SSCL-N-865
June 1994
.| Distribution Category: 400

SSCL-N-865

D. Gurd

Software Development Plan

Superconducting Super Collider
Laboratory

SSCL-N-865

Software Development Plan

D. Gurd

Superconducting Super Collider Laboratory™
2550 Beckleymeade Ave.
Dallas, TX 75237, USA

June 1994

*QOperated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

Contents

1. Introduction. i i i i e 3
1.1. Project Overviewc.oiiiiiiiiiiiiiiiiiiaiia., 3
1.1.1. The EPICSSystem ..ovvvviiivrinnrinieiieniansaran. 4

1.1.2. SSC Specific Applications, 4

1.2. ProjectDeliverableso 5
1.2.1. System Deliverables................. ..o 5

1.2.2. Application Deliverables 7

1.3. Evolution of the Software Development Plan 7
1.4. ReferenceMaterialsoioiiii i 8
1.5. Definitions and ACTONYINScvvrevninivrinnranvnnnnsn 8

2. Project Organization. 9
21. ProcessModel ...t 9
2.2. Organizational Structurec.oieinnn, 10

3. Managerial Process. . . « v« v v v v v e it i e e . 12
3.1. Management Objectives and Priorities 12
3.2. RiskManagementciuiiiiiineniinaiiniianna.. 13
3.3. Monitoring and Controlling the Development Process 15
3.3.1. Application SoftwareReviews 15
3.3.2. System SoftwareReviewsl 16

3.4. StaffingPlan 17

4. Technical Process. = & & ¢ & & 2 = 4 2 & - e * 8 8 & 4 = @ 17
4.1. Methods, Toois and Techniques 17
4.1.1. DevelopmentToolsccoiiieiiiiiiiiiininnnns 18
4.1.2. Software Repositoryoveveiiiniiiiiiianans 18
4.1.3. System DevelopmentAreacoe.nl.. 19
4.1.4. Application Development Area ceeen 23
41.5. Software TestArea..........cccoveiviiiiiininnnnnn. 25

4.2. Software Documentationooiiin 25
4.2.1. Software Requirements Specification 26
422 SoftwareTestPlanscoiiinns. 26

4.3. Project Support Funchions................cooiiiiieii., 27
43.1. Development System Administration 27
4.3.2. Configuration Management 27

5. Work Packages, Schedule and Budget 30
Appendix A System Modification Request Form 30

SDP - DRAFT COPY ONLY

Software Development Plan

The Superconducting Super Collider Laboratory is operated by the
Universities Research Association, Inc., for the United States
Department of Energy under Contract Number
DE-AC02-89ER40486.

This Document was printed August 11, 1993; It was created July 9,
1993 and was last modified August 11, 1993.

It contains 32 Pages.
Revision Log:
Revised by Date
—_————
Doug Murray Aug 1993

Software Development Plan

1. Introduction

This Software Development Plan (SDP) describes the software
development process for Control System Software at the Supercon-
ducting Super Collider Laboratory (S5CL).

The Control System Software will be developed using EPICS, the
Experimental Physics and Industrial Control System, which
contains a set of software “tools” for Building control systems.

Accordingly, two separate development efforts will take place; one
to extend EPICS, ensuring that it can be kept generic and useful for
any control system development, and second to develop applica-
tions using EPICS, which will be specific to the SSC!. Developers
will build a control system application using EPICS in much the
same way that an accountant builds an “application” using a spread-
sheet program.

1.1. Project Overview

This project includes software to control equipment in the Linear
Accelerator (LINAC), the Low, Medium and High Energy Boosters
(LEB, MEB and HEB), the Collider itself, and various test beams.

The project can be considered as having two parts, as mentioned
above. Specification documents are organized into a specification
tree, over which these two development efforts are mapped.

The following figure shows the organization of documents at Level
3B and Level 4. For our purposes, Level 3B documents describe a
global control system, having features common to all accelerator
control systems (EPICS); this document refers to the highlighted
areas. Control systems at Level 4 deal with problems which are
specific to a particular accelerator (the applications), or with changes
or extensions to generic system software.

Level 3B ——

Level 4 —s-

Figure 1. Spedfication Levels for SSC Contrel Systems

1. The term application will hereafter refer to the SSC specific software devel-
oped using EPICS. This includes many aspects of a specific development, in-
cluding control or monitoring algorithms, sequences to accommodate
different modes of operation, and the display screens through which opera-
tors interact with them.

-3~ Introduction

SDP - DRAFT COPY ONLY

SDP - DRAFT COPY ONLY

Introduction

1.1.2.

Software Development Plan

Level 5 (not shown) deals with specific components within each
subsystem.

Additional SDP documents may be written as the project progresses.
Such documents would address situations which are unique to a
particular accelerator or subsystem, which are not addressed in this
document. Additional plans would refer back to this document for
information common to all development efforts.

The review process for Control System software in general is
described under Monitoring and Controlling the Development
Process on page 15.

The EPICS System

EPICS was developed at Los Alamos and Argonne National Labora-
tories?, and was intended for use as a tool set to build Control
Systems. Since it already exists, our goal involves extending EPICS
to meet our needs, and enhancing it, making it easier to develop
control system applications. The schedule for this work is described
under Work Packages, Schedule and Budget on page 30, and is in
some part dependent upon the schedule for application develop-
ment.

Requirements for these tools are documented in the Global Acceler-
ator Control System Requirements document, listed under Refer-
ence Materials on page 8.

EPICS was designed to address several requirements which are
common to accelerator control systems. A more complete descrip-
tion of EPICS can be found in “Experimental Physics and Industrial
Control System (EPICS) Technical Note”, listed under Reference
Materials on page 8.

SSC Specific Applicaticns

Applications are built using tools which EPICS provides. Ideally,
these tools should be useful to technicians, engineers and non-
programmers in general, and should not require an intimate knowl-
edge of EPICS. The tools are themselves considered to be deliver-
ables from EPICS development, and are described under System
Deliverables on page 5.

At least two broad categories of applications can be identified:

1. Operator applications, used in a control room setting, which
presents a system or component at a high level;

2. Produced under U.S. Government Contracts W-7405-ENG-36 at Los Alamos
and W-31-109-ENG-38 at Argonne.

—4-

1.2.

dct

edd

dm

Software Development Plan

2. Engineering applications used in a Laboratory environ-
ment, or in the field during periods of maintenance. They
offer access to diagnostic features of the system and allow
more elaborate testing.

In addition to EPICS tools, some application developers will make
use of other pieces of software as the project progresses. This might
include, but is not limited to, software available for the X Window
System, available commercially or freely distributed, as well as
development aids, such as language sensitive editors, debuggers and
various other CASE tools. The VxWorks real-time kernel’ is the plat-
form upon which certain parts of applications will operate.

Details of application schedules will be presented in the subsequent
system specification documents, as accelerators and subsystems are
designed.

Project Deliverables

Deliverables also fall into one of two categories, system or applica-
tion. System deliverables includes software required to develop
applications. Application deliverables refer to applications devel-
oped for specific accelerators or subsystems.

1. System Deliverables

Several tools in the EPICS system shall be delivered to application
developers at the outset of the project. These tools currently exist
and are in use.

First, there exist tools which do not require the developer to develop
code in the traditional programming sense. Refer to Reference
Materials on page 8 for further documentation:

the Database Configuration Tool is used to define most of the func-
tionality of the application, by allowing the developer to describe
both data and processing in terms of records in a simple database.
Further functionality can be added with snc, CA and the C program-
ming language, as detailed below.

a tool used to build the display screens, through which users interact
with the accelerator or subsystem. It is an editor in the sense that
developers can create or modify the operator’s view of the equip-
ment. The developer selects graphic items from a palette which are
then placed at various locations on the screen, which might include
representations of meters, gauges or dials which would be familiar
to the user community.

a display manager program, which displays the screens built with
edd, and ensures that screen items are connected to actual measure-
ments or controls values in the field.

3. VxWorks is a trademark of Wind River Systems, Inc.

-5- Introduction

SDP - DRAFT COPY ONLY

SDP - DRAFT COPY ONLY

Introduction

alh

snc

fbed

statem

alconf

arconf

Software Development Plan

a tool for display, confirmation, acknowledgment and recording of
alarm conditions, as configured by the developer of the application.

the Archiver is used to record measurements at various intervals, as
configured by the developer of the application. This tool is only used
for capturing and storing data, so it's name might be misleading.

a tool to report on data which has been recorded by the archiver. The
developer can conflgure the tool to display data in a variety of graph-
ical formats.

Other tools will be delivered to application developers, which
require coding in the more tradifional sense of programming;:

is the State Notation Compiler which allows developers to program
state transitions which are required in their applications. Often used
for implementing various modes of equipment or systems, this tool
understands SNL, a state notation language which can interact with
simple database records developed with dct (see above).

refers to Channel Access, which is a communications mechanism
within EPICS. Programmers using the C programming language can
make use of the channel access subroutine library to retrieve or set
values in the accelerator or subsystem. This is typically used only for
specialized applications which cannot be handled by the generic
tools edd, dm, or snc.

Other tools will be developed for the applications developer, to
present EPICS as a more integrated environment. Although not crit-
ical, these tools address self-imposed requirements? concerning ease
of use, automatic document generation (design drawings, for
instance) and configuration management. These tools include, but
are not limited to:

a function block editor, which provides the developer with a graphic
tool with which to visualize the processing required in their applica-
tion. It can take the place of dct.

a state machine editor, which provides the developer with a graphic
tool with which to visualize the states and transitions between them,
required in their applications. It can take the place of snc and the
SNL which it understands.

a configuration tool for the alarm handler which allows a developer
to determine graphically how alarms will be handled (if acknowl-
edgment is required for certain alarms, efc.).

a configuration tool for the archiving mechanism, which allows the
developer to specify details of data capture and recording.

4. Refer to Management Objectives and Priorities on page 12 for more infor-
mation.

arview

epics

CA

alh

data handling

1.2.2.

1.3.

Software Development Plan

a graphic tool through which previously acquired measurements
can be viewed. While very similar to arr, this tool understands a
more elaborate data management scheme using a commercial data-
base. The developer would make use of a configuration mode to
relieve the operator of understanding details.

a graphic window based program through which the developer
gains access to the EPICS tools and their development environment.
It is also used to start applications, and navigate through application
specific directories on control system computers.

Enhancements to EPICS will be needed. These include:

changing the Channel Access mechanism will be required for EPICS
to accommodate a Control System of the scale required for the SSC.
In fact, the communication scheme which EPICS uses will require a
substantial change of design.

changing the alarm handling mechanism so that a daemon is con-
stantly running, waiting for alarm conditions to change.

the mechanism through which EPICS saves measured data, and
through which it configures front-end computers must be extended
to accommodate the configuration management strategy (in the lat-
ter case) -

Application Deliverables

Applications for each accelerator or subsystem are considered deliv-
erables, for which descriptions and schedules will be documented in
subsequent specification documents (refer to Project Overview on

page 3).

Evolution of the Software Development Plan

The complete plan for developing software ultimately includes this
(so called Level 3B) document and any accelerator specific SDPs (so
called Level 4; refer to Project Overview on page 3) which might be
produced in the future.

With this in mind, any additional Level 4 SDP documents would be
developed as each set of applications is specified. With respect to
EPICS itself, our development strategy may change as experience is
gained with application development. This is considered a minimal
risk, considering that the core of EPICS already exists. Refer to Risk
Management on page 13.

Suggestions for changes to this plan shall be submitted to the Soft-
ware Group Leader (SGL), who is responsible for updates and distri-
bution of the SDP to the EPICS software engineers, and application

-7 = Introduction

SDP - DRAFT COPY ONLY

SDP - DRAFT COPY ONLY

Introduction

14.

1.5.
ANL

ATP
ATPR

CDR
cM
CSPM
EMP
EMU
GACS
I0C
LANL
LBL
MPO
OPI
PDR

Software Development Plan

developers. Suggestions for changes to subsequent (Level 4) SDPs
shall be submitted to the application engineer responsible for the
corresponding project.

Reference Materials

The following documents are related fo this SDP, and are available
from the documentation manager in the SSC Controls Department:

Engineering Management Plan (EMP) SSC Document E10-000029
Global Accelerator Control System Requirements (GACS)
Software Requirements Specifications (SRS)

Software Test Plans (5TP)

Software Style Manual

Experimental Physics and Industrial Control System (EPICS) Techni-
cal Note AT-8:5Y5:89-005

EPICS DCT User’s Guide (April 4, 1991)
Getting Started with (EPICS) DCT (April 1991)
EPICS IOC Address Specification Technical Note AT-8:10C:88-02

EPICS State Notation Lang/'uage and Run-time Sequencer User’s
Guide Version 1.7 (January 7, 1992)

Object Oriented Requirements Analysis and ngical Design, Donaid
G. Firesmith

SCCS User’s Guide
Make User's Guide

Definitions and Acronyms

Argonne National Laboratory
Accelerator Readiness Review
Acceptance Test Plan

Acceptance Test Plan Review
Configuration Administrator
Critical Design Review
Configuration Management
Control System Programming Manual
Engineering Management Plan
Emittance Measurement Unit
Global Accelerator Control System
Input Output Controller

Los Alamos National Laboratory
Lawrence Berkeley Laboratory
Memorandum Purchase Order
Operator Interface

Preliminary Design Review

8-

PDRR
PMO

QA

SAR
SCCS
SDP
SGL
SMR
SOW
SR
SRS
SSC
SSR

2.

Software Development Plan

Preliminary Design Requirements Review
Project Management Office

Quality Assurance

Radio Frequency

Safety Analysis Report

Source Code Control System
Software Development Plan
Software Group Leader

Software Modification Request
Statement Of Work

Software Repository

Software Requirements Specification
Superconducting Super Collider
Software Specification Review

Project Organization

2.1.

Applications:

The Accelerator Systems Division consists of several Departments
involved in the Control System development effort. This involve-
ment ranges from development of device specific software within
the system, to specific engineering applications (see SSC Specific
Applications on page 4).

Process Model

The process by which development will proceed is dictated by two
factors, specifically how requirements for applications are generated
and met, and then how requirements for EPICS are generated and
met.

EPICS already exists, and was designed to meet common require-
ments for generic control systems, gained through years of experi-
ence with different accelerators and process control systems (refer to
EPICS Technical Note, listed under Reference Materials on page 8).
EPICS shall change (or be extended) if the tools it provides are not
adequate for developing the required applications (refer to Risk
Management on page 13). To some extent, further requirements
shall be generated from application developers as they learn what is
required for their applications. Test plans and quality assurance
issues for EPICS will be addressed separately from those of the appli-
cations. Refer to Monitoring and Controlling the Development
Process on page 15 for more information.

The Project Management Office (PMO) will be the primary source
of requirements for the accelerators and subsystems. Requirements
for control system applications will follow from these, and the
design and implementation of these applications will be the respon-
sibility of specific development teams, as mentioned under Organi-
zational Structure on page 10.

—-9- Project Organization

SDP - DRAFT COPY ONLY

SDP - DRAFT COPY ONLY

Systems:

Determine

Software Development Plan

Applications shall be developed by these teams, according to guide-
lines discussed under the section Application Development Area on
page 23. Reviews shall be held as work progresses; refer to Applica-
tion Software Reviews on page 15 for more information.

Testing will be performed on components as development proceeds,
and is outlined under Software Test Plans on page 26.

When successfully tested, the application, including display screens,
processing (database) records and any other components shall be
registered into the Configuration Management mechanism, as
outlined under Configuration Management on page 27. Subse-
quent modification or extension of the applications require a System
Modification Request.

Changes or enhancements to EPICS shall be solicited through a Sys-
tem Modification Request, as described under Configuration Man-
agement on page 27. Once approved, the change will be
implemented, with appropriate design, and tested.

Test and
debug in

Application

Requirements

System
Modification
uest

test stand

Placein |}
controlled f

.

Figure 2.

2.2

Project Organization

The Control System Software Development Process

Different groups participate in the Development Process. The
Application Developers and EPICS Programmers, as depicted in
Figure 3., correspond to the Applications and Systems Groups,
respectively, as shown in Figure 4.

Systems Engineering and Quality Assurance Groups within the SSC
shall be involved in requirements analysis and reviews as the project
proceeds. Two separate sets of requirements and reviews, corre-
sponding to Applications and Systems work, are shown in Figure 3.

Organizational Structure

The Software Group is responsible for the EPICS system software
and many of the applications. This group is contained within the
Controls Department, and is shown in Figure 4. Tasks are assigned
to teams under Systems or Applications.

-10 -

Requirements and Reviews — \.

Software Development Plan

Project Management E

Systems Engineering Quality Assurancig

\‘ Application DevelopersE/ f

Requirements and Reviews — I

EPICS Programmers

Figure 3. Participants in the Software Development Process.

Software

i Systems E | Applications E
| |

Database I Tools Others Process Control E

C]
Commumcaﬁonsi | Real-time l Beam Instrumentation E

Figure 4. Organization for Software Development within the Controls Department.

The Controls Department is responsible for integrating the efforts of
other Departments within the Accelerator Systems Division, as
shown in Figure 5. The Systems Engineering and Quality Assurance
functions are performed by separate groups within ASD. Another
separate group within ASD is responsible for administration of
development computers and software, to the specifications of the
developers.

The Controls Department is also responsible for integration efforts
from other Divisions within the SSC, including the Machine Simula-
tion Group and various detector groups. Note that the Global
Machine Safety Systems Group within ASD is responsible for a
completely separate and distinct system, but the state of that system
must be available to the Control System for display and interlock

purposes.

-11 - Project Organization

SDP - DRAFT COPY ONLY

SDP - DRAFT COPY ONLY

Software Development Plan

Accelerator Systems

Beam Instrumentation | Controls Cryogenics
Electrical Engineering § Global Machine Safety |3
Mechanical Engineering E RF

Figure 5. Organization of the Accelerator Systems Division.

Software efforts are also engaged from other Laboratories, through
memorandum purchase orders (MPO). Initiation of such agree-
ments, formal statements of work (SOW) and monthly progress
reporting shall be carried out according to existing SSC policies.

3. Managerial Process

The Control System for the SSC represents a major, complex soft-
ware project. Priorities have been established, and risks have been
identified.

3.1. Management Objectives and Priorities

The Control System Software Group must be both system devel-
opers with a research and system design attitude, but also a service
oriented organization, which must ensure that accelerator operators
have all of the applications available for controlling the SSC.

Given these objectives, priority shall be given to those aspects of
development related to serving the accelerator operations staff. This
includes reliable software for accelerator specific functions, accurate
and available documentation and well defined procedures for
problem resolution.

Beyond that, highest priority shall be given to those development
efforts which are directly tied to accelerator schedules. Specitically,
applications developed with EPICS tools take priority over enhance-
ments to EPICS itself, unless those enhancements are deemed critical
to the application operation by the SGL.

Managerial Process -12 -

-
3.2

Applications:

Configuration:

EPICS problems:

Changes to EPICS:

Software Development Plan

Risk Management

Development of applications will have risks, based upon issues relat-
ing to the accelerator or subsystem in which they will be used. A
Safety Analysis Report (SAR), prepared for each accelerator system
or subsystem, shall identify areas of risk for various applications.

Test plans shall be outlined in Acceptance Test Plan Reviews
(ATPR), which will address all of the problems associated with test-
ing applications for specific accelerator systems. Refer to Software
Test Area on page 25 for more information.

Schedules for these applications will contain critical path items,
which will be determined and presented as part of regular Controls
Group reviews. Work-around alternatives will be determined and
scheduled to be presented as backup plans.

It is expected that the risks inherent in applications development will
be more numerous and more critical than risks from the EPICS soft-
ware; EPICS has been tested in several (often very diverse) situa-
tions, and the majority of our development effort lies in the use of
EPICS to build applications. Other risks can, nonetheless be identi-
fied and associated with using EPICS.

Proper Configuration Management (CM) is essential to the success of
this project; hundreds of people could potentially have access to
application source files (display templates, configuration database
templates, etc.), and to the EPICS source code as well. This issue rep-
resents great risk if the implementation is not adhered to; the imple-
mentation is described under Configuration Management on page
27.

EPICS was developed with very general requirements in mind,
based primarily on previous experience of the engineers. Thereis a
risk that their work will not scale to meet the needs of the SSC, or that
application developers may have requirements which the existing
EPICS tools cannot meet.

The physical distances between components in the SSC, and their
numbers present problems which are unique. The communications
system must accommodate much greater amounts of data and larger
distances than did previous systems. Accordingly, EPICS must be
changed to make effective use of that system. The risks presented by
such a change are minimized however, because of adherence to
communications standards in hardware and software; ideally,
changes to a layer of communications software should be trans-
parent to EPICS, so that no changes will be required. If changes to the
system are indeed required, they will be localized and minimal.

Enhancements to EPICS will be required, and risks are greater than
those associated with other software projects. It is often much more
difficult to modify code developed by other engineers, using differ-
ent development plans and style guidelines, than to develop the sys-

-13 ~ Managerial Process

SDP - DRAFT COPY ONLY

SDP - DRAFT COPY ONLY

Software Development Plan

tem in a consistent way from the beginning. A strong configuration
management and quality assurance scheme is essential to minimize
these risks.

EPICS collaboration: Several Laboratories in the United States are working together to

develop extensions to EPICS. This includes Los Alamos National
Laboratory (LANL), Argonne National Laboratory (ANL), Lawrence
Berkeley Laboratories, and the SSC. Benefits from this collaboration
are great, but there is a risk that changes to existing software, or even
the direction of EPICS in the future, may not meet ongoing require-
ments at the SSC. We have the option of leaving the collaboration at
any time, should our situation warrant it.

EPICS dependencies: EPICS imposes certain restrictions on the types of hardware which

can be used. Currently, computers from SUN Microsystems must be
used, with their version of the UNIX operating system. VxWorks is
required as a real-time kernel, which imposes further restrictions
upon processor architectures and types. There is a risk that future
development will be dependent upon actions of these vendors, and
that advances in technology from other vendors will not be available
to us.

Steps are being taken to overcome these risks; plans have been
proposed to produce software, or modify existing software, to make
it POSIX comp]iant5 . We are making use of other standards, such as
Motif on the X-window system for user interface displays and
graphics, so that as many vendors as possible can be considered.

Outdated technologies: Technology used in all aspects of development are susceptible

SDP Changes:

Managerial Process

to becoming outdated. There is no risk in being outdated, other than
the technical support and enhancements to that technology might
fall off in the future. While attempting to develop software based on
standards, and putting effort into ensuring portability across plat-
forms, it is in our best interests to consider new technologies as they
become available. EPICS was developed using currently accepted
tools and languages such as C and yacc for example, but new devel-
opments could make use of C++ or other object oriented technolo-
gies, which are likely to be much more popular (better supported
and more widely used) in the future.

Changes to the SDP will occur over the lifetime of the project; we do
not associate a high level of risk with these changes, because require-
ments analysis and development details will be determined as the
project proceeds. This SDP document is the cornerstone of a com-
plete development plan, and the development of accelerator specific
applications will be documented as their requirements are made
known. Refer to Evolution of the Software Development Plan on

page 7. '

5. when details of the POSIX standard, including real-time extensions, are well
defined.

-714 ~

3.3.

3.3.1.

Formal Reviews:

Informal Reviews:

Software Development Plan

Monitoring and Controlling the Development Process

The EPICS software will be extended as application dependent
requirements become known. The review process is outlined below.
Applications software will be reviewed when the associated acceler-
ator or subsystem is reviewed.

Application Software Reviews

4

Reviews for application software shall be integrated with reviews for
their corresponding subsystems or accelerators, which are described
in the SSC Engineering Management Plan (EMP). To summarize,
they include:

» Preliminary Design Requirements Review (PDRR)
¢ Preliminary Design Review (PDR)

+ (ritical Design Review (CDR)

+ Acceptance Test Plan Review (ATPR)

+ Accelerator Readiness Review (ARR)

Systems Engineering shall support all activities assocated with these
applications reviews including preparing documents, taking
minutes and recording action item assignments during the meeting,
Systems Engineering distributes the minutes within ten days
following the meeting, and fracks action items.

Components of applications shall be tested separately, to as great an
extent as possible. There shall not be an independent acceptance test
plan (ATP) for application software, since the applications are so
closely tied to hardware components. The ATPs shall test software
and hardware in an integrated fashion, and ATPRs shall be sched-
uled to review the acceptability of both, working together.

Certain applications might be developed which are generic in
nature, and can be “copied"6 as similar subsystems or hardware
components are installed. Smaller, informal test reviews of these
specific applications may be justified, to ensure that they will indeed
be suitable for similar subsystems.

The Software Group will also hold regular informal reviews for all
operator applications’. These are referred to as in-process reviews
(IPRs) and will be scheduled by the responsible applications engi-
neer, on a monthly basis. Such reviews shall deal with one or more
of the following topics, having information specific to that applica-
tion, and gleaned from the engineering notebooks (refer to Software
Requirements Specification on page 26):

6. the application might be, more appropriately, multiply instantiated.
7. Reviews will be held only for those Engineering Applications which will be
used in a Control Room. Refer to SSC Specific Applications on page 4.

-15- Managerial Process

SDP - DRAFT COPY ONLY

SDP - DRAFT COPY ONLY

3.3.2.

Managerial Process

Software Development Plan

+ Operator Interactions: a review of operator’s display
screens, and how the operators interact with them.

» Hardware Channels: a review of known channels which
come from, or go to, hardware modules, and a list of all
known modules.

* Data and Processing: a review of EPICS database records,
how they are linked and the process variable names.

¢ Modes and Transitions: a review of system states and tran-
sitions using SNL.

* Component Tests: a review of major tests performed on the
software, both independent of, and integrated with, hard-
ware components.

These informal reviews will provide the basis for the formal reviews
mentioned above, and shall be attended by applications developers,
members of the quality assurance organization and system engi-
neers. Representatives from PMO will be asked to attend, so that
change requests can be approved.

Weekly status reports from application development teams will be
submitted to the SGL, who will make them publicly accessible.

System Software Reviews

Review of EPICS related work will be less frequent because the
system already exists. Future developments, including enhance-
ments to existing code, shall be reviewed according to the format
described in Object Oriented Reqmrements Analysis and Logical Design:
A Software Engineering Approach. Specifically, Chapter 9 of that book
is entitled Development Cycles and Major Reviews, and describes
how reviews can best accommodate modern development method-
ologies. It makes reference to DOD-STD-2167A.

Requirements for enhancements to (or extensions of) EPICS often
originate with application developers, but may also be generated
from within the team of programmers who are responsibie for
making those changes. In any case, the SGL may decide if a Software
Specification Review (S5R) is warranted.

One reason for insisting on requirements before any work begins, is
to ensure that all engineers understand that extra functionality is not
wanted. Referred to as creeping functionality, engineers often imple-
ment the required features and decide that additional features are
easily added.

8. Donald G. Firesmith, Object Oriented Requirements Analysis and Logical De-
sign: A Software Engineering Approach, John Wiley & Sons, Inc., 1993. ISBN 0-
471-57307-X.

-16-

3.4.

Software Development Plan

The extent to which requirements are unaerstood and documented
before any work begins shall be determined by the SGL. If require-
ments are completely understood beforehand, additional function-
ality or other features shall be documented and submitted to the SGL
for approval.

In any case, regular [PRs will be held, and scheduled by the respon-
sible engineer at intervals no longer than 30 working days without
approval of the SGL.

Weekly status reports from system development teams will be
submitted to the SGL, who will make them pubilicly accessible.

Staffing Plan

Each of the teams in the Software Group, depicted in Figure 4., shall
have between 3 and 7 members, including a Team Leader, for the
duration of the project. Additional application teams may be
required as the project continues. Additional teams of technicians
will be required for system administration and maintenance func-
tions, as accelerators become operational.

Technical Process

4.1.

Requirements for applications will originate primarily from within
the PMO. '

Requirements for the tools used to build those applications will come
from application developers and members of the Software Group.

An overview of the project organization and how it relates to this
process, as well as the Development Process itself is contained in the
Section entitled Process Model on page 9.

Methods, Tools and Techniques

Development of applications software, as well as enhancements or
extensions to EPICS software, shall take place on workstations
running the UNIX operating system, specifically computers from
SUN Microsystems as dictated by the EPICS system. This SDP will
change as new processor types are made usable.

Single board computers (IOC computers in the EPICS context), shall
include any processor supported by the VxWorks real-time kernel,
and authorized by the Software Group Leader (SGL).

9. Refer to Risk Management on page 13.

-17 - Technical Process

SDP - DRAFT COPY ONLY

SDP - DRAFT COPY ONLY

41.2.

Technical Process

Software Development Plan

. Develoyment Tocis

The tools used for applications development include all of the deliv-
erables which EPICS will provide; refer to the list under System
Deliverables on page 5. Additional tools might be identified as
textual editors or documentation aids, described below.

Enhancements to the EPICS system itself will be made with a variety
of tools, dependent on what was used initially, to maintain consis-
tency, but also on contemporary standards authorized by the SGL.

Currently, these tools include compilers and debuggers for the “C”
and “C++” programming language, the yacc compiler compiler and
lex (a tool for lexical analysis of input tokens to compilers).
Assembly language will be used only with approval of the SGL, and
then only on real-time systems.

Specific editors will not be required for coding, although all
programmers currently use “vi” or “emacs” (or tools based upon
them). FrameMaker shall be used to produce documentation (refer
to Software Documentation on page 25), and Xmosaic shall be used
to assist in on-line documentation. Autoplan shall be used for
tracking schedules.s

Documentation for this software is available from the SGL.

Software Repository

The software repository (SR) contains the software materials
including source code, object code and other software documenta-
tion. The SR provides the project’s primary means for exercising
configuration control over the software and related documentation
during development and release, as described under Configuration
Management on page 27.

The current versions of documentation, source code and other files
are always available in the repository area. Development takes place
when programmers or application developers check files out of the
system (via the CM mechanism), into their own development areas.
After work is complete, including testing, the files are registered
back into the hierarchy by the Configuration Administrator (CA).

-18 -

Software Development Plan

The SR shall exist on a UNIX file system, and shall be accessible from
a single location, as shown in Figure 6. This location shall be specifi-
able with the same pathname on any development computer. It is
assumed that the reader is familiar with the concepts of files and
directories used in modern computer systems.

applications

Figure 6.

4.1.3.

Directory Stucture for Control System Software in the Repository Area.

Within the topmost conirol system directory shall exist subdirecto-
ries for applications and the EPICS software. Separate subdirecto-
ries shall exist for documentation (doc), to allow easy retrieval of
documents, and for schedules (schedule), to allow access to the project
schedule with respect to controls.

An important aspect of the UNIX file system is the ability to have
“symbolic links” to a file or directory. This is essentially a pointer
which itself appears as an enfry in the file system; using them, files
or directories might seem to exist in several locations, ideally where
people would expect to find them. Physically, there is only one copy
of the “target”, and it's actual location might not-be important. The
documentation subdirectory is an example, in that it contains
symbolic links to the documentation files located elsewhere.

This hierarchy shall be writable only by the user account named
“controls”, as described under Configuration Management on page
27. The documentation (doc) files shall be accessible for reading by
any other user account.

The SR also contains a separate integration and build area, which is
a protected repository of code and text files that have been released
by the developers, but has not been integrated or released to the user
community.

As software is released into the SR area, the CA compiles and links
them into executable software. The build is then released to the soft-
ware test area for testing.

System Development Area

System software development will take place under the login
account of individual programmers. Routine login procedures
requiring a user name and password provide access control to the
programmer’s own work area. Weekly backups of all files will be
maintained in order to prevent loss of data.

-19 - Technical Process

SDP - DRAFT COPY ONLY

SDP - DRAFT COPY ONLY

Software Development Plan

Each programmer shall have one or more subdirectories under their
own computer account with a structure similar to that of the
system’s, as shown in Figure 7. EPICS documentation refers to this
area as a “shadow directory”. Programuners shall “check out” files
for editing or perusal, then inform the Configuration Administrator
(CA) when work is done and tested, and files need to be integrated
back into the system. For more information, refer to the Figure enti-
tled Layout of a Development Area using SCCS on page 29.

The System Development area refers to this hierarchy of directories
beneath any given programmer’s account, usually on their own
development workstation computer. Accordingly, only a subset of
the system directories may exist there at any given time, depending
on the development work taking place. Typically, a programmer
will have a directory “skeleton” having a structure similar to that of
the SR area, but only those files related to his current work will exist
there. Many of those files will exist as symbolic links, since actual
copies are required only when editing is being performed on them.

(applications)

Figure 7.

epics/include

epics/src

Technical Process

Software Repository showing Structure of a System Development Area.

These subdirectories have well defined contents:

a directory containing all of the “include” files used by parts of the
software. Include files contain common definitions used in different
pieces of source code, and are named with a trailing “.h” extension.
Specifically, include files which must be included by more than a
single library or program must appear here; all include files used
only in a single program or library can be located in the correspond-
ing source code directory. Include files at this level are therefore
used primarily within EPICS source code.

a directory containing all source code under separate subdirectories.
The constituent files should not exist in this directory, but in the sub-
directories described below it. Each subdirectory shall have a Make-
file, containing required targets, and this directory itself will contain
a Makefile which will descend to the appropriate subdirectories and
“make” each of them in turn.

—20 -

epics/src/lib

epics/src/lib/Test

epics/src/prog

Software Development Plan

a directory containing source code which constitutes a library (not
shown in Figure 9.). Ideally, the directory will be named for specific
functions, so several libraries might exist in a single project. For
example, one might be called “src/libca”, referring to a library for
EPICS Channel Access.

a directory (not shown in Figure 9.) which contains test programs for
libraries. As an example, src/libca/Test would contain programs
which make use of the channel access routines in the channel access
library. The Makefiles found in these test directories shall link their
programs with libraries in the directory immediately above, and not
the normally installed libraries for the project. There shall also exist
a file named README which describes the (informal) test proce-
dures.

a directory containing source code for all EPICS programs. The word
prog refers to some specific EPICS tool, such as alh, arr, and others
(refer to System Deliverables on page 5). Note that include files
(ending in “.h") may appear in these directories only if it's contents
are completely localized, never to be used by other software. Source
code for UNIX and VxWorks platforms shall be contained in subdi-
rectories to this one, when required.

epics/src/prog/Test This is a directory (not shown in Figure 9.) containing test routines

epics/etc

epics/lib

epics/bin

for programs contained in the directory immediately above it (prog
in this example). The Test directory shall include any files used for
testing the corresponding software in its’ parent directory. For
example, test data generators might be used for device driver testing
until hardware is available and tested, or EPICS database records
and alarm configuration files might be stored there, with which the
Alarm Handler (alh) would be tested. Makefiles shall be present in
each of these Test subdirectories, along with a file named README
which describes the (informal) test procedures.

a directory containing administrative files, such as generic startup
files, which programs or libraries would make use of. This includes
such things as lists of trusted users or hosts, default options to use on
program or library startup, such as “rc” files which take effect if no
such files appear in login or current directories.

It may also contain executable files (or links to them for concerns of
different architectures), used for administrative purposes, or for pro-
grams which normal system users would not typically use.

a directory containing the library (archive, or “.a”) files. This might
actually be a symbolic link, pointing to a directory containing the
appropriate libraries for a particular machine architecture.

a directory containing the executable files which developers would
typically use. The directory might actually be a symbolic link, point-
ing to a directory containing the appropriate executable images for a
particular machine architecture.

-271- Technical Process

SDP - DRAFT COPY ONLY

SDP - DRAFT COPY ONLY

epics/man

epics/doc

Makefile Setup

all

install

clean

cleanclean

lint
print
depend

Technical Process

Software Development Plan

a directory containing UNIX style manual pages, for each program or
library routine (or set of related routines) in the src directories. These
are meant to be concise reference pages, used by other programiners.

There shall be a subdirectory for each section of the manual which
has been written for this project; a subdirectory named manl will
appear for user-initiated commands. One named man3 would exist
for subroutines, and so forth. See the standard UNIX manuals for a
more detailed description, or look under /usr/man on the UNIX sys-
tem for examples.

a directory containing any other documentation, with appropriate
suffixes indjcating the tool used; a “.fm” indicates a FrameMaker for-
mat document. User manuals for EPICS tools will be here, along
with requirements documents and certain hardware documentation.

Each subdirectory under the src directory shall be “self contained”,
in that it can exist independently. Containing symbolic links to files,
or actual copies of files checked out for editting, each of these subdi-
rectories shall contain a Makefile, as required by the UNIX “make”
utility; make is a program which understands how to build software,
based on the contents of the configuration file (Makefile), and is
spedific to a given piece of software. The Makefile itself is always
stored with the source code or documentation, and is kept under
version control, as described under Configuration Management on
page 27.

Each Makefile must be named “Makefile”, and must have the follow-
ing targets and functions defined'? in addition to the targets for each
program or library:

causes each program (or test program) to be compiled, or each
library to be constructed.

causes each program to be compiled, then installed in the bin direc-
tory, or each library to be compiled and constructed, then installed in
the lib directory.

causes extraneous files to be removed, such as core files, temporary
output or debugging message files, or test output files.

causes all generated (usually non-source code) files to be removed. It
might also remove source code which is generated by an infermedi-
ate step in the build process. This includes all object (.0) files, lint
(.In) files, archive (.a) files and executable.

causes lint to be run on “C” source code.
causes a listing of source code to be printed.

causes a new Makefile to be generated, which will accommodate
changes to all “include” files, and recompile or relink code accord-

ingly.

10. For more information on make, refer to the Make User's Manual, as dis-
tributed with UNIX.

M-
SN
H

Software Development Plan

4. Application Development Ares

Development of applications shall take place under the login account
of individual developers. As with system programmers, routine
login procedures requiring a user name and password provide
access control to the developer’'s own work area.

The application developer's work area will be set up in the same way
a system programmer’s development area, as described under
System Development Area on page 19.

One important difference is obvious when one considers the number
of accelerator-specific applications required for the entire project.
Specifically, a developer will not have an empty “skeleton” of the
entire application hierarchy, in which applications are developed.
Typically, a developer will have a single directory called “applica-
tions”, in which current projects are contained. The complete hier-
archy will exist in the SR area, in a format shown in Figure 8.

Figure 8.

Software Repository showing Structure of Application Development Area

Note that each subdirectory beneath the applications level shall
contain applications software for each accelerator. The generic
subdirectory is an exception, and will be described below. Each
accelerator directory shall have a subtree beneath it, broken down by

- sector, then system and so forth. In fact, there might be up to six

levels in each subtree, as each accelerator is divided into smaller
separate pieces. Conceptually, every level in each subtree could be
named, as shown in Figure 9.

At any given level of this hierarchy, two types of subdirectories shall
exist; directories for the next lower level of applications, and direc-
tories for the applications themselves, which belong at this level.

As an example, consider an emittance measurement unit (EMU)
which contains a scanning wire monitor. A stepping motor is used
to position the wires. Several applications could exist for this EMU.

At the Iowest level of detail, an application could exist which allows
a technician to test all aspects of the stepping motor as an individual
piece of equipment. The files used in this application would exist at
the component level of the hierarchy, with a separate subdirectory
labelled doc, containing all of the relevant documentation.

-23- Technical Process

SDP - DRAFT COPY ONLY

SDP - DRAFT COPY ONLY

Software Development Plan

each level of applications
will alse contain a “doc¢”

Accelerators —e= subdirectory...

Components ——-

Systems ———mm

Subsystems ——a=

Devices ——=)

Figure 9.

Multiple Instances

Technical Process

Appilication Software Levels as they appear in the Software Repository

Another application could exist at the directory above it, which
allows integration of the motor with other pieces of equipment
within the EMU. Such an application would allow an operator to
interact with the EMU as a single device, and might not allow access
to the motor directly. For instance, a start button would send the
motor(s) through some pre-defined paces, transparent to the oper-
ator. Again, a subdirectory titled doc would contain associated
information about that application.

At each higher level, applications would perform more general func-
tions, such as changes to modes of a subsystem, or even “turn on” an
accelerator to produce beam with certain characteristics.

One important aspect to this structure is that applications, or just
pieces of them, can be reused as equipment is added to the accelera-
tors. This might mean copying existing application files into new
subdirectories as equipment is added. Ideally, this would be done
with a mechanism like symbolic links, so that bug fixes or enhance-
ments would be dore in a single location, and would be effective for
all equipment of the same type, regardless of it's subdirectory. Copy-
ing the files outright must still be an option, since it is likely that cer-
tain specific pieces of equipment might have slightly different
applications from the others of that type. In any case, a repository
shall exist for all generic component applications, so that developers
can simply copy (or link) files to start their work. This repository is
called generic, and is located immediately beneath the applications
directory, on the same level as accelerator applications, as shown in

Figure 8.

Since this structure exists below the Software Repository, it is under
CM control, as described under Configuration Management on
page 27. Application developers would build their development
area based on this directory structure.

24—

He
[y
n

Application Tests:

System Tests:

4.2.

Software Development Plan

(Vs

oftware Test Arex

There shall be separate test areas for EPICS system software and
applications.

The first kind of testing for applications involves basic component
testing. This shall be performed from within the development area
of the developer’s computer account, as described under Applica-
tion Development Area on page 23. Accelerator specific hardware
modules associated with each step of the application shall be avail-
able in a laboratory area, in which the developer shall have access to
their computer account and all required files. Such testing shall be
carried out by the developer.

Further testing of applications shall be performed in a separate Test
Stand area, which presents an environment closer to that of an oper-
ational control system computer. The developer’s own account (the
application development area) shall not be accessible; such testing
shall be performed after the component testing mentioned above,
with access to the same accelerator specific hardware modules. This
testing is performed by someone other than the developer, such as a
member of the Quality Assurance organization.

Details of both procedures shall be outlined in the Acceptance Test
Plan for the corresponding system or subsystem.

Changes or enhancements to EPICS shall be tested in the develop-
ment area, within the developer's own working account. A standard
set of test applications shall be used, based on the part of the system
which was changed. The programmer shall perform this prelimi-
nary test independently.

Further testing shall be carried out by someone other than the
programmer, in a separate test stand area. A suite of applications
which test all aspects of the EPICS software shall be used in the test.,
which should be attended by a member of the QA organization. At
no time shall application tests be performed concurrently with the
system tests, using the same system software; the test stand area
shall have the system development area directly accessible to it,
ensuring that any applications testing is completely separate.

Software Documentation

A User’s Manual shall exist for each piece of software accessible to a
user; basically, any program which displays information to, or
accepts input from, a person shall be documented as to it’s use.

A Programmer’s Manual shall exist for all libraries which are acces-
sible to programmers; each subroutine, function or method shall be
described according to the format of UNIX programmer’s manual

pages.

—25 = Technical Process

SDP - DRAFT COPY ONLY

SDP - DRAFT COPY ONLY

4.2.2.

Technical Process

Software Development Plan

1. Software Rayuirements Specification
N r f

Requirements for systems and subsystems at Level 3B and Level 4
(refer to Figure 1.) shall be documented in Software Requirement
Specifications (SRS) as outlined in the Engineering Management
Plan.

Software at Level 5 shall have an SRS and simple design document
combined in an Engineering Notebook, which shall be produced by
each developer as work proceeds. The notebook itself will be a docu-
ment consisting of all of the constituent notebooks from all of the
developers, gathered at regular intervals as work proceeds.

Notebooks shall exist as computer files, stored in a format selected
by the developer (ascii or FrameMaker, for example), and shall
adhere as much as possible to the following outline:

1. General Description
2. Requirements
2.1. Functional
2.1.1. Inputs
2.1.2. Processing
2.1.3. Outputs
22. Performance
2.3. Constraints
3. Analysis
3.1. Design options
3.2, Riskg;&lssgst;ment
4. Design
4.1. Computer targets
4.2. Grafset Charts
4.3. Record Layouts
44. Custom Code Layouts
5. ICD
5.1. Data Dictionary
6. Test Plans
7. Notes

Each developer’s notebook shall be considered during the informal
reviews for that application as described under Application Soft-
ware Reviews on page 15, or during in-process reviews for EPICS
work, as described under System Software Reviews on page 16.

Software Test Plans

Control System applications are closely tied to the accelerator
systems and components which they control and monitor. Accord-
ingly, most of the applications testing shall occur within Acceptance
Test Plans, which also test hardware and other system related issues,
such as operating modes. These test plans and their procedures may
refer back to this SDP document, making reference to basic test

procedures.

- 26—

4.3.

£3.2.

Software Development Plan

Pieces of applications can be tested independently, but all applica-
tions shall go through (at least) two test stages; first, to test the appli-
cation as an independent component from within the development
area, and second, to test the application while other developed appli-
cations are working concurrently. This would occur in a laboratory
test stand, typical of an operating control system environment
without access to the development area. Testing of system software
changes would be performed in a similar fashion.

Further description of basic test procedures is contained in the
section entitled Software Test Area on page 25.

Project Support Functions

Support functions are carried out by members of various teams
within the Controls Software Group. A notable exception is the
administration of development computers for the development
teams.

. Development System Administration

Applications and EPICS system work shall be performed on engi-
neering workstations. Development tools and other utilities shall
exist on one or more central file servers, and be accessible to the
development computers.

The administration of these workstations include day-to-day tasks
such as making backup copies of the work, installing new or
upgraded software, and maintaining peripheral devices, such as
printers.

The administrative functions for the development workstations shall
be carried out by a computer support group within the SSC, which
is outside of the Controls Department.

Configuration Management

The configuration management process shall be applied to applica-
tions and system development efforts.

For system software, this includes EPICS software source code,
system level (technical) documentation, utility control files (Make-
files, for instance), and other documents which the developer deems
relevant to the system.

With respect to applications, CM shall apply to EPICS record (data-
base) files, screen layout files, SNL files; basically all files which go
into making an application work. Additionally, all technical docu-
ments shall be under CM control, as well as SRS documents, such as
the files which constitutes the developer’s notebook!!.

11. Refer to Software Requirements Specification on page 26.

-27 - Technical Process

SDP - DRAFT COPY ONLY

SDP - DRAFT COPY ONLY

Procedure:

Version Control:

Technical Process

Software Development Plan

The development process, which includes CM activities, is described
under Process Model on page 9. The structure of the CM controlled
area is described under Software Repository on page 18.

The CM process includes a Configuration Administrator (CA) who
shall report to the Software Group Leader. The CA shall maintain a
list of programmers, both internal and external to the Software
Group'4, who are allowed to check out copies of files. Separate lists
may exist for different files. The commands which will be used to
actually retrieve the copies determine if those copies are meant to be
edited or not; although copies can be checked out, and the system
tracks all actions, only the CA can check the files back into the system
and build another release. Layout of these files is discussed below,
and in UNIX reference manuals.

The software used to manage version control shall be based on the
Source Code Control System (SCCS), as distributed with the UNIX
operating system. Both systems and applications files shall come
under SCCS control.

When a system programmer creates a development area (see page
19), he is actually creating links to the files, so they appear to exist in
his own development area. This structure is described in more detail
under Software Repository on page 18, but basicaily each develop-
ment area shall have a subdirectory to it, called SCCS.

Each of the SCCS subdirectories is actually a symbolic link to a corre-
sponding directory enfry in a central EPICS location. This allows
administrative information to be kept with the master versions of the
software, without appearing in the actual project directories. This
will include such things as a file containing a list of developers to
whom electronic mail will be sent after versions are changed and
properly remade. The setup and maintenance of these links and
directories is done by a set of programs used by the developers and
project administrators.

An example is shown in Figure 10. The Alarm Handler (alh) source
code appears to exist in the development area, but is actually just a
link to the original unchangeable file. If the developer needs to make
changes to that file, the file is actually checked out of SCCS and
copied to the development area, where changes are made.

This structure also allows separate backup copies of the current
versions and the master code to be kept, and gives a common area for
statistics to be collected. It also allows a separate area to be main-
tained for system distribution, in cases when a set of distribution
tapes needs to be built.

12. Programmers may exist within other Departments at the SSC, but shall still
be responsible for reviews and documentation, as if they were in the Group.

-28 -

Software Development Plan

{ controls) programmer

Repository Developer

Figure 16. Layout of a Development Area using SCCS

This directory structure also allows developers to maintain a private
image of the source code, common definition files and documenta-
tion in a local area. Only files which need to be edited will be copied
out of the central project directories, and all other files shall be
symbolic links.

This mechanism also accommodates compilation of code for
different machine architectures. Each such directory need only
contain symbolic links back to the appropriate source code, but the
object files (“.0”) and resulting executable files will exist locally.

The directory layout for application code is very similar to the
system software layout, although the actual directory structure is
more complex because of the numerous applications that will exist.
The directory structure is outlined under Application Development
Area on page 23.

Change Requests: Each extension or enhancement to control system software, whether
relating to a problem or an enhancement, shall be described in a Sys-
tem Modification Request form, describing the reason for the work,
who is requesting it, and other information. A copy of the SMR form
appears under the Appendix System Modification Request Form
on page 30.

Request Tracking: Records of all SMR forms shall be kept electronically, in a database.
Requests shall be submitted electronically or on paper, but will ulti-
mately be entered into the database. Software shall track the
progress of the request, and ensure that nothing “falls between the
cracks”.

The procedure starts when the form is submitted. All SMR forms
dealing with issues relating to accelerator controls shall be submitted
to the Controls Department.

~29— Technical Process

SDP - DRAFT COPY ONLY

SDP - DRAFT COPY ONLY

Software Development Plan

The SGL shall review each request, even if generated from within the
Controls Department, and assign it to an engineering team!2, There
shall be regular weekly reviews of all outstanding SMR requests.
The SMR shall be used for hardware, communication and even
procedural issues in the control system, as well as software.

An analyst is assigned to the request, and shall suggest workaround
solutions to the requestor if warranted, mark a priority for this
problem or change, based on their experience with that particular
component, and recommend that a particular action be taken.

An engineer may then be assigned to resolve the problem. The orig-
inal requestor of the change shall be notified when the issues have
been resolved, and the change has been made, or if an analyst has
decided against making the modification. It is quite possible that the
analyst and engineer assigned to resolve the issues are the same
person.

Work Packages, Schedule and Budget

Appendix A

Schedules and budget details will be done in accordance with the
SSC Project Management Cost and Schedule System, and the SSC
Integrated Project Schedules.

Internal schedules shall be maintained, which contain details of team
goals. Most schedule items dealing with applications shall be tied to
specific accelerator milestones. Schedule items dealing with EPICS
system related work shall be tied to the applications milestones
when appropriate.

Project schedules shall be maintained within the Controls Depart-
ment using Autoplan software. Team leaders will have access to
their own schedules, and all teams members will have the ability to
peruse the schedule database.

System Modification Request Form

The following pages depict information on the front and back side of
an SMR form at the SSC. The front page is filled out by the requestor,
while the back side is filled out as the modification is made, or the
problem resolved.

13. Recall that the team might actually be in a different department.

Work Packages, Schedule and Budget -30 -

SSC Laboratory
ACCELERATOR CONTROL SYSTiz

SYSTEM MODIFICATION REQUEST

Please submit as much information as possible, but do not fill in the other side of this page.

Maodification Name: Please arter a concise name to identify the modiication Date:

S

Is modification related t0: |\ yuare [system | TYP@ Of Change: [T Improvement

[Documentation 1 Software [Uncertain [] Resolution of Problem [] Enhancement

{discrepancy / comraction) (naw requirement)
Requestor: Phone: E-mail: Division/Department:
System: Location: Inciude Sub-system name, Aoom or area name, rack or console numbar.
LINAC[]
LEB[] = . : .
D component Name: mmand, program nama, hardware medule, inciuda version number if applicabie
MEB
HEB([]
Collider(] | Priority: Signature:
ASST
Otharg Otow [JHigh []Critical
Symptoms: Check all that apply, SUpply 6rTor Messages and acdiional (et below
use addhional sheets, if requirad]
[Jdocumentation missing] incorrect behavior '] operation never retums
[[] documentation wrang] unfriendly behavior (] calculation is wrong
[] system crashes (] inconsistent behavior (J occurs randomiy
(] data was lost [Imessage unclear orwrong [] occurs in certain operating modes
[C] data was incorrect [] display is incorrect [system is unresponsive
]mpact: Describe activities which this proolem affects i not comected]
Describe option s of workaround solutions: i3 there any way to continue until the modification is made?
Suggested Actlon: Can you suggest a solution?

SDP - DRAFT COPY ONLY

SMA Version 1.1-08-05-83

-31- Work Packages, Schedule and Budget

SDP - DRAFT COPY ONLY

SSC Laboratory
ACCELERATOR CONTROL SYSTEM

SYSTEM MODIFICATION REQUEST

Please fill out other side of this form first

This side of form to be filled out as problem is resofved.

Analysis L : , R
Analyzed by: Phone: E-mail: Department: Date Received:
Response Priority: Can you suggest additional workarounds:

Resolve IMMEDIATELY (]

Important; put at head of queue []
Place in normal queue []

Low priority; use workaround [] | Recommended Action:
lowest priarity; last thing to fix []
Will not be resclved []

(Include reasons)
if ible, give an estimate | i ?
bor O Gare raauired Do you foresee problems in testing
for this modification
Initlat Version: New Version:
Resolution :
Resolved by: Phone: E-mail: Department: Date Received:

Briefly describe the action taken:

Code change required] Documenttation change required] Duplicate SMR[[] Spegcification change[]
Design change required[| No change made (give reasons)] User mistake [Not reproducible [7]

Date Modified: Date Tested: Date Requestor Notified:

SMR Version 1.1-08-05-393

Work Packages, Schedule and Budget -32-

APPENDIX

Three Level Requirements Specifications
and
Software Neotebooks

1.0 Intr ion

- ASD requires a procedure for documenting software development which will
serve the needs of software developers, their managers, and those charged with oversight
of the software development process, in this case the ASD QA group. The goal here is to
suggest a minimalist approach, having as few documents as possible, attempting to
¢liminate redundancy, and emphasizing flexibility in the face of evolving requirements.
The brief discussion below applies to the software developments of the Controls
Department, but should be applicable to the work of other departments as well.

The approach used and the nature of the documents required will relate to the
nature of the project itself, and to the level of the specification with which it is associated.

2 ftwa velopment Plan.

There is a need for only two software development plans (or one plan with two
parts) which should cover all of the software to be developed in the Controls Department:

* The Plan for development of application software under EPICS ("Using
EPICS"), and;

* The Plan for developing modifications and enhancements to EPICS ("Changing
EPICS"). :

To first order, all of the software described below falls in one of these two
categories, and should be able to refer to the appropriate SDP. Of course, if cases arise
where a different or modified plan is required, such a plan would be developed for that
project.

3.0 Level 3. PMO Specifications

In accordance with the revised specification tree attached, there will be a Global
Accelerator Systems Specification, at Level 3A, and a Global Accelerator Control
System Specification at Level 3B. Both of these specifications and their associated
reviews are the responsibility of PMO. The Controls Department will be consulted with
respect to the GACS 3B spec. The Controls Department may be asked to contribute
presentations at the Level 3 reviews where appropriate, but will not be required to submit
documentation other than copies of transparencies,

The GACS 3B specification will call out the specifications and reviews to be held
at Level 4, which are described below.

4.0 Level 4; ASD Specifications

Just as in the case of the individual Machine Specification Trees, conirol system
specifications and reviews at Level 4 are the responsibility the ASD Controls
Department. As indicated on the accompanying specification tree, there will be two
global reviews and specification documents, as well as one specification and series of
reviews for each Machine. The two Level 4 Global specifications relate to Process
Control and to Beam Control. The machine specifications and reviews trace down from
the Machine Level 3 specifications as well as from the Global Level 3B specifications.

4.1 Global ification

The Global Level 4 Beam Control Specification will be made up of three parts: a
System Specification, a System Software SRS and a Global Application Software SRS.
(These will be derived from the already existing draft specification prepared by Rolf and
heretofor thought of as a 3B specification).

4.1.1 Global System Specification

The Global System Specification will include specification for all the major
system hardware components. This includes:

« Front End Systems and Standards
* Global Interface Definition for
- Magnet Systems
‘ Ramp Magnets
Correction Magnets
Pulsed Magnets
DC Magnets
- RF Systems
- Bl systems
BPMs
BLMs
others
- Abort System
- Timing System
» Communications
» Central and Sector Head facilities
* Control Room
* Global Architecture

At this level, only globally estimated data rates and volumes should be specified.
The main requirement at this level is to build in sufficient flexibility and capacity to meet
specific requirements as they grow and change. '

There is no software component to this specification.

4.1.2 Global Application Software SRS

The Global Application Software SRS will describe those applications which
apply to all machines, and which are (or should be) inherent to EPICS. These include:

* Remote Control and Display
* Alarm Manager

« Save and Restore

* Archiver

* Sequencer

We should not write more than we have to. For example, because EPICS already
implements many of these applications, references can be made to the EPICS
documentation where appropriate and adequate, with emphasis being placed on
requirements not met by EPICS, and requirements for necessary changes or additions to
EPICS. Necessary changes to any of these global applications will be defined as system
software projects, listed in this specification, and supported by a software notebook as
described below,

4.1.3 Global System Software SRS

The Global System Software SRS will describe all those changes, improvements,
etc to EPICS which are required to adapt EPICS to the SSC environment.
This will include, for instance:\

» Nameserver software, name caching software

* Changes to adapt EPICS to T1 communications

» Changes to the API, changes to Channel Access

* MBS (Message Broadcast) and timing support software

The Global System Software SRS will also include off line tools such as for
database editing and graphical programming.

All of these projects should be identified and listed in the Level 4 Global System
Software SRS, and each of them will be supported by a notebook at Level 5 (See below).

4 hin ification

In addition to the Global specifications, there will be a Level 4 specification for
each Machine: LINAC (probably too late for this one), LEB, MEB, HEB, Collider, Test
Beams. Each of these will include the relevant transfer line (whatever that may be at the
time),

In general, the machine specifications will refer to the global system and software
specifications. The implementation of the global system specification specific to the
individual machine will be described. Here the detailed placement of crates and racks
and the identification of their contents will be given. No mention of global architecture
need be given, except to identify the interface, and any differences or special features that
are required for the particular machine.

In general, no SRS will be required for an individual machine at Level 4. For the -
global applications, reference should be made to the global application software SRS.
For example, if the generic archiver specified in the global SRS will do just fine for the
MEB, then it will suffice to say so. However for each machine specifics, such as (for the
archiver) numbers and rates of points to be archived, will be given.

In addition, for each machine a number of machine specific applications will be
required. These will include commissioning programs (such as the 24 which have been
identified for the LEB by Wienands, Bourianoff and Bork) and simpler screens for
display and control of equipment, subsystems, etc. Each of these applications should be
listed in the Level 4 Machine Specification. This list will correspond one-to-one with the
software notebooks to be developed at Level 5, and described below.

5.0 Level 5, Software Notebooks

This is the level where actual software modules or specific applications will be
defined. Here a "living" software project notebook (or folder) will be maintained. The
model will be the CEBAF approach. For example, the front page is very general - "write
software support routines for the CCL vacuum system.” The notebook keeps up a
traceable record as the specifics are discussed, agreed, and modified. It is this notebook
that would be reviewable by QA.

The notebook approach will also be applied for modifications or enhancements to
EPICS. Examples might be "modlfy Channel Access for Nameserver and cacheing,” o

"add graphical database editor,” etc.
The notebook will contain at least the following:

» Title Page. Brief (one or two lines) description of the project, as described
above. Each notebook should refer back to the level 4 SRS in which it is called out.

* Table of Contents. Most notebooks would include most or all of the sections
listed below.

» Sign-off page. Indicates who is required to sign off on what parts of the
notebooks. eg who must sign off on the requirements (normally customer, developer,
developer's supervisor), who on the ICD section, who on the test plans, etc. This page
should be audited for appropriateness of sign-off authorities identified.)

+ SDP Section. Normally a line will be sufficient, referencing the applicable SDP.
Otherwise any special development practces will be recorded here.

* Requirements Section. Here the requirements are listed in as much detail as
possible. This section will be recognized as the required SRS. Requirements and
changes to them during the development and commissioning cycle are signed off as
required on the sign-off page. One acceptable way of presenting requirements would be
to include sketches of operator screens where appropriate. Requirements could be
audited for ambiguity or incompleteness or inconsistencies.

« Test Plan Section. As the requirements evolve, a test plan will be developed in
this section which tests each of the specified requirements. For small systems, a system
test (harware and software together) will be appropriate. Where suitable, separate
software test plans may be required. Test plans would be audited for traceability to
requirements.

* ICD Section. Here is where one would keep signal lists, interface specs, etc.
Reference could be made to applicable hardware module documentation where
appropriate. ICDs would be audited for completeness.

* Configuration Section. Here would be kept records of all files, where they are,
etc. Configuration Management of these files would be by SCCS or equivalent, as called
out in the relevant SDP. This section would be audited for conformance to the SDP
software configuration plan.

* Design notes. Here would be kept notes on the evolving design, listings, charts,
etc. Auditable for completeness.

* Developer Log. Here the developer would keep a personal record of activities,
progress, problems, brilliant ideas, attaboys and ahshits. Normally this would be the only
non-auditable part of the notebook.

The notebock can be kept in whatever way seems most convenient to the
developer, including electronically. However a paper version must eventually exist so
that it can be signed-off as required. Iexpect a typical quality audit would involve
checking the first page to see who is supposed to sign what, and then verifying that the
correct signatures have been obtained. Each page or section of a completed notebook
would require a QA signature. I imagine the paper version of the notebook being kept in
a three ring binder.

