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1.0 Introduction

Recent measurements! utilizing a technique” based on nuclear reactions of heavy ions bombarding metals
have allowed the measurement of the concentration density of hydrogen atoms chemically bound within
these metals. By assuming a simple diffusion process? to account for the transport of hydrogen from the
interior of the metal to the surface, this information can be related to the process of photodesorption,
wherein hydrogen is evolved from the surface of a metal through bombardment by UV photons.

The diffusion model described in Ref. 2 relates the photodesorption coefficient to the hydrogen
concentration density for some particular analytic forms of the density distribution. In this paper, the model
is expanded to cover more general forms of the concentration density, such as have been reported in Ref.
1. The data in Ref. 1 is analyzed to extract density distributions for the atomic hydrogen chemically bound
in metal samples. These empirical density distributions are then used in the diffusion model equations to
obtain predictions for the photodesorption coefficient. The predictions, which contain several unknown
parameters, are then compared with experimental photodesorption coefficient data, to extract values for the
unknown parameters.

2.0 Development of the Relation Between the Photodesorption Coefficient and
the Hydrogen Density Distribution in a Diffusion Model

In Ref. 2, the background for the development of the parameters, constants, and equations involved in
the diffusion model is presented. One of the two fundamental parameters is the following:

x = Aop(EM). )

In this equation, A represents the mean depth within the metal over which the photons interact with the

hydrogen atoms to produce atoms which emerge from the surface, and 6p(E,M) is the cross section for the
fundamental photodesorption process. The other fundamental parameter is D, the diffusion constant for
hydrogen atoms within the metal.

As in Ref. 2, we assume here that, either as a resuit of photon scattering, or through the process of
photoelectron production followed by subsequent electrodesorption, the entire tube circumference is
involved uniformly in the desorption process. The (uniform) photon flux incident on the surface is

designated by 7.
If we let ¢(x,t) be the volume concentration of gas melecules at a distance x from the surface within the
metal at time t, then the molecular flux evolved by the photodesorption process, dt), is

® (1) = K c(0,0)y @
and the photodesorption coefficient (in molecules/photon) is

. n=®/y (3)
In the diffusion model, the molecular concentration density ¢(x,t) satisfies the diffusion equation,

de(x,t) _ de(x,b)
b ox2 ot ' @

subject to the boundary condition

®()=D a—%(%tl = K c(0.1)y ®)

and an initial condition determined by the initial concentration density ¢(x,0).



In Ref. 2, sclutions are developed to these equations for two specific functional forms of the initial
concentration density, ¢(x,0). However, it is possible to solve Egs. (4) and (5) for a general initial
concentration density, provided only that ¢(x,0) is constant or decreasing as x — infinity. The technique is
the same as outlined in Ref. 2, i.e., the method of LaPlace transforms. The general result is

oo

{Exp[ K E P[k(kt-HJ)] Erfc:{k\/; 2@1 } c{u-x,0)du r

c(x,t) =
(6)

Exp(5~-]
— 4D u4x,0)du

inwhichk =% T This gives for 1|(t) = x c(0,1),

{Exp[ Dtk E E{k(kt""u)]Erfc{k\/_— + _L] } c(u,0)du . @

n = =3

0
As will be discussed below, the experimental data from Ref. 1 for the atomic hydrogen concentration
density, ca(x), can be well fitted to a sum of three exponentials:

3
caA®) = Y, GExp(-xAy) | ®

i=1

If we assume that the initial molecular concentration density is related to the atomic concentration density by
c(x,0) = ca(x)/2, . 9

then Eqgs. (7) to (9) give
Exp(L )Erfc[\/— ] - Exp(——) Erfc[./ L]
(10)

-3
= (1-4/55)
Pi

where
D =_1
T and Ty = . (11)




3.0  Analysis of Nuclear Reaction Data to Derive Atomic Hydrogen Density
Distributions
The atomic hydrogen concentration in the metal, cA(x), was measured in Ref. 1 by bombarding a sample
of the metal with a monoenergetic beam of Eg = 6.4 MeV 15N ions. The 15N ions penetrate into the metal

and lose energy primarily due to inelastic collisions with the atomic electrons at a (constant) rate which we
call dE/dx. The energy of the bearn at a distance x within the metal is thus given by

E(x) = Eg - (dE/dx)x. (12)

The 15N ions undergo nuclear reactions with the nuclei of the metal atoms, and also with the protons
associated with hydrogen atoms embedded within the metal. The nuclear reaction with hydrogen,

ISN+H > 160 5 12C + 4He + .

has a strong, narrow resonance at Ep = 6.385 MeV, with a resonance width of I’ = 1.8 keV. The energy
dependence of the cross section is taken as that of the standard Breit-Wigner form,

ol
o(E) = 4 (13)

2
) EN
4+(EE,)

where g 1s the cross-section on resonance.

When the 15N ions have penetrated a distance x such that E(x) = Ey, the above nuclear reaction results in
the production of gamma rays, which have an energy of about 4.43 MeV. The total number of gamma rays,
Ny, produced by an ion beam of N ions of initial energy Eq is

Ny=N f ca(x) O(E(x)) dx , (14)
0

where E(x) is given by Eq. (12). By measuring the number of gamma rays as a function of the ion beam
energy Eq, the density distribution cA(x) within the metal can be mapped out.

The spatial resolution of this method depends in principle on the resonance width T, as can be seen by
combining Eqgs. (13) and (14). In addition, there are other important effects’. The dominant contributors are
the finite spread in energy in the initial ion beam (o), the energy spread of the ions due to straggling as the
beam loses energy in the metal (Gs), and the relative ion-atom energy spread due to vibrational motion of

the hydrogen atoms in the metal lattice (Doppler broadening, op) . These three effects can be well
approximated by assuming a Gaussian distribution for the energy of the ions:

dN__N g (E-E(x))?
B e o a




where 0g2 = op? + 052 + Op2. The square of the energy spread due to straggling, o2, is a linear function
of the depth of penetration of the ion beam, x: 052 = kgx, where kg is a calculable constant. Substituting
Egs. (12), (13) and (15) into (14), we have

( E’-E() + dﬁx 3
co_rf_ - Ex ( zdx )
Ny=N "ﬁ%“ [ ca(x)dx 5 208 LdE' . (16)
| wo L +@Ey
j 4
The energy integral can be done exactly, using?
= 2
Y ExpCt) dt = © Re{w(x+1y)] » an
oo Y2+ (tX)2
where
w(z) = Exp(-z2) Erfe(-12) . (18)
The result is
| [(EEe
O'UL E.'x 2652 ] | dEx -Eo + E;
4 E '— _COint dx r
dE Rej w + T , (19}
Y2rog r 2 YZnog Y20 Y80g
'4— + (E -Er)
where
_ _opl'm
Om=| SEME=TCT @0

is the energy-integrated total cross section.
Using Egs. (19} and (20) in (16) gives the following:

No=N —Sint c Rc( [(X’XO) +1 Ty
Y fﬁoxg—E— L AGORA 126, Y804
X

)dx ' (21)

where oy = og / (dE/dx), xg = (Eg - E;)/(dE/dx), and I'y = ['/(dE/dx). If we assume the form for the
density distribution cA(x) as given in Eq. (8), then Eq. (21) becomes



3 o0
N Ot A Ré(“{(x Xq) ]]d
Ny=N ngEiffc,f Exp(-xA;) +IQ,O_XJ
X

0

(22)

The integral in Eq. (22) can be done as follows. Using Eq. (18), that part of the integrand involving the

function w(z) can be written as

ol & Xo)

r (x-Xo)
]__E __x.._-I
ﬁcx *fS“o'x

X-Xo rx
EXE{-Iﬁ5x+I’/-8—Gx ] Y86, V20,

This can then be separated into real and imaginary parts using the following equalities:

|

Exp[-(x + Iy)?] = Exp[-x2 + y2] (Coq2xy] - ISin[2xy])

and4

x21(1 - L 21Q;

Erf[x + Iy] = Erf[x] + Exp[-x?]J(1 - Cos[2xy]) _{Exp[-x 1Sin{2xy]
2nx 2ATTX
2Exp[-x?] 2 Expf{- Ll-*]( fa(X,y) + Ign(x,¥))
R n=1 nz + 4)(2
in which
£4(X,y) = 2x - 2xCosh[ny]Cos[2xy] + nSinh{ny}Sin[2xy]

and

ga(X,y) = 2xCosh[ny]Sin[2xy] + nSinh[ny]Cos[2xy] .

(23)

(24)

25)

(26)
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These expressions are inserted into Eq. (23), and the real part is taken as indicated in Eq. (22). The result is

a series of integrals of the general form,>

-

f Exp[-Bt? - vt]Cos[bt]dt =

-Tb)? -Tb) (v + Ib)? (v +Ib)
A Exp O R eV IOy Y IO eV + 1O,
168 { 4B B a8 2B

[ Exp[-pt? - vi]Sinfbt]dt =

L/ 125 {Exp[(" BLSREUAS NS R R Ib)]}

4B WP 48 B

(28)

(29)



Use of these formulas then gives an exact result for the integral in Eq. (22). However, the result is
complicated in form. As useful simplification results from an expansion to second order in the parameter

‘f;;’ - , appropriate (as in this case) when vg;x << [. The result is
Ny=N E—Ej*‘ceft{xo). (30)
dx
where
~ , _
Aisr o Aio2-xg { rAls,,, Tau,, T }
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Ceri(Xg) = e 31
eff(X0) Ef 2 rx(Aic§+x0)(1-%) 2 - . N (31
- LExpl- + —2—FExp[H{Ai0%-2x hpi(x
] e Pl oi] T Plg Ak o)]n‘él 060 |
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Aing NGO X Ainc Ao X
ha.i(X0) = { Exp[AOx)Erfe[2i0x - X0_ 4 0] 4 Exp[ - 20 ErfeAi0x . _X0__ny_

2 AiG2-Xg
2 Exp[- nT]( 1 —Erf[—VTZ_G—D }

X

. (32)

The terms in the infinite sum over n fall off rapidly as n increases, and the whole sum is multiplied by the
I
Y80y

Data was taken, as explained in Ref. 1, by varying Eg, and hence xg = (Ep - Er)/(dE/dx), measuring Ny,
and computing ceff(xQ) from Eq. (30). Fitting the result to Egs. (31-32) above then allows the determination

of the unknown parameters of the atomic density distribution (cj, Ap).
In practice, two other quantities in Egs. (31-32) must also be treated as free parameters in order to obtain
good fits to the data. The quantity o is given by

small quantity . Hence, an excellent approximation is provided by terminating the sum at n=2.

642 =(op? + Op? + kgxg)/(dE/dx)2 = Gx02 + ksXo/(dE/dx)2 - (33)

As noted above, kg is a parameter related to energy straggling, which can be calculated. The energy loss
dE/dx is also calculable. However, the other two quantities contributing to 6x, Doppler broadening
(op/(dE/dx)) and ion beam energy spread (op/(dE/dx)), are in general not easily calculable, and their sum in
quadrature, 602, must treated as a free parameter. The value used in the fits below is the one which gives
approximately the best overall fit for all the data sets.

Additionally, Egs. (31-32) assume that the point xg = 0 corresponds to an initial ion beam energy Eo
precisely equal to the resonance energy Er. In order to obtain good fits to the data, it was necessary to relax
this assumption, and allow for a small systematic shift, AE, between Eg and E; at xg = 0. This was done by
replacing xq with (xg - 8) everywhere in Egs. (31-32), and allowing & to be a free parameter. The relative
systematic energy shift is then given by

AE/Ep = (8/Eg)(dE/dx) . (34)



4.0 Results of Fits

Several data sets taken from Ref. 1 were fit as described above to extract values for the atomic density
parameters. The data sets are defined in Table 1, and the fit results are given in Table 2. Also included in
Table 2 are the calculated values for the mean “surface” density

ps=c1/A] (35)

and the mean “equivalent-bulk” density
PB =c2fAy +c3/A3, (36)

The total effective surface density is pT=pSs + PB.

All calculations have used the formulas in Ref. 6, which give dE/dx = 0.339 keV/A, and kg =
0.310 keVZ/A. From Ref. 1, the resonance width is taken as T' = 1.8 keV, and the resonance energy is Eg =
6385 keV. The best overall fit to the data sets is given using ox0 = 12.5 A (equivalent to an rms energy
spread of 4.2 keV). Additional derived quantities are ks/(dE/dx)2 = 2.69 A, and 'y =53 A

For data sets 2 and 4, the range of the data is not sufficient to obtain parameters for three exponentials.
Hence, we have set A2 =0and ¢3=0,

Table 1: Description of data sets.

Data set | Description Figure Data range
number number in (A)
Ref, 1

1 Silvex electroplated copper, cleaned Fig. 7, 20 -60 to 4100
2 Silvex electroplated copper, not cleaned | Fig. 20 -60 to 880
3 Hitachi Class 1 OFHC copper, cleaned | Fig. 21, 10 -120 to 4070
4 Hitachi Class 1 OFHC copper, not Fig. 21 -120to0 175

cleaned -

Table 2: Resuits of fits of effective density distributions to Eq. (8}).

Data |eg c2 c3 i VA2 | VA3 | AE! |ps PB PT

set # Eo

Units | 1022/ [ 1022/ | 1022/ 1016/ | 10106/ {1010/
em3 |emd3 |lem3 A A A % em? |[em?2 | em?

1 11.70 | .451 0216 ]20.1 210.5 | 32718 | -.196 |2.35 3.01 10.4

2 6.28 0958 0 7931 | e | —eem-- -079 {498 |- e

3 7.33 1.94 073 23.3 80.1 |1843 1[-24 1.70 2.90 4.6

4 8.5 667 |0 43.5 | | ome- -24 1369 |- ————-

Figures 1 to 4 display the data and fits to Eqs. (31-32}, on log-linear plots. As these figures show, the fit
using up to three exponentials provides a good characterization of the data.
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Fig. 1: “Effective” density vs. depth: data and best fit, for data set 1.
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Fig. 2: “"Effective” density vs. depth: data and hest fit, for data set 2.
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Fig. 3: “Effective” densily vs. depth: data and best fit, for data set 3.
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Fig- 4: “Effective” density vs. depth: data and best fit, for data set 4,

Figures 5 and 6 compare the unfolded density distributions (cA(x), from Eq. 8) for the four data sets, in
linear and log plots. It is clear that data sets 2 and 4 , the “uncleaned” samples, have much larger densities
at large x, i.e., larger “bulk” densities, than the “cleaned” samples. They also have larger “surface” densities
(as table 2 shows). However, for the Silvex electroplated copper samples, the distribution at the surface is
larger for the “cleaned” sample than for the “uncleaned” one. The cleaning process appears to drive gas
from the bulk to the surface, as well as removing it, but it sometimes results in a higher local gas density
near the surface than in the “uncleaned” state.
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Fig. 5: Unfoided density distributions, using fitted parameters, linear plot; curves labeled
by data set number. Solid lines: cleaned data; dashed lines: uncleaned data.
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Fig. 6: Unfolded density distributions, using fitted parameters, log-linear plot; curves
labeled by data set number Solld lines: cleaned data; dashed lines: uncleaned
data.
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5.0  Derivation of Diffusion Model Parameters from Fits to Experimental
Photodesorption Coefficients, Based on Atomic Hydrogen Density
Distributions

The density distributions obtained in section 3 may be used, together with Egs. (9) to (11), to predict the
photodesorption coefficient in the diffusion model. These predictions may in turn be compared with
experimental photodesorption coefficient data.

This has been done for two sets of photodesorption data: one set consists of data corresponding to
photodesorption in cleaned Silvex electrodeposited copper beam tubes, and another set corresponds to data
for photodesorption in cleaned Hitachi copper beam tubes. The sources of the data in each case is given in
Table 3.

Table 3: Sources of photodesorption data sets.

Photodesorption data set Reference

Silvex electrodeposited copper BINP/SSCL measurements: data sets 00098,
00269, BNL/SSCL measurements: data sets
001710, 002411

Hitachi copper BNL/SSCL measurements: data set 002512

For the Silvex case, the photodesorption data have been fitted to Eq. (10), using density parameters from
data sets 1 and 2 of the nuclear reaction results, as given in Table 2.

For the Hitachi case, the fits have used density parameters from data sets 3 and 4 of the nuclear reaction
results, as given in Table 2. In each case, the parameters D and k in Eq. (10) have been treated as the only
free parameters in the fit. The results for D and x are given in Table 4. Also shown in Table 4 is a parameter
%2, which characterizes the goodness of the fit. The fits to the photodesorption data are displayed in Figs.
7-10. In these figures, we plot Logion vs. Logio &, where & = YT, and we have used ¥ = 1014
photons!cmzlsec, d=3.3cm,and Iy = 1016l(m:l) photons/crn2 (see Ref. 2).

Table 4: Results of fits of photodesorption data sets to diffusion model equations,
based on measured concentration densitles.

Photodesorption Nuclear ¥ (1024 cm3) | D (10-18 x?
data set : reaction data cm?/sec)
set
Silvex electrodeposited | 1: Silvex 3.74 1.96 6.06
copper electrodeposited -
copper, cleaned
Silvex electrodeposited } 2: Silvex 7.01 9.18 2.56
copper electrodeposited
copper,
uncleaned
Hitachi copper 3: Hitachi 628 804 774
copper, cleaned
Hitachi copper 4: Hitachi 581 1.18 217
copper,
uncleaned

11
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Fig. 7: Fit to Silvex electrodeposited copper photodesorption data, with
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The photodesorption data at low fluxes can be fit well by any of the NRA sample hydrogen densities.
However, the fits are systematically low at high fluxes. This systematic underestimate is less for the
densities corresponding to the “uncleaned” samples than for the “cleaned” samples. This is due to the higher
“bulk” or interior density values in the “uncleaned” samples, relative to the “surface” density. Adequate fits
to the photodesorption data at high fluxes would appear to require density distributions which have an even
higher ratio of “bulk” to “surface™ densities than the “uncleaned” samples measured by the NRA technique.

The fits indicate a systematically smaller value for the parameter x for the Hitachi copper samples than for

the electrodeposited copper ones. From Eq. (1), this would imply a larger value of A, the mean depth of

effective photon interaction,-in the electrodeposited copper surface than in the Hitachi copper. Such a result
could be due to a more diffuse or “rough” character (at the micron level) of the surface of the

electrodeposited sample, compared to the surface of the high purity Hitachi copper.

14
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