation 63.

Thus, rows 1 to 21 reflect the ODE approximation of equation 63, including boundary condition

68.

2.3 Similarly, rows 22 to 42 relect the ODE approximation of equation 64. Note that the

main diagonal is not pentadiagonal since equation 64 does not have a derivative in x. Rather.

the one main diagonal results from U in the heat transfer term kV - U in equation 64. The

outlying diagonal with 4 results from V in this heat transfer term.

Finally, we should note that the numbers printed in the map give an indication of the magnitude of

the elements of the Jacobian matrix. Thus a "6" indicates an element which can be up to two orders

of magnitude factor of 102 larger than an element designated with a "4". Additional information

about how these numbers in the map are generated is available by studying subroutine MAP and the

subroutines it calls e.g., JMAP and EJGEN, which are all thoroughly commented. We can conclude

from this map that generally it provides a "picture" of the ODE structure that is unique for the

problem and thereby helps us to understand the ODE equation structure.
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3 In addition to producing the preceding map. subroutine MAP generates a numerical

approximation to the Jacobian matrix through finite difference approximation of the elements of the

Jacobian matrix in subroutine JNIAP called by MAP. This numerical Jacobian is then passed to

another subroutine EIGEN called by MAP which computes the eigenvaiues of the numerical

Jacobian, and prints them. These eigenvalues are tabulated below for the first run NORUN = 1

I REAL IMAG
1 -9.309 47.090
2 -9.309 -47.090
3 -31.279 49.103
4 -31.279 -49.103
5 -31.912 46.532
6 -31.912 -46.532
7 -32.885 42.393
8 -32.885 -42.393
9 -34.045 36.904

10 -34.045 -36.904
11 -35.113 30.321
12 -35.113 -30.321
13 -35.512 22.861
14 -35.512 -22.861
15 -38.129 4.087
16 -38.129 -4.087
17 -36.802 12.158
18 -36.802 -12.158
19 -33.777 17.307
20 -33.777 -17.307
21 -0.098 0.000
22 -0.098 0.000
23 -0.099 0.001
24 -0.099 -0.001
25 -0.100 0.001
26 -0.100 -0.001
27 -0.099 0.000
28 -0.099 0.000
29 -0.099 0.001
30 -0.099 -0.001
31 -0.099 0.001
32 -0.099 -0.001
33 -0.099 0.001
34 -0.099 -0.001
35 -0.099 0.001
36 -0.099 -0.001
37 -0.099 0.001
38 -0.099 -0.001
39 -0.099 0.001
40 -0.099 -0.001
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41 0.000 0.000
42 -0.100 0.000

The following points should be noted about these eigenvalues:

3.1 The real parts are all negative, indicating the numerical solution of equations 63 and 64

is stable. Also, some of the imaginary parts are nonzero, indicating that some oscillation in the

numerical solution might occur although, as we shall see in examining the plotted numerical

solution, any such oscillation is small, which is possible if the eigenvectors for the eigenvalues

with nonzero imaginary parts are small.

3.2 Eigenvalue 41 has both zero real and imaginary parts, at least to the three figures used in

the printing via a Fortran format used in subroutine EJOEN. This zero eigenvalue results from

boundary condition 68, or in other words, from the first row of the preceding map which has all

blank characters. More generally, each row of a Jacobian map with nothing but blanks or all

zeros in the row will produce a zero eigenvalue.

3.3 The smallest nonzero real part in the list of cigenvalues defines the problem time scale. In

this case, this smallest value is -0.0910, which defines a time scale of approximately 100 since
-0.910100 . . . .

e will be essentially negligible in comparison to 1. However, the numerical solution

was calculated only over the interval 0 t C 10 as noted previously see the preceding sets of

data in Table 12 in order to elucidate the initial part of the solution, i.e., the calculation could

have been continued to t = 100, but the plotted solutions would indicate mostly the steady state

solution rather than the transient which is of primary interest in comparing the numerical and

analytical solutions.

3.4 The eigenvalue with the largest real part in an absolute sense defines the ODE system

stiffness. In this case, this real part is -38.129, and when ratioed to the smallest value noted in

3.3, i.e., -38.128/.O.0910 = 419, indicates that the system of 42 ODEs is moderately stiff; we

are able to use a nonstiff explicit time integrator, in this case the Runge Kutta Fehlberg

method, and still ha;e reasonable computer run times. More generally, the stiffness ratio would

have to be about at least 1000 to consider the problem stiff, and therefore require a stiff implicit

integrator. Another way to state the onset of stiffness is the condition

95



largest eigenvalueproblem time scale >> 1

In the present case, this product is 38.128l0O = 3812.8, which again indicates moderate

stiffness a product of io6, for example, would indicate a stiff problem.

4 The numerical and analytical solutions are next printed by subroutine PRINTI

T VX,T VX.T ANAL
0.00 0.0000 0.0000
1.00 0.0378 0.0378
2.00 0.1082 0.1082
3.00 0.1737 0.1737
4.00 0.2346 0.2346
5.00 0.2911 0.2912
6.00 0.3436 0.3437
7.00 0.3924 0.3925
8.00 0.4377 0.4377
9.00 0.4797 0.4798

10.00 0.5187 0.5187

The agreement between the numerical and exact solutions is generally to about 3+ figures. The

differences between the numerical and analytical solutions can be better understood by considering

Figure 63 to 66 produced by subroutine PRINT1 from the four runs the four sets of data in Table 12

corresponding to NORUN ito 4.

1 Figure 63: Boundary condition 68 is smooth in the sense of no inconsistency between it and

the initial conditions equations 65 and 67 with Vx,0 = Ux.0 = 0. Therefore, the

differences between the numerical and analytical solution are imperceptible. As an incidental

point, note that the solution has not reached steady state condition at t = 10, as noted

previously, but if we continued the calculation beyond t = 10, the initial transient to t = 10

would be less obvious; this point is clearer in Figures 64 and 65.

2 Figure 64: Boundary condition 70 introduces a step change at x = 0 and t = 0, so that the

numerical solution oscillates slightly for short t. Generally, however, the agreement between the

numerical and analytical solutions is acceptable, indicating again that the five point biased

upwind approximations perform satisfactorily for this problem. Note also that if the calculation
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were continued to t = 100, the initial response to the discontinuity would be difficult to discern.

3 Figure 65: Boundary condition 71 again introduces a discontinuity at x = 0 and t = 0, so the

conclusions for Figure 64 also apply here.

4 Figure 66: Boundary condition 71, a unit step change, is modified to a ramp with a finite slope.

As in preceding problems with a single PDE, when the ramp is used, the numerical and analytical

solutions agree closely. We should also indicate how the analytical solution for the ramp function is

computed. The unit ramp can be considered as the time integration of the sum of two step functions

according to the equation

V0,t = Jhcx . hA - 1}dA 77

The integrand of equation 77 is computed in two parts in DERV4, as VA1 and VA2. These

terms are integrated to VAI1 and VAI2. The analytical solution is then the integral of the sum of

these four terms, i.e., V0,t = VAI3, for which the integrand is programmed as

VA3=VA1+VAIi+VA24VAI2

Therefore, three integrals, VALO, VAI2 and VAI3, are computed, and the data specfies 42 + 3 =

45 ODEs for NORUN = 4. The unit ramp itself, rt, is programmed in DERV4 as

C..,
C... BOUNDARY CONDITION

IFT.LE.1 .D+0U11=T
IFT.GT.1.D+0U11=1.D+O
U1Tl=0 .D+O

In conclusion, we observe that the approximation of PDEs by systems of ODEs produces

solutions oE acceptable accuracy, and the coding of the PDEs is straightforward.

11 Nonlinear Advection urgers’ Equation

We conclude this discussion of numerical methods for strongly convective flows by considering
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a famous test problem, Burgers’ equation

Ut = -UUX + /Uxx 78

where p is a "viscosity" that can be used to adjust the relative magnitudes of the nonlinear convective

term, -uux. and the linear diffusion term, pun. Thus, for small p, equation 78 is strongly

hyperbolic, while for large p, it is parabolic. The nonlinear advection term, -uux, produces some

interesting properties in ux,t which did not occur with the linear advection equation 7. If we

consider u to be a velocity in the term -uux, in analogy with the velocity v in the term -VUX of

equation 7. we see for large u, the velocity is large in -uux. Thus, if u is large for small x, and

small for large x, the velocity at the left end of the system is higher than at the right end, and the

solution will t.end toward a steep front for flow from left to right, a so-called "front sharpening" feature

of the solution; we will observe this front sharpening in a solution to be discussed next. If, however, u

is small for small u, and large for large u, the velocity at the left end of the system is smaller than at

the right end, and the solution will tend to smooth out with t.

Equation 78 requires one initial condition and two boundary conditions, which we take as

u0,x = 0,x 79

ut,0 = t,0, ufl,t = Ø1,t 8O81

where
ni-a nc-b -c

t,x = u.se -r .i.oe i- e 82
e_a + e + e.c

a = 0.05/px - 0.5 + 4.95t

b = 0.25/px - 0.5 + 0.75t

c = 0.5/px - 0.375

AdditionaLly, t.x is the solution to equation 78 [Madsen and Sincovec 163.

We can now list the reasons why Burgers’ equation is considered a good test problem
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1 It is nonlinear, but has a known exact solution.

7 It propagates steep fronts, depending on the choice of p; in other words, its character can be

changed from predominantly parabolic to predominantly hyperbolic.

3 The solution has the front sharpening characteristic mentioned previously due to the

nonlinear term -UUx, and it therefore provides a stringent test of any numerioca method of

solution

4 Burgers’ equation can easily be extended to two and three dimensions with known exact

solutions.

5 The advection group ut + flux plays an important role in many applications, e.g., it appears

in the Euler equations and the Navier Stokes equations.

We now consider the programming of a numerical solution of equations 78 in the format

developed for the previous example, i.e., through a set of approximating ODEs. Subroutines INITAL,

DERV and PRINT, and function PHI, which implements equation 82, is listed below

SUBROUTINE INITAL
C...
C... BURGERS’ EQUATION IN ONE DIMENSION
C...
C... SET NUMBER OF SPATIAL GRID POINTS

PA RAM ETER NX= 101
COMMON/T/ T, NFIN, NORUN

1 /Y/ UNX
2 JF/ UTNX
3 /SD/ UXNX, UXXNX
4 /C/ XL, XU, DX, VIS

C...
C... PROBLEM PARAMETERS

XL=0.
XU=1.
DX= XU-XL /FLOAT NX- 1
VIStO. 003

C...
C... INITIAL CONDITION

DO 1 I=1,NX
X=DX.FLOATI-1
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UI=PHI0. ,X
CONTINUE

C... INITIALIZE THE DERIVATIVES.
C... ROUTINE PRINT

CALL DERV
RETUR N
END

REAL FUNCTION PHIT,X
C...

IN SUBROUTINE PRINT FOR
SOLUTION.

C... 2 TO PROVIDE THE INITIAL CONDITION IN SUBROUTINE INITAL.
C...
C... 3 TO PROVIDE THE BOUNDARY CONDITIONS IN SUBROUTINE DERV.
C...
C... ARGUMENT LIST
C...

T INITIAL-VALUE INDEPENDENT VARIABLE IN BURGERS EQUATION
INPUT

X BOUNDARY-VALUE INDEPENDENT VARIABLE IN BURGERS EQUATION
INPUT

C... THE ‘ALUE OF THE FUNCTION PHI IS THE EXACT SOLUTION TO BURGERS
C... EQUATION AT X AND T.
C...
C... TYPE REAL VARIABLES AS SINGLE PRECISION
C...

COMMON/C/ XL, XU,
A= 0. 05E+OO/VIS - X-0 . oE+O0÷4 . 95E+00-T
B=0 . 25E+00/VIS*X-O .5E+O0+0 .75E+0O-T
C= 0.5E+0O/VIS-X-0.375E+00
EA=EXP-A
EB=EXP-B
EC=EXP -C

THE FOLLOWING IF WAS ADDED FOR SHORT WORD LENGTH COMPUTERS, E.G.,
32-HIT COMPUTERS SUCH AS THE VAX, WHICH CANNOT ACCOMMODATE WIDE
VARIATIONS IN THE EXP FUNCTION. THE INTENTION IS TO EFFECTIVELY
AVOID A DIVISION BY ZERO. IT IS BASED ON THE OBSERVATION THAT
WHEN THE DIVISION BY ZERO OCCURS, EC MLT EB MLT EA MLT WHERE
MLT DENOTES "MUCH LESS THAN" SO THE EQUATION FOR PHI BECOMES

1
C...

C... FUNCTION
C... EQUATION.

UN, UXX AND UT FOR PRINTING IN SUB-

TO BURGERS

C..
C...
C...
C...

PHIT,X COMPUTES THE EXACT SOLUTION
IT IS USED IN THREE PLACES

1 TO PROVIDE THE EXACT SOLUTION
COMPARISON WITH THE NUMERICAL

C...
C...
C...
C...
C...
C...

DX, VIS

C...
C...
C...
C...
C...
C...
C...
C...
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C... P1-lI = O.1*EA/EA = 0.1
C...

IFABSEA+EB+EC .LT. 1 .0E-35’THEN
PHI=0. 1E+O0

ELSE
PH I=0. 1E+OO..EA+0 . 5E÷O0EB+EC/EA+EB+EC

END IF
RETURN
END

SUBROUTINE DERV
PARAMETERNX=1O1
COMMON/T/ T NFIN, NORUN

1 UNX
2 /F/ UTNX
3 /SD/ UXNX, UXXNX
4 /C/ XL, NU, DX, VIS

C...
C... BOUNDARY CONDITIONS

U 1=PHIT,O.
UNX=PHIT,1.
UT 1=O.
UTNX=O.

C...
C... UXX BY FIVE POINT CENTERED APPROXIMATIONS

NL= 1
NU= 1
CALL DSSO44XL,XU ,NX,U,UX,UXX ,NL,NU

C...
C... UX BY FIVE POINT BIASED UPWIND APPROXIMATIONS

CALL DSSO2OXL,XU,NX,U,UX.1.
C..
C... PDE

NM1=NX-1
DO 1 I=r2,NM1
UTI=VIS*UXXI-UI*UXI

1 CONTINUE
RETURN
END

SUBROUTINE PRINTNI ,NO
C...
C... NP IS THE NUMBER OF SOLUTION CURVES TO BE PLOTTED

PARAMETERNX=lO1 ,NP=5
COMMON/T/ NFIN, NORUN

1 /Y/ UNX
2 /F/ UTNX
3 /SD/ UXNX, UXXNX
4 /C,! XL, XU DX, VIS

101



C...
C... DIMENSION THE ARRAYS FOR STORING THE ANALYTICAL AND NUMERICAL
C... SOLUTIONS

DIMENSION UNPNP,NX, UAPNP,NX, XPNX
DATA IP/0/

C...
C... BECAUSE OF THE VOLUME OF PRINTED OUTPUT, THE NUMERICAL AND EXACT
C... SOLUTIONS ARE PRINTED ONLY AT THE BEGINNING AND END OF THE RUN,
C... I.E., T = 0, 0.8

IP=IP+1
IF IP. EQ . 1 . OR. IP. EQ . NP THEN

C...
C... PRINT A HEADING FOR THE NUMERICAL SOLUTION

WRITENO ,3T
3 FORMAT1H ,//,5H T = ,F5.2,/,

1 9X,1HX,5X,5HU NUM,4X,GHU ANAL,5X,5HERROR,3X,7HVIS*UXX,5X,5H-Us.UX,
2 8X,2HUT

C...
C... COMPUTE THE EXACT SOLUTION, ERROR IN THE NUMERICAL SOLUTION AND
C... THE INDIVIDUAL TERMS IN THE PDE

DO 1 I=1,NX
X=DX-FLOAT 1-1
UANAL=PHI T,X
ERROR=UI-UANAL
DIFF=VIS-UXXI
CONV=-UI*UXI

C...
C... PRINT THE VARIOUS ELEMENTS OF THE NUMERICAL SOLUTION, INCLUDING
C... UT COMPUTED BY DERV AND AVAILABLE THROUGH COMMON/F!

WRITENO ,2X,UI ,UANAL,ERROR,DIFF,CONV,UTI
2 FORMATF10.3,GF1O.5
1 CONTINUE

END IF
C...
C... STORE THE NUMERICAL AND ANALYTICAL SOLUTIONS FOR PLOTTING

DO 4 I=1,NX
XPI=DX*FLOATI-1
UNPIP, r=UI
UAPIP, I=PHIT,XPI

4 CONTINUE
C...
C... CREATE AN OUTPUT FILE FOR TOP DRAWER PLOTTING

IFNORUN. EQ. 1 .AND. IP.EQ.NPTHEN
OPEN4,FILE=’T.TOP’,STATUS=’NEW’
WRITE4 ,5

5 FORMAT’ SET LIMITS X FROM 0 TO 1 Y FROM 0 TO 1.25’,,!,
1 ‘ SET FONT DUPLEX’

END IF
C...
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C... WRITE TOP DRAWER FILE FOR PLOTTING NUMERICAL AND ANALYTICAL

C... SOLUTIONS
IFIP .EQ .NPTHEN

C...
C... ANALYTICAL SOLUTION

DO 11 IP=1,NP
WRITE4,6XPI ,UAPIP, I, 1=1 ,NX

6 FORMAT2F10.4
WRITE4 ,7

7 FORMAT’ JOIN’
11 CONTINUE
C...
C... NUMERICAL SOLUTION

DO 12 IP=1,NP
WRITE4,8IP

8 FORMAT’ SET SYMBOL ‘,Il
WRITE4,6 XPI ,UNPIP, I, 1=1 ,NX
WRITE4 ,9

9 FDRMAT’ PLOT’
12 CONTINUE
C...
C... TITLES

WRITE4,10
10 FORMAT

+ ‘ Title 4.0 9.5 " Fig. 67: ux,t vs x,’
+ ‘ t = 0, 0.2, 0.4, 0.6, 0.8"’
+ ,/,‘ TITLE LEFT "

+ ,/,‘ TITLE BOTFOM "x"’
+ ,/,‘ TITLE 4.5 0.75
+ - exact; 1, 2, 3. 4, 5 - numerical "‘

I P=0
END IF
RETURN
END

Program 10: Subroutines INITAL, DERV, PRINT and Function PHI

for Equations 78 to 82

We can note the following points about Program 10:

1 In INJTAL we see the solution is computed on a 101 point grid in x NX=101, and p =

0.003 VIS = 0.003. Initial condition 79 is set through the use of function Pfl1T,X in DO

loop 1 with T = 0. PHI follows INITAL in the listing of Program 10; the coding is apparent

from equation 82.
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2 In DERV, boundary conditions 80 and 81 are first defined using function PHIT,X with

X = 0 and 1, respectively. Then the derivative u in equation 78 is computed by a call to

subroutine DS5044 which accepts u array UNX as an input and differentiates it to u, array

UXXNX. If Dirichlet boundary conditions are specified, as they are in this case, i.e.. equations

80 and 81, NL = NU = 1. Subroutines DSSO44 also can accept u at the boundaries as an

input if boundary conditions in u, are specified, i.e., Neumann boundary conditions, for which

NL = NU =2. The details of the differentiation formulas in DSSO44 are discussed elsewhere

[Schiesser 2].

3 The derivative Ux in equation 78 is then computed from u in the usual way by subroutine

DSSO2O for positive velocity since the solution. u. is positive.

4 Equation 78 is then implemented in DO loop I over the grid points i = 2 to NX-1. Note

that the derivatives UT1 and UTNX were previously set as part of boundary conditions 80

and 81. Also, the nonlinear term .uux is easily programmed.

5 Subroutine PRINT prints the numerical and analytical solutions, as well as all of the terms

in equation 78, at the initial and final values of t t = 0 and t = 0.8. The two solutions are

then stored in arrays for subsequent plotting which produces Figure 67.

The data read by the DSS/2 main program are

MADSEN, ET AL, LAPIDUS, ET AL, NUM METH 01FF SYSTEMS, PP. 236-237
0. 0.8 0.2

101 9999 15 1 REL 0.001
END OF RUNS

Table 13: Data for Program 10

Again, the ODE integration is done by the Rungke Kutta Fehlberg method in integrator 15.

Abbreviated numerical output from Program 10 is listed in Table 14

RUN NO. 1 - MADSEN, ET AL, LAPIDUS, ET AL, NUM METH
DIFF SYSTEMS, PP. 236-237
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INITIAL VALUE OF TIME = 0.0000E+00

FINAL VALUE OF TIME = O.8000E+O0

PRINT INTERVAL OF TIME = 0.2000E+00

NUMBER OF FIRST-ORDER DIFFERENTIAL EQUATIONS = 101

PRINT INTERVAL/MINIMUM INTEGRATION INTERVAL = 9999

INTEGRATION ALGORITHM = 15
1 - RUNGE KUTTA EULER
2 .- RUNGE KUTTA NIESSE
3 - RUNGE KUTTA MERSON
4 - RUNGE KUTTA TANAKA - 4
5 - RUNGE KUTTA TANAKA - 5
6 - RUNGE KUTFA CHAT
7 - RUNGE FUTTA ENGLAND
8 - RUNGE KUTTA WES - 4/1
9 - RUNGE K’UTFA IiES - 4/2

10 - RUNGE KUTTA ES - 4/3
11 - RUNGE KU’Il’A SiES - 4/4
12 - RUNGE KUTTA ES - 4/5
13 - RUNGE KUTTA SitS - 5/1
14 .- RUNGE KUTTA WES - 5/2
15 - RUNGE KUTTA FEHLBERG - RKF45

PRINT OPTION = 1
NO INTEGRATION ERROR DIAGNOSTICS - 0
SUMMARY OF INTEGRATION ERRORS - 1

TYPE OF INTEGRATION ERROR = REL

MAXIMUM INTEGRATION ERROR = 0.100E-02

T= 0.00
X U NUM U ANAL ERROR VIS*UXX -U*UX UT

0.000 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000
0.010 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000

0.100 1.00000 1.00000 0.00000 -0.00004 0.00015 0.00011
0.110 1.00000 1.00000 0.00000 -0.00009 0.00037 0.00028
0.120 0.99999 0.99999 0.00000 -0.00020 0.00085 0.00065
0.130 0.99098 0.99908 0.00000 -0.00047 0.00192 0.00145
0.140 0.99995 0.99995 0.00000 -0.00109 0.00441 0.00332
0.150 0.99988 0.99988 0.00000 -0.00248 0.01015 0.00767
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0.160 0.99972 0.99972 0.00000 -0.00572 0.02329 0.01756
0.170 0.99936 0.99936 0.00000 -0.01312 0.05354 0.04042
0.180 0.99854 0.99854 0.00000 -0.03001 0.12264 0.09263
0.190 0.99665 0.99665 0.00000 -0.06812 0.27925 0.21114
0.200 0.99237 0.99237 0.00000 -0.15176 0.62762 0.47586
0.210 0.98278 0.98278 0.00000 -0.32386 1.36955 1.04570
0.220 0.96207 0.96207 0.00000 -0.62384 2.80639 2.18255
0.230 0.92057 0.92057 0.00000 -0.95035 5.07642 4.12607
0.240 0.84853 0.84853 0.00000 -0.85094 7.39095 6.54001
0.250 0.75000 0.75000 0.00000 -0.00001 7.86123 7.86123
0.260 0.65147 0.65147 0.00000 0.85097 5.84359 6.69455
0.270 0.57943 0.57943 0.00000 0.95031 3.22002 4.17033
0.280 0.53793 0.53793 0.00000 0.62385 1.52434 2.14818
0.290 0.51722 0.51722 0.00000 0.32386 0.70024 1.02410
0.300 0.50763 0.50763 0.00000 0.15176 0.31937 0.47113
0.310 0.50335 0.50335 0.00000 0.06810 0.14331 0.21140
0.320 0.50146 0.50146 0.00000 0.02998 0.06339 0.09337
0.330 0.50063 0.50063 0.00000 0.01306 0.02789 0.04095
0.340 0.50027 0.50027 0.00000 0.00559 0.01241 0.01800
0.350 0.50010 0.50010 0.00000 0.00225 0.00588 0.00812
0.360 0.50002 0.50002 0.00000 0.00061 0.00347 0.00408
0.370 0.49995 0.49995 0.00000 -0.00044 0.00331 0.00286
0.380 0.49988 0.49988 0.00000 -0.00158 0.00493 0.00g35
0.390 0.49974 0.49974 0.00000 -0.00338 0.00893 0.00556
0.400 0.49949 0.49949 0.00000 -0.00670 0.01709 0.01038
0.410 0.49901 0.49901 0.00000 -0.01305 0.03305 0.02000
0.420 0.49808 0.49808 0.00000 -0.02521 0.06387 0.03866
0.430 0.49627 0.49627 0.00000 -0.04825 0.12275 0.07449
0.440 0.49281 0.49281 0.00000 -0.09082 0.23304 0.14222
0.450 0.48622 0.48622 0.00000 -0.16541 0.43225 0.26684
0.460 0.47401 0.47401 0.00000 -0.28270 0.76772 0.48502
0.470 0.45232 0.45232 0.00000 -0.42746 1.26212 0.83466
0.480 0.41656 0.41656 0.00000 -0.51192 1.82387 1.31195
0.490 0.36430 0.36430 0.00000 -0.38047 2.17092 1.79044
0.500 0.30000 0.30000 0.00000 0.00000 2.00833 2.00834
0.510 0.23570 0.23570 0.00000 0.38047 1.42093 1.80140
0.520 0.18344 0.18344 0.00000 0.51192 0.80926 1.32118
0.530 0.14768 0.14768 0.00000 0.42747 0.40984 0.83731
0.540 0.12599 0.12599 0.00000 0.28270 0.20167 0.48437
0.550 0.11378 0.11378 0.00000 0.16542 0.10029 0.26570
0.560 0.10719 0.10719 0.00000 0.09082 0.05059 0.14141
0.570 0.10373 0.10373 0.00000 0.04826 0.02575 0.07401
0.580 0.10192 0.10192 0.00000 0.02522 0.01316 0.03838
0.590 0.10099 0.10099 0.00000 0.01306 0.00674 0.01981
0.600 0.10051 0.10051 0.00000 0.00674 0.00346 0.01020
0.610 0.10026 0.10026 0.00000 0.00347 0.00178 0.00524
0.620 0.10013 0.10013 0.00000 0.00178 0.00091 0.00269
0.630 0.10007 0.10007 0.00000 0.00092 0.00047 0.00138
0.640 0.10004 0.10004 0.00000 0.00047 0.00024 0.00071
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0.990 0.10000 0.10000 0.00000 0.00000 0.00000
1.000 0.10000 0.10000 0.00000 -0.00001 0.00000

T= 0.80

0.650 0.10002 0.10002 0.00000 0.00024 0.00012 0.00036
0.660 0.10001 0.10001 0.00000 0.00012 0.00006 0.00019
0.670 0.10000 0.10000 0.00000 0.00006 0.00003 0.00010
0.680 0.10000 0.10000 0.00000 0.00003 0.00002 0.0000.5

0.690 0.10000 0.10000 0.00000 0.00002 0.00001 0.00002

0.700 0.10000 0.10000 0.00000 0.00001 0.00000 0.00001

.

. 0.00000
0.00000

* X U NUM U ANAL ERROR VIS*UXX -UUX UT
0.000 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000
0.010 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000
0.020 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000
0.030 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000
0.040 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000
0.050 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000
0.060 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000
0.070 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000
0.080 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000
0.090 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000
0.100 1.00000 1.00000 0.00000 0.00000 0.00000 0.00000

0.710 1.00000 0.99999 0.00000 -0.00003 0.00010 0.00007
0.720 1.00000 0.99999 0.00001 0.00016 0.00001 0.00016
0.730 1.00000 0.99996 0.00004 0.00068 -0.00096 -0.00029
0.740 1.00002 0.99985 0.00016 0.00005 -0.00021 -0.00016
0.750 1.00000 0.99946 0.00054 -0.02111 0.03819 0.01707
0.760 0.99921 0.99784 0.00137 -0.18150 0.35503 0.17336
0.770 0.99269 0.99100 0.00170 -0.95186 2.01338 1.05549
0.780 0.95842 0.96230 -0.00389 -3.17697 7.76351 4.4826.5
0.790 0.83463 0.85501 -0.02037 -4.69094 17.83987 12.37055
0.800 0.56480 0.58668 -0.02188 0.89814 17.97342 17.16959
0.810 0.28422 0.28932 -0.00510 4.92708 5.77132 10.01829
0.820 0.14062 0.15158 -0.00196 2.46054 0.65958 3.07189
0.830 0.11169 0.11261 -0.00092 0.58251 0.09650 0.67684
0.840 0.10314 0.10313 0.00001 0.11039 0.04788 0.15800
0.850 0.10099 0.10085 0.00015 0.02858 0.01739 0.04595
0.860 0.10034 0.10027 0.00007 0.00953 0.00465 0.01418
0.870 0.10012 0.10010 0.00002 0.00311 0.00128 0.00440
0.880 0.10005 0.10004 0.00001 0.00101 0.00044 0.00145
0.890 0.10002 0.10002 0.00000 0.00037 0.00018 0.00055
0.900 0.10001 0.10001 0.00000 0.00015 0.00008 0.00023
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0.980 0.10000 010000 0.00000 0.00000 0.00000 0.00000
0.990 0.10000 0.10000 0.00000 0.00000 0.00000 0.00000
1.000 0.10000 0.10000 0.00000 -0.00001 0.00000 0.00000

Table 14: Abbreviated Output from Program 10

As expected, the numerical and analytical solutions are the same at t = 0. They are both computed

from Ø0,x. The agreement between the two solutions is generally good, as indicated in Figure 67.

Also, Figure 67 indicates how the solution front sharpens with increasing t, as discussed previously

note that u for small x is greater than u for large x initially, the condition for front sharpening. If

the front cannot be resolved with sufficient accuracy, additional grid points may be required, or an

adaptive grid that concentrates the grid points where the solution is changing rapidly in space may be

required.

In summary,Program 10 demonstrates:

1 The ease with which numerical solutions of nonlinear PDEs can be computed the

implementation of the nonlinear term -uu is straightforward.

2 The detailed examination of all of the terms in a PDE e.g., via the printout in DO loop 1 of

PRINT which can be used to determine the behavior of the individual terms, and which terms

dominate in the computation of the solution.

12 Conclusion

We have investigated numerically a series of approximation methods for PDEs with strongly

convective properties. In each case, the PDE had a known analytical solution that could be used to

evaluate the numerical solution. The results of the tests of the various approximations are summarized

in Figures 1 to 67. We conclude from these tests that the five point biased upwind approximations in

subroutine DSSO2O gave the best performance for the selected test problems, and can easily be used in

the soluition of systems of PDEs, both linear and nonlinear. We have included all of our code so that

other investigators can understand and replicate what we have done, and hopefully, improve on our
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methods. In any case, we think the testing has been reported here in sufficient detail that there is no

question about what we have done. If we have incorrectly applied numerical methods reported by

others, we ask that our errors be reported so we can correct our code and then repeat the tests. For

this purpose, we ask that communications concerning this work be directed to W. E. Sdiiesser.

We hope that the details of using the various numerical methods will be useful to others. In

particular, the series of spatial differention routines and finite element routines can be applied to a

spectrum of PDE problems with dominant convective properties. We hope that this software is useful

to scientists and engineers who need to produce solutions to PDEs with these properties, and we

welcome inquiries about our results. The software is available as Fortran 77 source code on DOS-

formatted 3.5 inch 1.44 mb or 5.25 inch 1.2 mb diskettes.
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Appendix ‘1: Solution of the Homogeneous Advection Equation

We derive here the analytical solution to the problem

ut + vux = 0 a.1

ux,0 = gx, u0,t = ft a.2a.3

which is just a restatement of equations 7 to 9.

If the Laplace transform of ux,t with respect to t is defined as

Lt{uxt}= Jux,t&Stdt = ux,s a.4

equations a.1 to a.3 transform to

sUx,s - gx + vdux,s/dx = 0 a.5

U0,s = ?s a.6

If the Laplace transform of Ux,s with respect, to x is defined as

Lx{UX,s} =JUx,se’dx = p,s a.7

equations a.5 and a.6 transform to

sp,s - gp + v{pp,s - is = 0 a.8

Solution of equation a.8 for p,s gives

p,s = 1/v/’ gp + s/v+
fl5 a.9

Equation a.9 can now be inverted, first with respect to p
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x
s/vx - A -s/vx -

tix,s = U’{p,s} = l/v J e gAdA + e fs

0

x
s/vx f s/vA

= 1/v e J e gAdA + ?s

0

= 1/v x,s + !s a.10

where

x
-s/vx

x,s = e J e53TtgAdA a.11

0

Then, inversion with respect to s gives

ux,t = L1{Uxs} = 1/vGx,t + ft - x/vht - x/v a.12

where

Gx,t = L1{x,s} a.13

lo, t c 0 a.14ht
= ii, > 0

Some special cases can now be considered:

1 gx = 0 and equation a.12 reduces to

ux,t = ft - x/vht - x/v a.15

which is equation 10. Two other special cases follow which could be used as test problems for

numerical approximations.

2 gx = 1 and equations a.11 to a.13 give

x

-sIvxJ
s/vA -s/vx

x,s = e e dA = v/s{1 - e } a.16

and 0

Gx,t = v{ht - ht - x/v}

and from equation a.12
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ux,t = {ht - ht- x/v} + ft - x/vht. x/v a.17

For t > x/v, this reduces to

ux,t = {i - i} + ft - x/v = ft. x/v a.18

3 gx = x and equations a-li to a.13 give

x,s = e4/*! e5AAdA = {v/se$ - v/sJ e1’dA}

= e {vIsex - v/s2[e5/
- 1]

= v/sx - v/s2[1
- a.19

and

Gx,t vxht - v2[t - t - x/vht- x/v] a.20

ux,t = xht - vft - t - x/vht - x/vfl + 1t - x/vht - x/v a.21

For t > x/v, this reduces to

ux,t = x - v[t - t - x/v} + ft - x/v = f - x/v a.22

Thus, in all three cases, the solution is the same for t > x/v indicating that by this time, the initial

condition ux,0 = gx has no effect i.e., the initial condition has "left or flowed out of the system".
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Appendix 2: Listing of Subroutine DSSO12

SUBROUTINE DSSO12XL,XU.N,U,UX,V
C...
C... SUBROUTINE 055012 IS AN APPLICATION OF FIRST-ORDER DIRECTIONAL

C... DIFFERENCING IN THE NUMERICAL METHOD OF LINES. IT IS INTENDED
C... SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MODELLED BY
C... FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS WITH THE
C... SIMPLEST FORM
C...
C... U +V*U =0 1
C... T X
C...
C... THE FIRST FIVE PARAMETERS, XL, XU, N, U AND UX, ARE THE SAME
C... AS FOR SUBROUTINES DSSOO2 TO DSSOIO AS DEFINED IN THOSE ROUTINES.
C... THE SIXTH PARAMETER, V, MUST BE PROVIDED TO DSSO12 SO THAT THE
C... DIRECTION OF FLOW IN EQUATION 1 CAN BE USED TO SELECT THE
C... APPROPRIATE FINITE DIFFERENCE APPROXIMATION FOR THE FIRST-ORDER
C... SPATIAL DERIVATIVE IN EQUATION 1, U . THE CONVENTION FOR THE
C... SIGN OF V IS X
C..
C... FLOW LEFT TO RIGHT V GT 0
C... I.E., IN THE DIRECTION I.E., THE SIXTH ARGUMENT IS
C... OF INCREASING X POSITIVE IN CALLING DSSO12
C...
C... FLOW RIGHT TO LEFT V LT 0
C... I.E., IN THE DIRECTION I.E., THE SIXTH ARGUMENT IS
C... OF DECREASING X NEGATIVE IN CALLING DSSO12
C...

DIMENSION UN ,UXN
C...
C... COMPUTE THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFERENCE
C... APPROXIMATION DEPENDING ON THE SIGN OF V IN EQUATION 1. THE
C... ORIGIN OF THE FINITE DIFFERENCE APPROXIMATIONS USED BELOW IS GIVEN
C... AT THE END OF SUBROUTINE DSSO12.

DX=XU-XL/FLOATN-1
IFV.LT.0.GO TO 10

C...
C... 1 FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V

UX1=U2-Ulfl/DX
DO 1 I=2,N
UXI=UI-UI-1/DX

1 CONTINUE
RETURN

C...
C... 2 FINITE DIFFERENCE APPROXIMATION FOR NEGATIVE V
10 NM1=N-1

DO 2 I=1,NM1
UXI=UI+1-UIfl/DX

2 CONTINUE
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UXN=UN-UN-1/DX
RETURN

C...
C... THE BACKWARD DIFFERENCES IN SECTION 1 ABOVE ARE BASED ON THE
C... TAYLOR SERIES
C..
C... 2 3
C... UI-i = UI + UI -DX + UI -DX + UI -DX +
C... X iF 2X 2F 3X 3F
C...
C... 2
C... IF THIS SERIES IS TRUNCATED AFTER THE DX TERM AND THE RESULTING
C... EQUATION SOLVED FOR U , WE OBTAIN IMMEDIATELY
C... X
C...
C... UI = UI - UI-1/DX + ODX
C... X
C...
C... WHICH IS THE FIRST-ORDER BACKWARD DIFFERENCE USED IN DO LOOP 1.
C... THE DERIVATIVE Ui IS COMPUTED BY USING THE POINT TO THE RIGHT OF
C... X
C... Ui, I.E., U2, SINCE THIS IS THE ONLY POINT AVAILABLE IF FICTITIOUS
C... POINTS TO THE LEFT OF UI ARE TO BE AVOIDED.
C..
C... THE FORWARD DIFFERENCES IN SECTION 2 ABOVE ARE BASED ON THE
C... TAYLOR SERIES
C...
C... 2 3
C... UI+1 = UI + UI DX + UI DX + UI DX +
C... X iF 2X 2F 3X 3F
C...
C... 2
C... IF THIS SERIES IS TRUNCATED AFTER THE DX TERM AND THE RESULTING
C... EQUATION SOLVED FOR U , WE OBTAIN IMMEDIATELY
C... X
C...
C... Vi = UI+1 - UI/DX ÷ ODX
C... X
C...
C... WHICH IS THE FIRST-ORDER FORWARD DIFFERENCE USED IN DO LOOP 2.
C... THE DERIVATIVE UN IS COMPUTED BY USING THE POINT TO THE LEFT OF
C... X
C... UN UN-i, SINCE THIS IS THE ONLY POINT AVAILABLE IF FICTITIOUS
C... POINTS TO THE RIGHT OF UN ARE TO BE AVOIDED.

END
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Appendix 3: Numerical Diffusion in the Two Point Upwind

Approximation of the Advection Equation

Consider again equation 16

du. u - u.
-1- -v i-1 1a23
dt ‘ Ax 1

which is the two point upwind approximation of the advection equation 7. Typically, in the method

of tines, du/dt is integrated by an ODE library routine such as RKF4S which automatically adjusts

the integration step size in t, At, to meet a user-specified error criterion. However, for the purpose of

analyzing the effect of the two point upwind approximation in the MIS of equation a.23, we

approximate the derivative by a first order forward difference, which would correspond to a fixed step

integration in

uP- uP uP - uP
= -v 14 a24

At Ax

where n and i are the time and space indices, respectively.

n+1 can be expanded in a Taylor series as

. ,3n
n+1 vU.5 vu.5

u. = uP + .-At + .--4- + -j--t. +... a.25

Similarly, un can be expanded in a Taylor series as

t9uP 02uP..zsx2 ô3uPxx3
u11 =uP + j1--Ax+ + +. . . a.26

From equation a.25, the LBS of equation a.24 can be written as

u!1. P On!1 82uP5 O3uP 2
I 1 = + + -ti- +... a.27
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Similarly, from equation a.26, the RHS of equation a.24 can be written as

UP - uL Oun &uI’eAx O3uP..x2

-2 9! + 3f +...} a.28

Subtraction of equation a.28 from equation a.27 then gives

n+1 n n nu. . u. ,u. u.
I I I iA =

At I. Ax

OuP 82u!1 03uP5 2
- I _L iAt4_ I t
- -rat 2. at3

OuP O2uP.Ax a3uPeSx2
+v’-1-+ L__+ __.L +IOx Ox2 2! Ox3 3!

fouç Ourl 1O2us o2uneAx
= c - + V-i + c--f + Vat Oxj tat2 2. Ox2

3n 3n ,

a.7
Ox

Considering the RIIS terms of equation a.29,

CuP CuP
1 I I

Ox

is just the advection group at grid points i and n. Thus, the additional terms represent departures

from the advection group due to the finite differencing of the LHS, i.e., errors resulting from the

approximation of the advection group by

n-I-I n n n
U1 - u1 u1 -

At +V1 Ax

The second RHS group

118



O2u’M O2u.5x}
a.30

2!

can be rewritten by differentiating the advection equation 6

Cu_ Oil
- a.31

Differentiation of equation a.31 with respect to t gives

02u - a.32

Differentiation of equation a.31 with respect to x gives

- 02u a.33

If the mixed partials of equations a.32 and a.33 are assumed to be equal, then equations a.32 and

a.33 can be combined to give the second order wave equation.

02u 202u a.34

from equation a.34, evaluated at grid points i and n, can now be substituted in group a.3O
at2

{ 28u1.5t O2u.Ax1 v2st vAx 82u
a.352!

If equation a.35 is substituted in equation a.29, and the third derivatives terms are considered as

higher order terms, the finite difference approximation of the advection equation becomes

un n ft
i i +vI

-u111
I. Ax J

{OuP Ou!11 " 2at vAx fl2uP
+ v- S +t Ox t 2!
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CuP CuP O2uP
= *+_-++...

a.36

where D is a numerical diffusivity, i.e.,

D
= { - xt} a.37

In other words, the finite difference approximation of equation a.24 includes a numerical diffusion

term which accounts for the numerical diffusion observed in the solutions produced by the two point

upwind approximations in subroutine DSSO12.

The effect of this diffusion term can be negated if the RHS of equation a.37 is set to zero, i.e.,

A 2
VaX_V 82! - 2!

or = 1. This is the Courant-Friedrichs-Lewy CFL stabilty condition [Myint-U et a 5. In

other words, setting D = 0 places the finite difference solution just at the border of instability.

Practically, this cannot be done, and we require < I for stability, but this means the diffusion

term in equation a.36 remains.

Similar diffusion terms are introduced by the nine other approximations considered previously,

which accounts for the observed numerical diffusion in all of the solutions in Figures 1 to 50. An

analysis of the numerical diffusion of some of these approximations, particularly of the five point

biased upwind approximations, is given by Carver and Hinds 3.
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Appendix 4: Main Program SRKF45

PROGRAM SRKF45
C...
C... PROGRAM SRKF45 CALLS: 1 SUBROUTINE INITAL TO DEFINE THE ODE

C... INITAL CONDITIONS, 2 SUBROUTINE RXF45 TO INTEGRATE THE ODES,
C... AND 3 SUBROUTINE PRINT TO PRINT THE SOLUTION.
C...
C... THE FOLLOWING CODING IS FOR 450 ODES. IF MORE ODES ARE TO BE INTE
C... GRATED, ALL OF THE 450’S SHOULD BE CHANGED TO THE REQUIRED NUMBER

CUMMON/T/ T, NSTOP, NORUN
1 Y450
2 F450

C...
C... THE NUMBER OF DIFFERENTIAL EQUATIONS IS IN COMMON/N/ FOR USE IN
C... SUBROUTINE FCN

COMMON/NI NEQN
C...
C... COMMON AREA TO PROVIDE THE INPUT/OUTPUT UNIT NUMBERS TO OTHER
C... SUBROUTINES

CONIMON/IO/ NI, NO
C...
C... ABSOLUTE DIMENSIONING OF THE ARRAYS REQUIRED BY RKF45

DIMENSION YV450, WORK3000, IWORK5
C...
C... EXTERNAL THE DERIVATIVE ROUTINE CALLED BY RKF45

EXTERNAL FCN
C...
C... ARRAY FOR THE TITLE FIRST LINE OF DATA, CHARACTERS END OF RUNS

CHARACTER TITLE20s4, ENDRUN3sc4
C...
C... DEFINE THE CHARACTERS END OF RUNS

DATA ENDRUN/’END ‘,‘OF R’,’UNS 7
C...
C... DEFINE THE INPUT/OUTPUT UNIT NUMBERS

N 1=5
NO=6

C...
C... OPEN INPUT AND OUTPUT FILES

OPENNI ,FILE= ‘DATA’ ,STATUS=’OLD’
OPENNO ,FILE=’OUTPUT’ ,STATUS=’NEW’

C...
C... INITIALIZE THE RUN COUNTER

NO RUN = 0
C...
C... BEGIN A RUN
1 NORUN=NORUN÷1
C...
C... INITIALIZE THE RUN TERMINATION VARIABLE

NSTOP=O
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C...
C... READ THE FIRST LINE OF DATA

READNI . 1000,END=999 TITLEI .1=1,20
C...
C... TEST FOR END OF RUNS IN THE DATA

DO 2 1=1,3
IFTITLEI.NE.ENDRUNIflGO TO 3

2 CONTINUE
C...
C... AN END OF RUNS HAS BEEN READ, SO TERMINATE EXECUTION
999 STOP
C...
C... READ THE SECOND LINE OF DATA
3 READNI.1001,END=999T0,TF,TP
C...
C... READ THE THIRD LINE OF DATA

READNI , 1002,END=999NEQN,ERROR
C...
C... PRINT A DATA SUMMARY

WRITENO,1003NORUN, TITLE1 ,1=1,20,
1 T0,TF,TP,
2 NEQN,ERROR

C...
C... INITIALIZE TIME

T=TO
C...
C,.. SET THE INITIAL CONDITIONS

CALL INITAL
C...
C... SET THE INITIAL DERIVATIVES FOR POSSIBLE PRINTING

CALL DERV
C...
C... PRINT THE INITIAL CONDITIONS

CALL PRINTNI,NO
C...
C... SET THE INITIAL CONDITIONS FOR SUBROUTINE RKF45

TV=T0
DO 5 I=1,NEQN
YVI=YI

5 CONTINUE
C...
C... SET THE PARAMETERS FOR SUBROUTINE RKF45

RELERR=ERROR
ABSERR=ERROR
IFLAG=-1
TOUT=T0+TP

C...
C... CALL SUBROUTINE R1CF45 TO START TIlE SOLUTION FROM THE INITIAL
C... CONDITION IFLAG = 1 OR COMPUTE THE SOLUTION TO THE NEXT PRINT
C... POINT IFLAG = 2
C...
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C... BECAUSE OF THE MANY OUTPUT POINTS, THE INTEGRATION INTERVAL
C... OF RKF45 IS SO SEVERELY RESTRICTED THE USUAL FREE-RUNNING MODE
C... MAY NOT OPERATE CORRECTLY RKF45 REPORTS AN ERROR IFLAG = 7;
C... SEE THE DOCUMENTATION
C... THE VARIOUS VALUES OF
C... USED BY SETTING IFLAG
C... IFLAG = 1
4 IFLAG=-1

CALL RKF45FCN,NEQN.YV,TV,TOUT,
C...
C... PRINT THE SOLUTION AT THE NEXT PRINT POINT

T=TV
DO 6 I=1,NEQN
YI=YVI

6 CONTINUE
CALL DERV
CALL PRINTNI ,NO

C..
C... TEST FOR AN ERROR CONDITION

IFIFLAG.NE.2THEN
C...
C... PRINT A MESSAGE INDICATING AN ERROR CONDITION

WRITENO, 1004 IFLAG
C...
C... GO ON TO THE NEXT RUN

GO TO 1
END IF

C...
C... CHECK FOR A RUN TERMINATION

IFNSTOP.NE.0GO TO 1
C...
C... CHECK FOR THE END OF THE RUN

TOUT=TV+TP
IFTV.LT.TF-o.5TpGO TO 4

C...
C... THE CURRENT RUN IS COMPLETE, SO GO ON TO THE NEXT RUN

GO TO 1
C...
C. . .

C...
C... FORMATS
C...
1000
1001
1002
1003

,13,2X,20A4,//,
-

-

-

DIFFERENTIAL EQUATIONS -

IN SUBROUTINE RKF45 FOR THE MEANING OF
IFLAG. THEREFORE THE ONE-STEP MODE IS
= -1 RATHER THAN THE USUAL INITIALIZATION

RELERR,ABSERR, IFLAG,WORIC, IWORK

FORMAT 20A4
FORMAT3E10. 0
FORMATI5 , 20X,E10. 0
FORMAT1H1,

1 ‘ RUN NO. -

2 ‘ INITIAL T
3’ FINALT
4’ PRINTT
5 ‘ NUMBER OF
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6 ‘ MAXIMUM INTEGRATION ERROR -

7 1H1
1004 FORMAT1H

,//,‘ IFLAG =

1 ‘ INDICATING AN INTEGRATION ERROR, SO THE CURRENT RUN’ ,/,
2 ‘ IS TERMINATED. PLEASE REFER TO THE DOCUMENTATION FOR’
3 ‘ SVBROUTINE’,//,25X,’RKF45’,//,
4 ‘ FOR AN EXPLANATION OF THESE ERROR INDICATORS’

END

SUBROUTINE FCNTV ,YV ,YDOT
C..
C... SUBROUTINE FCN IS AN INTERFACE ROUTINE BETWEEN SUBROUTINES RKF45
C... AND DERV
C...
C... NOTE THAT THE SIZE OF ARRAYS Y AND F IN THE FOLLOWING COMMON AREA
C... IS ACTUALLY SET BY THE CORRESPONDING COMMON STATEMENT IN MAIN
C... PROGRAM PRO1P3

COMMON/T/ T, NSTOP, NORUN
1 /Y/ Y1
2 /F/ F1

C...
C... THE NUMBER OF DIFFERENTIAL EQUATIONS IS AVAILABLE THROUGH COMMON
C... /N/

COMMON/N/ NEQN
C...
C... ABSOLUTE DIMENSION THE DEPENDENT VARIABLE, DERIVATIVE VECTORS

REAL YV45O, YDOT450
C...
C... TRANSFER THE INDEPENDENT VARIABLE, DEPENDENT VARIABLE VECTOR
C... FOR USE IN SUBROUTINE DERV

T=TV
DO 1 I=1,NEQN
YI=YVI

1 CONTINUE
C...
C... EVALUATE THE DERIVATIVE VECTOR

CALL DERV
C...
C... TRANSFER THE DERIVATIVE VECTOR FOR USE BY SUBROUTINE RKF45

DO 2 I=1,NEQN
YDOTI=FI

2 CONTINUE
RETURN
END
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Appendix 5: Listing of SubroutineDSSOI4

C...
C...
C...
C...
C...
C...
C...
C...
C...
C...

C...
10

1
UX1=R2FDX*

1 -3. *U 1
UX 2 =R2FDXs

-1. *U 1
DO 1 I=3,N
UXI=R2FDX-

1.
CONTINUE
RETURN

DO 2 I=1,NM2
UXI=R2FDX*

1 -3.
2 CONTINUE

UXN-1=R2FDX

-1. *UI+2

1 -1.
UX N =R2FDX*

1
RETURN
END

*UN-2

1. -UN-2

+0. .fCUN_1

-4.

+1. *U N

+3. scU N

SUBROUTINE DSSO14XL,XU,N,U,UX,V

SUBROUTINE DSSO14 IS AN APPLICATION OF SECOND-ORDER DIRECTIONAL
DIFFERENCING IN THE NUMERICAL METHOD OF LINES. IT IS INTENDED
SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MODELLED BY
FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS AS DIS
CUSSED IN SUBROUTINE DSSOI2. THE COEFFICIENTS OF THE FINITE
DIFFERENCE APPROXIMATIONS USED HEREIN ARE TAKEN FROM BICKLEY, W.
G., FORMULAE FOR NUMERICAL DIFFERENTIATION, THE MATHEMATICAL
GAZETTE, PP. 19-27, 1941, N = 2, M = 1, P = 0, 1, 2.

DiMENSION UN ,UXN
C...
C... COMPUTE THE COMMON FACTOR FOR EACH FINITE DIFFERENCE APPROXIMATION
C... CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER-
C... ENCE APPROXIMATION DEPENDING ON THE SIGN OF V SIXTH ARGUMENT.

DX=XU-XL/FLOATN-1
R2FDX=1 . / 2. -DX
IFV.LT.0.GO TO 10

FINITE DIFFERENCE APPROXIMATION
C...
C...

1

C...

+4. icU 2

+0. *U 2

-4. .icUI-1-UI-2

FOR POSIT1VE V

-1. *U 3

+1. -U 3

+3. -U I

FOR NEGATIVE V2 FINITE DIFFERENCE APPROXIMATION
NM 2=N -2

*U I +4. *UI+1
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UX
1 -11.-U

NM 2= N -2
DO 2 I=2,NM2
UX I=R3FDX-

1 -2.-UI-1
2 CONTINUE

UXN-1=RSFDX.i.
1 +1.*UN-3

Appendix 6: Listing of SubroutineDSSO1S

SUBROUTINE DSSO18XL,XU,N ,U,UX ,V
C...
C... SUBROUTINE DSSO18 IS AN APPLICATION OF THIRD-ORDER DIRECTIONAL
C... DIFFERENCING IN THE NUMERJCAL METHOD OF LINES. IT IS INTENDED
C... SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MODELLED BY
C... FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS AS DIS
C... CUSSED IN SUBROUTINE DSSO12. THE COEFFICiENTS OF THE FINITE
C... DIFFERENCE APPROXIMATIONS USED HEREIN ARE TAKEN FROM BICKLEY, W.
C... G., FORMULAE FOR NUMERICAL DIFFERENTIATION, THE MATHEMATICAL
C... GAZETTE, PP. 19-27, 1941, N = 3, M = 1, P = 0, 1, 2, 3. THE
C... IMPLEMENTATION IS THE *s.FOUR-POINT BIASED UPWIND FORMULA... OF
C... RI. B. CARVER AND H. W. HiNDS, THE METHOD OF LINES AND THE
C... ADVECTION EQUATION, SIMULATION, VOL. 31, NO. 2, PP. 59-69,
C... AUGUST, 1978
C...

DIMENSION UN ,UXN
C...
C... COMPUTE THE COMMON FACTOR FOR EACH FINITE DIFFERENCE APPROXIMATION
C... CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER
C... ENCE APPROXIMATION DEPENDING ON THE SIGN OF V SIXTH ARGUMENT.

DX=XU-XL/FLOATN-1
R3FDX=1 ./6. .4.DX
IFV.LT.0.GO TO 10

C...
C... 1 FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V

UX 1=R3FDXs
1 -11.*U 1 +18.*U 2 -9.*U 3 +2.*U 4
UX 2=R3FDX*

1 -2.*U 1 -3.’&U 2 +6.-U 3 -1.*U 4
NM1=N-1
DO 1 I=3,NM1
UX I=R3FDXs.

1 .i-l.wUI-2 -6.*UI-1 +3.*U I +2.*UI+1
1 CONTINUE

UX N=R3FDX*
1 -2.*UN-3 +9.s.UN-2 -18.*UN-1 4-11.seU N

RETURN
C...
C... 2 DIFFERENCE APPROXIMATION FOR NEGATIVE V
10 .1

FINITE
R3FDX*

1 +18.*U 2 -9.w.U 3 -f2.scU 4

-3.s.U I i-6.*UI+1 -1 .scUI+2

_6.*UN-2 +3.*UN-1 +2.*U N
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UX N=R3FDX-
1 -2.UN-3

RETURN
END

+9.-UN-2 -18.-UN-1 +ii.-U N

Appendix 7: Listing of Subroutine DSSOI9

C..
C...

SUBROUTINE DSSO19XL,XU,N,U,UX,V

SUBROUTINE DSSO19 IS AN APPLICATION OF THIRD-ORDER DIRECTIONAL
DIFFERENCING IN THE NUMERrCAL METHOD OF LINES. IT IS INTENDED
SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MODELLED BY
FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS AS DIS
CUSSED IN SUBROUTINE DSSO12. THE COEFFICIENTS OF THE FINITE
DIFFERENCE APPROXIMATIONS USED HEREIN ARE TAKEN FROM B1CMLEY, h.
C., FORMULAE FOR NUMERICAL DIFFERENTIATION, THE MATHEMATICAL
GAZE’fl’E, PP. 19-27, 1941, N = 3, M = 1, p = 0, 1, 2, 3. THE
IMPLEMENTATION IS THE -FOUR-POINT BIASED UPWIND FORMULA*- OF
M. B. CARVER AND H. W. HINDS, THE METHOD OF LINES AND THE
ADVETION EQUATION, SIMULATION, VOL. 31, NO. 2, PP. 59-69,
AUGUST, 1978

SUBROUTINE DSSO19 DIFFERS FROM DSSO18 IN THE
APPROXIMATIONS AT THE BOUNDARIES THE DETAILS
THE FOLLOWING CODE.

DIMENSION UN ,UXN

UX 2=1.0
1 -1.*U
NM1=N- 1
DO 1
UX

1 +1
CONTI

+1.-U 2

C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...

C...

USE OF TWO POINT
ARE OBVIOUS FROM

C... COMPUTE TIlE COMMON FACTOR FOR EACH FINITE DIFFERENCE APPROXiMATION
C... CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER
C... ENCE APPROXIMATION DEPENDING ON THE SIGN OF V SIXTH ARGUMENT.

DX=XU-XL/FLOATN-1
R3FDX=1 ./6.DX
IFV.LT.O.GO TO 10

1 FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V
UX z=1.O/DX-

-1.s.U 1 +1.*U 2

1=3, NM1
I=R3FDX*
.4cUI.-2

NUE
UXN =1.0/DX..

1 -1.’sUN-l
RETURN

C...

-6. *UI -1

+1 .-UN

I +2.-UIi-1
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C... 2 FINITE DIFFERENCE APPROXIMATION FOR NEGATIVE V
10 UX 1=1.0/DX-

1 -1.-U 1 +l.-U 2
NM 2 = N -2
DO 2 I=2.NM2
UX I=R3FDX*

l -2.*UI-1 I +6.*U1+1 -1.*UI+2
2 CONTINUE

UXN-1=1 .O/DX
1 -1.UN-1 +1.-UN
UXN =1.O/DX-

1 -1.*UN_1 +1
RETURN
END

128



Appendix 8: Listing of Subroutine DSSO2O

SUBROUTINE DSSO2OXL,XU,N,U,UX,V
C..

SUBROUTINE DSSO2O IS AN APPLICATION OF FOURTH-ORDER DIRECTIONAL
DIFFERENCING IN THE NUMERICAL METHOD OF LINES. IT IS INTENDED
SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MODELLED BY
FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS AS DIS
CUSSED IN SUBROUTINE DSSO12. THE COEFFICIENTS OF THE FINITE
DIFFERENCE APPROXIMATIONS USED HEREIN ARE TAKEN FROM BICKLEY, W.
C., FORMULAE FOR NUMERICAL DIFFERENTIATION, THE MATHEMATICAL
GAZETrE, PP. 19-27, 1941, N = 4, M = 1, P = 0, 1, 2, 3, 4. THE
IMPLEMENTATION IS THE *FIVE-POINT BIASED UPWIND FORMULA-- OF
M. B. CARVER AND H. W. HINDS, THE METHOD OF LINES AND THE
ADVECTION EQUATION, SIMULATION, VOL. 31, NO. 2, PP. 59-69,
AUGUST, 1978

DIMENSION UN ,UXN
C...
C... COMPUTE THE COMMON FACTOR FOR EACH FINITE DIFFERENCE APPROXIMATION
C... CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER
C... ENCE APPROXIMATION DEPENDING ON THE SIGN OF V SIXTH ARGUMENT.

DX=XU-XL/FLQATN- 1
R4FDX=1 .712. *DX
IFV.LT.O.GO TO 10

C...
C... 1 FINITE DIFFERENCE

UX 1=R4FDX*
1 .-25.sU
UX 2=R4FDX*

1 -3...cU 1 -10.*U 2
UX 3=R4FDX

1 +1..’4J 1 -8.*U 2
NM1=N-1
DO 1 I=4,NM1
UX IrR4FDXs.

1 -1.*UI-3 +6.*UI_2
CONTINUE
UX N=R4FDX

1 3.*UN-4 -16.-UN-3 +36.*UN-2 -48.*UN-1 +25..tU
RETURN

C...
C... 2 FINITE DIFFERENCE APPROXIMATION FOR NEGATIVE V
10 UX 1=R4FDX

1 -25.*U 1 +48.-U 2 -36.-U 3 +16.U 4 -3.-U 5
NM3=N-3
DO 2 I=2,NM3
UX I=R4FDX..

1 -3.*UI.-1 -10.-U I +18.-UI+1 -6.-UI+2 +1.-UI+3
2 CONTINUE

C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...

1 +48.-U 2

APPROXIMATION FOR POSITIVE V

-36.*U 3 +16.*U

1

4 -3.*U 5

+18.-U 3 -6.s.U 4 +1.*U 5

+8.*U 4+O.mU 3

-18.*UI-1

-1.-U 5

+10. *lJ I i-3.-UI+1

N

129



UXN-2=R4FDX
1 +1.-UN-4 -S.-UN-3 ÷0.-UN-2 +S....UN-1 -1.-U N
UXN-1=R4FDX-

1 _1.*UN-4 +6..-UN-3 -18.-UN-2 +10.-UN-1 -f3.-U N
UX N=R4FDX

1 3.*UN-4 -16.-UN-3 +36.-UN-2 -45.-UN-1 +25.-U N
RETURN
END
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Appendix 9: Listing of Subroutine DSSO2J

SUBROUTINE DSSO21XL,XU,N,U,VX,V
C...
C... SUBROUTINE DSSO21 IS AN APPLICATION OF FOURTH-ORDER DIRECTIONAL
C... DIFFERENCING IN THE NUMERICAL METHOD OF LINES. IT IS INTENDED
C... SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MODELLED BY
C... FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS AS DIS
C... CUSSED IN SUBROUTINE DSSO12. THE COEFFICIENTS OF THE FINITE
C... DIFFERENCE APPROXIMATIONS USED HEREIN ARE TAKEN FROM BICKLEY, W.
C... G., FORMULAE FOR NUMERICAL DIFFERENTIATION, THE MATHEMATICAL
C... GAZETTE, PP. 19-27, 1941, N = 4, M = 1, P = 0. 1, 2, 3, 4. THE
C... IMPLEMENTATION IS THE *FIVE-POINT BIASED UPWIND FORMULA OF
C... M. B. CARVER AND H. W. HINDS, THE METHOD OF LINES AND THE
C... ADVECTION EQUATION, SIMULATION, VOL. 31, NO. 2, PP. 59-69,
C... AUGUST, 1978.
C...
C... SUBROUTINE DSSO21 DIFFERS FROM DSSO2O IN THE USE OF TWO POINT
C... APPROXIMATIONS AT THE BOUNDARIES THE DETAILS ARE OBVIOUS FROM
C... THE FOLLOWING CODE.
C...

DIMENSION UN ,UXN
C...
C... COMPUTE THE COMMON FACTOR FOR EACH FINITE DIFFERENCE APPROXIMATION
C... CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER
C... ENCE APPROXIMATION DEPENDING ON THE SIGN OF V SIXTH ARGUMENT.

DX=XU-XL/FLOATN-1
R4FDX=1 ./12.-DX
IFV.LT.O.GO TO 10

C...
C... 1 FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V

UX 1=1.0/DX*
1 -1.*U 1 +1.*U 2
UX 2=1.0/DX*

1 -1.wcU 1 +1.*U 2
UX 3=R4FDX...

1 +1.*U 1 -8.scU 2 +O.*U 3 4 -1.*U 5
NM1=N-1
DO 1 I=4,NM1
UX I=R4FDX-

1 -1.*UI-3 +6.*UI-2 -18.*UI-1 +1O.-U I +3.’KUIi-l
1 CONTINUE

UXN =1.0/DX*
1 -1.s.UN-1 +1.*UN

RETURN
C...
C... 2 FINITE DIFFERENCE APPROXIMATION FOR NEGATIVE V
10 UX 1=1.0/DXs.

1 -1.*U 1 +1.*U 2
NM3=N-3
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DO 2 I=2,NM3
UX I=R4FDX

1 -3.wUI-1 -l0.s.U I +18.UI.i-1 -6.’..UI÷2 --1....UI+3
2 CONTINUE

UXN-2=R4FDX*
1 +1.*UN-4 -8.*UN-3 .4-0.UN-2 +.S.-UN-1 -1.-U N
UXN-1=1 .0/DX*

1 -1.UN-1 +1.scUN
UXN =1.O/DX*

1 -1.*UN-1 +1.s.UN
RETURN
END
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Appendix 20: Listing of Subroutine LEO1

SUBROUTINE LEO1XL,XU.N,U,UX,V
C...
C... SUBROUTINE LEO1 IS AN APPLICATION OF LEONARD-S FOUR POINT
C... APROXIMATIONS. THE COEFFICIENTS OF THE APPROXIMATIONS ARE
C... GIVEN IN LEONARD, B. P., **A STABLE AND ACCURATE CONVECTIVE
C... MODELLING PROCEDURE BASED ON QUADRATIC UPSTREAM INTERPOLATION**,
C... COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, VOL. 19,
C... NO. 1, JUNE, 1979. REPUBLISHED IN COMPUTER METHODS IN APPLIED
C... MECHANICS AND ENGINEERING, SPECIAL EDITION, PP 59-98, AUGUST,
C... 1990. FOUR POINT APPROXIMATIONS ARE USED AT THE BOUNDARIES.
C...

DIMENSION UN ,UXN
C...
C... COMPUTE THE COMMON FACTOR FOR EACH SPATIAL APPROXIMATION
C.., CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER
C... ENCE APPROXIMATION DEPENDING ON THE SIGN OF V SIXTH ARGUMENT.

DX=XU-XL/FLOATN-1
R8DX=1 ./8.*DX
IFV.LT.0.GO TO 10

C..
C... 1 APPROXIMATIONS FOR POSITIVE V
C...
C... FINITE DIFFERENCES

UX 1=1.O/6.O*DXfls.
1 -11.*U 1 +18.*U 2 -9.*U 3 +2.sU 4
UX 2=1.0/6.0*DXs.

1 -.2.*U 1 -3.*U 2 +6.*U 3 -1.*U 4
C...
C... LEONARD*S COEFFICIENTS

NM1=N-1
DO 1 I=3,NM1
UX I=R8DXs.

1 -4-1.*UI-2 -7.s.UI-1 +3.*U I +3.*UI+1
1 CONTINUE
C..
C... FINITE DIFFERENCE

UXN =1.0/6.0*DX*
1 -2.*UN-3 -f9.scUN-2 -l8.UN-1 +11.*U N

RETURN
C...
C... 2 APPROXIMATION FOR NEGATIVE V
C...
C... FINITE DIFFERENCE
10 UX 1=1.0/6.Os.DX*

1 -11.s.U 1 +18.U 2 -9.*U 3 +2.scU 4
C...
C... LEONARD-S COEFFICIENTS

NM 2=N-2
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DO 2 I=2,NM2
UX I=R3FDX*

1 +3.-UI-i
2 CONTINUE
C...

4-3.-U I -7.*UI+l +1.-UI+2

C... FINITE DIFFERENCES
UXN-1=1 .0/

1 +1.*UN-3
UXN =1.O/

1 -2.*UN-3
RETURN
END

6. 0*DX-
-6.*UN-2

6. O*DXfls.
+9.-UN-2

+3.*UN-1 +2.-U N

-18.scUN-1 +11 . N
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Appendix 11: Listing of SubroutineLEO2

SUBROUTINE LEO2XL,XU,N ,U,UX .V
C...
C... SUBROUTINE LEO2 IS AN APPLICATION OF LEONARD-S FOUR POINT
C... APROXIMATIONS. THE COEFFICIENTS OF THE APPROXIMATIONS ARE
C... GIVEN IN LEONARD, B. P., nA STABLE AND ACCURATE CONVECTIVE
C... MODELLING PROCEDURE BASED ON QUADRATIC UPSTREAM INTERPOLATION-,
C... COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, VOL. 19,
C... NO. 1, JUNE, 1979. REPUBLISHED IN COMPUTER METHODS IN APPLIED
C... MECHANICS AND ENGINEERING, SPECIAL EDITION, PP 59-98, AUGUST,
C... 1990. TWO POINT APPROXIMATIONS ARE USED AT THE BOUNDARIES.
C...

DIMENSION UN ,UXN
C...
C... COMPUTE THE COMMON FACTOR FOR EACH SPATIAL APPROXIMATION
C... CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER-
C... ENCE APPROXIMATION DEPENDING ON THE SIGN OF V SIXTH ARGUMENT.

DX=XU-XL/FLOATN-1
R8DX=1./8.DX
IFV.LT.O.GO TO 10

C.
C... 1 APPROXIMATIONS FOR POSITIVE V
C...
C... FINITE DIFFERENCES

UX 1=1.0/DX*
1 -1.-U 1 +1.*U 2
UX 2=1.0/DX*

1 -1.-U 1 +1.*U 2
C...
C... LEONARD-S COEFFICIENTS

NM1=N-1
DO 1 I=3,NM1
UX I=RSDX*

1 +1.*UI-2 -7.wUI-1 +3.-U I +3.*UI+1
1 CONTINUE
C..
C... FINITE DIFFERENCE

UXN =1.O/DX*
1 -1.*UN-l +1.*UN

RETURN
C...
C... 2 APPROXIMATION FOR NEGATIVE V
C...
C... FINITE DIFFERENCE
10 UX 1=1.0/DX*

1 -1.-U 1 +1.*U 2
C...
C... LEONARD-S COEFFICIENTS

NM2=N-2
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DO 2 I=2,NM2
UX I=R3FDX...

1 +3.-UI-1 +3.*U I -7.*UI+1 +1.*UI+2
2 CONTINUE
C...
C... FINITE DIFFERENCES

UXN-1=1 .0/DX-
1 -1.-UN-1 +1.-VN
UXN =1.0/DXs

1 -1.*UN-1 +1.*UN
RETURN
END
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Appendix 12: Listing of SubroutineDSSOO2

SUBROUTINE DSSOO2XL.XU,N,U,UX
C..
C... SUBROUTINE DSSOO2 COMPUTES THE FIRST DERIVATIVE, U , OF A
C... X
C... VARIABLE U OVER THE SPATIAL DOMAIN XL LE X LE XU
C...
C... ARGUMENT LIST
C...
C... XL LOWER BOUNDARY VALUE OF X INPUT
C...
C... XU UPPER BOUNDARY VALUE OF X INPUT
C...
C... N NUMBER OF GRID POINTS IN THE X DOMAIN INCLUDING THE
C... BOUNDARY POINTS iNPUT
C...
C... U ONE-DIMENSIONAL ARRAY CONTAINING THE VALUES OF U AT
C... THE N GRID POINT POINTS FOR WHICH THE DERIVATIVE IS
C... TO BE COMPUTED INPUT
C...
C... UN ONE-DIMENSIONAL ARRAY CONTAINING THE NUMERICAL
C... VALUES OF THE DERIVATIVES OF U AT THE N GRID POINTS
C... OUTPUT
C...
C... SUBROUTINE DSSOO2 COMPUTES THE FIRST DERIVATIVE, U OF A
C... X
C... VARIABLE U OVER THE SPATIAL DOMAIN XL LE X LE XU FROM THE
C... CLASSICAL THREE-POINT, SECOND-ORDER FINITE DIFFERENCE APPROXI
C... TIONS
C...
C... 2
C... UI = 1/2DX-3U1 ÷ 4U2 - U3 + ODX LEFT BOUNDARY, 1
C... X X=XL
C...
C... 2
C... UI = 1/2DXUI+1 - UI-i + ODX INTERIOR POINT, 2
C... X XNEXL, XU
C...
C... 2
C... UN = 1/2DX3UN - 4UN-1 + UN-2 + ODX RIGHT BOUNDARY, 3
C... X X=XU
C...
C... EQUATIONS 1 TO 3 APPLY OVER A GRID IN N WITH CORRESPONDING
C... VALUES OF THE FUNCTION UX REPRESENTED AS
C...
C... Ui U2 U3 UI UN-2 UN-i UN
C...
C... X=XL X=XL-FDX X=XL+2DX ... X=XI ... X=XU-2DX X=XU-DX X=XU
C...
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C...
C...

THE ORIGIN OF EQUATIONS 1 TO 3 IS OUTLINED BELOW.

C. . . CONSIDER THE FOLLOWING POLYNOMIAL IN X OF ARBITRARY ORDER
C...

2
C... UX = A0 + A1X - XO ÷ A2X - NO + A3X - XO ÷
C...
C... WE SEEK THE VALUES OF THE COEFFICIENTS AO, Al, A2,
C... PARTICULAR FUNCTION UX. IF X = X0 IS SUBSTITUTED IN
C... 4, WE HAVE IMMEDIATELY A0 = UX0.
C... DIFFERENTIATED WITH RESPECT TO X,
C..
C...
C...
C...
C..

DUX/DX = U X = Ai + 2A2X - XO + 3A3X - X0 + 5

C... AGAIN, WITH X = X0,
C...
C... OF EQUATION
C...
C... D2UX/DX2 = U
C...
C...

Ai = DUX0/DX = U

X = 2A2 + 6A3X -

N
X0. DIFFERENTIATION

X0 +

C... AND FOR X = XO, A2 = U X0/2F
C...
C...

2F = i*2, I.E., 2 FACTORIAL.

WE CAN CONTINUE THIS PROCESS OF DIFFERENTIATION FOLLOWED BY THE
SUBSTITUTION X = X0 TO OBTAIN THE SUCCESSIVE COEFFICIENTS IN
EQUATION 4, A3, A4, ... FINALLY, SUBSTITUTION OF THESE CO
EFFICIENTS lN EQUATION 4 GIVES

C... 2

X iF 2X 2F
C... UX = UX0 + U X0X X0 X0X - X0 +
C...
c. . . 6

U X0X X0 ÷ U X0X - X0 +
3X 3F 4X 4F

THE CORRESPONDENCE BETWEEN EQUATION
TAYLOR SERIES SHOULD BE CLEAR. THUS
FUNCTION, UX, AROUND A NEIGHBORING
AND THE DERIVATIVES OF UX AT X XO
MATING UX NEAR X0 BY A POLYNOMIAL.

C... EQUATION 6 IS THE STARTING POINT FOR THE DERIVATION OF THE
C... CLASSICAL FINITE DIFFERENCE APPROXIMATIONS OF DERIVATIVES SUCH
C... AS THE THREE-POINT FORMULAS OF EQUATIONS i, 2 AND 3. WE
C... WILL NOW CONSIDER THE DERIVATION OF THESE THREE-POINT FORMULAS
C... IN A STANDARD FORMAT WHICH CAN THEN BE EXTENDED TO HIGHER
C... MULTI-POINT FORMULAS IN OTHER SUBROUTINES, E.G., FIVE-POINT

C... 3
4

FOR A
EQUATION

X

NEXT, IF EQUATION 4 15

2

5 IN TURN GIVES

2X

C...
C...
C...
C...
C...

2X

C...
C...
C...
C...
C...
C...
C...
C...
C...
C...

3 4

6 AND THE WELL-KNOWN
THE EXPANSION OF A
POINT NO IN TERMS OF UX0

IS EQUIVALENT TO APPROXI
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C...
C...
C...
C...

FORMULAS IN SUBROUTINE DSSOO4.

THREE-POINT FORMULAS

1 LEFT END, POINT I = i

IF EQUATION 6 IS WRITTEN AROUND THE POINT N = XL FOR X = XL +

DX AND X = XL + 2DX, FOR WHICH THE CORRESPONDING VALUES OF UX
ARE Ui, U2 AND U3 Ui AND U2 ARE SEPARATED WITH RESPECT TO X BY
DISTANCE DX AS ARE U2 AND U3, I.E., WE ASSUME A UNIFORM GRID
SPACING. DX, FOR INDEPENDENT VARIABLE X

2

WE CAN NOW TAKE A LINEAR COMBINATION
BY FIRST MULTIPLYING EQUATION 7 BY
TION 8 BY CONSTANT B

BU3 = Ui + Ui 2DX
N iF

C....
C....
C...
C...
C.
C...
C...
C...
C...
C...
C.
C...
C...
C...
C...
C...

3

U3 = Ui + Ui 2DX
X iF

C...
C...
C...
C...
C...
C...
C...

C...
C...
C...

AU2 = Ui + Ui DX
N iF

+ Ut

+ Ui

DX
2X 2F

2DX
2X 2F

+ Ui

+ Ui

U2=U1 +Ui DX i-Ui DX +Ui DX + ... 7
X IF 2X 2F 3X SF

C... 2 3
+ Ui 2DX + Ui 2DX + ... 8

2X 2F 3X 3F

OF EQUATIONS 7 AND 8
A CONSTANT, A, AND EQUA

C... 2 3
DX÷... 9

3X SF

2 3
2DX + . . . 10

C... CONSTANTS A AND B ARE THEN SELECTED SO THAT THE COEFFICIENTS OF
C... THE Ui TERMS SUM TO ONE SINCE WE ARE INTERESTED IN OBTAINING
C... X
C... A FINITE DIFFERENCE APPROXIMATION FOR THIS FIRST DERIVATIVE.
C... ALSO, WE SELECT A AND B SO THAT THE COEFFICIENTS OF THE Ui
C... 2X
C... TERMS SUM TO ZERO IN ORDER TO DROP OUT THE CONTRIBUTION OF THIS
C... SECOND DERIVATIVE THE BASIC IDEA IS TO DROP OUT AS MANY OF THE
C... DERIVATIVES AS POSSIBLE IN THE TAYLOR SERIES BEYOND THE DERI
C... VATIVE OF INTEREST, IN THIS CASE Ui , IN ORDER TO PRODUCE A
C... X
C... FINITE DIFFERENCE APPROXIMATION FOR THE DERIVATIVE OF MAXIMUM
C... ACCURACY. IN THIS CASE WE HAVE ONLY TWO CONSTANTS, A AND B,
C... TO SELECT SO WE CAN DROP OUT ONLY THE SECOND DERIVATIVE, Ui
C... 2X
C... IN THE TAYLOR SERIES IN ADDITION TO RETAINING THE FIRST DERI
C... VATIVE. THIS PROCEDURE LEADS TO TWO LINEAR ALGEBRAIC EQUA
C... TIONS IN THE TWO CONSTANTS
C...

3X 3F
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C... A+2B=1
C...
C... A+4B=O
C...
C. . . SOLUTION OF THESE EQUATIONS FOR A AND B GIVES
C...
C... A = 2, B = -i/2
C...
C... SOLUTION OF EQUATIONS 9 AND iO FOR Ui WITH THESE VALUES OF
C... A AND B GIVES EQUATION i X
C...
C... 2
C... Ui = i/2DX-3U1 + 4U2 - U3 + ODX i
C... X
C... 2
C... THE TERM ODX INDICATES A PRINCIPAL ERROR TERM DUE TO TRUNCA
C... 2
C... TION OF THE TAYLOR SERIES WHICH IS OF ORDER DX . THIS TERM IN
C... 2
C... FACT EQUALS Ui DX /3F, WHICH IS EASILY OBTAINED IN DERIVING
C... 3X
C... EQUATION i.
C...
C... THIS SAME BASIC PROCEDURE CAN NOW BE APPLIED TO THE DERIVATION
C... OF EQUATIONS 2 AND 3.
C.
C... 2 INTERIOR POINT I
C...
C... 2 3
C... AUI-i UI + UI -DX + UI -DX + UI -DX
C... N iF 2X 2F 3X 3F
C...
C... 2 3
C... BUI+i UI + UI DX + UI DX + UI DX
C... X iF 2X 2F 3X 3F
C...
C... -A+B=i
C...
C... A+B=0
C...
C... A = i/2, B = -i/2
C... 2
C... UI = 1/2DXUI+i - UI-i + ODX 2
C... X
C...
C... 3 RIGHT END, POINT I = N
C...
C... 2 3
C... AUN-2 = UN + UN -2DX + UN -2DX + UN -2DX --

C... X iF 2X 2F 3X 3F
C...
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C... 2
C... BUN-i = UN + UN -DX + UN -DX + UN -DX
C... X iF 2X 2F 3X 3F
C...
C... -2A-B=i
C...
C... 4A+B=O
C..
C... A -2, B = 1/2
C... 2
C... UN = i/2DX3UN - 4UN-i + UN-2 + ODX 3
C... N
C...
C... THE WEIGHTING COEFFICIENTS FOR EQUATIONS i, 2 AND 3 CAN
C... BE SUMMARIZED AS
C...
C... -3 4 -1
C...
C. . . i/2 -i 0 i
C...
C... i -4 3
C...
C... WHICH ARE THE COEFFICIENTS REPORTED BY BICKLEY FOR N = 2, M =

C... i, P = 0, i, 2 BICKLEY, W. C., FORMULAE FOR NUMERICAL DIFFER
C... ENTIATION, MATH. GAZ., VOL. 25, i94i.
C...
C... EQUATIONS i, 2 AND 3 CAN NOW BE PROGRAMMED TO GENERATE
C... THE DERIVATIVE U N OF FUNCTION UX ARGUMENTS U AND UX OF
C... X
C... SUBROUTINE DSSOO2, RESPECTIVELY.
C...

DIMENSION UN ,UXN
C...
C... COMPUTE THE SPATIAL INCREMENT

DX=XU-XL/FLOATN-.i
R2FDX=1 ./2.*DX
NMi=N-i

C..
C... EQUATION i NOTE - THE RHS OF THE FINITE DIFFERENCE APPROXI
C... TIONS, EQUATIONS 1, 2 AND 3 HAVE BEEN FORMATTED SO THAT
C... THE NUMERICAL WEIGHTING COEFFICIENTS CAN BE MORE EASILY ASSOCI
C... ATED WITH THE BICKLEY MATRIX LISTED ABOVE

UX i =R2FDX
i -3. .KU i +4. .sU 2 -i. -U 3

C..
C... EQUATION 2

DO i I=2,NMi
UX I =R2FDX*

-i. *131-i +0. .icU I +1. .4.UI+i
i CONTINUE
C...
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C... EQUATION 3
UN N =R2FDX*

i i. *UN-2 -4. *UN-i +3. *U N

RETURN
END
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Appendix 13: Listing of SubroutineDSSOO4

SUBROUTINE DSSOO4XL,XU,N,U,IJX
C...
C... SUBROUTINE DSSOO4 COMPUTES THE FIRST DERIVATIVE, U , OF A
C... N
C... VARIABLE U OVER THE SPATIAL DOMAIN XL LE N LE XU FROM CLASSICAL
C... FIVE-POINT, FOURTH-ORDER FINITE DIFFERENCE APPROXIMATIONS
C...
C... ARGUMENT LIST
C...
C... XL LOWER BOUNDARY VALUE OF X INPUT
C...
C... XU UPPER BOUNDARY VALUE OF X INPUT
C...
C... N NUMBER OF GRID POINTS IN THE X DOMAIN INCLUDING THE
C... BOUNDARY POINTS INPUT
C...
C... ONE-DIMENSIONAL ARRAY CONTAINING THE VALUES OF U AT
C... THE N GRID POINT PO1NTS FOR WHICH THE DERIVATIVE IS
C... TO BE COMPUTED INPUT
C...
C... UN ONE-DIMENSIONAL ARRAY CONTAINING THE NUMERICAL
C... VALUES OF THE DERIVATIVES OF U AT THE N GRID POINTS
C... OUTPUT
C...
C... THE MATHEMATICAL DETAILS OF THE FOLLOWING TAYLOR SERIES OR
C... POLYNOMIALS ARE GIVEN IN SUBROUTINE DSSOO2.
C...
C... FIVE-POINT FORMULAS
C...
C... i LEFT END, POINT I = i
C...
C... 2 3 4
C... AU2 = Ui + Ui DX + Ui DX + Ui DX + Ui DX
C... X iF 2X 2F 3X 3F 4X 4F
C...
C... 5 6 7
C... +Ui DX +Ui DX +Ui DX
C... 5X SF 6X 6F 7X 7F
C...
C... 2 3 4
C... BU3 = Ui + Ui 2DX + Ut 2DX + Ui 2DX + Ui 2DX
C... N iF 2X 2F 3X SF 4X 4F
C...
C... 5 6 7
C... + 111 2DN + Ui 2DN + Ui 2DX
C... 5X SF 6X 6F TX 7F
C...
C... 2 3 4
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C... CU4 = UI + UI 3DX + Ui 3DX + Ui 3DX + Ut 3DX
C... X iF 2X 2F 3X 3F 4X 4F
C...
C... 5 6
C... + Ui 3DN + Ui SDX + Ui 3DX
C... 5X 5F 6X GF 7X 7F
C...
C... 2 3 4
C... DU5 = Ui + Ui 4DX + Ui 4DN + Ui 4DX + Ui 4DN
C... N iF 2X 2F 3X 3F 4X 4F
C...
C... 5 6 7
C... + Ui 4DX + Ui 4DX + Ui 4DX
C... 5X SF 6X 6F 7N 7F
C...
C... CONSTANTS A, B, C AND D ARE SELECTED SO THAT THE COEFFICIENTS
C... OF THE Ui TERMS SUM TO ONE AND THE COEFFICIENTS OF THE Ui
C... X 2N
C... Ui AND Ui TERMS SUM TO ZERO
C... 3N 4X
C.
C.. A+ 2B+ 3C+ 4D=i
C..
C... A+ 4B+ 9C+ i6D=O
C...
C... A+ 8B+ 27C+ 64D=O
C...
C... A+ i68+ 81C+256D=O
C...
C... SIMULTANEOUS SOLUTION FOR A, B, C AND D FOLLOWED BY THE SOLU
C... TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U
C... 4N
C... TERMS, FOR Ui GIVES THE FOLLOWING FIVE-POINT APPROXIMATION
C... N
C... 4
C... Ui = i/i2DN-25Ui + 48132 - 36U3 + i6U4 - 3U5 + ODN 1
C... N
C...
C... 2 INTERIOR POINT, I = 2
C...
C... 2 3 4
C... AUi = U2 + U2 -DX ÷ U2 -DX + U2 -DX + U2 -DX
C... X iF 2X 2F 3X 3F 4X 4F
C...
C... 5 6 7
C... + U2 -DX + 132 -DX + U2 -DX
C... 5X SF OX 6F 7X 7F
C...
C... 2 3 4
C... BU3 = U2 + U2 DX + U2 DX + U2 DX + U2 DN
C... N iF 2X 2F ax SF 4N 4F
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C...
C... 5 6 7
C... +U2 DX +132 DX +U2 DX
C... 5X SF OX OF 7X 7F
C...
C... 2 3 4
C... CU4 = U2 + U2 2DX + U2 2DN + U2 20X + U2 2DX
C... N iF 2N 2F 3X 3F 4X 4F
C...
C... 5 6 7
C... + U2 2DX + U2 2DX + U2 2DX
C... 5X SF 6X 6F 7X 7F
C...
C... 2 3 4
C... DU5 = U2 + U2 3DX + U2 3DX ÷ U2 3DX + U2 3DX
C... N iF 2N 2F 3N 3F 4X 4F
C...
C... 5 6 7
C... + U2 3DX + U2 3DX + U2 3DN +
C... 5X SF OX OF 7X 7F
C...
C... -A+ B+ 2C+ 3D=i
C...
C... A+ B+ 4C+ QD=O
C..
C... -A+ B+ 8C+27D=O
C...
C... A+ B+16C+SiD=O
C..
C... SIMULTANEOUS SOLUTION FOR A, B, C AND D FOLLOWED BY THE SOLU
C... TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U
C... 4N
C... TERMS, FOR Ui GIVES THE FOLLOWING FIVE-POINT APPROXIMATION
C... X
C... 4
C... U2 = i/i2DX-3Ui - iOU2 + i8U3 - 6U4 + US + ODX 2
C... X
C...
C... 3 INTERIOR POINT I, I NE 2, N-i
C...
C... 2 3
C... AUI-2 = UI + UI -2DX + UI -2DX + UI -2DX
C... N iF 2N 2F 3X 3F
C...
C... 4 5 6
C... + UI -2DX ÷ UI -2DX ÷ UI -2DN
C... 4N ‘iF SN SF OX OF
C...
C... 2 3
C... BUI-i = UI + UI -DX + UI -DX + UI -DX
C... X iF 2N 2F 3N 3F
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C...
C... 4 5 6
C... + UI -DX + UI -DX + UI -DX
C... 4X 4F 5N SF OX OF
C.
C... 2 3
C... CUI+i = UI + UI DX + UI DX + UI DX
C... N iF 2X 2F 3X SF
C...
C... 4 5 6
C... +UI DX +UI DX +UI DN
C... 4X 4F SN SF 6X OF
C,...
C... 2 3
C... DUI+2 = UI + UI 2DX + UI 20X + UI 2DX
C... X iF 2X 2F 3N 3F
C...
C... 4 5 6
C... + UI 2DX + UI 2DX + UI 2DX
C... 4X 4F SN SF OX OF
C..
C... -2A- B+ C+ 2D=i
C...
C... 4A+ 8+ C+ 4D=0
C...
C... -BA- B+ C+ 8D=O
C...
C... i6A+ 8+ C+i6D=O
C...
C... SIMULTANEOUS SOLUTION FOR A, B, C AND D FOLLOWED BY THE SOLU
C... TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U
C... 4X
C... TERMS, FOR Ui GIVES THE FOLLOWING FIVE-POINT APPROXIMATION
C... N
C... 4
C... UI = i/i2DNUI-2 - 8U1-i + OUI + SUI+i - UI+2 + ODX 3
C... X
C...
C... 4 INTERIOR POINT, I = N-i
C...
C.. 2 3
C... AUN-4 = UN-i ÷ UN-i -3DX ÷ UN-i -3DX + UN-i -3DX

C... N iF 2X 2F 3X SF
C...
C... 4 5 6
C... + UN-i -3DX + UN-i -3DN + UN-i -3DX +
C... 4N 4F 5X SF ON OF
C...
C. 2 3
C... BUN-3 = UN-i + UN-i -2DN + UN-i -2DX + UN-i -2DN

C... N iF 2X 2F SN 3F
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C...
C... 4 5 6
C... + UN-i -2DX + UN-i -2DX + UN-i -2DX

C... 4X 4F SN SF OX OF
C...
C... 2 3
C... CUN-2 = UN-i + UN-i -DX ÷ UN-I - -X + UN-i -DX
C... N iF 2X 2F 3X 3F
C...
C... 4 5 6
C... + UN-i -DX ÷ UN-i -DN + UN-i -DX +
C... 4X 4F SN SF ON OF
C...
C... 2 3
C... DUN = UN-i + UN-i DX + UN-i DN + UN-i DX
C... N iF 2X 2F 3N SF
C...
C... 4 5 6
C... +UN--i DN + UN-i DX +UN-i DX +
C... 4N 4F SN 5F ON OF
C...
C... -3A- 2B- C+ D=i
C..
C... 9A+ 4B+ C+ D=O
C..
C... -27A- SB- C+ D=O
C...
C... SiA+i6B+ C+ D=O
C...
C... SIMULTANEOUS SOLUTION FOR A, B, C AND D FOLLOWED BY THE SOLU
C... TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U
C... 4N
C... TERMS, FOR Ui GIVES THE FOLLOWING FIVE-POINT APPROXIMATION
C... N
C... 4
C... UN-i = i/i2DN-UN-4 + 6UN-3 - iSUN-2 + iOUN-i + 3UN + ODN
C... N
C... 4
C...
C... 5 RIGHT END, POINT I = N
C...
C... 2 3
C... AUN-4 = UN + UN -4DN + UN -4DN + UN -4DX

C... N iF 2N 2F 3X 3F
C...
C... 4 5 6
C... + UN -4DN + UN -4DN + UN -4DX

C... 4N 4F 5X SF ON OF
C...
C... 2 3
C... 8UN-3 = UN + UN -3DN + UN -3DN + UN -3DN
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C... N iF 2N 2F 3X SF
C...
C... 4 5 6
C... + UN -3DX + UN -3DN + UN -3DX
C... 4N 4F SN SF ON OF
C...
C... 2 3
C... CUN-2 = UN + UN -2DN + UN -2DN + UN -2DN
C... N iF 2X 2F 3X SF
C...
C... 4 5 6
C... + UN -2DX + UN -2DX + UN -2DN
C... 4N 4F SN SF ON OF
C...
C... 2 3
C... DUN-1 = UN + UN -DX + UN -DN ÷ UN -DX
C... N iF 2N 2F 3N 3F
C...
C... 4 5 6
C... + UN -DX + UN -DX + UN -DX
C... 4N 4F SN SF 6X 6F
C...
C... -4A- 3B- 2C- D=1
C...
C... i6A+ 9B+ 4C+ D=O
C...
C... -64A-27B- 8C- D=O
C...
C... 256A+81B+i6C+ D=O
C...
C... SIMULTANEOUS SOLUTION FOR A, B, C AND D FOLLOWED BY THE SOLU
C... TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U
C... 4N
C... TERMS, FOR Ut GIVES THE FOLLOWING FIVE-POINT APPROXIMATION
C... N
C... 4
C... UN = I/i2DX3UN-4 - I6UN-3 + 36UN-2 - 48UN-i + 25UN + ODN
C... N
C... 5
C...
C... THE WEIGHTING COEFFICIENTS FOR EQUATIONS i TO 5 CAN BE
C... SUMMARIZED AS
C...
C... -25 48 -36 i6 -3
C...
C... -3 -io iS -6 1
C...
C. .. i/i2 i -8 0 8 -i
C...
C... -i 6 -i8 iO 3
C...
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C... 3 -i6 36 -48 25
C...
C... WHICH ARE THE COEFFICIENTS REPORTED
C... i p = 0, i, 2, 3, 4 BICKLEY, W. G.
C... DIFFERENTIATION, MATH. GAZ., VOL. 25
C... COEFFICIENTS HAVE BEEN DIVIDED BY A
C...

BY BICKLEY FOR
FORMULAE FOR
194i. NOTE

COMMON FACTOR

N = 4, M =

NUMERICAL
- THE BICKLEY
OF TWO.

EQUATIONS i TO 5 CAN NOW BE PROGRAMMED TO GENERATE THE
DERIVATIVE U N OF FUNCTION UX ARGUMENTS U AND UN OF SUB-

N
C... ROUTINE DSSOO4 RESPECTIVELY.
C...

C...
DIMENSION 1N ,UXN

C... COMPUTE THE SPATIAL INCREMENT
DX=NU-NL/FLOATN-i
R4FDN=i ./12.s.DN

C...
NM2=N-2

C... MATRIX ABOVE
UX i=R4FDN*

i, 2, 3, 4
THAT THE NUMERICAL WEIGHTING

ASSOCIATED WITH THE BICKLEY

C...
i -25.*U i +48.*U 2 -36.*U 3 +i6.-U 4 -3.-U 5

C... EQUATION 2
UX 2=R4FDX’i.

i -3.*U 1 -iO
C...
C... EQUATION 3

DO i I=3,NM2
UX I=R4FDXs

*U 1-2

C...

i +i
CONTINUE

C... EQUATION 4
UNN-i=R4FDN

C...
i -i.s.UN-4

C... EQUATION 5
UN N=R4FDN*

i S.*UN-4
RETURN
END

+6. *UN-3

-i6.*UN-3

-iS.*UN-2

+36. ..UN-2

+iO.-UN-i

-48..-UN-i

+3.s.U N

+25. -U N

C...
C...
C...

C... EQUATION
C... AND 5
C... COEFFIC

1 NOTE - THE RHS OF EQUATIONS
HAVE BEEN FORMATFED SO

IENTS CAN BE MORE EASILY

*U

i

2 +iS.s.U 3 -6.-U 4 +i.-U 5

-8.-UI-i +0.*U I +8.-UI+i -i.-UI+2
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Appendix 14: Formulas for A0, A1, A2 in Equations 56 and 57

The QU/PG element of Figure 7.1 consists of two parts for x c U and x > 0, each of which

consists of the quadratic

O1x = a0 + a1x + a2x2 a.39

Prom ° = 1, a0 = 1.

Also, for x C 0

= #L = I + a1eax/2 + a2EAx/22

1-Ax = U = I + a1&x + a2-x2 a.40

If equationa.40 is multiplied by -1/2

=
= I - 1&/2 + a2ax/22

a.41

-1/2.-x = 0 = -1/2 + a1Ax/2 - 1/2a2Lx2

Then solution of equationsa.41 for a2, followed by a1, gives

= 1/2 - l/4a2Ax2

82 = .4/ax2ØL . 1/2

a1Ax = 1 - 4/Ax2L - 1/2Ax

at 1/Ax[l
- 4L - 1/2]

Thus, the equation for the QU/PG element for x C 0 is

= I + i/.ixjl
-

. 1/211x- 4/Ax2#L - 1/2x2 a.42

1.50



which can be checked by at the three points x = 0, -Ax/2 and -Ax:

= I

1 + I/Ax[1 4 - 1/2J-Ax/2 - 4/Ax2ØL - 1/2-Ax/22 =

= . 1/2[1 4L - 1/2]
-

- 1/2 =

Ø1-Ax = 1 + 1/Ax[1 - 1/2}Ax - 4/Ax2L - 1/2-Ax2

= 1 - [1
- 4#L - 1/21 - 4RL - 1/2 = 0

Also, we have for = 0.5, a1 = 1/Ax, a2 = 0, 1x = 1 + x/Ax as expected.

For the section x > 0, we can arrive at the final result from equation a.42 merely by

replacing -x x,
0R 0L’ i.e.,

&x = 1 - 1/Ax[1
- 4#R - I/2Jx - 4/Ax2Øft - l/2x2 a.43

which can be checkedat the three points x = 0, Ax/2 and Ax:

= 1

#Ax/2 = 1 - 1/Ax[1
-

1/2]Ax/2 - 4/Ax2#R - 1/2KAx/22 =

= 1 - 1/2[1
- 4R - 1/21

-

- 1/2
=

= 1 - 1/Ax[1
- 4R - 1/2]Ax - 4/Ax2# - 1/2Ax2
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= 1 - [1 - 4R - 1/2]
- 4ÔR - 1/2 = 0

Also, we have for = 0.5, a1 = -1/Ax, a9 = 0, 1x = 1 . x/Ax as expected.

Equations a.42 and a.43 are coded in functions PHIM and PHIP of Program 8 in Appendix

15. Also, the derivatives of x from equations a.42 and a.43 are programmed in functions

PHJDM and PHIDP of Program 8 since these derivatives are required in the evaluation of integrals 2.1

to 2.3 and 4.1 to 4.3.
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Appendix 15: Subroutines INITAL, DERV and PRINT, and Subordinate

Routines for the QU/PG Solution of Advection Equation 7

The following points should be noted about this program:

1 Integrals 1.1 to 4.4 are evaluated in subroutine COEFFI via the numerical quadrature

routine QUANC8.

2 The integrands of integrals 1.1 to 4.4 are evaluated in functions F1PJ to F4P4, respectively,

which are called by QUANCS. In each of these functions, two integrands can be computed for:

a the linear finite element of Figure 6.1 ITYPE = 1 the solution from this numerical

integration agrees closely with the solution from the analytical integration in Program 7, and b

the QU/PG element of Figure 7.1 ITYPE = 2.

3 Equations a.42 and a.43 are evaluated in functions PRIM and PUlP respectively, and

their derivatives are evaluated in functions PIIIDM and PHIDP, respectively. Note that in each

of these four functions, #Lor #R is defined numerically as PUlL and PUrR, respectively.

4 Main program SRKF4S of Appendix 4, in combination with ODE integrator RKF45, was
used, along with the data of Table 7 for the five test functions.

SUBROUTINE INITAL
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...
C...

‘p.

V.
7 .+.DX. UX,T

TUBE WITH A UNIFORM VELOCITY PROFILE CANPURE CONVECTION THROUGH A
BE DEPICTED AS

N=0 N=NL

IF A MASS OR ENERGY BALANCE IS WRITFEN FOR A DIFFERENTIAL SECTION
OF THE TUBE, THE WELL-KNOWN ADVECTION EQUATION RESULTS

U +VscU =0 1
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C... I
C...
C... SINCE EQUATION 1 IS FIRST-ORDER IN THE SPATIAL VARIABLE, X, AND
C... THE TEMPORAL VARIABLE, T, iT REQUIRES ONE BOUNDARY CONDITION AND
C. . . ONE INITIAL CONDITION
C...
C...
C...

UO,T = FT, UX,0 = GX

C... FOR WHICH THE EXACT SOLUTION TO EQUATIONS 1
C...

TO 3 IS

2 3

C... COMMON AREA FOR I/O UNIT NUMBERS
COMMON/IO/

C.
C... SET THE VELOCITY, LENGTH OF THE SYSTEM, NUMBER OF SPATIAL GRID
C... POINTS, LENGTH OF THE GRID INTERVAL, SUM OF SQUARES OF ERRORS OF
C... THE NUMERiCAL SOLUTION, COUNTER FOR THE PLOTFED SOLUTION
C... SUBROUTINE PRINT

C...

V=1.
x1=o.
XN=1.
DX=XN-X1 /FLOATN- 1
SSE=O.
I P=0

C... SELECT THE BASIS FUNCTIONS
C...

ITYPE = 1, LINEAR FINITE ELEMENTS HAT FUNCTIONS

C... ITYPE = 2, QUADRATIC UPWIND/PETROV-GALERXIN QU/PG

x

C... UX,T = 0. X CT V-T
C...
C... UX,T = FT - X/V, X LT V*T
C...
C... THE SPATIAL DERIVATIVE IN EQUATION
C...
C... ELEMENT APPROXIMATION OVER A GRID
C... SYSTEM OF N INITIAL-VALUE ORDINARY
C... RESULTS, ONE DIFFERENTIAL EQUATION
C... SYSTEM OF ODES IS THEN INTEGRATED
C... NUMERICAL SOLUTION TO EQUATIONS 1

N=21

1, U IS REPLACED BY
X

4

A FINITE

OF N = 21 POINTS iN X. A
DIFFERENTIAL EQUATIONS IN T
FOR EACH GRID POINT. THIS

SIMULTANEOUSLY TO OBTAIN THE
TO 3.

C...

C...

PARAMETER
COMMO N/T/

1 /Y/
2 /F/
3 /SD/
4 /C/
5 /FE/
6 ALN,
7 /1/

U N
UTN
UXN

DX,
BMN,

‘P

T, NSTOP, NORUN

SSE, FT
ITYPE,CW3,3,
CUN ,DRHSN

NI, NO

USED IN

C...
C...

154



C
ITYPE=2

C...
C... SET UP THE COEFFICIENT MATRIX IN HAND STORAGE MODE. THIS IS
C... DONE ONLY ONCE SINCE THE COEFFICIENT MATRIX IS CONSTANT

CALL COEFF1
C...
C... INITIAL CONDITION 5

DO 1 I=1,N
UI=0.

1 CONTINUE
C...
C... INITIALIZE THE TEMPORAL DERIVATIVES IN COMMON/F/

CALL DERV
C...
C... PRINT THE COEFFICIENT MATRIX FOR VERiFICATION

IFNORUN.EQ. iTHEN
DO 2 I=1,N

WRITENO,3 I ,ALI ,BMI ,CUI
3 FORMAT15,3F12.4
2 CONTINUE

END IF
RETURN
END

SUBROUTINE DERV
PARAMETER N=21
COMMON/T/ T, NSTOP, NORUN

1 /Y/ UN
2 /F/ UTN
3 /SD/ UXN
4 /C/ V, SSE, FT
5 /FE/ DX, ITYPE,CW3,3,
6 ALN, BMN, CUN,DRHSN
7 /1/ IP

C...
C... UNIT STEP FUNCTION

IFNORUN.EQ. lTHEN
FT=1 . OEO

C...
C... TRUNCATED RAMP FUNCTION

ELSE IFNORUN.EQ.2THEN
S=5 .0
IFT. LT. 0. FT=0.
IFT.GT. 1 ./SflFT=1.
IFT.GE.0..AND.T.LE.1./SFTS*T

C...
C... COSINE STEP FUNCTION

ELSE IFNORUN.EQ.3THEN
W=5.
PI=4.-ATAN1.
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IFT.LT.0.FT=0.
IFW-T .GT. PI/2.flFT=1.
IFW..cT.CE.0.0.AND.W*T.LE.PI/2.flFT=1.-COSWT

C...
C... SMOOTH COSINE STEP FUNCTION

ELSE IFNORUN.EQ.4THEN
W=5.
PI=4.ATAN1.
IFT.LT.0.FT=0.
IFW*T .GT.PIflFT1.
IFW-T .GE. 0.0 .AND. W*T .LE. P1

+ FT=1.-COSW-Tfl/2.0
C...
C... COSINE PULSE FUNCTION

ELSE JFNORUN.EQ.5THEN
W=5.
PI=4.ATAN1.
IFT.LT.O.FT=0.
IFWT .GT. PIFT=0.
IFW-T.GE.0.0.AND.W*T.LE.PI/2.FT=1.-COSW-T
IFWT.GT.PI/2..AND.WT.LE.PI FT=1.i-COSW-T

END IF
C...
C... APPLY BOUNDARY CONDITION 4 AS A CONSTRAINT

U1=FT
C...
C... RIGHT HAND SIDE VECTOR

DO 1 I=1,N
IFI .EQ. 1THEN

DRHS1=-V*CW1 ,l*U1+
+ CW1,2-U2

ELSE
+ IFI.EQ.NTHEN

DRHSN=-V*CW3,1UN-1+
+ CW3,2-UN

ELSE
DRHSI=-V*CW2, 1-UI-1+

+ CW2,2*UI+
+ CW2,3UI+1

END IF
CONTINUE

C...
C... SOLVE THE LINEAR ALGEBRAIC EQUATIONS BY SUBROUTINE TRIDAG. WHICH
C... RETURNS THE DERIVATIVE VECTOR UT IN COMMON/F/

CALL TRIDAGAL,BM,CU,DRHS,UT,N
RETURN
END

SUBROUTINE PRINTNI ,NO
PARAMETER N=21
COMMON/T/ T, NSTOP, NORUN
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1 /Y/ UN
2 /F/ UTN
3 /SD/ UXN
4 /C/ ‘, SSE, FT
5 /FE/ DX, ITYPE,CW3,3.
6 ALN, BMN. CUN,DRHSN
7 /1/ IP

C...
C... DIMENSION THE ARRAYS FOR PLOTTING THE SOLUTION

DIMENSION TPE201,TPN201,UPE201,UPN201
C..
C... PRINT A HEADING FOR NUMERICAL BSOLUTION

IFIP . EQ .0WRITENO ,1
1 FORMATGX,1HT,6X,GHUO,T,6X,6HU1,T,TN,5HEXACT,11X,1HE
C...
C... STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOflING

X=1 .0
TXV=T-X/V
DO 3 I=1,NP

C...
C... UNIT STEP FUNCTION

IFNORUN .EQ. 1THEN
IFTXV.LE.0.EXACTnO.
IFTXV.GT.O.EXACrI. .0

C.
C... TRUNCATED RAMP FUNCTION

ELSE IFNORUN.EQ .2THEN
S=5 .0
IFTXV.LT.O.EXACT=0.
IFTXV.GT. 1./SEXACT=1.
IF TXV. GE. 0. .AND. TXV.LE. 1./5 EXACThSTXV

C...
C... COSINE STEP FUNCTION

ELSE IFNORUN.EQ.3THEN
W=5.0
PI=4.sATAN1.
IFTXV .LT.0 .EXACT=0.
IFW*TXV .GT.PI/2.EXACT=1.
IFW*TxV .GE.0.0 .AND. W-TXV .LE.PI/2.

+ EXACT=1 . -COSW*TXV
C...
C... SMOOTH COSINE STEP FUNCTION

ELSE IFNORUN . EQ. 4THEN
W=5.0
PI=4...ATAN1.
IFTXV. LT.0. EXACT=O.
JFWTXv .GT. PIEXACT=1.
IFW...TXV .GE. 0.0 .AND. WsTXV .LE.PI

+ EXACT=1 . -COSW*TXV/2.
C...
C... COSINE PULSE FUNCTION
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ELSE IFNORUN.EQ.5THEN
W=5.O
PI=4.ATAN1.
IFTXV. LT.0. aXACT=o.
IFW-TXV .GT.PIflEXACT=0.
IF W...TXV . GE. 0. 0 .AND .

W,..TXV . LE. P1/2
.

+ EXACT=1.-COSW-TXV
IF W*TXV .GT . P1/2 . . AND. W-TXV . LE . Pt

+ EXACT=1.+COSW’.TXV
END IF

3 CONTINUE
C...
C... COMPUTE THE ERROR AT X = XN, FIGURE OF MERIT, SSE

E=UN -EXACT
SSE=SSE+E--2

C...
C... PRINT THE NUMERICAL AND EXACT SOLUTIONS, ERROR

IFIP/1O-10.EQ.IP
1 WRITENO,20T,FT,UN .EXACT,E

20 FORMATF10.2,4F12.3
C...
C... STORE THE NUMERICAL SOLUTION FOR SUBSEQUENT PLOTTING VIA TOP
C... DRAWER

IP=IP+1
UPNIP=UN

C...
C... STORE THE EXACT SOLUTION IN ARRAY UPE FOR PLOTTING

UPE IP =EXACT
C...
C... STORE THE INDEPENDENT VARIABLE FOR SUBSEQUENT PLOTTING VIA TOP
C... DRAWER

NP=201
TPEIP=2.0*FLOATIP-1/FLCATNP-1
TPNIP=TPEIP

C..
C... TEST FOR THE END OF A RUN

IFIP.LT.NPRETURN
C...
C... OPEN FILE FOR TOP DRAWER PLOTTING

OPEN4,FILE=’T.TOP’ ,STATUS=’NEW’
C...
C... WRITE TOP DRAW FILE FOR PLOTTING

WRITE 4 , 17
17 FORMAT’ SET LIMITS X FROM 0 TO 2 Y FROM -0.5 TO 1.5’,/,

1 ‘ SET FONT DUPLEX’
WRITE4,13

13 FORMAT’ SET WINDOSi’ X 2 TO 6 Y 2 TO 8’
WRITE4,14TPEI ,UPEI,I=1,NP

14 FORMAT2F10.4
WRITE 4 , 16

16 FORMAT’ JOIN 1’
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14 TPNI ,UPNI
16
18NORUN+55 ,SSE

WRITE4,
WRITE 4
WRITE 4

18 FORMAT
1’ Title 3.5 9.0 "Fig. ‘,12,
2,/,’ TITLE LEFT "ul,t"
3,/, TITLE BOTTOM "t"’
4,/,Title 3.0, 0.75 "SSE=
WRITE4 ,15

15 FORMAT’ NEW FRAME’
C...
C... LEGEND OF RUNS AT THE END

IFNORUN .EQ.5THEN
WRITE4 ,19

19 FORMAT
1’ Title 3.25 9.0 "QU/PG Bas
1’ Title 3.25 8.5 "Fig. 56:
1’ Title 3.25 8.0 "Fig. 57:
1’ Title 3.25 7.5 "Fig. 58:
1’ Title 3.25 7.0 "Fig. 59:
1’ Title 3.25 6.5 "Fig. 60:
1’ Title 3.25 6.0 "All

C..

is Functions, L = 0.75, R = 0.25"’,/,
Heaviside Unit Step Function"’,/,
Truncated Ramp"’ ,/,

Cosine Step" ‘
,/,

Smooth Cosine Step"’,/,
Cosine Pulse"’

,/,

THE BASIS FUNCTION AND ITS DERIVATIVE ARRAYS TPE,
UPN ARE REUSED

21 l=1,NP
TPEI=-DX+2.
IFTPEI .LE.
IFTPEI .LE.
IFTPEI .GT.
IFTPEI .GT.

0*DXFLOATI_1/FLOATNP_1
0.OUPEI=PHIM TPEI
0.0UPNI=PHIDMTPEI
0.0UPEI=PHIP TPEI
0.0UPN1=PHJDPTPEI

21 CONTINUE
WRITE4 ,23

23 FORMAT’ SET LIMITS X
1 Y FROM -0.5 TO 1.5’,/

WRITE4 ,24
24 FORMAT’ SET WINDOW X
C...
C... BASIS FUNCTION

WRITE4, 15
WRITE4 ,26

26 FORMAT2F1O
WRITE4 ,16

C...
C... DERIVATIVE

WRITE4,15
WRITE4 ,26
WRITE4 ,16
END IF
RETURN
END

OF BASIS FUNCTION

TPEI,UPNI ,I=1,NP

,l=1 ,NP

, F6 . 3 ,
"

C...
C...
22

PLOT
AND
DO

solutions are for a 21-point grid"’

UPE

FROM -0.05 TO 0.05
,‘ SET FONT DUPLEX’

2 TO 8 Y 2 TO 8’

TPEI ,UPEI ,I=1 ,NP
.5
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C...
SUBROUTINE COEFF1

C... INTEGRAL 1.1

C... INTEGRAL 1.2

-DX,DX,1 .OE-05,1 .OE-05,
,EST
,F8.5,’ EST = ‘,Ell.S

0WRITENO, 111FLAG
MAY BE UNRELIABLE, FLAG =

CALL QUANCSF1P2,0.0,DX,1.OE-05,l .OE-05,CIP2,EST,NFUN,FLAG
WRITENO, 112C1P2,EST
FORMAT’ C1P2 ‘,FS.S,’ EST = ‘,E11.3
IFFLAG.NE.0 .OWRITENO ,113FLAG
FORMAT’ C1P2 MAY BE UNRELIABLE, FLAG = ‘.F6.2

CALL QUANC8F1P3,-DX,0.0,1.OE-05,1.OE-05,C1P3,EST,NFUN,FLAG
WRITENO , 114C1P3 ,EST
FORMAT’ C1P3 = ‘,F8.5,’ EST = ‘,E11.3
IFFLAG.NE.0 .OWRJTENO, 115FLAG
FORMAT’ CIP3 MAY BE UNRELIABLE, FLAG = ‘.F6.2

C... INTEGRAL 2.1
CALL QUANC8F2P1,-DX,DX,l.OE-05,1 .OE-05,C2P1,EST,NFUN,FLAG

C... SUBROUTINE COEFF EVALUATES THE COEFFICIENT MATRIX FOR THE
C... TRIDIAGONAL ODES WHICH REQUIRES NUMERICAL QUADRATURE FOR
C... A SERIES Of’ INTEGRALS
C...

PARAMETER N=21
COMMON/T/ T, NSTOP, NORUN

1 /Y/ UN
2 /F/ UT
3 /SD/
4
5 /FE/

N
UXN

DX,
BMN,6 ALN

7 /1/
C...
C... COMMON FOR

COMMON/IO/
C...

SSE, FT
ITYPE,CW3,3,
CUN ,DRHSN

IP

I/O UNIT NUMBERS
NI, NO

C... EXTERNAL THE FUNCTIONS USED BY SUBROUTINE QUANCS
C... QUADRATURE ROUTINE TO EVALAUTE THE INTEGRANDS OF
C... 5.1 TO 8.4

EXTERNAL F1P1, F1P2. F1P3,
+ F2P1, F2P2, F2P3,
+ F3P1, F3P2, F3P3, F3P4.
+ F4P1, F4P2, F4P3, F4P4

C...

A NUMERICAL
INTEGRALS

110

ill
CC..

CALL QUANC8F1P1,
WRITENO, 110C1P1
FORMAT’ C1P1 =

IFFLAG.NE.0.
FORMAT’ C1P1

112

113
C...

C1P1 ,EST,NFUN,FLAG

‘.F6.2

C... INTEGRAL 1.3

114

115
C..
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WRITENO, 116C2P1
FORMAT’ C2P1 =

IFFLAG.NE.O .0WR
FORMAT’ C2P1 MAY

.EST

.FS.5,’ EST = ‘,E11.3
ITENO , 1 17FLAG

BE UNRELIABLE,

C... INTEGRAL 2.2
CALL QUANC8F2P2.0.0.DX,1.OE-05,1.OE-05,C2P2.EST,NFUN,FLAG
WRITENO, 118C2P2,EST

118 FORMAT’ C2P2 = ‘,F8.5,’ EST = ‘,Ell.a
IFFLAG,NE.O.0WRITENO, 119FLAG
FORMAT’ C2P2 MAY BE UNRELIABLE, FLAG = ‘,F6.2119

C...
C... INTEGRAL 2.3

CALL QL&NCSF2P3.-DN.0.0,I .OE-05
WRITENO, 120C2P3 , EST

120 FORMAT’ C2P3 = ‘,FS.S,’ EST = ‘,El1.3
IFFLAG . NE.0 . 0 WRITENO , 121 FLAG
FORMAT’ C2P3 MAY BE UNRELIABLE, FLAG = ‘,F6.2

C... INTEGRAL 3.1
CALL QUANC8F3P1,O.0.DX,1.OE-05,1.OE-05
WRITENO,122C3P1 ,EST
FORMAT’ C3P1 = ‘,F8.5,’ EST = ‘,El1.3
IFFLAG.NE.0 .0WRITENO , 123FLAG
FORMAT’ C3P1 MAY BE UNRELIABLE, FLAG =

C... INTEGRAL 3.2
CALL QUANCSF3P2,0.0,DX,1.OE-05,1.OE-05,C3P2,EST,NFUN,FLAG

C... INTEGRAL 3.3

124C3P2 ,EST
C3P2 = ‘,FS.S,’ EST =

NE . 0. 0 WRJ TE NO, 125 FLAG
C3P2 MAY BE UNRELIABLE,

CALL QUANC8F3PS,-DX,O.O,1.OE-O5,
WRITENO, 126C3P3,EST
FORMAT’ C3P3 = ‘,FS.S,’ EST =

IFFLAG.NE.0.0WRITENO, 127FLAG
FORMAT’ C3P3 MAY BE UNRELIABLE,

C... INTEGRAL 3.4
CALL QUANC8F3P4,-DX,0.0,1.OE-05
WRITENO ,128C3P4 ,EST
FORMAT’ C3P4 = ‘,FS.S,’ EST =

IFFLAG.NE.0 .0WRJTENO, 129FLAG
FORMAT’ C3P4 MAY BE UNRELIABLE,

C... INTEGRAL 4.1

FLAG = ‘,F6.2

FLAG = ‘,F6.2

130

CALL QUANCSF4P1 ,0.0,DX,1.OE-05,1.OE-05,C4P1,EST,NFUN,FLAG
WRITENO,130C4P1 ,EST
FORMAT’ C4P1 = ‘,F8.5,’ EST = ‘,El1.3

116

117
C..

FLAG = ‘,F6.2

121
C...

,1 .OE-05,C2P3,EST,NFUN,FLAG

122

123
C...

124

125
C...

,C3P1 ,EST,NFUN,FLAG

‘,F6.2

WRITENO
FORMAT’
IFFLAG.
FORMAT’

126

127
C...

,E11 .3

FLAG = ‘,F6.2

1 .OE-05,C3P3,EST,NFUN,FLAG

‘ ,E11 .3

128

129
C...

,1 .OE-05,C3P4,EST,NFUN,FLAG

‘ ,E1l .3

161



IFFLAG .NE. 0 . 0 WRITENO , 131 FLAG
131 FORMAT’ C4P1 MAY BE UNRELIABLE, FLAG = ‘,F6.2
C...
C... INTEGRAL 4.2

CALL QUANCSF4P2,0.0,DX.1.OE-05,1.OE-05,C4P2,EST,NFUN,FLAG
WRITENO, 132C4P2,EST

132 FORMAT’ C4P2 = ‘,FS.S,’ EST = ‘,E11.3
IFFLAG.NE.0.0WRITENO, 133FLAG

133 FORMAT’ C4P2 MAY BE UNRELIABLE, FLAG = ‘,F6.2
C...
C... INTEGRAL 4.3

CALL QUANC8F4P3,-DX,0.0,1.OE-05,1.OE-05,C4P3,EST,NFUN,FLAG
WRITENO , 134C4P3,EST

134 FORMAT’ C4P3 =‘,F8.5,,’ EST = ‘,E11.3
IFFLAG .NE.0.0 WRITENO , 135FLAG

135 FORMAT’ C4P3 MAY BE UNRELIABLE, FLAG = ‘,F6.2
C...
C... INTEGRAL 4.4

CALL QUANCSF4P4,-DX,0.0,1 .OE-05,1 .OE-05,C4P4,EST,NFUN,FLAG
WRITENO, 136C4P4 , EST

136 FORMAT’ C4P4 = ‘,FS.S,’ EST = ‘,E11.3
IFFLAG.NE.0.0WRITENO , 137FLAG

137 FORMAT’ C4P4 MAY BE UNRELIABLE, FLAG = ‘,F6.2
C...
C... LOWER DIAGONAL

DO 23 I=1,N
IFI .EQ. 1THEN

ALl=0.OEO
ELSE

+ IFI.EQ.NTHEN
AL N =C3P4

ELSE
ALI=C1P3

END IF
23 CONTINUE
C...
C... MAIN DIAGONAL

DO 24 I=1,N
IFI .EQ.1THEN

BM1=C3P1
ELSE

+ IFI.EQ.NTHEN
BMN=C3P3

ELSE
BM I =C1P1

END IF
24 CONTINUE
C...
C... UPPER DIAGONAL

DO 25 I=1,N
IFI .EQ. 1THEN
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CU1=C3P2
ELSE

+ IFI.EQ.NTHEN
CUN=O . OEO

ELSE
CUI=C1P2

END If’
25 CONTINUE
C...
C... WEIGHTING COEFFICIENTS IN CONVECTIVE TERM TRANSFERRED THROUGH
C. .. ARRAY CW3,3 FOR USE IN SUBROUTINE DERV
C...
C... EQUATION 1

CW1 ,1=C4P1
CW1 ,2=C4P2

C...
C... EQUATIONS 2 TO N-i

CW2 , 1=C2P3
CW2,2=C2P1
CW2 ,3=C2P2

C..
C... EQUATION N

CW3, 1=C4P4
CW3,2=C4P3

RETURN
END

REAL FUNCTION F1P1X
C...
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 1.1
C...

COMMON/FE/ DX, ITYPE
C...
C... LINEAR BASIS FUNCTIONS

IFITYPE.EQ. lTI-IEN
IFX.LE.0 .0F1P1=X+DX/DX**2
IFX.GT.0 .0F1P1=DX-X/DX**2

C...
C... QUADRATIC BASIS FUNCTIONS

ELSE IFITYPE.EQ.2THEN
IFX. LE.0 .0F1P1=PHIMX**2
IFX.GT.0 .0F1P1=PHIPX’..s.2

END IF
RETURN
END

REAL FUNCTION F1P2X
C...
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 1.2
C...

COMMON/FE/ DX, ITYPE
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C.
C... LINEAR BASIS FUNCTIONS

IFITYPE. EQ. 1THEN
F1P2=DX-X/DX-X/DX

C...
C... QUADRATIC BASIS FUNCTIONS

ELSE IFITYPE.EQ.2THEN
F1P2=PHIPX-PHIMX-DX

END IF
RETURN
END

REAL FUNCTION F1P3X
C...
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 1.3
C...

COMMON/FE/ DX, ITYPE
C...
C... LINEAR BASIS FUNCTIONS

IFITYPE.EQ. 1THEN
F1P3=X÷DX/DX--X/DX

C.,.
C... QUADRATIC BASIS FUNCTIONS

ELSE IFITYPE.EQ.2THEN
F1P3rPHIMX.,.PHIPX+DX

END IF
RETURN
END

REAL FUNCTION F2P1X
C...
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 2.1
C...

COMMON/FE/ DX, ITYPE
C...
C... LINEAR BASIS FUNCTIONS

IFITYPE.EQ . 1THEN
IFX.LE.O.0F2P1=X+DX/DX 1 .0/DX
JFX.GT.0.0F2P1=DX-X/DX-1.0/DX

C...
C... QUADRATIC BASIS FUNCTIONS

ELSE IFJTYPE.EQ.2THEN
IFX .LE.0 .0F2P1=PHIMXs.PHIDMX
IFX .GT.0 .0F2P1=PHIPX*PHIDPX

END IF
RETURN
END

REAL FUNCTION F2P2X
C...
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 2.2
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C...
COMMON/FE/ DX, ITYPE

C...
C... LINEAR BASIS FUNCTIONS

IFITYPE.EQ. 1THEN
F2P2=DX-X/DX*1 .0/DX

C...
C... QUADRATIC BASIS FUNCTIONS

ELSE IFITYPE.EQ.2THEN
F2P2=PH IPX *PH IDMX-DX

END IF
RETURN
END

REAL FUNCTION F2P3X
C...
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 2.3
C...

COMMON/FE/ DX, ITYPE
C...
C... LINEAR BASIS FUNCTIONS

IFITYPE. EQ. 1THEN
F2P3=X+DX/DX--1 .0/DX

C...
C... QUADRATIC BASIS FUNCTIONS

ELSE IFITYPE.EQ.2THEN
F2P3=PHIMX*PHIDPX+DX

END IF
RETURN
END

REAL FUNCTION F3P1X
C...
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 3.1,
C... WHICH IS THE SAME AS THE INTEGRAND OF INTEGRAL 1.1
C...

F3P1=F1P1 X
RETURN
END

REAL FUNCTION F3P2X
C...
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 3.2,
C... WHICH IS THE SAME AS THE INTEGRAND OF INTEGRAL 1.2
C...

F3P2=F1P2 X
RETURN
END

REAL FUNCTION F3P3X
C...
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C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 3.3,
C... WHICH IS THE SAME AS THE INTEGRAND OF INTEGRAL 1.1

F3P3=FIP1X
RETURN
END

REAL FUNCTION F3P4X
C...
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 3.4,
C... WHICH IS THE SAME AS THE INTEGRAND OF INTEGRAL 1.3

F3P4=F1P3X
RETURN
END

REAL FUNCTION F4P1X
C...
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 4.1,
C... WHICH IS THE SAME AS THE INTEGRAND OF INTEGRAL 2.1

F4P1=F2P1 N
RETURN
END

REAL FUNCTION F4P2X
C...
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 4.2,
C... WHICH IS THE SAME AS THE INTEGRAND OF INTEGRAL 2.2
C...

F4P2=F2P2 X
RETURN
END

REAL FUNCTION F4P3X
C...
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 4.3,
C... WHICH IS THE SAME AS THE INTEGRAND OF INTEGRAL 2.1

F4P3=F2P1 X
RETURN
END

REAL FUNCTION F4P4X
C...
C... FUNCTION COMPUTES THE INTEGRAND OF INTEGRAL 4.4,
C... WHICH IS THE SAME AS THE INTEGRAND OF INTEGRAL 2.3
C...

F4P4=F2P3 X
RETURN
END

REAL FUNCTION PHIMX
C...
C... FUNCTION PHIM COMPUTES THE QU/PG FUNCTION FOR X LE 0 WHICH GOES
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C... THROUGH THE THREE POINTS
C...
C... PHI-DX = 0
C...
C... PHI-DX/2 = PHIL
C...
C... P1110 = 1
C...

COMMON/FE/ DX
PHIL=0 .75
A0=1 .0
A1 1. 0/DX - 1.0-4 . 0* PHIL-i. 0/2.0
A2=_4.0/DX-2-PHIL-1 .0/2.0
PHI M=A0+A1 ncX+A2X*..2

RETURN
END

REAL FUNCTION PHIDMX
C...
C... FUNCTION PHIDM COMPUTES THE DERIVATIVE OF PHIM
C...

COMMON/FE/ DX
PHIL=O. 75
A1=i.O/DX1.0-4.O*PHIL-1.0/2.0
A2=-4.0/DX-*2PHIL-1 .0/2.0
PHIDM=Ai+2 . 0-A2’-X

RETURN
END

REAL FUNCTION PHIPX
C...
C... FUNCTION PHIP COMPUTES THE QU/PG FUNCTION FOR X GT 0 WHICH GOES
C... THROUGH THE THREE POINTS
C...
C... PHI0 = 1
C...
C... PHIDX/2 = PHIR
C...
C... PHIDX = 0
C...

COMMON/FE/ DX
PHIR=0 .25
A0=1 .0
A1=-1.0/DX*1.O-4.OPHIR-1.0/2.0
A2=_4.0/DX*2...PHIR_1 .0/2.0
PHI P=A0+A1 -X+A2*Xsc*2

RETURN
END

REAL FUNCTION PHIDPX
C...
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C... FUNCTION PHIDP COMPUTES THE DERIVATIVE OF PHIP
C...

COMMON/FE/ DX
PHIR=0.25
A1=-1.O/DX*i.0-4.0-PHIR-1.0/2.0
A2=-4 .0/DX*2PHIR-1 .0/2.0
PHIDP=A1+2 . OA2...X

RETURN
END
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Appendix 16: Analytical Solution of the NonhomogeneousAdvection Equation

The nouhomogensousadvectionequation is

ut + VUx = cx,t a.44

which requiresan initial condition anda boundarycondition

ux,0 = gx, uO,t = 1t a.45a,46

Equations a.44 to a.’!6 are a restatementof equations 58 to 60. We now proceed to an

analytical solution of equationsa.44 to a.46 which can be used as a test of various numerical

procedures.

If the Laplacetransformof ux,t and cx,t with respectto t are defined as

L{ux1t}= Jux,t&Stdt = Ux,s a.47

Lt{cxtt}= Lc
,t&Stdt = ex,s a.48

equationsa.44 to a.46 transform to

snx,s - gx + vdffx,s/dx = x,s a.49

ffO,s = Fs a.50

If the Laplace transformof Ux,s andEx,s andwith respectto x are definedas

L{Uxs} = Juxisedx = p,s a.51

L{txs} =JEx,se11Cdx= p,s a.52
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equationsa.49 and a.50 transformto

sp,s - gp + v{pp,s - Fs = p,s a,53

Solution of equationa.53 for llp,s gives

p,s
= 1/v@il gP + s/v+

f5 + 1/vu’+ q,5 a.54

Equation a.54 can now be inverted, first with respectto p

ux,s = L’{ps} = 1/v e" - gAdA + Fs

+ l/v e -

= lfv eJ egAdA + e Fs + 1/v
e?

= 1/v x,s + Fs + 1/v Ox,s a.55

where

x,s = e5"’! e"gAdA a.56

Cx,s = e5M’CJ e’,sd a.57

Then, inversion with respectto s gives

ux,t = L4{Ux,s} = 1/vGx,t + ft - x/vht. x/v + 1/vCx,t a.58

where
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Gx,t = L’{Gx.s} a.59

Cx,t = L’{x.s} a.60

and again

a.61

Somespecialcasescan now be considered:

1 cx,t = dx andequationsa.48, a.52 and a.54 give

Lt{dx}= Jdxi5tdt = dx/s a.62

L{dx/s} = J[dx/s1edx = dp/s a.63

p,s = 1/v/’÷ P
+ /1÷ i’5 + 1/v5$,,vI+ P a.64

Inversionwith respectto p thenproceedsas before

Ux,s = L’{p,s} = 1/v? e’ - gAdA + e’ Fs

+ I/v -

= 1/v eJ e’gAdA + e Fs + 1/v1/s eJ e’dAdA

= 1/v x,s + Fs + lfv Dx,s a.65

where

x,s = e"J egdA a.66
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Ux,s = 1/s e5/J edAdA a.67

Then, inversion with respect to s gives

ux,t = U1{Ux,s} = 1/vGx,t + @ . x/vht - x/v + 1/vDx,t a.68

where

Gx,t = L{x.s} a.69

Dx,t = L’{Dx,s} a.70

We can also consider the limiting condition for ux,t as t -. using the final value theoremof the

Laplacetransform

ux,t
= sO

s,s 1/vJ dAdA a.71

where we haveassumed

.‘QQ
ft = lim0 sFs= 0 a.72

Thus, for this limiting condition, the solution is merely the integral of dx with respectt to x, which

can be used as a convenientcheck of the steadystate numerical solution. This follows also from

equationsa.44 and a.45 written at steadystate

vux = dx a.73

uO = 0 a.74

2 cx,t = et andequationsa.51, a.52 and a.64 give

Lt{et}= Jet&Stdt = es a.75

L{es} =Jesedx = ës/p a.76
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p,s = 1/v/1 gP + s/v-1.
fs + es a.77

Inversion with respectto p then proceedsas before

x,s = L{Ups} = 1/v I e5R - AgAdA + Fs

-4- 1/vesJ e"dA

= l/v e1 egAd + e’ Fs + 1/ves-v/s - 1

= 1/v x,s + Fs + 1/v Ex.s a.78

where

x,s = e/"1 a.79

Ex,s = ës-v/sfe - 1] a.80

Then, inversionwith respectto s gives

ux,t = L{iix,s} = lJvGx,t + ft - x/vht - x/v + 1/vEx,t a.81

where

Gx,t = U1{x,s} a.82

Ex,t = L4{xs} a.83

We can also consider the limiting condition for ux,t as t .-. using the final value theoremof the

Laplace transformapplied to equationa.78

J.?Q0ux,t
= 510 siix,s = urn es[1 - e51xj a.84

where we haveagainassumedequationa.72 applies.
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If et = 11t, es = 1/s. by l’llospital’s rule

-s/vx
lim ux,t = urn 5Ux,5 = lim 1/s[1 - e } = x/v a.85

t -. 5 4 0 s. 0

which is the solution to the problem

vu = 1 a.86

uO = 0 a.87

as expected.
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Appendix 17: Analytical Solution of the SimultaneousPDEs

We considerhere the solution of equations62 to 66, which are renumberedhere

v + 41 = kU - V a.88

u = kV - U a.89

Vx,0, V0,t and Ux,0 a.90a.91a.92

If Laplacetransformsof Vx,t and Ux,t with respectt are definedas

L[Vx,tJ =J Vx,te5tdt = Vx,s a.93

Lt[Ux,t] =JUx,t&Stdt = Ux,s a.94

Application of thesetransformsto equationsa.88 to a.92 gives

v{sVxs - Vx,0 + cdt5} = kUx,s - Vx,s a.95

u{sux.s - UxO} = - ktlx,s - Vx,s a.96

Equationa.96 can be solved for Ux,s

kVx,s uUx,0x,s
- us+ k +

us + k a.Os

Substitutionof equationa.97 in equationa.95 then gives

+ vs + kVx,s = kUx,s + vVx,0 a.98
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Equation a.98 is easily rearrangedto

dVx s

______

kuux,0
+ vVx,0 a.99vc

dx’
+vs+k- Ic

_____

us+k15 us+k

or if fs is defined as

4

fs -

vs
+ k - Ic .ivc a.100

- us+k

equationa.99 becomes

dVx,s Ux,0
+ 1/cVx,0 a.1Oi

dx + fsVx,s
= " + k

Equation a.IO1 is a first order ordinary differential equationdefining Vx,s as a function of

x. If both sides of equation a.l0l are multiplied by which introducesan integrating factor

[Strang 11, pp 472-473J

fsx dVx,s

_________

e
dx

fsVx,s = ef5XU
k us + k + l/cVx,O a.102

integrationof bothsides of equationa.102 with respectto x gives

VO,s
- ?ef

UA,0
+ 1/cVA,0d

- us+k
or 0

fsx
X

fsA- x UA,0
Vx.s = V0,se + Je

+ k + 1/cVA,OdA a.103

0

Tx,t can now be obtainedby an inverseLaplacetransform

Vx,t =

7+i{

x
1 -fsx f fsA- x 3A,0

+ 1/cVA0dA}e5tds a.104
J

VO,se +je
us-f Ic

7-iDO 0

Equation a.104 is the final solution we seek. However, in order to producea solution which
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can be evaluatednumerically with reasonableeffort, we take the initial conditions,equationsa.90 and

a.92, to be homogeneous

Vx,0 = tJx,0 = 0 a.105a.106

and equationa.104 reducesto

Vx.t = V0,s;
vs + k - us

7.

which rearrangesto

2
7 + k /uvc

Vx,t = 1--. J ekV{vo,se51’e s + k/u }estds a.107

7.

At this point, we can considertwo typesof boundaryconditionsspecificationsof VO,x:

1 A boundarycondition which is consistentwith the initial condition, and thereby avoids a

discontinuity. An exampleis

V0,t = 1
- Iqut

a.108

for which the transform is

Vo,s = a.109

2 A boundary condition which is not consistent with the initial condition, and therefore

introducesa discontinuity. Examplesare

V0,t = k/ut a.I10

VO,s
= s +k/u

a.111

and

V0,t = ht
= {?: a.112
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Vo,5 = 1/s a.1l3

We now considereachof theseexamples.

We first note the following transform pairs

L1{4e"5} = I24ii a.114

fCarslaw and Jaeger.12, p 495

L’{?s + a} = etft aAl5

= ht - aft - a a.116

= JfAdA a.I17

fBeyer 13, p 600

Vx,t for boundary condition a.108 is therefore from substituting equation a.109 in equation

a.107

k2/uvc

Vx,t = eN L-1{ :zue s/cxec + k/u
a.118

or

Vx,t = ec k/uJhA - x/ce
- x/c

10{2kA. x/c}dA a.119

A specialcase of equationa.119 can be checked by applying the final value theoremof the Laplace

transformto equationa.118

k2/uvc

- lim0 s Vx,s - lirn0

{
k/ue.s/cxec + k/u

e1u1cDc = 1
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-k/ut
as expectedi.e., VO,t = 1 - e at x = 0 gives Vx,oo = 1.

For boundary condition a.llO we have from substituting equation a.111 in equation

a.107

k2/uvc
-k/vcx -if i -s/cx + k/u

X}

a.120VN,t=e L
j

5+1/l
e

or

Vx,t = ehA- x/ce
- x/c

10{2k 4A - x/c} a.121

The final valuetheoremof the Laplacetransformapplied to equationa.120 gives

k2/uvc

ttG,t
= urn s Vx,s = lim e’s

-s/cx s + k/u
s0 s0 s+k/ue e

-k/ut
as expectedi.e., V0,t = e gives Vx,oo = 0.

For boundary condition a.i12 we have from substituting equation a.ii3 in equation

a.107

k2/uvc

Vx,t = e kfvcPx L1{ i -s/cx + k/u

} a.122e

or

k2/uvc

Vx,t = ec U1 i i k/u -s/cx + k/u

l s+ k/u+ ÷/e e } a.i23

Equationa.123 is just a superpositionof equationsa.118and a.120. Thus,from equationa.123,

t

Vx,t = k/uJh - x/ce
- x/c

uA - x/c}dA

0 a.i24

e hA - x/ce 10{2k 4 - x/c}}+
{ -k/vcx -k/uA - x/c

The final value theoremof the Laplacetransformapplied to equationa.123 gives
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= lim0 Tx,s = I

as expectedi.e., V0,t = ht gives Vx,oo = 1.

These three examplesprovide a spectrum of test problems since, by varying k/u, the rate of

changeof T0,t can be varied for both the continuousand discontinuouscases. Theseexamplescan

therefore be used to test a computercode which implementsa numerical solution of equationsa.88

and a.89 or equations63 and 64.
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Fig. 6Fig. 5
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Heaviside Unit Step Funtion

Fig. 1: Two Point Upwind

Fig. 2: Three Point Upwind

Fig. 3: Four Point Biased Upwind, 4PB

Fig. 4: Four Point Biased Upwind, 2PB

Fig. 5: Five Point Biased Upwind, 5PB

Fig. 6: Five Point Biased Upwind, 2PB

Fig. 7: Leonard, 4F8

Fig. 8: Leonard, 2FB

Fig. 9: Three Point Centered

Fig. 10: Five Point Centered

All solutions are for a 21-point grid



Fig. 1 Fig. 2

‘-4

1.0

0.8

0.6

0.4

0.2

0.0

1.00

0.75

0.50

0.25

0.00

-I-

0 0.5 1 1.5 2

t

-0.25

SSE = 5.263

0 0.5 1 1.5

t

SSE = 3.494



0 0.5

Fig 7

1 1.5

.1-a
-4

1.00

0.75

0.50

0.25

0.00

0 0.5

Fig. 8

-
0,
C,,

1.00

0.75

0.50

0.25

0.00

t
2 1 1.5 2

1

SSE = 1.881 SSE = 2.133



Fig. 10
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Truncated Ramp Funtion

Fig. 11: Two Point Upwind

Fig. 12: Three Point Upwind

Fig. 13: Four Point Biased Upwind, 4PB

Fig. 14: Four Point Biased Upwind, 2PB

Fig. 15: Five Point Biased Upwind, 5PB

Fig. 16: Five Point Biased Upwind, 2FB

Fig. 17: Leonard, 4PB

Fig. 18: Leonard, 2PB

Fig. 19: Three Point Centered

Fig. 20: Five Point Centered

All solutions are for a 21-point grid
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Fig. 16
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Fig. 17
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Fig. 19 Fig. 20
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Cosine Step FunUon

Fig. 21: Two Point Upwind

Fig. 22: Three Point Upwind

Fig. 23: Four Point Biased Upwind, 4PB

Fig. 24: Four Point Biased Upwind, 2FB

Fig. 25: Five Point Biased Upwind, 5FB

Fig. 26: Five Point Biased Upwind, 2PB

Fig. 27: Leonard, 4PB

Fig. 28: Leonard, 2PB

Fig. 29: Three Point Centered

Fig. 30: Five Point Centered

All solutions are for a 21-point grid



Fig. 21
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23 Fig. 24
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Fig. 26Fig. 25
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Fig. 27 Fig. 28
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Smooth Cosine Step Funtion

Fig. 31: Two Point Upwind

Fig. 32: Three Point Upwind

Fig. 33: Four Point Biased Upwind, 4PB

Fig. 34: Four Point Biased Upwind, 2PB

Fig. 35: Five Point Biased Upwind, 5PB

Fig. 36: Five Point Biased Upwind, 2PB

Fig. 37: Leonard, 4PB

Fig. 38: Leonard, 2PB

Fig. 39: Three Point Centered

Fig. 40: Five Point Centered

All solutions are for a 21-point grid
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Fig. 33 Fig. 34
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Fig. 36Fig. 35
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Cosine Pulse Function

Fig. 41: Two Point Upwind

Fig. 42: Three Point Upwind

Fig. 43: Four Point Biased Upwind, 4FB

Fig. 44: Four Point Biased Upwind, 2PB

Fig. 45: Five Point Biased Upwind, 5PB

Fig. 46: Five Point Biased Upwind, 2PB

Fig. 47: Leonard, 4PB

Fig. 48: Leonard, 2PB

Fig. 49: Three Point Centered

Fig. 50: Five Point Centered

All solutions are for a 21-point grid
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Galerkin with Linear Finite Element.s

Fig. 51: Heaviside Unit Step Function

Fig. 52: Truncated Ramp

Fig. 53: Cosine Step

Fig. 54: Smooth Cosine Step

Fig. 55: Cosine Pulse

All solutions are for a 21-point grid



Fig. 51 Fig. 52
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Fig. 53
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Cs’

QU/PG Basis Functions, L = 0.75, H = 0.25

Fig. 56: Heaviside Unit Step Function

Fig. 57: Truncated Ramp

Fig. 58: Cosine Step

Fig. 59: Smooth Cosine Step

Fig. 60: Cosine Pulse

All solutions are for a 21-point grid
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Fig. 58
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Fig. 61: ux,t vs x at steady state
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Fig. 62: ux,t vs x at steady state
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Fig. 63: Two First Order PDEs Fig. 64: Two First Order PDEs
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Fig. 65: Two First Order PDEs Fig. 66: Two First Order PDEs
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Fig. 67: ux,t vs
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