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(1} Introduction

The equations of fluid flow and heat transfer discussed in this report are applied to problems in
the transient flow of helium. The objective of this analysis is to develop a modeling and computational
system that can be applied to a spectrum of problems in helium flow (or, more generally, fluid flow

with heat transfer).

The approach is to first require the user to write down a descriptive set of equations for the
problem system of interest. These equations will typically be crdinary differential equations (ODEs)
and partial differential equations (PDEs) in time, i.e., dynamic ODE/PDEs; algebraic equations can

also be included so that differential-algebraic equations (DAEs) can also be part of the model.

This equation specification is facilitated through the application of a generic system of
ODE/PDEs that usually can be applied directly to the problem system of interest, or can directly be
extended for application to the problem system. The generic equations are based on the three
fundamental principles of conservation of mass (i.e., the continuity balance), momentum (Newton’s
second law applied to fluids} and energy; the state variables computed from these three types of
equations are fluid density, mass flow rate and volumetric internal energy, respectively. Other
variables can then be computed from the state variables, usually through an equation of state for

helium, e.g., pressure, temperature and enthalpy.

Next, the user is required to code the model equations in a series of Fortran subroutines; these
routines are then combined with a series of library routines and a library main program to make up a
complete code that can be compiled and executed to compute nimerical solutions to the model
equations. This process of coding the equations for the problem system is facilitated by the availability
of a framework that will accommodate most problems, and by the availability of two example
programs that most likely can be applied rather directly to the problem system of interest (with

possibly some straightforward modifications and extensions).

Finally, the user is tequired to execute the code and evaluate the numerical solutions that are
produced. This is generally no less difficult than the two preceding steps of model formulation and
coding; the evaluation of the model solutions generally requires thorough testing for spatial and time
convergence, and critical analysis from the perspective of physical (engineering) principles. Clearly, a

solution must make sense mathematically (computationally) and physically.

We start the discussion of the analysis system with the general PDEs, and then illustrate the

use of the system in terms of some applications.



(2) Basic PDEs

We restrict the discussion of the model PDEs expressing conservation of mass, momentum and

energy to the one-dimensional case.

(2.1) Continuity Equation

The mass (continuity) balance is

d
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where
p fluid density (kg/m3)
v fluid linear velocity (m/s)
t time (s)
z position along the system (m)

Because of the usual procedure of expressing helium flow in mass units, we use in place of v the helium

mass flow rate W (kg/s—mz)
W =pv (2)
Eq. (1) written in terms of W is then
90 , OW _
gt 5 =0 ®

Eq. (3) is the basic continuity balance.

(2.2) Momentum Equation

The starting point for the momentum balance is

dpv) | Olpvv) | Bryy , HP _
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where



Tzz component of the stress tensor giving the shear force in the z direction due to flow in the
2 direction (N/m?)
P fluid pressure (N/m2)

gz gravitational acceleration in the z direction (m/sz)

Eq. (4), which is a precursor of the Navier-Stokes equations, is just a statement of Newton’s second law

%—T = ZF (5)

Thus, 3(pv)/dt in eq. (4) is the time rate of change of momentum (pv is the volumetric momentum).
B(pvv)/0z is the force due to the net convection of momentum in the z direction. 87,;/8z is the

frictional force. @P/dz is the pressure force and -pg, is the gravitational force.

Eq. (4) written in terms of W is

2
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where
f friction factor (dimensionless)
D¢ channel diameter (m)

Eq. (6) is the basic momentum balance. A friction factor is used to compute the frictional force
because a more fundamental approach is generally not available, particularly in the case of turbulent

flow.

Before proceeding to the energy balance, we consider an important characteristic of eq. (4)
(and thus, also, of eq. (6)). If the first two LHS terms of terms of eq. (4) are expanded (through

differentiation of products), we get
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The second term in brackets is zero as a consequence of eq. {1). The group of terms in the first bracket



is the nonlinear advection group, which can produce front flattening and front sharpening in the
numerical solution of eq. (4} or (6) [Schiesser (1994)]. We merely intend to point out this property of

eq. (4) since it can have important consequences for calculating numerical solutions, particularly in the

front sharpening case.

(2.3) Energy Equation

The energy equation is

dpv) | B(Wh)  ~ 1 9%T _
%t T oz +Q-kaz2—0 ®
where
u fluid mass internal energy (j/kg)
h fluid mass enthalphy (j/kg)
Q volumetric heat transfer (j /m3-s)
k axial thermal conductivity (w—m/mg-k)

Egs. (3), (6) and (8) are the basic PDEs that must be integrated numerically in the analysis of flowing
helium; they produce p, W and pu as solutions (which are the dependent variables that appear in the
temporal derivatives of eqs (3), (6) and (8)). Auxiliary equations are then added to these equations to

complete the definition of the model as described next.

(2.4) Equation of State

The helium mass internal energy, u, is computed simply as -
u = pufu (9)

where pu and p come from egs. (3) and (8) respectively. Then the helium thermodynamic equation of

state is used to calculate the helium temperature, pressure and enthalpy
P =P(p,u) (10)

T = T(p) (11)



h = h{p,u) (12)

Additionally, egs. (3), (6) and {8) require initial and boundary conditions, which will be determined by
the requirements of the parrticular problem system that is to be analyzed. Therefore, the discussion of

these auxiliary conditions will be delayed until specific applications are considered next.

(3) Transients in a Uniform Channel

To illustrate the use of the preceding equations, and the associated Fortran coding, we consider
the relatively simple problem of helium dynamics in a uniform channel, as illustrated in Figure la.
Egs. (3), (6) and (8) are applied to the helium in this channel. If the valves at the two ends of the
channel are identical, and the transient conditions are the same on the external ends of the valves

(away from the channel), then the solution to the model equations for the helium in the channel is

- S

Figure la: Uniformm Channel with Valve Terminations

symmetrical with respect to the centerpoint of the chanmel. Therefore, the solution to the model

equations is required for only half the channel, as depicted in Figure 1b

4 atm

| Pelt) 3.8 atm

l
| 8m |
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W(NM) = W(P(NM),Pg)
P(NM) = P(p(NM),U(NM))

Figure 1b: Application of Symmetry to the Uniform Channel



(3.1) Momentum Equation

We now consider the solution of eq. (6) applied to the system of Figure 1b, starting with the

boundary conditions. At the left end, the flow is zero (due to symmetry at the midpoint in Figure la)

(1) Left end, 2 = z;:
W(z,t) = 0 : (13)

At the right end of the system of Figure lb, the flow through the valve serves as the boundary

condition for eq. (6)
(2) Right end, z = z;:
First the pressure drop across the right valve in Figure 1b is calculated
AP = P(z;,t) - Pe(t) (14)

where P, is the right end pressure. This pressure drop then sets the flow out of the right end of the

channel
AP > 0, W(zp,t) = Wnax (1 - Y "’))JZ? (15)
AP < 0, W(zp,t) = -Wmax (1 - e_(t/TV)).||AP| (16)
where

Wmax maximum mass flow rate for a given pressure drop, AP, (kg/mz-s)
Ty time constant for the change in Pe(t) (s)

Eq. {8) requires an initial condition
W(z,0) =0 (17)

i.e., the helium starts from rest. Then the helilum is set in motion by a step change in the valve

downstream pressure, Pp, from 4 atm to 3.8 atm at t = 0, as depicted in Figure 1b.

Of course, the solution of eq. (6) also requires the simultaneous solution of ¢q. (3) and eq. (8).
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However, we consider first the coding of eq. {6), then go on to the final specification and coding of egs.

(3) and (8).

The temporal derivatives of egs. (3), (6) and (8) are programmed in subroutine DERV, which
is called as part of a method of lines (MOL) code. The initial conditions for these temporal derivatives
are programmed in subroutine INITAL, and the output (numerical solution of egs. (3), (6) and (8)) is

printed and plotted in subroutine PRINT. We now consider the coding in subroutine DERYV.

The state variables for the model (the dependent variables in the temporal derivatives of egs.
(3), (6) and (8)) are p, W and pu. These state variables appear in COMMON/Y/ of the following
COMMON bleck

DEFINE THE CONTINUITY, MOMENTUM AND ENERGY BALANCES ON A SPATIAL
GRID OF NM POINTS. UNITS ARE MKS (SI) EXCEPT FOR PRESSURE WHICH

IS IN ATM.
COMMON/T/
T INDEPENDENT VARIABLE, TIME (S)

NSTOP STOPPING VARIABLE (SET TO. A NONZERO VALUE WILL
TERMINATE THE CURRENT RUN)

NORUN . RUN COUNTER (SET TO 1 DURING THE FIRST RUN, 2
DURING THE SECOND RUN, ETC., AND CAN THEREFORE
BE USED T0O CHANGE THE CODE FROM RUN TO RUN)

COMMON /Y /

WM MASS FLOW RATE (KG/Mwx2-S)

RHOM FLUID MASS DENSITY (KG/M#x3)

UMG FLUID INTERNAL ENERGY-DENSITY PRODUCT (J/M=x3)
COMMON /F /

WMT TEMPORAL DERIVATIVE OF WM, I.E., THE FLUID MOMEN-

TUM PER UNIT VOLUME (KG/M#%*2-Sx=2)
RHOMT TEMPORAL DERIVATIVE OF RHO (KG/M»=3-5)

UMGT TEMPORAL DERIVATIVE OF UMG (J/M%x3-S)

COMMON/V/
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UM
PM
T™
HM
COMMON/C/
ZL
ZR
DZ

Z

T™MI
PM1I

WMI

QM

COMMON/1/

IP

COMMON/ IM

IMODEL

FLUID INTERNAL ENEREGY PER UNIT MASS (J/KG)
FLUID PRESSURE (ATM)
FLUID TEMPERATURE (K)

FLUID ENTHALPY PER UNIT MASS (J/KG)

LEFT HAND SPATIAL COORDINATE (M)
RIGHT HAND SPATIAL COORDINATE (M)
GRID SPACING (M)

SPATIAL GRID (RUNNING FROM ZR TO ZL WITH SPACING
DZ) (M)

INITIAL FLUID TEMPERATURE (K)
INITIAL FLUID PRESSURE (ATM)
INITIAL FLUID.MASS FLOW RATE (KG/Mx%2-S)

VOLUMETRIC HEAT INPUT TO THE FLUID ALONG THE
SPATIAL GRID (J/M=x3-5)

INTEGER COUNTER USED FOR PRINTING AND PLOTTING
IN SUBROUTINE PRINT

ODEL/

INTEGER VARIABLE TO SELECT THE THERMODYNAMIC
MODEL (ALLOWABLE VALUES ARE 1 TO 4)

PARAMETER (NM=33)

COMMON /T / T, NSTOP, NORUN

1 /Y/ WM(NM), RHOM(NM),  UMG(NM)

2 /F/  WMT(NM), RHOMT(NM), UMGT(NM)

3 /V/ UM (NM) , PM{NM) , TM(NM) , HM (NM)
4 /C/ ZL, ZR, DZ, Z (NM) ,
5 R, ™I, PMI, WMI, QM (NM)
6 /1/ IP

COMMON / IMODEL / IMODEL

The corresponding temporal derivatives of these state variables appear in COMMON/F/. Thus,
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subroutine DERV computes the temporal derivative vector in COMMON/F/, and the ODE integrator
(in this case, RKF45) returns the dependent variable vector in COMMON/Y/. Time is the first
element in COMMON/T/ (and is provided by the ODE integrator as an input to DERV). Thus, the
required COMMON areas for this MOL code are /T/, /Y/ and /F/. The other COMMON areas are

optional; their purpose and contents are expiained in the preceding comments.

Thus, at the beginning of DERV, we can assume the dependent (state) variables in
COMMON/Y/ are available for programming (again, they are provided by the QDE integrator). We
first perform the algebra of egs. (9) to (12)

INTERNAL ENERGY, PRESSURE, TEMPERATURE, ENTHALPY, HEAT INPUT
FOR THE MAGNETS

THE THERMODYNAMIC FUNCTIONS ARE

PRHOU DENSITY~INTERNAL ENERGY FLASH TO COMPUTE THE FLUID
PRESSURE

TRHOU DENSITY-INTERNAL ENERGY FLASH TO COMPUTE THE FLUID
TEMPERATURE

HRHOU DENSITY-~INTERNAL ENERGY FLASH TO COMPUTE THE FLUID
ENTHALPY
DO 1 I=1,NM
UM(I)=UMG(I)/RHOM(I)
PM(I)=PRHOU(RHOM({I) ,UM(I))
TM(I)=TRHOU(RHOM(I) ,UM(I))
HM(I)=HRHOU(RHOM(I) ,UM(I))
CONTINUE

The four lines in DO loop 1 implement egs. {(9) to (12), respectively. PRHOU, TREOU and HREQU
perform the thermodynamic flashes of egs. (10) to (12), respectively, by calling the Air Products
{APCI) model 3 thermodynamic correlation for helium. For example, function PRHOU is

DOUBLE PRECISION FUNCTION PRHOU(RHO,U)
PRESSURE FROM DENSITY AND INTERNAL ENERGY

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/IMODEL/ imodel

integer itdbg(3)

ifase=1

ifcode=6

kd=0



aQQ

a0

aaoaoaaao aaao

kh=0
ku=0
ks=0
kcp=0

CONVERT DENSITY IN KG/M=%3 TO GM-MOL/LITER
dt=RHO/4.0d0

CONVERT INTERNAL ENERGY IN J/KG TO J/GM-MOL
ut=U=4.00d40/1000.0d0

call thermo( t, P, vof, ifase, i1fcode,
+ kd, kh, ku, ks, kep,
+ dt, dv, dt,
+ ht, hv, hi,
+ ut, uv, ul,
+ st, sv, sl,
+ cpv, cpl,
+ imodel, ipert, itdbg, ker)
PRHOU=p
RETURN
END

Function PRHQU will not be considered in detail. The essential feature is the call to subroutine
thermo with imodel = 3 (APCI model 3 for helium). Subroutine thermo has an extensive set of
documentation comments describing its arguments. Independent testing of subroutine thermo
indicated that it gives the properties of helium with sufficient accuracy for the dynamic models we are

considering here. All of the functions called for the evaluation of thermodynamic properties are listed

in Appendix 1f.

The heat input term of eq. (8), Q, is programmed next in DERV (actually, it is included in
DO loop 1 discussed previously, right after the programming of EM(I))

THE HEAT INPUT CAN BE SPECIFIED AS A FUNCTION OF POSITION Z (I.E.,

GRID INDEX I)
IF((I.GE.1).AND. (I.LE.NM-5))THEN

THE FOLLOWING Q IS A FUNCTION OF TIME, T, WITH A TIME
CONSTANT OF 0.5 S AND THE TEMPERATURE DIFFERENCE (10 - TM).
ANOTHER POSSIBILITY WOULD BE TO INCLUDE A HEAT CONDUCTION
MODEL TO DEFINE Q
QM (1)=1.0D+05x% (1 .0DO-DEXP(-T/0.5D0) ) (10.0D0O-TM(I))
QM (I)=0.0DO

ELSE IF(I.GT.NM-5)THEN
QM (1)=0.0DO

END IF

10
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The comments illustrate how the heat input can be programmed as a function of z along the system of
Figure 1b; specifically, Q is programmed as a function of t with a 0.3 s time constant and a
temperature difference of (10 - T) for grid points 1 to NM - 5 where NM is the total number of grid

points in z. However, when the program was executed, Q was set to zero for all of the grid points.

The boundary conditions for eq. (6), egs. (13) to (16) are programmed next

BOUNDARY CONDITIONS

LEFT END, Z = ZL
PLEND=4.0DO0

PRESSURE DROP
DP=PM (1) -PLEND
IF(DP.LE.O.0DO)THEN

FLOW RATE FOR NEGATIVE PRESSURE DROP. NOTE THAT THE FLOW
IS POSITIVE, AND PROPORTIONAL TO THE SQUARE ROOT OF THE
PRESSURE DROP. THE FLOW RATE ALSO CHANGES DYNAMICALLY
WITH A TIME CONSTANT OF 0.01 S
WM(1)= 300.0DO0x(1.0-DEXP(-T/0. OlDO))*DSQRT(DABS(DP))
WM(1)=0.0DO

ELSE

FLOW RATE FOR POSITIVE PRESSURE DROP. NOTE THAT THE FLOW
IS NEGATIVE
WM (1)=-300.0D0x(1.0-DEXP(-T/0.01D0))»DSQRT (DP)
WM(1)=0.0D0

END IF

RIGHT END, Z = ZR
PREND=3.8D0

PRESSURE DROP
DP=PM (NM) ~PREND
IF (DP.LE.O.ODO) THEN

FLOW RATE FOR NEGATIVE PRESSURE DROP. NOTE THAT THE FLOW

IS NEGATIVE, AND PROPORTIONAL TO THE SQUARE ROOT OF THE

PRESSURE DROP. THE FLOW RATE ALSO CHANGES DYNAMICALLY

WITH A TIME CONSTANT OF 0.01 S

WM (NM) =-300.0DOx (1 .0-DEXP (~T/0.01D0) ) xDSQRT (DABS (DP) )
ELSE

FLOW RATE FOR POSITIVE PRESSURE DROP. NOTE THAT THE FLOW
IS POSITIVE

11
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WM (NM)= 300.0D0=(1.0-DEXP(-T/0.01D0))=DSQRT (DP)
END IF

Note that for the left end of the system of Figure lb, only the statements corresponding to zero flow
(according to eq. (13)) are executed (the other statements are just comments to illustrate how a non-
zero flow boundary condition might be programmed). For the right end, the flow, WM(NM), increases
with time at a rate corresponding to a time constant of 0.01 s in accordance with eqs. (15) and (16).

Note also, the necessity to define consistently the sign of the flow.

Finally, the programming of eq. (6) over the NM spatial grid points concludes subroutine

DERV

DO 11 I=1,NM

LEFT END
IF(I.EQ.1)THEN

MOMENTUM BALANCE DOES NOT SET THE FLOW RATE AT THE LEFT END
(THE FLOW RATE IS SET BY THE PRECEDING BOUNDARY CONDITION)
WMT(I)= 0.0DO

RIGHT END
ELSE IF(1.E(.NM)THEN

MOMENTUM BALANCE DOES NOT SET THE FLOW RATE AT THE RIGHT END
(THE FLOW RATE IS SET BY THE PRECEDING BOUNDARY CONDITION)
WMT(I)= 0.0DO

INTERIOR POINTS
ELSE

CONVECTIVE MOMENTUM FORCE
GIMI=WM(I-1)*x2/RHOM(I-1)
GI =WM(I )=»=2/RHOM{(I )
GIP1=WM{I+1)=*=2/RHOM(I+1)
CMF=( (GIP1+4GI)/2.0D0- (GIM1+GI)/2.0D0Q) /DZ

FRICTIONAL FORCE

FF=0.02D0

DC=0.03D0

FT=(FF/ (2.0D0~DC) ) «DABS (WM(I))*WM(I)/RHOM(I)

PRESSURE FORCE
DPDZ=1.01325D+05 ( (PM(I+1)+PM(I))/2.0D0
+ -(PM(I-1)+PM(I))/2.0D0)/DZ

LINEAR SPATIAL FILTERING

12



aQaa o

EPS=1.0D+04
DVDZ=EPS= (WM(I+1)/RHOM(I+1)-2.0D0=WM (1) /RHOM(I)
+ +WM(I-1) /RHOM(I-1))/ (DZ»%2)

MOMENTUM BALANCE (DM/DT = SUM FORCES) IS CENTERED
WMT (1)=-CMF-FT-DPDZ+DVDZ

STORE THE INDIVIDUAL TERMS IN THE MOMENTUM BALANCE AT A PART-
ICULAR GRID POINT FOR PRINTING IN SUBROUTINE PRINT
IF(I.EQ.NM-1)THEN
TERM (1)=-CMF
TERM (2)=-FT
TERM (3) =-DPDZ
TERM (4)=DVDZ
TERM (5) =WMT (I)
END IF
END IF

NEXT INTERIOR GRID POINT
CONTINUE

An IF-THEN-ELSE determines how the temporal derivative of eq. (6), WMT(I), is computed. For I =
1 and NM, this derivative is zero since the flow at the boundaries is set by boundary conditions (13),
(15) and (16) programmed previously. For the interior points, the individual terms in eq. (6) are

computed; these terms are then summed in accordance with eq. (6).

Note that the momemtum equation (6) is approximated in the coding of DO loop 11 by
ceniral differences. The effectiveness of this central differencing is enhanced by the choice of the
smoothing parameter ¢ = 10% in the term 652\'/ b2 (this value of ¢ was selected by trial and error as
the minimum value to produce smooth solutions). Also, the individual terms in eq. {6) are stored at
one grid point, in this case, I = NM-1 for printing in subroutine PRINT; this output gives a direct

indication of the magnitude of each of the forces in eq. (6).

This completes the programming of the momentum equation, eq. (6). We now proceed to the

continuity equation, eq. (3).

(3.2) Continuity Equation

The programming of continuity equation (3) is also contained in DO loop 11 within subroutine
DERV (although the continuity equation programming was deleted in the preceding discussion of the
momentum equation, and in the following discussion, we delete the programming of the momemtum

equation to focus on the continuity equation). The approximation of the continuity equation at each

13



of the grid points in z is therefore programmed as

DO 11 I=1,NM

LEFT END
IF(I.EQ.1)THEN

CONTINUITY BALANCE IS UPWINDED
RHOMT (I)=- (WM(I+1)-WM(I))/DZ

RIGHT END
ELSE IF(I.EQ.NM)THEN

CONTINUITY BALANCE IS UPWINDED
RHOMT (I)=- (WM(I)-WM(I-1))/DZ

INTERIOR POINTS
ELSE

CONTINUITY BALANCE IS UPWINDED

Qo QO Qa O O Q0

NEGATIVE FLOW
IF(WM(I).LT.0.0DO)THEN
RHOMT (I)=- (WM(I+1)-WM(I))/DZ

C..
C.. POSITIVE FLOW
ELSE IF(WM(I).GE.O.O0DO)THEN
RHOMT (I)=-(WM(I)-WM(I-1))/DZ
END IF
END IF
C...
C... NEXT INTERIOR GRID POINT

11 CONTINUE

Note that at all grid points, the continuity balance is upwinded; at the interior points, a test is made
for the direction of flow (the sign of WM(I)}, and the choice of a two-point approximation for the
spatial derivative in eq. (3), §W/3z, is made accordingly. Note also that a boundary condition is not
specified for eq. (3), i.e., the specification of W at a boundary value of z. Rather, W is set by one of
the boundary conditions for eq. (6), i.e., eq. {13) or (15) and (16).

3.3) Energy Equation
(3.3) Energy Equation

The programming of energy equation {8} is also contained in DO loop 11 within subroutine
DERV (although the energy equation programming was deleted in the preceding discussion of the

momentum and continuity equations, and in the following discussion, we delete the programming of

14



the momentum and continuity equations to focus on the energy equation). The approximation of the

energy equation at each of the grid points in z is therefore programmed as

DO 11 I=1,NM

LEFT END
IF(I.EQ.1)THEN

ENERGY BALANCE IS UPWINDED
UMGT (I)=- (WM(I+1)=HM(I+1)-WM(I)=HM(I))/DZ+QM(I)

RIGHT END
ELSE IF(I.EQ.NM)THEN

ENERGY BALANCE IS UPWINDED
UMGT (T )=— (WM (I)«HM(I)-WM(I-1)=HM(I-1))/DZ+QM(I)

INTERIOR POINTS
ELSE

ENERGY BALANCE IS UPWINDED

Qoo aa oo aa oo a0

AXIAL CONDUCTION
DIF=1.0D+03
DTDZ=DIF~(TM(I+1)-2.0DO+~TM(I)+TM(I-1))/ (DZ*=2)

C..
C.. NEGATIVE FLOW
IF(WM(I).LT.0.0DO)THEN
UMGT (I)=- (WM(I+1)=HM(I+1)-WM(I)*HM (1)) /DZ+DTDZ+QM(I)
C...
c... POSITIVE FLOW
ELSE IF(WM(I).GE.O.0DO)THEN
UMGT (I)=- (WM(I)*HM(I)-WM(I-1)*HM(I-1))/DZ+DTDZ+QM(I)
END IF
END IF
C...

C... NEXT INTERIOR GRID POINT
11 CONTINUE

Note that at all grid points, the energy balance is upwinded; at the interior points, a test is made for
the direction of flow (the sign of WM(I)), and the choice of a two-point approximation for the spatial
derivative in eq. (8), &(Wh)/8z, is made accordingly. Note also that a boundary condition is not
specified for eq. (8), i.e., the specification of Wh at a boundary value of z. Rather, W is set by one of
the boundary conditions for eq. (6), i.e., eq. (13) or (15) and (16), and h is set through the function
HRHOU discussed in the section on algebra. The value of the axial conductivity, DIF, was selected

15
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arbitrarily just to test the coding.

An entering temperature could be specified as a boundary condition, which could then be
converted to an enthalpy for inclusion in the preceding coding. However, this was not done for this

test problem.

The preceding choice of numerical approximations, i.e., upwinding for the continuity and
energy equations, and central approximations for the energy equation, is similar to the approach of
Wong (1989)(19902)(1990b)(1991) and Yeaw (1992). In particular the central approximations used in
the momentum balance, eq. (8), offer the advantage that the individual terms in the approximating
ODEs (defined by WMT(I) in DO loop 11) need not be selected according to the direction of flow. An
alternative, however, would be to upwind the momenturn balance as well; this would add to the
complexity of the coding somewhat, but might provide better computational accuracy (e.g., less
tendency for numerical oscillation, which is now surpressed by the linear filtering term containing the
parameter €). Other relevant papers for the modeling and analysis of compressible flow include those

by Jang et al (1991) and Carcagno et al (1992).

This essentially completes the coding of the continuity, momentum and energy equations in
DERYV for this test problem (egs. (3), (6) and (8)). A complete listing of DERYV is given in Appendix
la; note in particular that eqs. (3), (6) and (8} are all included in DO loop 11.

(3.4) Initial Conditions

We now consider the programming of the initial conditions for egs. (3), (6) and (8) for the
system of Figure 1b, which is done in subroutine INITAL. The beginning of this subroutine contains
the same COMMON area as was discussed previously for DERV. Since INITAL is called only once

during each run {execution of the code), parameters are also be set in this routine

SELECT THE THERMO MODEL
IMODEL = 3 - MODIFIED MARTIN EQUATION (VAN DER WAALS FAMILY)
IMODEL=3

LOWER AND UPPER LIMITS OF Z

ZL=0.0DO0

ZR=8.0D0

GRID SPACING
DZ=(ZR-ZL) /DFLOAT (NM-1)
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AXIAL GRID
DO 11 I=1,NM

Z(1)=ZL+DFLOAT(I-1)=DZ
CONTINUE

INITIAL FLOW RATE
WMI=0.0DO

INITIAL TEMPERATURE
TMI=4.0DO

INITIAL PRESSURE
PMI=4.0DO

This coding is largely self explanatory. Note in particular that the length of the system in Figure 1b is
set to eight meters. Also, the initial mass flow rate, temperature and pressure are set to 0 kg/mQ—s, 4%

and 4 atm, respectively.

The initial conditions for egs. (3), (6) and (8) are then set in DO loop 1

INITIAL CONDITIONS (FOR THE 3 X NM DEPENDENT VARIABLES IN
COMMON/Y/). RHOPT IS A FUNCTION FOR A PRESSURE-TEMPERATURE
FLASH THAT RETURNS THE FLUID DENSITY. UPT IS A FUNCTION FOR
A PRESSURE-TEMPERATURE FLASH THAT RETURNS THE INTERNAL ENERGY.
NOTE THAT DEPENDENT VARIABLE UMG IS THE PRODUCT OF THE FLUID
INTERNAL ENERGY AND DENSITY (I.E., THE VOLUMETRIC INTERNAL
ENERGY)
DO 1 I=1,NM
WM(I)=WMI

RHOM(I)=RHOPT (PMI,TMI)

UMG(I)= UPT(PMI,TMI)=RHOM(I)
CONTINUE

These initial conditions are for W, p and pu, as required by the temporal derivatives of egs. (8), (3)
and (8), respectively, i.e., the dependent variables in COMMON/Y/.

A call to DERYV then computes the initial derivatives (in COMMON/F/)

INITIAL DERIVATIVES
CALL DERV

INITIALIZE COUNTER FOR PLOTTED SOLUTION
IP=0

17



aao

b

aOa oo aaoa

Also, a counter, [P, is initialized for use in subroutine PRINT, which is considered next. A compiete

listing of INITAL is given in Appendix 1b.

(3.5) Qutput

The output from the model is produced by calls to subroutine PRINT. The solution for
printing and plotting is transferred through COMMON, which is the same as in INITAL anmd DERV.
The first set of executable statements: (a) opens a file TERMS to receive the individual termns of the
momentum balance stored in array TERM in DERYV, (b) increments the counter IP for subsequent use
in printing and plotting (recall that IP was initialized to zero in INITAL), and (¢) writes IP to the
screen of the terminal used to execute the program (so that the progress of the solution can be

monitored).

OPEN A FILE FOR PRINTING THE INDIVIDUAL TERMS IN THE MOMENTUM

BALANCE
OPEN (8 ,FILE=’TERMS’ ,STATUS=’UNKNOWN?)

INCREMENT THE COUNTER FOR THE PLOTTED QUTPUT
IP=IP+1

MONITOR THE OUTPUT
WRITE (% ,+) IP |

Next, the numerical solution is printed (during each call to PRINT)

WRITE THE NUMERICAL SOLUTION
WRITE(NO,1)T, (Z(I),WM(I),PM(I),TM(I),RHOM(I) ,QM(I),I=1,NM)
FORMAT(//,’ Time = ’,F7.3,//,

2

+ Z’,’ w5,7 P?’
+ T?,’ rho?,
+ Q,/,(2F10.2,2rF10.3,F10.2,E12.3))

The terms stored in array TERM are then printed (to give an indication of the contribution of the

individual terms in the momentum balance as the solution evolves)

WRITE THE INDIVIDUAL TERMS IN THE MOMENTUM BALANCE AT AN
INTERIOR GRID POINT (SELECTED IN DERV)

WRITE(8,2)T, (TERM(I),I=1,5)

FORMAT( > T = ’,F5.3,/,
+ ) -D(W=+2/RH0)/DZ = ’,F9.2,/,
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The output from these write statements is rather extensive, and therefore plotting of the solutions (via
Top Drawer) is also included by a call to subroutine PLOTTD to facilitate visualization of the

solutions.

C... PLOT THE SOLUTION
CALL PLOTTD

Subroutine PLOTTD uses the counter IP to write a series of Top Drawer commands and the numerical
solution to a file for plotting. Subroutine PRINT is listed in Appendix lc. Since subroutine PLOTTD
is rather machine specific, it is not discussed here, but rather, only is listed in Appendix 1d. Also, the

coding in PLOTTD is essentially self explanatory.

This essentially completes the programming of the model for the system of Figure 1b. A data
file is also provided to control the integration of the ODEs which approximate eqs. (3), (6) and (8)

PROTOTYPE VENTING MODEL
0. 0.07 0.01

99 ' 0.0001
END OF RUNS

This data file contains:
(1) Line 1: A documentation title which is merely read, then printed.

(2) Line 2: The initial, final and output intervalues of time. In this case, time runs from 0 to 0.07 s

(70 ms), and subroutine PRINT is called every 0.01 s (every 10 ms).

(3) Line 3: The numbers of ODEs and the error tolerance. For this problem, we have 3 PDEs each
approximated over a 33-point grid or 3 x 33 = 99 ODEs, to be integrated with an error tolerance of

0.0001.

The final line in the data set has the characters END OF RUNS to terminate program execution. This
data file is read by a main program which then calls the ODE integrator, subroutine RKF45 [Forsythe,
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et al (1977)] in this case, to integrate the 99 ODEs. The main program is listed in Appendix le.

Finally, to complete the discussion of the Fortran, functions UTP, RHOTP, PRHU, TRHOU
and HRHOQU, which are called in INITAL and DERV for the evaluation of thermdynamic properties,
are listed in Appendix 1f. In each case, subroutine THERMO is called to execute the APCI model 3

for helium properties,
A sample of the output from PRINT is listed below
RUN NO. - i PROTOTYPE VENTING MODEL
INITIAL T - 0.000D+00
FINAL T - 0.700D-01
PRINT T - 0.100D-01
NUMBER OF DIFFERENTIAL EQUATIONS - 99

MAXIMUM INTEGRATION ERROR - 0.100D-03

Time = 0.000

z W P T rho Q
0.00 0.00 4,000 4.000 139.79 0.000E+00
0.25 0.00 4,000 4.000 139.79 0 .000E+00
0.50 0.00 4,000 4.000 139.79 0.000E+00
0.75 0.00 4.000 4.000 139.79 0.000E+00
1.00 0.00 4.000 4.000 139.79 0 .000E+00
1.25 0.00 4,000 4.000 139.79 0 .000E+00
1.50 0.00 4.000 4.000 139.79 0.000E+00
1.75 0.00 4.000 4.000 139.79 0.000E+00
2.00 0.00 4,000 4.000 139.79 0.000E+00
6.00 0.00 4.000 4.000 139.79 0.000E+00
6.25 0.00 4,000 4.000 139.79 0.000E+00
6.50 0.00 4.000 4.000 139.79 0.000E+0Q0
6.75 0.00 4.000 4.000 139.79 0.000E+00
7.00 0.00 4.000 4.000 139.79 0.000E+00
7.25 0.00 4.000 4.000 139.79 0.000E+0Q0
7.50 0.00 4.000 4.000 139.79 0.000E+00
7.75 0.00 4.000 4.000 139.79 0.000E+00
8.00 0.00 4,000 4.000 139.79 0.000E+00

Time = 0.010
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2.00 4.15 3.720 3.973 139.17 0.000E+00

.980 139.32

6.00 35.54 3.787 3 0.000E+00
6.25 38.18 3.793 3.980 139.33 0.000E+00
6.50 40.73 3.799 3.981 139.34 0.000E+00
6.75 43.18 3.805 3.982 132.36 0.000E+00
7.00 45.47 3.810 3.982 138.37 0.000E+00
7.25 47 .59 3.816 3.983 139.38 0.000E+00
7.50 49.52 3.821 3.983 139.39 0.000E+00
7.75 51.22 3.826 3.984 139.40 0.000E+00
8.00 52.68 3.831 3.984 139.41 0.000E+00

We note that the preceding solution demonstrates the expected drop in pressure, and the increase in
mass flow, particularly near the end at z = 8 m. Also, the solution is free of oscillation, principally due

to the upwinding of the continuity and energy balances, and the linear filtering term with the

parameter €.

The individual terms stored in the array TERM (for the point NM - 1, or one point from the
right end of Figure 1b) is summarized below

= 0.000
—D(W»*2/RH0O) /DZ = 0.00
-FT = 0.00
-DP/DZ = 0.00
DV/DZ = 0.00
DWM/DT = 0.00

= 0.010
-D(Wx=2/RHO) /DZ = -8.67
-FT = -6.78
-DP/DZ = 3098.20
DV/DZ = -861.52
DWM/DT = 2221.23

= 0.020
-D(W==2/RHO) /DZ = -2.47
-FT = -9.97
-DP/DZ = 661.88
DV/DZ = -122.22
DWM/DT = 527.23

= 0.030
-D(W#%2/RHO) /DZ = -0.82
-FT = -10.95
-DP/DZ = 209.11
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DV/DZ = -31.37
DwWM/DT = 165.98

0.040
-D(W==2/RHO) /DZ = -0.30
-FT = -11.27
-DP/DZ = 77.04
DV/DZ = -11.08
DWM/DT = 54.41

0.050
-D(W==2/RHO) /DZ = -0.32
-FT = -11.33
-DP/DZ = -11.10
DV/DZ = -24.38
DWM/DT = -47.,10

0.060
-D(W==2/RH0O) /DZ = -2.24
-FT = -10.38
-DP/DZ = -543.90
DV/DZ = -152.94
DWM/DT = -709.46

0.070
-D(Wx%2/RHO) /DZ = -4.63
-FT = -6.27
-DP/DZ = -2014.69
DV/DZ = -276.11
DWM/DT = -2301.71

We can conclude from this output that: (a) the relative contributions of the individual terms in the
momentum equation change as the solution evolves, and (b) the pressure term at most times is

relatively large, and often dominates the other terms.

The plotted solution produced by the call to PLOTTD in PRINT is in Figure lc (i.e. from file
PL.TOP produced by PLOTTID). Recall again that this solution is for a step change in the
downstream pressure of Figure 1b from 4 atm to 3.8 atm with a time constant of 0.010 s (ry = 0.010

in egs. (15) and (16)).

Figure lc demonstrates the propagation of a pressure wave from z = 8 m to z = 0, followed by
a reflection of the wave. The corresponding plots for mass flow rate, temperature and density (from
files W1.TOP, T1.TOP and R1.TQP produced by PLOTTD) are not included here, but they
demonstrate similar traveling wave characteristics. The computer run time was less than one minute

on the SSCL Vax.
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The preceding calculation was repeated with ry= 0 in eqs. (15) and (16)). The coding for this

condition is

RIGHT END, Z = ZR
PREND=3.8D0

PRESSURE DROP
DP=PM (NM) ~PREND
IF(DP.LE.0.0DO) THEN

FLOW RATE FOR NEGATIVE PRESSURE DROP. NOTE THAT THE FLOW
IS NEGATIVE, AND PROPORTIONAL TO THE SQUARE ROOT OF THE
PRESSURE DROP. THE FLOW RATE ALSO CHANGES DYNAMICALLY
WITH A TIME CONSTANT OF 0.01 S
WM (NM)=-300 . ODO+DSQRT (DABS (DP) )

ELSE

FLOW RATE FOR POSITIVE PRESSURE DROP. NOTE THAT THE FLOW
IS POSITIVE
WM (NM)= 300.0DO+DSQRT (DP)

END IF

Note that this coding is the same as for the previous case except that the exponential in time has been

removed.

Fig. 1c: Pressure {atm) vs z

t = 0, 0.01, 0.02,..., 0.07 s
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Figure lc: Pressure Response of the System of Figure 1b
to a -0.2 Step Change in Pressure with 7 = 0.010 5, 33 Grid Points, ¢ = 104
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We can note the following points about the solution in Figure 1d:

(1) A pressure wave again propagates right to left, as in Figure lc, but the waves have a somewhat
steeper front because the change in pressure at the right end is faster (v = 0 rather than 7y = 0.010

s); also the wave arrives at the left end about 0.010 s (10 ms) sooner.

(2) If we estimate the time of arrival of the wave to be approximately 0.033 s (admittedly, this is
estimated somewhat arbitrarily), then we estimate the speed of sound to be 8/0.033 = 242 m/s. The
tabulated value of the speed of sound at 0.4 MPa and 3.9 k [Arp, et al (1989)] is 236.2 m/s.

(3) The right end pressure remains relatively constant at approximately 3.85 atm for 0.050 s until the
reflected wave reaches the right end, then continues to decline to the final steady state pressure of 3.8
atm. This constant pressure at the right end is a result of the uniformly spaced pressure waves
(uniformly spaced also in time) and the requirement of conserved mass imposed by eq. (3) [Carcagno
(1993)].

Fig. 1d: Pressure (atm) vs z
= 0, 0.01, 0.02,...,, 0.07 s
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Figure 1d: Pressure Response of the System of Figure 1b
to a -0.2 Step Change in Pressure with 7y = 0, 33 Grid Points, ¢ = 104
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(4) During the transient phase of the solution, the pressure, particularly at the left end, drops below
the external pressure of 3.8 atm. This lower pressure results from the complex interplay of the
continuity and momentum equations, and the flow actually reverses at times (going from right to left)
as a result of the reversed pressure gradient (but again, this does not happen instanteously because of

the momentum effects of eq. (6)).

(5) The solution of Figure lc was allowed to run to steady state, at which point the pressure assumed

a constant value of 3.8 atm and the flow went to zero, as expected.

(6) The curves of Figure 1d display a roughness due to the spatial discretization (33 points over 8 m
or a grid spacing of 8/(33 - 1) = 0.25 m. To demonstrate this effect, the code was executed with 51
grid point (so that the grid spacing is 8(51 - 1) = 0.16 m), corresponding to 3 x 51 = 153 ODEs (NM
= 51 in the preceding subroutines and 153 ODEs specified in the data file rather than 99), The
solution is given in Figure le. We note that the curves are somewhat smoother than in Figure 1d (as

expected with more grid points), and the fronts are slightly steeper (this can be seen by overlaying

Fig. le: Pressure (atm)} vs z
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Figure le: Pressure Response of the System of Figure 1b
to a -0.2 atm Step Change with v = 0, 51 Grid Points, ¢ = 104

Figures 1d and le) due to slightly less numerical diffusion resulting from the upwinding of eqs. (3) and

(8) (again, resulting from more grid points). Thus, we can conclude that reasonable spatial
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convergence has been achieved with 33 (or 51) grid points. The solutions of Figures lc, 1d and le were
computed with the smoothing parameter (in eq. (6)) ¢ = 104 (which again, was set by trial and error

to produce smooth solutions with a minimum effect on the shape of the solutions).

To conclude this prelimnary testing of the code, a run was also made for a total length of 90 m
(which could represent, for example, a half cell of magnets) using 46 grid points (so that the grid
spacing was {90/(46 - 1) = 2 m); this is a considerably coarser grid than used previously, and the first
thing that was observed was the requirement to increase the smoothing parameter to produce solutions
which did not have unrealistic oscillations. Thus we used ¢ = 10 (with 46 x 3 = 138 ODEs). The

solution is given in Figure 1f. We can note the following points about the solution in Figure 1f:

fig. Uf: Pressure (atm) vs z
t=00102..073s
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Figure 1f: Pressure Response of the System with a Length of 90 m
to a -0.2 atm Step Change with ry = 0, 46 Grid Points, ¢ = 105

(1) The pressure waves are smooth, and arrive at the left end at an estimated time of 0.38 s (again,
estimated somewhat arbitrarily). Thus, the estimated speed of sound is 90/0.38 = 236.8 m/s (the
tabulated value is 236.2 m/s).

(2) The right end pressure again remains at about 3.85 atm until the reflected wave reduces it further.

To investigate the effect of the smoothing parameter, ¢, we reexecuted the case of Figure 1f

with ¢ = 0.5 x 10° (half its previous value). The solution is plotted in Figure 1g. We can note the
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following points about this figure:

(1) Numerical oscillation has developed indicating that ¢ = 169 (of Figure 1f) is about the mimimum

value to suppress numerical oscillation.

(2) The fronts in Figure lg are somewhat steeper than in Figure 1f due to the reduced numerical

diffusion resulting from the reduced value of ¢.

Fig. lg: Pressure (atm) vs z
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Figure 1g: Pressure Response of the System with a Length of 90 m
to a -0.2 atm Step Change with vy = 0, 46 Grid Points, ¢ = 0.5 x 109

Finally, to demonstrate that the smaller value of ¢ can be used if the spatial resolution is
improved through an increased number of grid points, the preceding case of Figure 1g was executed
with 91 grid points (so that the grid spacing was 90/(91 - 1) = 1m). The solution is plotted in Figure
1h, and we can conclude the increased number of grid points (91 rather than 46) eliminated the

numerical oscillation of Figure 1g with little effect on the shape of the fronts.

More generally, we can conclude that a tradeoff is probably required in selecting a value of ¢
between minimizing numerical diffusion and minimizing numerical oscillation, and that the optimum
value of ¢ will have to be selected by trial and error for each model. Hopefully, the effect of ¢ will not

be detrimental with respect to the validity of the model and the conclusions that can be drawn from it.
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Also, of course, the number of grid peints is a factor in selecting e.

Fig. 1h: Pressure (atm} vs z
t=0,01, 02,...,07s
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Figure 1h: Pressure Response of the System with a Length of 90 m
to a -0.2 atm Step Change with ry = 0, 90 Grid Points, € = 0.5 x 10°

(4) Prototype Venting Model

We now consider the application of the preceding ideas to a prototype helium venting system

depicted in Figure 2a. This system consists of the following components:

(1) A string of magnets, 90 m in length; the Fortran variables for this string are: (a) p, RHOM, (b) W
(mass flow rate), WM and (c) pu, UMG. These state variables are defined over a spatial grid of NM
points and therefore lead to 3 x NM ODEs as explained previously for the system of Figure 1b.

(2) A 20 k return line which runs in parallel with the string of magnets for which the state variables
are: (a) p, RHOR, (b) W, WR, and (c) pu, URG. These state variables are defined over a spatial grid
of NR points and therefore lead to 3 x NR ODEs as expalined previously for the system of Figure 1b.

(3) A dewar for which continuity and energy balances are written (in this case, for single phase

helium, although these equations could also be written for two phases), leads to two ODEs.
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(4) Valves in the places indicated in Figure 2a, which are modeled with algebraic equations that

include a time constant in an exponential function of time to approximate the dynamics of the valves.

Thus, the total number of ODEs is 3 x (NM 4+ NR) + 2. For the present discussion, we take NM =
NR = 46 so the number of ODEs is 3 x (46 + 46} + 2 = 278.

dewar
RHCO
UDG
RHOR(NR) RHOR(I+1) RHOR({I-1) RHCR(1)
WR(NR) WR(i+1) WR(l-1) WR(1)
URG(NR) URG(1+1) URG(I-1) URG(1)
NR NR-1 NR-2 141 I-1 3 2 1
N— 20k return
|
HHOH(I)/
Ev:gzn RHOM(}
. WM()
X /UMG(I) X
1 2 3 QM(I-1) i NM-2 NM-1 NM
magnet string

\ ~ -1 l+1 ~ /

AHOM(1) RHOM(-1) RHOM(+1)  RHOM(NM)
WM(1) WM(I-1) WM(1+1) WM(NM)
" UMG(1) UMG({-1) UMG(1+1) UMG(NM)

Figure 2a: Prototype Venting System Consisting of a 90 m
String of Magnets, a Parallel 20 k Return Line and a Dewar

(4.1} Derivatives (DERV)

Subroutine DERYV is structured the same way as subroutine DERV for the system of Figure 1b
(and which is listed in Appendix la). The COMMON area now has state variables for the string of

magnets, the return line and the dewar
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SUBROUTINE DERV
IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (NM=46,NR=46)

COMMON/T/ T, NSTOP, NORUN

1 Y/ WM(NM), RHOM(NM),  UMG(NM),

+ RHOD, UDG,

+ WR(NR), RHOR(NR), URG(NR)

2 /F/  WMT(NM), RHOMT(NM), UMGT(NM),

+ RHODT, UDGT,

+ WRT(NR), RHORT(NR), URGT(NR)

3 /V/ UM(NM) , PM(NM) , TM(NM) , HM (NM) ,
+ uD, PD, ™D, HD,
+ UR(NR), PR(NR) , TR(NR) , HR(NR)
4 /C/ ZL, ZR, DZ, Z(NM) ,
5 R, ™I, PMI, WMI, QM (NM) ,
+ qQD, D1, PDI, VD, AC,
+ TRI, PRI, WRI, QR(NR)
6 /1/ IP

COMMON/ IMODEL / IMODEL

We can note the following points about this COMMON area:

(1) The first, second and third lines of COMMON/Y/ have the state variables for the magnets, the
dewar and the return, respectively. The corresponding temporal derivatives are in the first, second and
third lines of COMMON/F/ (the naming convention for the temporal derivatives is to add a “T™ to
the end of the state va.ria.‘ble name, e.g., the magnet density, RHOM(NM), has the temporal derivative
RHOMT(NM)).

(2) COMMON/V/ contains other time dependent variables. Thus, the first line of COMMON/V/ has
the internal energy, UM, the pressure, PM, the temperature, TM and the enthalpy, HM, of the helium
in the magnets. Similarly, the second line of COMMON/V/ has the same properties for the dewar,

and the third line has these properties for the return.

(3) COMMON/C/ has various model constants which are explained subsequently, e.g., ZL is the axial

coordinate at the left end of the magnet string.

The first executable cede in DERV is for the model algebra as in the previous DERV. Do loop

1 generally computes the thermodynamic properties for the helium in the magnets

INTERNAL ENERGY, PRESSURE, TEMPERATURE, ENTHALPY, HEAT INPUT
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DO 1 I=1,NM
UM(I)=UMG(I)/RHOM(I)
PM(I)=PRHOU(RHOM (I),UM(1))
TM( I)=TRHOU(RHOM(I) ,UM(I))
HM ( I)=HRHOU (RHOM (1) ,UM(I))
IF((I.GE.1).AND. (I.LE.NM-5))THEN
QM(I)=1.0D+08x%(1.0D0-DEXP (-T/0.5D0))*(10.0D0-TH(I))
ELSE IF(I.GT.NM-5)THEN
QM(I)=0.0D0
END IF
CONTINUE

INTERNAL ENERGY, PRESSURE, TEMPERATURE, ENTHALPY, HEAT INPUT
FOR THE RETURN
O 2 I=1,NR
UR(1)=URG(I)/RHOR(I)
PR (1)=PRHOU(RHOR(I),UR(I))
TR(I)=TRHOU(RHOR(I) ,UR(I))
HR.(I1)=HRHOU(RHOR(I),UR(I))
QR(I)=0.0DO
CONTINUE

INTERNAL ENERGY, PRESSURE, TEMPERATURE, HEAT INPUT FOR THE DEWAR

UD=UDG/RHOD
PD=PRHOU (RHOD, UD)
TD=TRHOU (RHOD , UD)
QD=0.0D0

Then the algebra for the return is done in DO loop 2, followed by the algebra for the dewar. Note also
that the heat input to each of these components, is defined in this code, e.g., Q) in eq. (8) for the

magnets is computed as
QM(I)=1.0D+05=(1.0DO-DEXP(-T/0.5D0))*(10.0D0-TM(I))

which is an exponentially increasing function of time, with a time constant of 0.5 s, and is driven by a
temperature difference (10 - TM). This heat input is used at grid points I to NM - 5. Beyond grid
point NM - 5 (to NM), the heat input is zero.

The flow rates into the three units (magnets, dewar and return) are then set by boundary

conditions in much the same way as in the preceding DERV

BOUNDARY CONDITIONS
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MAGNETS, Z = ZL
DP=PM(1)-PD
IF(DP.LE.O.0DO)THEN
WM (1)=0.0D0
ELSE
WM (1)=-300.0D0x(1.0-DEXP(-T/0.1D0) ) »DSQRT (DP)
END IF

MAGNETS, Z = ZR
DP=PM (NM) -PR.(1)
IF(DP.LE.0.0DO) THEN
WM (NM) =0 . 0DO
ELSE
WM(NM)= 300.0D0x=(1.0-DEXP(-T/0.1D0))~DSQRT (DP)
END IF

RETURN, Z = ZL
DP=PR(NR) -PD
IF (DP.LE.O.ODO) THEN
WR (NR) =0 . 0DO
ELSE
WR(NR)= 300.0DOx(1.0-DEXP(-T/0.1D0))«DSQRT (DP)
END IF

RETURN, Z = ZR
DP=PM (NM) -PR (1)
IF (DP.LE.0.0DO) THEN
WR(1)=0.0D0
ELSE
WR.(1)=WM (NM)
END IF

These boundary conditions generally reflect the equality of mass flow rates between the three units.

We should note the following points about this coding:

(1) The grid for the magnets, defined by I = 1 to NM, runs left to right in Figure 2a. The grid for the
return, defined by I = 1 to NR, runs right to left. This choice of grid definitions is arbitrary, and other
arrangements could have been used. However, once the grids are defined, the consistent use of flows is

essential, including the correct signs of the flows.

(2) The flows for the magnets and the return are set by pressure drop relationships as before (but the
external pressure of the preceding system of Figure 1b is now the dewar pressure, PD). The flow rates
change according to a time constant of 0.1 s, which could repf&sent, for example, the dynamics of the

valves.
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(3) The one exception for (2} is the right end flow of the return which is equated to the corresponding

right end flow of the magnets,
WR (1) =WM(NM)

Again, alternative formulations are possible, and this process of writing equations does not lead to

necessarily unique results.

The PDEs for the magnets are then programmed in DO loop 11, much the same way as in the

preceding example of Figure 1b (i.e., as in DERV of Appendix la)

PDES FOR THE MAGNETS
DO 11 I=1,NM

RIGHT END
IF(I.EQ.NM)THEN
WMT (1)=0.0D0
RHOMT (I)=-(WM(I)-WM(I-1))/DZ
UMGT (1) =~ (WM(I)*HM(I)-WM(I-1)=HM(I~1))/DZ+QM(I)

LEFT END
ELSE IF(I.EQ.1)THEN
WMT(I)=0.0D0
RHOMT (I)=-(WM(I+1)-WM(I))/DZ
UMGT (I)=- (WM(TI+1)«HM(I+1)-WM(I)«HM(I))/DZ+QM(I)

INTERIOR POINTS
ELSE

MOMENTUM BALANCE
GIM1=WM(I-1)#=2/RHOM(I-1)
GI =WM(I )*x=2/RHOM(I )
GIP1=WM(I+1)#»=x2/RHOM(I+1)
DVDZ=(WM(I+1)/RHOM(I+1)

+ ~2.0D0~WM (I} /RHOM(I)

+ +WM(I-1}/RHOM(I-1))/(DZx*2)
EPS=1.0D+05
DPDZ=1.013D+05x ( (PM(I+1)+PM(I))/2.0D0

+ ~-(PM(I-1)+PM(I))/2.0D0)/DZ
WMT (I)=-((GIP1+GI)/2.0D0

+ -(GIM1+GI)/2.0D0)/DZ

+ -DPDZ+EPS*DVDZ

MASS BALANCE
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IF(WM(I).LT.0.0DO)THEN
RHOMT (1) =- (WM(I+1)-WM(I))/DZ
ELSE IF(WM(I).GE.O.0DO)THEN
RHOMT (1)=- (WM(I)-WM(I-1))/DZ
END IF

ENERGY BALANCE
DTDZ=(TM(I+1)-2.0D0=TM(I)+TM(I-1))/ (DZ==2)
DIF=1.0D+03
IF(WM{I).LT.0.0DO)THEN
UMGT (I)=- (WM{I+1)=«HM(I+1)-WM(I)=HM(I))/DZ
+ +QM(I)+DIFx=DTDZ
ELSE IF(WM(I).GE.0.0DO)THEN
UMGT (I)=-(WM(I)«HM(I)-WM(I-1)=HM(I-1))/DZ
+ +QM(I)Y+DIF«DTDZ
END IF
END IF
CONTINUE

The three temporal derivatives of egs. (3), (6) and (8), RHOMT(I), WMT(I) and UMGT(I),
respectively (which are in COMMON/Y/) are first programmed at grid point I = NM (i.e., the right
end of the magnet string). Then these derivatives are programmed at I = 1 (the left end of the magnet

string). Finally, the temporal derivatives are programmed at the interior points, I = 2 to NM - 1.

Note again that the momentum balance is approximated with ceneterd differences while the
mass and energy balances are upwinded. The smoothing parameter, ¢, has a value of 105, as suggested
by the earlier value for the 91 point simulation of the system in Figure 1b (i.e., the value used to

produce Figure 1h).

The programming then goes on to the PDEs for the return line in DO loop 12

PDES FOR THE RETURN
DO 12 I=1,NR

LEFT END
IF(I.EQ.NR)THEN
WRT(I)=0.0D0
RHORT(I)=-(WR(I)-WR(I-1))/DZ
URGT (I)=— (WR(I)*HR(I)-WR(I-1)*HR(I-1))/DZ+QR(I)

RIGHT END
ELSE IF(I.EQ.1)THEN
WRT (I)=0.0DO
RHORT (I)=- (WR(I+1)-WR(I))/DZ
URGT (I)=- (WR(I+1)=HR(I+1)-WR(I)=HR(I))/DZ+QR(I)
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INTERIOR POINTS
ELSE

MOMENTUM BALANCE
GIM1=WR(I-1)=x2/RHOR(I-1)
GI =WR(I )==2/RHOR(I )
GIP1=WR(I+1)==x2/RHOR(I+1)
DVDZ=(WR(I+1)/RHOR(I+1)

+ -2.0D0=WR{1) /RHOR(I)

+ +WR(I-1)/RHOR(I-1))/(DZ%=2)
EPS=1.0D+G5
DPDZ=1.013D+05=( (PR(I+1)+PR(I))/2.0D0O

+ ~(PR(I-1)+PR(I))/2.0D0)/DZ
WRT (I)=-((GIP1+GI)/2.0D0

+ —(GIM1+GI)/2.0D0)/DZ

+ -DPDZ+EPS=DVDZ

MASS BALANCE
IF(WR(I).LT.0.0DO)THEN
RHORT(I)=- (WR(I+1)-WR(I))/DZ
ELSE IF(WR(I).GE.O.O0DO)THEN
RHORT(1)=-(WR(I)-WR(I-1))/DZ
END IF

ENERGY BALANCE
DTDZ=(TR(I+1)-2.0DO=TR(I)+TR(I-1))}/(DZ=%2)
DIF=1.0D+03
IF(WR(I).LT.0.0DO)THEN
URGT (I)=-(WR(I+1)*HR(I+1)-WR(I)*HR(I))/DZ
+ +QR(I)+DIF=DTDZ
ELSE IF(WR(I).GE.O.ODO)THEN
URGT(I)=~ (WR(I)*HR(I)-WR(I-1)*HR(I-1))/DZ
+ +QR(I)+DIF=DTDZ
END IF
END IF
CONTINUE

The ceding of the PDEs for the return line (in DO loop 12) is essentially the same as for the magnet
string (in DO loop 11). The only basic difference is in the definition of the grid (running left to right

for the magnets, and right to left for the return line).

We assume that the dewar is perfectly mixed so that it is modeled by ODEs in t rather than
by PDEs. The coding follows

ODES FOR THE DEWAR
RHODT=-(AC/VD) «WM( 1)
+ +(AC/VD) xWR(NR)
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UDGT=- (AC/VD) =WM( 1)+=HM( 1)
+ +(AC/VD) «WR (NR) «HR (NR)
+ +QD/VD

RETURN

END

The first equation is the mass balance with time derivative RHODT. The signs of the RHS terms are
determined by the gridding of the magnet and return line PDEs. For example, flow out of the left end
of the magnets is negative (in the negative z direction; see Figure 2a), and therefore constitutes flow
into the dewar. Generally, the vector character of the mass flow rate, W, in eqgs. (3), (6) and (8) must

be taken into account.

The second equation is the energy balance for the dewar with time derivative UDGT. Note
that the RHS terms involve the enthalpies of the flow into or out of the left ends of the magnets and
return line, HM(1) and HR(NR), as expected.

This completes the programming of the model temporal derivatives in COMMON/F/ (the
complete DERYV is listed in Appendix 2a). Note that a total of 3 x 46 (DO loop 11) + 3 x 46 (DO
loop 12) + 2 (dewar) = 278 ODEs have been programmed. The initial conditions for these ODEs must
then be programmed in INITAL, which is discussed next.

(4.2) Initial Conditions (INTTAL)
The COMMON area is the same in INITAL as in DERV. The programming then closely

resembles the previeus INITAL (in Appendix 1b)

SELECT THE THERMO MODEL

IMODEL = 3 - MODIFIED MARTIN EQUATION (VAN DER WAALS FAMILY)

- IMODEL=3

O QoG

LOWER AND UPPER LIMITS OF Z
ZL=0.0D0
ZR=90.0D0

MAGNET GRID SPAGCING
DZ=(ZR-ZL) /DFLOAT (NM-1)

QO o

MAGNET AXIAL GRID

DO 11 I=1,NM
Z(I1)=ZL+DFLOAT (I-1)DZ

11 CONTINUE
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The thermodynamic correlation is first selected (APCI Model 3). The grid for the magnets is then

defined in array Z. Since the grid for the return line is the same, it is not programmed separately.

A series of parameters for the model is then defined (and passed through COMMON to the

other routines which require these parameters)

DEWAR VOLUME
VD=5.0D0

LINE CROSS SECTIONAL AREA
AC=0.04DO

INITIAL MAGNET FLOW RATE
WMI=1.0DO

INITIAL MAGNET TEMPERATURE
TMI=4.0DO

INITIAL MAGNET PRESSURE
PMI=4.0D0O

INITIAL DEWAR TEMPERATURE
TDI=4.5D0

INITIAL DEWAR PRESSURE
PDI=4.0DO

INITIAL RETURN FLOW RATE
WRI=1.0DO

INITIAL RETURN TEMPERATURE
TRI=4.0D0O

INITIAL RETURN PRESSURE
PRI=2.0DO

Note in particular that the initial magnet and return line pressures are 4 and 2 atm., respectively,
which provide a pressure driving force for venting into the return line. The initial flow rates were set

arbitrarily at 1 kg/m2-s (these could just as well have been zero, for example).

The initial conditions for the 278 QDEs are then set, which is the principal requirement of
INITAL
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c...

MAGNET INITIAL CONDITIONS
DO 1 I=1,NM
WM(I)=WMI
RHOM(1)=RHOPT(PMI,TMI)
UMG(I)= UPT(PMI,TMI)~RHOM(I)
CONTINUE

DEWAR INITIAL CONDITIONS
RHOD=RHOPT (PDI,TDI)
UDG= UPT(PDI,TDI)~=RHOD

RETURN INITIAL CONDITIONS
DO 2 I=1,NR
WR(I)=WRI
RHOR(I)=RHOPT (PRI, TRI)
URG(I)= UPT(PRI,TRI)=RHOR(I)
CONTINUE

By the end of the execution of DO loop 2, all 278 initial conditions have been set (i.e., all of the state
or dependent variable vectors in COMMON/Y have initial values). Therefore, the initial derivative
vector can be computed by a call to DERV (the initial derivative vectors in COMMON/F/ can be

computed)

INITIAL DERIVATIVES
CALL DERV

INITIALIZE COUNTER FOR PLOTTED SOLUTION
IP=0

RETURN

END

This completes subroutine INITAL (a complete listing of INITAL is given in Appendix 2b).
Subroutine PRINT merely prints tabular output (plotting could be added as in PRINT of Appendx lc;
this would be particularly worthwhile to better visualize the large number of numbers from subroutine

PRINT).

(4.3) Output {PRINT)
The COMMON area of PRINT is the same as in INITAL and DERV. Then a seties of write

statements are used to give the numerical solution in some detail

INCREMENT THE COUNTER FOR THE PLOTTED OUTPUT
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IP=IP+1

MONITOR THE QUTPUT
WRITE (, ) IP

oNe’ o

WRITE THE NUMERICAL SOLUTIGON FOR THE MAGNETS
WRITE(NO,1)T, (Z(I),WM(1) ,PM(I),TM(I),RHOM(I) ,QM(I),I=1,NM)
1 FORMAT(//,’> Magnets, time = ’,F7.3,//,
7 z b , ? w’ . bl PJ ’
+ T, rho’,
+ Q’,/,(2F10.2,2F10.3,F10.2,E12.3))

C... WRITE THE NUMERICAL SOLUTION FOR THE DEWAR
WRITE(NO,2)PD,TD,RHOD,WM(1),QD

2 FORMAT(/, ? Dewar’,

+ [/, PD Y, F7.2,7 TD

+ > WM *WFT.2,? @D

> ,F7.3,” RHOD = ’,F7.3,
’F7.1)

i
ft

QG

WRITE THE NUMERICAL SOLUTION FOR THE RETURN
WRITE(NQ,3)T, (Z(I),WR(I),PR(I),TR(I),RHOR(I),QR(I),I=1,NR)
FORMAT(/,’ Return, time = ’,F7.3,/,
+ z?,”’ W2, P,
+ T?,? rho?,

+ Q’,/,(2F10.2,2F10.3,F10.2,E12.3))

RETURN

END

%]

Subroutine PRINT is listed in Appendix 2c.

Finally, a data file is reciuired to control the numerical integration of the 278 ODEs

PROTOTYPE VENTING MODEL
0. 2.0 0.1

278 0.0001
END OF RUNS

Time covers the interval 0 < t < 2 s with output every 0.1 s. The integration is again by RKF45 (the
main program is the same as in the preceding example, and is listed in Appendix le). Clearly PRINT
produces many numbers (the flow rate, pressure, density, and heat input at 278 points for each of the

21 points in time, t = §, 0.1, 0.2, . . ., 2's). We therefore present only some of the highlights of this

output.

The output at t = 0 merely reflects the initial conditions set in INITAL
RUN NO. - 1 PROTOTYPE VENTING MODEL
INITIAL T - 0.000D+00
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FINAL T - 0.200D+01
PRINT T - 0©.100D+00
NUMBER OF DIFFERENTIAL EQUATIONS - 278

MAXIMUM INTEGRATION ERROR - 0.100D-03

Magnets, time = 0.000
Z W P T rho Q
0.00 0.00 4.000 4.000 139.79 0.000E+00
2.00 1.00 4.000 4,000 139.79 0.000E+00
4.00 1.00 4,000 4.000 139.79 0.000E+00
6.00 1.00 4.000 4.000 139.79 0.000E+00
8.00 1.00 4.000 4.000 139.79 0.000E+0Q0
10.00 1.00 4.000 4.000 139.79 0.000E+00
80.00 1.00 4.000 4.000 139.79 0.000E+00
82.00 1.00 4.000 4.000 139.79 0.000E+00
84.00 1.00 4.000 4.000 139.79 0.000E+00
86 .00 1.00 4.000 4.000 139.79 0.000E+QO
88.00 1.00 4.000 4.000 139.79 0.000E+00
90.00 0.00 4.000 4.000 139.79 0.000E+00
Dewar
PDb = - 4.00 TD = 4.50C . RHOD = 131.567 WM = 0.00 QD
Return, time = 0.000
z W P T rho Q
0.00 0.00 2.000 4.000 131.13 0.000E+00
2.00 1.00 2.000 4.000 131.13 0.000E+00
4.00 1.00 2.000 4,000 = 131.13 0.000E+00
6.00 1.00 2.000 4.000 131.13 0.000E+4+00
8.00 1.00 2.000 4.000 131.13 0.000E+00
10.00 1.00 2.000 4.000 131.13 0.000E+00
80.00 1.00 2.000 4.000 131.13 0.000E+00Q
82.00 1.00 2.000 4.000 131.13 0.000E+Q0
84.00 1.00 2.000 4.000 131.13 0.000E+00
86.00 1.00 2.000 4.000 131.13 0.000E+CO
88.00 1.00 2.000 4.000 131.13 0.000E+00
90.00 0.00 2.000 4.000 131.13 0.000E+00
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Although this printing of the initial conditions gives expected and obvious output, the careful
examination of this output is worthwhile to ensure that all of the initial conditions (for the 278 state

variables), and all of the auxiliary variables (computed by algebra in DERV) are correct and

reasonable.

difference between the magnet string and the return line, begins to evolve from t = 0. For example,

The response of the system of Figure 2a to the heat input, Q, in eq. (8) and the pressure

the response at t = 0.1 (abbreviated) is

Magnets,

80

Dewar

PD =

Return,

zZ

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

.00
82,
84.
86.
83.
80.

00
00
00
Q0
00

t

time =

157.
173.
184.
195.
203.

210

4.00 TD

ime =

0.100

W P
.62 4.028
.28 4.036
.25 4.044
.53 4.051
17 4.057
.18 4.062
.59 4.0687
.41 4.071
.60 4.074
.16 4.076
.08 4.078
.21 4.079
.59 4.080
.15 4.080
.16 4.081
.40 4.081
.58 4.082
T2 4.082
.82 4.082
.89 4.082.
.95 4,082
o8 3.800
10 3.720
47 3.701
25 3.654
39 3.629
.35 3.602

= 4.500 RHOD
0.100

L . S . S e A R L

Wwwwwow

.015
.016
.017
.017
.018
.019
.019
.019
.020
.020
.020
.020
.020
.020
. 020
.020
.020
.020
.020
.020
.020
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.974
.972
.967
. 965
. 962

139.
139.
135.
139,
139.
139.
139.
139.
139.
139.

139

139.
139,
139.
139.
139.
139.
139.
139.
139.
139.

139.
139.
139.
139.
138.

138

rho
67
69
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T2
T3
T4
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T6
7T
77
.78
T8
T8
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79
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16
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o1
96
.89

COOCOO0O0COO0OOCOCOCOCCOOOO0

loReoloRelale]
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.108E+06
.108E+06
.108E+06
.108E+06
.108E+06
.108E+06
.108E+06
.108E+086
.108E+06
. 108E4+06
.108E+406
. 108E+06
.108E+06
.108E+06
.108E+06
. 108E+06
.108E+06
. 108E+06
. 108E+06
. 108E+06
.108E+06

.109E+06
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.000E+00
. 000E+00
. 000E+00

~29.62 QD
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z W P T rho q

0.00 210.35 2.371 4.046 132.15 0.000E+00
2.00 199.03 2.371 4.046 132.15 0 .0C00E+00
4.00 185.44 2.315 4.040 131.99 0.000E+00
6.00 169.56 2.305 4.038 131.97 0.000E+00
8.00 153.49 2.260 4.033 131.84 0.000E+00
10.00 135.73 2,232 4.029 131.77 0.000E+00
80.00 0.07 2.002 4.000 131.14 0.000E+00
82.00 Q.03 2.002 4.000 131.14 0.000E+00
84.00 0.01 2.002 4.000 131.14 0.000E+00
86.00 0.00 2.002 4.000 131.14 0.000E+00
88.00 0.00 2,002 4,000 131.14 0.000E+00
90.00 0.00 2,002 4.000 131.14 0.000E+00

We can note the following points about this output at t = 0.1:

(1) Helium flows out of both ends of the magnet string; note in particular the split in the flow at
z = 26 and 28.

26.00 -0.15 4.080 4.020 139.78 0.108E+06
28.00 0.16 4.081 4.020 139.78 0.108E+06

(2} Helium flows out of ‘the right end of the magnet string into the right end of the return line, as

expected, since the pressure of the magnet string is higher.

(3} Helium does not flow out of the left end of the return line into the dewar since the required

pressure drop has not occurred.

{4) The temperature and pressure at the left end of the magnet string have started to increase due to

the heat input.

(5) The temperature and pressure at the right end of the magnet string have started to decrease since

there is no heat input and the helium is expanding as it flows into the return line.

(6) The temperature and pressure of the helium in the return line have started to increase since helium

is flowing into the return line from the maguet string.
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(7) The density changes along the magnet string and return line are small because the helium is

relatively incompressible at the existing conditions (approximately 4 atm and 4 k).

These trends continue as the transient proceeds. Thus, at t = 1 s, the output (abbreviated) is

Magnets, time = 1.000
z W P T rho ]
0.00 -293.75 5.470 4.797 133.03 0.450E+4+086
2.00 -276.31 5.476 4.798 133.05 0.450E+06
4.00 -259.21 5.479 4,798 133.06 0.450E+06
6.00 -241.89 5.485 4,798 133.08 0.450E+06
8.00 -224.50 5.487 4.799 133.09 0.450E+06
10.00 -207.09 5.483 4.799 133.11 0.450E+08
12.00 -189.62 5.495 4.799 133.11 0.450E+06
14.00 -172.12 5.500 4.799 133.13 0 .450E+06
16.00 -154.58 5.501 4,799 133.13 0.450E+06
18.00 -137.00 5.508 4.800 133.15 0.450E+06
20.00 -119.37 5.506 4.800 133.15 0.450E+06
22.00 -101.72 5.511 4.800 133.17 0.450E+06
24.00 -83.99 5.511 4.800 133.17 0.450E+06
26.00 -66.23 5.515 4.800 133.18 0.450E+06
28.00 -48 .45 5.518 4,800 133.18 0.450E+06
30.00 -30.56 5.519 4.801 133.19 0.450E+086
32.00 -12.69 5.517 4.800 133.19 0.450E+086
34.00 5.31 5.522 4.801 133.20 0.450E+08
36.00 23.44 5.520 4.801 133.20 0.450E+06
3&8.00 41.55 5.524 4.801 133.21 0.450E+06
40.00 59.79 5.523 4.801 133.20 0.450E+06
80.00 434 .04 5.539 4,806 133.20 0.449E+06
82.00 444 .18 5.359 4,449 138.17 0.000E+00
84,00 444 .50 5.512 4.234 141 .68 0.000E+0QQ
86.00 439.96 5.399 4,167 142.19 0.000E+00
88.00 432.75 5.495 4.133 142.92 0.000E+00
90.00 425.23 5.423 4.136 142 .67 0.000E+00
Dewar
PD = 4,51 TD = 4.560 RHOD = 132.878 WM = -203.75 QD =
Return, time = 1.000
= W P T rho Q
0.00 425.23 3.414 4,168 134.84 0.000E+00
2.00 409.36 3.414 4.168 134.84 0.000E+00
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4.00 393.41 3.420 4.169 134 .84 0.000E+00
6.00 377.73 3.423 4.170 134.85 0.000E+00
8.00 382.15 3.427 4.171 134.85 0.000E+00
10.00 346.90 3.431 4.171 134.87 0.000E+00
80.00 27.73 3.510 4.178 135.08 0.000E+00
82.00 22.13 3.510 4.179 135.08 0.000E+00
84.00 16.58 3.511 4.179 135.08 0.000E+00
86.00 11.04 3.511 4.179 135.08 0.000E+00
88.00 5.52 3.512 4.179 135.08 0.000E+00
90.00 0.00 3.512 4.179 135.08 0.000E+00

We can note the following points about the output at t = 1 s:

(1) The split in the flow in the magnet string now occurs between z = 32 and 34 m. Thus, the point

at which this split occurs is traveling left to right in the magnet string.

32.00 -12.69 5.5817 4.800 133.19 0.430E+06
34.00 5.31 5.522 4.801 133.20 0.450E+06

More generally, the traneisnt response consists of traveling wave of pressure, flow, temperature and

density which can best be visualized through graphical output.

(2) The pressure and temperature in the magnet string are above their initial values, due primarily to

the continuing heat input.

(3) The pressure and temperature in the return line also have increased above their initial values, due

primarily to the flow from the magnet string.

The transient response continues to t = 2 (the final value of time set in the data file). The

abbreviated output for t = 2 is

Magnets, time = 2.000

Z W P T rho Q
0.00 ~-364.26 T.256 5.749 123.73 0.417E+06
2.00 -345.54 7.257 5.748 123.74 0.417E+06
4.00 -326.82 7.257 5.748 123.75 0.417E+06
6.00 -308.09 7.259 5.748 123.76 0.417E4+06
3.00 -289.36 7.259 5.748 123.76 0.417E+06
10.00 -270.64 7.261 5.748 123.77 0.417E+06

-
(%) ]



30.00
32.00 -66.
34.00 -47
36.00 -29.
38.00 -10.
40.00 T
42.00 25
44 .00 43,
46.00 61
48.00 79.
50.00 97.
£0.00 363.
82.00 378.
84 .00 389.
86.00 394 .
88.00 394,
90.00 392.
Dewar
PD = 5.78 TD
Return, time =
zZ
0.00 392.
2.00 381
4.00 371
6.00 361
8.00 351.
10.00 341
80.00 36.
82.00 29,
84.00 21
86.00 14,
88.00
90.00 0.

-84.

7.

47
03

.62

29
96

.28
.42

56

.61

64
61

04
65
53
63
87
03

2.000

W
03

T7
.53
.32

15

.05

61
25

.92

61
30
00

4.

271
. 269
.273
.271
276
273
.278
.276
.280
279
.283

S IR IENIEN RN IR IPN RN IR IR

.305
.126
.281
167
271
.190

SN RNIEN RN RN BN

720 RHOD

.482
. 482
. 4836
.486
. 489
.489.

Lot n

. 443
.442
442
.442
441
441

Qoo n

(S e v e e ReLiS) e d e N

s s b B OB QR

L A - Il

F TN

The split in the flow in the magnet string continues
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The continuing increase in the pressure and temperature in the magnet string, return line and dewar
due to the continuing heat input is apparent. Also, as long as the heat input continues, the transient
response will continue (the heat input will eventually be moderated by the temperature difference (10 -

TM(I)) programmed in DO loop 1 of DERV).

(5) Summary and Conclusions

The two preceding examples (for the systems of Figures la, 1b and 2a) are intended to
illustrate the programming requirements for the application of eqgs. (3), (6) and (8) to other problem

systems. The requirements are generally:

(1) The problem system ODE/PDEs must be formulated, including initial and boundary
conditions. Generally these equations will have as state variables (a) p (computed from the
continuity equation (3)), (b) W (computed from the momentum equation (6)) and (c) pu
(computed from the energy equation (8)). If a component of the problem system can be

considered perfectly mixed, e.g., the dewar of Figure 2a, then ODEs in t replace the PDEs.

(2) The use of boundary conditions for the momentum eq. (6} which define the flows at the ends

of the component are recommended rather than attempting to use the momentum equation to

compute the terminal flows.

(3) The combination of upwinding the continuity and energy balances (egs. {3) and (8)), and
centering the momentum balance (eq. (6)) has been effective in computing a solution to the three
PDEs for the problems considered so far. An alternative would be to also upwind the momentum
balance, which would add additional smoothing (but also, probably additional numerical
diffusion). Also, higher order approximations to the spatial derivatives (in z) in egs. (3), (6) and
(8) could be considered (to possibly better resolve moving fronts).

(4) The formulation of (3) requires the choice of the smoothing parameter ¢, which is done by
trial and error. Ideally, a value of ¢ is selected which will smooth the solutions (to eliminate
unrealistic oscillations), but will not significantly alter the form or shape of the solution; the
resolution of moving fronts is an important consideration in the choice of ¢. Another important
parameter is the number of grid points used to achieve adequate spatial resolution. The interplay

of € and the grid spacing is demonstrated by the plots of Figure lc to 1h.



In summary, the user is required to write systems of ODE/PDEs and code them, using the guidelines
presented in the preceding discussion. These requirements in general are not easy to implement, and
our hope is that the preceding discussion, particularly the examples, will provide a general approach
and methodology for the analysis of new problem systems. This approach is fundamental, however, (it
has as the starting point the conservation principles embodied in egs. (3), (6) and (8)), and broadly

applicable to a spectrum of problem systems.

Also, unfortunately, writing systems of equations and coding their numerical solution does not
guarantee in advance that solutions can be computed. Unexpected numerical problems will almost
certainly develop, and experimentation with the code will generally be required before acceptable
solutions are computed; thus the success of this approach to the analysis of convective systems with
heat transfer is dependent to some extent on the background and experience of the analyst(s). We
have attempted here to provide only a starting point, and to present an approach which, at least to

this point in time, represents an effective method for computing solutions to problems in fluid

transients with significant energy effects.

Also, we recommend an “incremental approach” to the writing of codes for new problem
systems, e.g., start with a simplified version of the problem such as using ideal gas properties in place
of real gas properties and isothermal conditions (by using only continuity and momentum balances).
Once the simplified problem is solved satisfactorily, the code can be extended incrementally (e.g., add
real gas properties, then add the energy equation with no heat inputs, then add heat inputs, etc.). Our
experience has been that this incremental approach is much more likely to lead to a final code that will
analyze the problem system of interest than to start with the most general problem, and include in the

initial code all conceivably important effects.

Finally, we offer the opinion that this process of modeling and simulation can probably not be
fully “automated” in the sense of producing a computer code that requires only some simple
component connection and parameter information to simulate a new problem system. Qur experience
has indicated that each new.problem system requires as the starting point the formulation of a
mathematical model, e.g., a system of ODEs, PDEs and algebraic equations, followed by the detailed
coding of the model, testing of the code with simplified (special case) problems, and then finally the use
of the code to analyze the problem system of interest. We would be interested in the experience of

others concerning this matter of “computerizing” the analysis of new problem systems.
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To conclude, additional information on numerical methods for problems with moving fronts is
given in the extensive surveys of Anderson et al (1984) and Finlayson (1992). We anticipate that the
development of numerical algorithms for the solution of equations which model convection and heat
transfer will continue as an active area of research; one important element of this continuing research
will be the impact of new computrer architectures which should facilitate large scale scientific

computation.
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Apgendl x la
Subroutine DERV for the System

|v

SUBROUTINE DERV

SUBROUTINE DERV COMPUTES THE TEMPORAL DERIVATIVES OF THE MODEL
ODE/PDES

THIS CODE FOR THE HELIUM DYNAMICS IN AN 8 M LINE IS CONSTRUCTED
FROM THE FOLLOWING SUBROUTINES

INITAL SETS THE INITIAL CONDITIONS FOR THE MODEL ORDINARY
DIFFERENTIAL EQUATIONS (ODES) AND PARTIAL DIFFER-
ENTIAL EQUATIONS (PDES).

DERV COMPUTES THE DERIVATIVES OF THE MODEL ODE/PDES.
ALGEBRA IS ALSO PERFORMED IN THIS SUBROUTINE.

PRINT PRINTS AND PLOTS THE NUMERICAL SOLUTION.
THESE THREE SUBROUTINES ALSO CALL SUBORDINATE ROUTINES, E.G., FOR
THE EVALUATION OF THERMODYNAMIC PROPERTIES, PLOTTING OF THE SOLU-

TIONS. LINKAGE BETWEEN ROUTINES IS BY COMMON (DESCRIBED BELOW)
AND ARGUMENTS.

IN ADDITION TO THESE ROUTINES WHICH ARE SPECIFIC TO THE PROBLEM,
LIBRARY ROUTINES ARE ALSQ USED, E.G., SUBROUTINE RKF45 FOR THE
RUNGE KUTTA INTEGRATION OF THE MODEL ODES. A GENERIC MAIN PRO-
GRAM CALLS THE VARIOUS SUBROUTINES.
DEFINE THE CONTINUITY, MOMENTUM AND ENERGY BALANCES ON A SPATIAL
GRID OF NM POINTS. UNITS ARE MKS (SI) EXCEPT FOR PRESSURE WHICH
IS IN ATM.

COMMON /T/

T INDEPENDENT VARIABLE, TIME (S)

NSTOP STOPPING VARIABLE (SET TO A NONZERO VALUE WILL
TERMINATE THE CURRENT RUN)

NORUN RUN COUNTER (SET TO 1 DURING THE FIRST RUN, 2
DURING THE SECOND RUN, ETC., AND CAN THEREFORE
BE USED TO CHANGE THE CODE FROM RUN TO RUN)
COMMON/Y/

WM MASS FLOW RATE (KG/M=%2-S)
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RHOM FLUID MASS DENSITY (KG/M==3)
UMG FLUID INTERNAL ENERGY-DENSITY PRODUCT (J/M=x3)
COMMON /F/
WMT TEMPORAL DERIVATIVE OF WM, I.E., THE FLUID MOMEN-
TUM PER UNIT VOLUME (KG/Mxx2-Sx2)
RHOMT  TEMPORAL DERIVATIVE OF RHO (KG/M=~=3-S)
UMGT TEMPORAL DERIVATIVE OF UMG (J/M==3-S)
COMMON/V/ |
UM FLUID INTERNAL ENEREGY PER UNIT MASS (J/KG)
PM FLUID PRESSURE (ATM)
T™ FLUID TEMPERATURE (K)
HM FLUID ENTHALPY PER UNIT MASS (J/KG)
COMMON /C/
ZL LEFT HAND SPATIAL COORDINATE (M)
ZR RIGHT HAND SPATIAL COORDINATE (M)
DZ GRID SPACING (M)
Z SPATIAL GRID (RUNNING FROM ZR TO ZL WITH SPACING
DZ) (M)
TMI INITIAL FLUID TEMPERATURE (K)
PMI INITIAL FLUID PRESSURE (ATM)
WMI INITIAL FLUID MASS FLOW RATE (KG/M#x2-S)
QM VOLUMETRIC HEAT INPUT TO THE FLUID ALONG THE
SPATIAL GRID (J/M=x3-S)
COMMON/1/
IP INTEGER COUNTER USED FOR PRINTING AND PLOTTING
IN SUBROUTINE PRINT
COMMON / IMODEL /
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IMODEL INTEGER VARIABLE TO SELECT THE THERMODYNAMIC
MODEL (ALLOWABLE VALUES ARE 1 TO 4)

DOUBLE PRECISION CODING IS USED
IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
PARAMETER (NM=33)

COMMON /T / T, NSTOP, NORUN
1 /Y/ WM(NM), RHOM(NM),  UMG(NM)

2 /F/  WMT(NM), RHOMT(NM), UMGT(NM)
3 /V/ UM (NM) , PM(NM) , TM(NM) , HM (NM)
4 /C/ 7L, ZR, DZ, Z(NM) ,

5 R, ™I, PMI, WMI, QM(NM), TERM(5)
6 /1/ IP

COMMON/ IMODEL / IMODEL

INTERNAL ENERGY, PRESSURE, TEMPERATURE, ENTHALPY, HEAT INPUT
FOR THE MAGNETS

THE THERMODYNAMIC FUNCTIONS ARE

PRHOU DENSITY~INTERNAL ENERGY FLASH TO COMPUTE THE FLUID
PRESSURE

TRHOU DENSITY-INTERNAL ENERGY FLASH TO COMPUTE THE FLUID
TEMPERATURE

HRHOU DENSITY- INTERNAL ENERGY FLASH TO COMPUTE THE FLUID
ENTHALPY
DO 1 I=1,NM
UM(I)=UMG(I)/RHOM(I)
PM(1)=PRHOU(RHOM(I) ,UM(I))
TM(I)=TRHOU(RHOM(I),UM(I))
HM (1) =HRHOU (RHOM(I) ,UM(I))

THE HEAT INPUT CAN BE SPECIFIED AS A FUNCTION OF POSITION Z (I.E.,
GRID INDEX I)
IF((I.GE.1).AND. (I.LE.NM-5))THEN

THE FOLLOWING Q IS A FUNCTION OF TIME, T, WITH A TIME
CONSTANT OF 0.5 S AND THE TEMPERATURE DIFFERENCE (10 - TM).
ANOTHER POSSIBILITY WOULD BE TO INCLUDE A HEAT CONDUCTION
MODEL TO DEFINE Q
QM(I)=1.0D+05x(1.0DO-DEXP (~T/0.5D0))x*(10.0DO-TM(I))
QM(I)=0.0DO

ELSE IF(I.GT.NM-5)THEN
QM(I)=0.0D0

END IF

CONTINUE

BOUNDARY CONDITIONS
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LEFT END, Z = ZL
PLEND=4.0D0

PRESSURE DROP
DP=PM (1) -PLEND
IF (DP.LE.0Q.0DO) THEN

FLOW RATE FOR NEGATIVE PRESSURE DROP. NOTE THAT THE FLOW
IS POSITIVE, AND PROPORTIONAL TO THE SQUARE ROOT OF THE
PRESSURE DROP. THE FLOW RATE ALSO CHANGES DYNAMICALLY
WITH A TIME CONSTANT OF 0.01 S
WM(1)= 300.0DO0x(1.0-DEXP(-T/0.01D0))+DSQRT(DABS(DP))
WM (1)=0.0DO

ELSE

FLOW RATE FOR POSITIVE PRESSURE DROP. NOTE THAT THE FLOW
IS NEGATIVE
WM (1)=-300.0D0x (1.0-DEXP (-T/0.01D0) ) *DSQRT (DP)
WM(1)=0.0DO

END IF

RIGHT END, Z = ZR
PREND=3.8D0

PRESSURE DROP
DP=PM (NM) -PREND
IF(DP.LE.0.0DO) THEN

FLOW RATE FOR NEGATIVE PRESSURE DROP. NOTE THAT THE FLOW

IS NEGATIVE, AND PROPORTIONAL TO THE SQUARE ROOT OF THE

PRESSURE DROP. THE FLOW RATE ALSO CHANGES DYNAMICALLY

WITH A TIME CONSTANT OF 0.01 S

WM (NM) =-300.0DO* (1 .0-DEXP (-T/0.01D0) ) *DSQRT (DABS (DP) )
ELSE

FLOW RATE FOR POSITIVE PRESSURE DROP. NOTE THAT THE FLOW
IS POSITIVE
WM (NM)= 300.0DO=(1.0-DEXP(-T/0.01D0) )+DSQRT (DP)

END IF

PDES FOR THE MAGNETS
DO 11 I=1,NM

LEFT END
IF(I.EQ.1)THEN

MOMENTUM BALANCE DOES NOT SET THE FLOW RATE AT THE LEFT END
(THE FLOW RATE IS SET BY THE PRECEDING BOUNDARY CONDITION)
WMT(I)= 0.0DO

CONTINUITY BALANCE IS UPWINDED
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RHOMT (I)=- (WM(I+1)-WM(1))/DZ

ENERGY BALANCE IS UPWINDED
UMGT (I)=- (WM(I+1)«HM(I+1)-WM(I)=HM(I)) /DZ+QM(I)

RIGHT END
ELSE IF(I.EQ.NM)THEN

MOMENTUM BALANCE DOES NOT SET THE FLOW RATE AT THE RIGHT END
(THE FLOW RATE IS SET BY THE PRECEDING BOUNDARY CONDITION)
WMT(I)= 0.0DO

CONTINUITY BALANCE IS UPWINDED
RHOMT (I) =~ (WM(I)~WM(I-1))/DZ

ENERGY BALANCE IS UPWINDED
UMGT (1) =~ (WM(I)«HM(I)-WM(I-1)=HM(I-1))/DZ+QM(I)

INTERIOR POINTS
ELSE

CONVECTIVE MOMENTUM FORCE
GIML1=WM (I-1)==2/RHOM(I-1)
GI =WM(I )==2/RHOM(I )
GIP1=WM (I+1)%»2/RHOM(I+1)
CMF=((GIP1+GI)/2.0D0O-(GIM1+GI)/2.0D0)/DZ

FRICTIONAL FORCE
FF=0.02D0
DC=0.03D0
FT=(FF/(2.0D0=DC) ) «DABS (WM (I))»WM(I) /RHOM(I)

PRESSURE FORCE
DPDZ=1.01325D+05x ( (PM(I+1)+PM(I))/2.0D0
-(PM(I-1)+PM(I))/2.0D0)/DZ

LINEAR SPATIAL FILTERING

EPS=1.0D+04

DVDZ=EPS= (WM (I+1) /RHOM(I+1)-2.0D0=WM(I) /RHOM(I)
+WM(I-1) /RHOM(I-1))/ (DZ#»2)

MOMENTUM BALANCE (DM/DT = SUM FORCES) IS CENTERED
WMT (I)=-CMF-FT-DPDZ+DVDZ

STORE THE INDIVIDUAL TERMS IN THE MOMENTUM BALANCE AT A PART-
ICULAR GRID POINT FOR PRINTING IN SUBROUTINE PRINT
IF(I.EQ.NM-1)THEN
TERM (1) =-CMF
TERM(2)=-FT
TERM (3)=-DPDZ
TERM (4) =DVDZ
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TERM (5)=WMT (1)
END IF

CONTINUITY BALANCE IS UPWINDED

aaaQa

NEGATIVE FLOW
IF(WM(I).LT.0.0DO)THEN
RHOMT (L) =- (WM(I+1)~WM(I))/DZ

POSITIVE FLOW
ELSE IF(WM(I).GE.O.0DO)THEN
RHOMT (I)=-(WM(I)-WM(I-1))/DZ
END IF

QO

ENERGY BALANCE IS UPWINDED

QaOaa

AXIAL CONDUCTION
DIF=1.0D+03
DTDZ=DIF=(TM(I+1)-2.0D0«TM(I)+TM(I-1))/(DZx=2)

NEGATIVE FLOW
IF(WM(I).LT.0.0DO)THEN
UMGT (I)=- (WM(I+1)=«HM(I+1)-WM(I)=HM(I))/DZ+DTDZ+QM(I)

QO

C... POSITIVE FLOW
ELSE IF(WM(I).GE.O.QDO)THEN
UMGT (I)=- (WM(I)«HM (1) -WM(I~1)=HM(I-1))/DZ+DTDZ+QM(I)
END IF |

END IF

C... NEXT INTERIOR GRID POINT
11 CONTINUE

RETURN

END
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Appendix 1b
Subroutine INITAL for the Svstem of Figure 1b
SUBROUTINE INITAL

SUBROUTINE INITAL SETS THE INITIAL CONDITIONS FOR THE MODEL
ODE/PDES

THIS COMMON AREA IS THE SAME AS IN SUBROUTINE DERV, AND IS
USED IN EACH OF THE MODEL ROUTINES

oleNoNo RO RO NG!

IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (NM=33)
COMMON/T/ T, NSTOP, NORUN
/Y/ WM(NM), RHOM(NM),  UMG(NM)
JF/  WMT(NM), RHOMT(NM), UMGT(NM)
/V/ UM(NM) , PM(NM) , TM(NM) , HM (NM)
/C/ ZL, 7R, DZ, Z (M) ,
R, ™I, PMI, WMI, QM (NM)
/1/ IP
COMMON/ IMODEL / IMODEL

OO W

SELECT THE THERMO MODEL

IMODEL = 3 - MODIFIED MARTIN EQUATION (VAN DER WAALS FAMILY)

IMODEL=3

aQ aaaaaa

LOWER AND UPPER LIMITS OF Z
ZL=0.0D0
ZR=8.0D0

GRID SPACING
DZ=(ZR-ZL) /DFLOAT(NM-1)

aQa o

AXIAL GRID
DO 11 I=1,NM

Z (1)=ZL+DFLDAT(I-1)~DZ
CONTINUE

P

INITIAL FLOW RATE
WMI=0.0DO

INITIAL TEMPERATURE
TMI=4.0DO

INITIAL PRESSURE
PMI=4.0D0Q

QO OO o aaw-

INITIAL CONDITIONS (FOR THE 3 X NM DEPENDENT VARIABLES IN
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COMMON/Y/). RHOPT IS A FUNCTION FOR A PRESSURE-TEMPERATURE
FLASH THAT RETURNS THE FLUID DENSITY. UPT IS A FUNCTION FOR
A PRESSURE-TEMPERATURE FLASH THAT RETURNS THE INTERNAL ENERGY.
NOTE THAT DEPENDENT VARIABLE UMG IS THE PRODUCT OF THE FLUID
INTERNAL ENERGY AND DENSITY (I.E., THE VOLUMETRIC INTERNAL
ENERGY)
DO 1 I=1,NM

WM(I)=WMI
RHOM (1) =RHOPT (PMI,TMI)

UMG(I)= UPT(PMI,TMI)~RHOM(I)

CONTINUE

INITIAL DERIVATIVES
CALL DERV

INITIALIZE COUNTER FOR PLOTTED SOLUTION
IP=0

RETURN

END
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Appendix Ic
Subroutine PRINT for the Svstem of Figure 1b

SUBROUTINE PRINT(NI,NO)

SUBROUTINE PRINT PRINTS THE NUMERICAL SOLUTION AND PLOTS THE
SOLUTION BY CALLS TO PLOTTD

IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (NM=33)
COMMON /T/ T, NSTOP, NORUN

/Y/ WM(NM), RHOM(NM),  UMG(NM)
/F/  WMT(NM), RHOMT(NM), UMGT(NM)
v/ UM (NM) , PM(NM) , TM (NM) , HM (NM)
/C/ ZL, 7R, DZ, oz (NM)
R, T™MI, PMI, WMI, QM(NM), TERM(3)
/1/ IP
COMMON/ IMODEL / IMODEL

OPEN A FILE FOR PRINTING THE INDIVIDUAL TERMS IN THE MOMENTUM

BALANCE
OPEN(8 ,FILE=’>TERMS’ ,STATUS="UNKNOWN’ )

INCREMENT THE COUNTER FOR THE PLOTTED OUTPUT
IP=IP+1

MONITOR THE OUTPUT
WRITE(*,=) IP

WRITE THE NUMERICAL SOLUTION
WRITE(NO,1)T, (Z(I1) ,WM(I) ,PM(I),TM(I) ,RHOM(I) ,QM(I), I=1,NM)

FORMAT(//,? Time = ’,F7.3,//,

+ 2 Z’,’ W’,’ P?’

+ 2 T?,? rho?,

+ Q’,/,(2F10.2,2F10.3,F10.2,E12.3))

+ 4+ + +

WRITE THE INDIVIDUAL TERMS IN THE MOMENTUM BALANCE AT AN
INTERIOR GRID POINT (SELECTED IN DERV)
WRITE(8,2)T, (TERM(I),I=1,5)

FORMAT( °> T = ’,F5.3,/,
’ -D(W==2/RHO) /DZ = ’,F9.2,/,
’ -FT = ’,F9.2,/,
’ -DP/DZ = ’,F9.2,/,
2 DV/DZ = *,F9.2,/,
’ DWM/DT = ’,F9.2,//)

PLOT THE SOLUTION
CALL PLOTTD
RETURN

END
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Appendix 1d
Subroutine PLOTTD for Plotting the Solution from INITAL DERV and PRINT

SUBROUTINE PLOTTD

SUBROUTINE PLOTTD WRITES A FILE WITH THE NUMERICAL SOLUTION
WHICH IS THEN READ BY TOP DRAWER FOR PLOTTING

IMPLICIT DOUBLE PRECISION (A-H,0-7)
PARAMETER (NM=33)

COMMON /T/ T, NSTOP, NORUN
/Y/ WM(NM), RHOM(NM),  UMG(NM)
/F/  WMT(NM), RHOMT(NM), UMGT(NM)
/V/ UM (NM) , PM(NM) , TM (NM) , HM (NM)
/C/ ZL, ZR, DZ, Z(NM)
R, T™MI, PMI, WMI, QM (NM)
/1/ IP

COMMON/ IMODEL / IMODEL

QPEN A SERIES OF FILES FOR TOP DRAWER PLOTTING

wi.TOP FLOW RATE AS A FUNCTION OF Z WITH T AS A PARAMETER
P1.TOP PRESSURE AS A FUNCTION OF Z WITH T AS A PARAMETER
T1.TOP TEMPERATURE AS A FUNCTION OF Z WITH T AS A PARAMETER
R1.TOP .DENSITY AS A FUNCTION OF Z WITH T AS A PARAMETER

IF(IP.EQ.1)THEN
OPEN(1,FILE=’W1.TOP’,STATUS=’UNKNOWN")
OPEN(2,FILE=’P1.TOP’ ,STATUS=’UNKNOWN’)
OPEN(3,FILE="T1.TOP’,STATUS=’UNKNOWN")
OPEN (4¢,FILE=’R1.TOP’,STATUS=’UNKNOWN* )

END IF

SCALE THE AXES FOR EACH PLOT
IF(IP.EQ.1)THEN

FLOW RATE

WRITE(1,1) :

FORMAT(?> SET LIMITS X FROM O TO 8 Y FROM 0 TO 75°,/,
> SET FONT DUPLEX’)

PRESSURE

WRITE(2,2)

FORMAT(’ SET LIMITS X FROM O TO 8 Y FROM 3.7 TO 47,/,
» SET FONT DUPLEX’)

TEMPERATURE
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WRITE(3,3)

FORMAT(’ SET LIMITS X FROM 0 TO 8 Y FROM 3.95 TO 4’,/,
> SET FONT DUPLEX')

DENSITY
WRITE(4,4)

FORMAT(’ SET LIMITS X FROM O TO 8 Y FROM 139 TO 140’

» SET FONT DUPLEX’)

END IF

WRITE THE NUMERICAL SOLUTION FOR SUBSEQUENT TOP DRAWER PLOTTING

DO 5 I=1,NM

FLOW RATE

WRITE(1,6)Z(I),WM(I)

PRESSURE

WRITE(2,6)Z(1),PM(I)

TEMPERATURE

WRITE(3,6)Z(I),TM(I)

DENSITY

WRITE(4,6)Z(I1),RHOM(I)

FORMAT (F10.3,
CONTINUE

CONNECT POINTS
WRITE(1,7)
WRITE(2,7)
WRITE(3,7)
WRITE(4,7)
FORMAT (’ JOIN 1?)

F10.5)

LEGEND, AXES LABELS FOR EACH. PLDT WITH T = 0, 0.01,

IF(IP.EQ.8)THEN

FLOW RATE
WRITE(1,8)
FURMAT(

TITLE 4.75 9.
,/,’ TITLE 5.5 9.
,/,? TITLE LEFT ”
,/,? TITLE BOTTOM
PRESSURE
WRITE(2,9)
FORMAT (

’ TITLE 5.25 9
./, TITLE 5.25 9
»/s? TITLE LEFT ~»

75
25

”z

.75
.25

l/)

0

.07

"Fig. 2c: Mass flow (kg/mxx2-s) vs z"’

"t = 0, 0.01,
W(z,t)"”’
(m}”?)

"Fig. 1lc: Pressure (atm) vs z
0.02,

£t = 0, 0.01,
P(z,t)”?
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11

+ ,/,’ TITLE BOTTOM
TEMPERATURE
WRITE(3,10)
FORMAT (

+ » TITLE 5 9.

+ ,/,” TITLE 5 9.

+ ./, TITLE LEFT ”

+ ,/,’ TITLE BOTTOM
DENSITY
WRITE(4,11)
FORMAT (

+ » TITLE 4.75 9.

+ ./, TITLE 5 9.

+ ,/,” TITLE LEFT ”

+ ,/,’ TITLE BOTTOM

END IF

RETURN

END

’?z

(m)”7)

"Fig. 3¢c: Temperature (k) vs z”’

5 "t =0, 0.01,

T(z,t)"’
(m)” )

"Fig. 4c: Density (kg/mx=x3) vs z7’
0.02,..

" =0, 0.01,
Rho(z,t)"”’
(m)”?)
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Appendix le
Main Proeram {and Subordinate Routines) that calls Subroutine BKF45

PROGRAM HELIUM

PROGRAM HELIUM CALLS: (1) SUBROUTINE INITAL TO DEFINE THE ODE
INITAL CONDITIONS, (2) SUBROUTINE RKF45 TO INTEGRATE THE ODES,
AND (3) SUBROUTINE PRINT TO PRINT THE SOLUTION.

THE FOLLOWING CODING IS FOR 1000 ODES. IF MORE ODES ARE TO BE INTE-
GRATED, ALL OF THE 1000°’S SHOULD BE CHANGED TO THE REQUIRED NUMBER
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/T/ T, NSTOP, NORUN

/Y/  Y(1000)

/F/  F(1000)

THE NUMBER OF DIFFERENTIAL EQUATIONS IS IN COMMON/N/ FOR USE IN
SUBRQUTINE FCN
COMMON /N / NEQN

COMMON AREA TO PROVIDE THE INPUT/OUTPUT UNIT NUMBERS TO OTHER
SUBROUTINES ;
COMMON/10/ NI, NO

ABSOLUTE DIMENSIONING OF THE ARRAYS REQUIRED BY RKF45
DIMENSION YV(1000), WORK(7000), IWORK(5)

EXTERNAL THE DERIVATIVE ROUTINE CALLED BY RKF45
EXTERNAL FCN

ARRAY FOR THE TITLE (FIRST LINE OF DATA), CHARACTERS END OF RUNS
CHARACTER TITLE(20)=4, ENDRUN(3)=4

DEFINE THE CHARACTERS END OF RUNS
DATA ENDRUN/’END ’,°QF R’,’UNS ?/

DEFINE THE INPUT/OUTPUT UNIT NUMBERS
NI=5
NO=6

OPEN INPUT AND OUTPUT FILES
OPEN(NI,FILE=’DATA’, STATUS=’0LD’)
OPEN(NO,FILE=’0UTPUT’ ,STATUS=’NEW’ )

MODIFY I/0 STATEMENTS FOR SSCVX1
OPEN(NI,FILE="DATA’, STATUS=’UNKNOWN’)
OPEN(NO,FILE="0UTPUT’ ,STATUS=’UNKNOWN’ )

INITIALIZE THE RUN COUNTER
NORUN=0
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BEGIN A RUN
NORUN=NORUN+1

INITIALIZE THE RUN TERMINATION VARIABLE
NSTOP=0

READ THE FIRST LINE OF DATA
READ (NI, 1000,END=999) (TITLE(I),I=1,20)

aa OGO Qa0

TEST FOR END OF RUNS IN THE DATA

DO 2 1I=1,3

IF(TITLE(I) .NE.ENDRUN(I))GO TO 3
2 CONTINUE
C..
C... AN END OF RUNS HAS BEEN READ, S0 TERMINATE EXECUTION
899 STOP
C...
C.. READ THE SECOND LINE OF DATA
3 READ(NI,1001,END=999)TO,TF,TP
C..
C.. READ THE THIRD LINE OF DATA

READ(NI,1002,END=993)NEQN,ERROR
C..
C.. PRINT A DATA SUMMARY

WRITE(NO,1003)NORUN, (TITLE(I},I=1,20)},

1 TO,TF,TP,

2 . NEQN, ERROR
C..
C.. INITIALIZE TIME

T=TO
C..
C.. SET THE INITIAL CONDITIONS

CALL INITAL
C..
C.. SET THE INITIAL DERIVATIVES (FOR POSSIBLE PRINTING)

CALL DERV
C..
C.. PRINT THE INITIAL CONDITIONS

CALL PRINT(NI,NO)
C..
C.. SET THE INITIAL CONDITIONS FOR SUBROUTINE RKF45

TV=T0

DO 5 I=1,NEQN

YV(I)=Y(I)
5 CONTINUE
C..
C. SET THE PARAMETERS FOR SUBROUTINE RKF45

RELERR=ERRCR
ABSERR=ERROR
IFLAG=1
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TOUT=TO+TP

C..
C.. CALL SUBROUTINE RKF45 TO START THE SOLUTION FROM THE INITIAL
C.. CONDITION (IFLAG = 1) OR COMPUTE THE SOLUTION TO THE NEXT PRINT
C.. POINT (IFLAG = 2)
4 CALL RKF45(FCN,NEQN,YV,TV,TOUT,RELERR,ABSERR, IFLAG,WORK, IWORK)
C..
C.. PRINT THE SOLUTION AT THE NEXT QUTPUT POINT
T=TV
DO 6 I=1,NEQN
Y(I)=YV(I)
6 CONTINUE
CALL DERV
CALL PRINT(NI,NO)
C..
C.. TEST FOR AN ERROR CONDITION
IF(IFLAG.NE.2)THEN
C..
C.. PRINT A MESSAGE INDICATING AN ERROR CONDITION
WRITE(NO,1004) IFLAG
C..
C.. GO ON TO THE NEXT RUN
GO TO 1
END IF
C..
C.. CHECK FOR A RUN TERMINATION
IF{NSTOP.NE.OQ)GO TO 1
C...
C... CHECK FOR THE END OF THE RUN
TOUT=TV+TP .
IF(TV.LT. (TF-0.5D0=TP))GO TO 4
C..
C.. THE CURRENT RUN IS COMPLETE, S0 GO ON TO THE NEXT RUN
GO TO 1
C..
c P D SR S 2 L D D SRE St ShE S b SR R0 DR S S I G G TRE RO SRE DB TR0 S SN SR ShE e Mt SHE MR SR SR S0 SRE 3R e S S D i G St S S SR e b e 3R ShE 0 SRC B DR NG I 30 306 06 36 2k
cC..
C.. FORMATS
C.

1000 FORMAT(20A4)

1001 FORMAT(3D10.0)

1002 FORMAT(I5,20X,D1Q.0)
1003 FORMAT(1H1,

1 7 RUN NO. - ?,13,2X,20A4,//,
2 » INITIAL T - ’,D10.3,//,
3 FINAL T - ’,D10.3,//,
4’ PRINTT - *,D10.3,//,
5 > NUMBER OF DIFFERENTIAL EQUATIONS - °,13,//,
6 ’ MAXIMUM INTEGRATION ERROR - ’,D10.3,//,
7 1H1)
1004 FORMAT(1H ,//,’ IFLAG = ’,13,//,
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» INDICATING AN INTEGRATION ERROR, SO THE CURRENT RUN’ N/,

» IS TERMINATED. PLEASE REFER TO THE DOCUMENTATION FOR’ o/ s

» SUBROUTINE’,//,25X, RKF457,//,

» FOR AN EXPLANATION OF THESE ERROR INDICATORS’ )
END

SUBROUTINE FCN(TV,YV,YDOT)

SUBRQUTINE FCN IS AN INTERFACE ROUTINE BETWEEN SUBROUTINES RKF43
AND DERV

NOTE THAT THE SIZE OF ARRAYS Y AND F IN THE FOLLOWING COMMON AREA
IS ACTUALLY SET BY THE CORRESPONDING COMMON STATEMENT IN MAIN
PROGRAM HELIUM

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON/T/ T, NSTOP, NORUN
/Y/ Y(1)
/¥/ F(1)
THE NUMBER OF DIFFERENTIAL EQUATIONS IS AVAILABLE THROUGH COMMON
/N/
COMMON /N/ NEQN

ABSOLUTE DIMENSION THE DEPENDENT VARIABLE, DERIVATIVE VECTORS
DIMENSION YV(1000), YDOT(1000)

TRANSFER THE INDEPENDENT VARIABLE, DEPENDENT VARIABLE VECTOR
FOR USE IN SUBROUTINE DERV

T=TV

D0 1 I=1,NEQN

Y(I)=YV(I)

CONTINUE

EVALUATE THE DERIVATIVE VECTOR
CALL DERV

TRANSFER THE DERIVATIVE VECTOR FOR USE BY SUBROUTINE RKF45
DO 2 I=1,NEQN

YDOT(I)=F(I)

CONTINUE

RETURN

END

DQUBLE PRECISION FUNCTION DFLOAT(I)
DFLOAT=DBLE ( FLOAT (1))

RETURN

END
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Appendix 1f
Functions UPT, RHOPT, PRHCU, TRHOU, HRHOU

UPT - Internal energy from pressure and temperature
RHOPT - Density from pressure and temperature
PRHQU - Pressure from density and internal energy
TRHOQU - Temperature from density and internal energy

HRHOU - Enthalpy from density and internal energy

Units: Internal energy, j/kg; pressure, atm; temperature, k;

density, kg/m3; enthalpy (i/kg)
DOUBLE PRECISION FUNCTION UPT(P,T)
INTERNAL ENERGY FROM PRESSURE AND TEMPERATURE

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON/IMODEL/ imodel
integer itdbg(3)
ifase=1
ifcode=2
kd=0
kh=0
ku=1
ks=0
kecp=0
call thermo( t, P, vof, ifase, ifcode,
kd, kh, ku, ks, kecp,
dt, dv, dl,
ht, hv, hl,
ut, uv, ul,
st, sv, sl,
cpv, cpl,
imodel, ipert, itdbg, ker)

+++++++

CONVERT INTERNAL ENERGY IN J/GM-MOL TO J/KG
UPT=ut+1000.0d0/4.00d0

RETURN

END

DOUBLE PRECISION FUNCTION RHOPT(P,T)

DENSITY FROM PRESSURE AND TEMPERATURE
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IMPLICIT DQUBLE PRECISION (A-H,0-Z)

COMMON/IMODEL/imodel
integer itdbg(3)
ifase=1

ifcode=2

kd=1

kh=0

ku=0

ks=0

kep=0

call thermo( t,
+ kd,
+ dt,
+ ht,
+ ut,
+ st,
+
+ imodel,

P
kh,
dv,
hv,
uv,
sv,

CPV,
ipert,

vof,
ku,
dl,
hl,
ul,
sl,
cpl,
itdbg,

ifase,
ks,

ker)

CONVERT DENSITY IN GM-MOL/LITER TO KG/M»%3

RHOPT=4 .0D0=dt
RETURN
END

DOUBLE PRECISION FUNCTION PRHOU(RHO,U)

PRESSURE FROM DENSITY AND INTERNAL ENERGY

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)

COMMON/IMODEL/ imodel
integer itdbg(3)
ifase=1

ifcode=6

kd=0

kh=0

ku=0

ks=0

kcp:O

CONVERT DENSITY IN KG/M==3 TO GM-MOL/LITER

dt=RHO/4.0d0

CONVERT INTERNAL ENERGY IN J/KG TO J/GM-MOL

ut=Ux4 .00d0,/1000.0d0
call thermo( t,
kd,
dt,
ht,
ut}
st,

++ + o+

P
kh,
dv,
hv,
uv,
sV,

cpVv,

vof,
ku,
dl,
hl,
ul,
sl,
cpl,
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+ imodel, ipert, itdbg, ker)
PRHOU=p

RETURN

END

DOUBLE PRECISION FUNCTION TRHOU(RHO,U)
TEMPERATURE FROM DENSITY AND INTERNAL ENERGY

IMPLICIT DOUBLE PRECISION (A-H,0-7Z)
COMMON/ IMODEL/imodel

integer itdbg(3)

ifase=1

ifcode=6

kd=0

kh=0

ku=0

ks=0

kep=0

CONVERT DENSITY IN KG/M==3 TO GM-MOL/LITER
dt=RHO/4.0dO

CONVERT INTERNAL ENERGY IN J/KG TO J/GM-MOL
ut=U=4.00d0/1000.0d0

call thermo( t, P, vof, ifase, ifcode,
+ kd, kh, ku, ks, kep,
+ dt, dv, dl,
+ ht, hv, hl,
+ ut, uv, ul,
+ st, sV, s],
+ cpV, cpl,
+ imodel, ipert, itdbg, ker)

TRHOU=t ‘

RETURN

END

DOUBLE PRECISION FUNGTION HRHOU (RHO,U)
ENTHALPY FROM DENSITY AND INTERNAL ENERGY

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/IMODEL/imodel

integer itdbg(3)

ifase=1

ifcode=6

kd=0

kh=1

ku=0

ks=0

kep=0
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dt=RHO/4 .0D0O
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ut=Ux4.00d0/1000.0d0

call thermo( t, P, vof,
+ kd, kh, ku,
+ dt, dv, dl,
+ ht, hv, hl,
+ ut, uv, ul,
+ st, sv, sl,
+ cpv, cpl,
+ imodel, 1ipert, itdbg,
C...
C... CONVERT ENTHALPY IN J/GM-MOL TO J/KG

HRHOU=ht*1000.0d0/4.00d0

RETURN
END
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Appendix 2a

Subroutine DERV for the System of Figure 2a

SUBROUTINE DERV
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (NM=46,NR=46)

COMMON/T/ T, NSTOP, NORUN
Y/ WM(NM), RHOM(NM),  UMG(NM),
RHOD, UDG,
WR(NR), RHOR(NR), URG(NR)
/F/  WMT(NM), RHOMT(NM), UMGT(NM),
RHODT, UDGT,
WRT(NR) , RHORT(NR), URGT(NR)
v/ UM(NM) , PM(NM) , T™ (NM) HM(NM) ,
uD, PD, TD, HD,
UR(NR) , PR(NR) , TR(NR) , HR (NR)
/C/ 7L, ZR, DZ, Z (NM) ,
T™MI, PMI, wMI, qQM{NM) ,
QD TDI, PDI, VD, AC,
TRI, PRI, WRI, QR(NR)
/1/ IP
COMMON/ IMODEL / IMODEL

INTERNAL ENERGY, PRESSURE, TEMPERATURE, ENTHALPY, HEAT INPUT
FOR THE MAGNETS
DO 1 I=1,NM
UM(I)=UMG(I)/RHOM(I)
PM(I)=PRHOU(RHOM(I),UM(I))
TM(I)=TRHOU(RHOM(I) ,UM(I))
HM(1)=HRHOU(RHOM(I),UM(1))
IF((I.GE.1) .AND. (I.LE.NM-5))THEN
QM (I)=1.0D+05%(1.0DO-DEXP (-T/0.5D0))=(10.0D0-TM(I))
ELSE IF(I.GT.NM-5)THEN
QM (I)=0.0D0
END IF
CONTINUE

INTERNAL ENERGY, PRESSURE, TEMPERATURE, ENTHALPY, HEAT INPUT
FOR THE RETURN
Do 2 I=1,NR
UR(I)=URG(I)/RHOR(I)
PR (I)=PRHOU(RHOR(I),UR(I))
TR(I)=TRHOU(RHOR(I) ,UR(I))
HR(I)=HRHOU (RHOR(I) ,UR(I))
QR(1)=0.0DO
CONTINUE

INTERNAL ENERGY, PRESSURE, TEMPERATURE, HEAT INPUT FOR THE DEWAR

UD=UDG/RHOD
PD=PRHOU (RHOD,UD)
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TD=TRHOU (RHOD , UD)
QD=0.0D0

BOUNDARY CONDITIONS

MAGNETS, Z = ZL
DP=PM (1) -PD
IF(DP,LE.O.0DO) THEN

WM (1)=0.0D0
ELSE -
WM (1)=-300.0D0x(1.0-DEXP(-T/0.1D0))«DSQRT(DP)
END IF

MAGNETS, Z = ZR
DP=PM (NM) -PR(1)
IF(DP.LE.0.0DO) THEN
WM (NM)=0.0D0
ELSE
WM (NM)= 300.0DO=(1.0-DEXP(-T/0.1D0))=DSQRT (DP)
END IF -

RETURN, Z = ZL
DP=PR (NR) -PD
IF (DP.LE.0.0DO0) THEN
WR(NR)=0.0D0
ELSE
WR(NR)= 300.0DO~=(1.0-DEXP(-T/0.1D0))=DSQRT (DP)
END IF

RETURN, Z = ZR .
DP=PM (NM) -PR(1)
IF(DP.LE.0.0DO)THEN

WR(1)=0.0D0
ELSE

WR (1) =WM(NM)
END IF

PDES FOR THE MAGNETS
DO 11 I=1,NM

RIGHT END
IF(I.EQ.NM)THEN
WMT (1)=0.0DO
RHOMT (I)=-(WM(I)-WM(I-1))/DZ
UMGT (1) =-(WM{I)«HM(I)-WM(I-1)=HM(I~1))/DZ+QM(I)

LEFT END
ELSE IF(I.EQ.1)THEN
WMT ( I)=0.0D0
RHOMT (1) =- (WM (I+1)-WM(1))/DZ
UMGT (I)=- (WM(I+1)=HM(I+1) -WM(I)*HM (1)) /DZ+QM (1)
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INTERIOR PQOINTS
ELSE

OO aQQ

MOMENTUM BALANCE
GIM1=WM(I-1)==2/RHOM(I-1)
GI =WM(I )=*x2/RHOM(I )
GIPL1=WM(I+1)»%2/RHOM(I+1)
DVDZ=(WM(I+1) /JRHOM(I+1)

+ -2.0DO=WM(I)/RHOM(I)

+ +WM(I-1)/RHOM(I-1))/ (DZ»=2)
EPS=1.0D+05
DPDZ=1.013D+05x=( (PM(I+1)+PM(I))/2.0D0

+ -(PM(I-1)+PM(I))/2.0D0)/DZ
WMT (I)=-((GIP1+GI)/2.0D0

+ -(GIM1+GI)/2.0D0)/DZ

+ -DPDZ+EPS«DVDZ

c... MASS BALANCE
IF(WM(I).LT.0.0DO)THEN
RHOMT (I)=-(WM(I+1)-WM(I))/DZ
ELSE IF(WM(I).GE.O0.0ODO)THEN
RHOMT (I)=-(WM(I)-WM(I-1))/DZ
END IF

c... ENERGY BALANCE
DTDZ=(TM(I+1)~-2.0DO«TM(I}+TM(I-1))/(DZ=*2)
DIF=1.0D+03
IF(WM(I).LT.0.0DO)THEN

UMGT(I)=- (WM(I+1)=HM(I+1)-WM(I)=HM(I))/DZ
+ +QM(I)+DIF=DTDZ
ELSE IF(WM(I).GE.O.ODO)THEN
UMGT(1)=- (WM(I)«HM(I)-WM(I-1)+HM(I-1)) /D2
+ +QM(I)+DIF=DTDZ
END IF
END IF
1 CONTINUE

PDES FOR THE RETURN
DO 12 I=1,NR

QG QG+

RIGHT END .
IF(I.EQ.NR)THEN
WRT (I)=0.0DO
RHORT (I)=-(WR(I)~-WR(I-1))/DZ
URGT (I)=-(WR(I)*HR(I)-WR(I-1)*HR(I-1))/DZ+QR(I)

C... LEFT END
ELSE IF(I.EQ.1)THEN
WRT (1)=0.0D0
RHORT (I)=-(WR(I+1)-WR(I))/DZ
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12
C...
cl - -

URGT (1)=- (WR(I+1)=HR(I+1)-WR(I)~HR(I))/DZ+QR(I)

INTERIOR POINTS
ELSE

MOMENTUM BALANCE
GIM1=WR(I-1)==2/RHOR(I-1)
GI =WR(I )=x2/RHOR(I )
GIP1=WR(I+1)==2/RHOR(I+1)
DVDZ=(WR(I+1)/RHOR(I+1)
-2.0D0»WR(I)/RHOR(I)
+WR(I-1)/RHOR(I-1))/(DZ*x%2)
EPS=1.0D+05
DPDZ=1.013D+05= ( (PR(I+1)+PR(I1})/2.0D0
-(PR(I-1)+PR(I))/2.0D0)/DZ
WRT (I)=-((GIP1+GI)/2.0D0
-(GIM1+GI)/2.0D0)/DZ
-DPDZ+EPS=DVDZ

MASS BALANCE
IF(WR(I).LT.0.0DO)THEN
RHORT (I)=-(WR(I+1)-WR(I))/DZ
ELSE IF(WR(I).GE.O.0DO)THEN
RHORT(1)=- (WR(I)-WR(I-1))/DZ
END IF

ENERGY BALANCE
DTDZ=(TR(I+1)-2.0DO*TR(I)+TR(I-1))/(DZ»=2)
DIF=1.0D+03
IF(WR(I).LT.0.0DO)THEN
URGT(I)=- (WR(I+1)*HR(I+1)-WR(I)*HR(I))/DZ
+QR(I)+DIF«DTDZ
ELSE IF(WR(I).GE.O.ODO)THEN
URGT (I)=- (WR(I)*HR(I)~-WR(I-1)*HR(I-1))/DZ
+QR(I)+DIF=DTDZ
END IF

END IF
CONTINUE

ODES FOR THE DEWAR
RHODT=- (AC/VD)+WM( 1)

+(AC/VD) «WR(NR)

UDGT=- (AC/VD)=WM( 1)=HM( 1)

+(AC/VD) =WR (NR) «HR (NR)
+QD/VD

RETURN
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Appendix 2b
Subroutine INTTAL for the Svstem of Figure 2a

SUBROUTINE INITAL

IMPLICIT DOUBLE PRECISION (A-H,0-2)

PARAMETER (NM=46,NR=46)

COMMON /T/ T, NSTOP,

/Y/ WM(NM), RHOM(NM),

RHOD,

WR(NR), RHOR(NR),

JF/  WMT(NM), RHOMT(NM),

RHODT,

WRT(NR) , RHORT(NR),

v/ UM(NM) , PM(NM) ,

uD, PD,

UR(NR), PR(NR),

/C/ ZL, ZR,

R, T™MI, PMI,

QD, DI, PDI,

TRI, PRI,
/1/ IP
COMMON/ IMODEL / IMODEL

SELECT THE THERMO MODEL

IMODEL = 3 - MODIFIED MARTIN EQUATION (VAN

IMODEL=3

LOWER AND UPPER LIMITS OF Z
ZL=0.0DO0
ZR=90.0D0

MAGNET GRID SPACING
DZ=(ZR-ZL) /DFLOAT (NM-1)

MAGNET AXIAL GRID
DO 11 I=1,NM

Z(1)=ZL+DFLOAT(1-1)%DZ
CONTINUE

DEWAR VOLUME
YD=5.0D0

LINE CROSS SECTIONAL AREA
AC=0.04D0

INITIAL MAGNET FLOW RATE
WMI=1.0DO

75

NORUN
UMG (NM) ,
UDG,

URG (NR)
UMGT (NM) ,
UDGT,
URGT (NR)
TM(NM) ,
TD,
TR(NR) ,
DZ,
WMI,
VD,
WRI,

HM (NM) ,
HD,

HR (NR)
Z(NM) ,
QM (NM) ,
AC,

QR(NR)

DER WAALS FAMILY)
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INITIAL MAGNET TEMPERATURE
TMI=4.0DO

INITIAL MAGNET PRESSURE
PMI=4.0D0

INITIAL DEWAR TEMPERATURE
TDI=4.5D0

INITIAL DEWAR PRESSURE
PDI=4.0D0

INITIAL RETURN FLOW RATE
WRI=1,0DO

INITIAL RETURN TEMPERATURE
TRI=4.0D0

INITIAL RETURN PRESSURE
PRI=1.0DO

MAGNET INITIAL CONDITIONS
DO 1 I=1,NM
WM (I)=WMI
RHOM (1) =RHOPT (PMI,TMI)
UMG(I)= UPT(PMI,TMI)=~RHOM(I)
CONTINUE

DEWAR INITIAL CONDITIONS
RHOD=RHOPT (PDI,TDI)
UDG= UPT(PDI,TDI)*RHOD

RETURN INITIAL CONDITIONS
DO 2 I=1,NR
WR(I)=WRI
RHOR (I)=RHOPT(PRI,TRI)
URG(I)= UPT(PRI,TRI)=RHOR(I)
CONTINUE

INITIAL DERIVATIVES
CALL DERV

INITIALIZE COUNTER FOR PLOTTED SOLUTION

IP=0
RETURN
END
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Appendix 2c
Subroutine PRINT for the Svstem of Figure 2a

SUBROUTINE PRINT(NI,NO)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (NM=46,NR=46)

COMMON/T/ T, NSTOP, NORUN

1 /Y/ WM(NM), RHOM(NM),  UMG(NM),

+ RHOD , UDG,

+ WR(NR), RHOR(NR), URG(NR)

2 /F/  WMT(NM), RHOMT(NM), UMGT(NM),

+ RHODT, UDGT,

+ WRT(NR), RHORT(NR), URGT(NR)
3 /V/ UM(NM) , PM(NM) , TM(NM) , HM(NM) ,
+ UD, PD, D, HD,
+ UR(NR), PR(NR) , TR(NR) , HR.(NR)
4 /C/ ZL, ZR, DZ, Z(NM) ,
5 R, T™MI, PMI, WMI, QM (NM) ,
+ QD, DI, PDI, VD, AC,
+ TRI, PRI, WRI, QR(NR)
6 J1/ IP

COMMON/ IMODEL/ IMODEL

INCREMENT THE COUNTER FOR THE PLOTTED QUTPUT
IP=IP+1

MONITOR THE OUTPUT
WRITE (% ,%)IP

WRITE THE NUMERICAL SOGLUTION FOR THE MAGNETS
WRITE(NO,1)T, (Z(I),WM(I) ,PM(I),TM(I) ,RHOM(I) ,QM(I), I=1,NM)
FORMAT(//,’ Magnets, time = ’,F7.3,//,

b

+ Z,,, W?’i P”
+ ! T?,? rhe?,
+ 2 Q’,/,(2F10.2,2F10.3,F10.2,E12.3))

+
-+

+
-+
-+

WRITE THE NUMERICAL SOLUTION FOR THE DEWAR
WRITE(NO,2)PD,TD,RHOD,WM(1) ,QD

FORMAT(/, '’ Dewar’,
/,> PD = ,F7.2,” TD = ’,F7.3,7 RHOD = ?,FT7.3,
>’ WM = ?,FT.2,7 QD = 7,F7.1)

WRITE THE NUMERICAL SOLUTION FOR THE RETURN
WRITE(NO,3)T, (Z(I),WR(I),PR(I),TR(I) ,RHOR(I),QR(I),I=1,NR)

FORMAT(/,’ Return, time = ’,F7.3,/,
b zj’? WJ,? P),
3 T, rho?,
) Q’,/,(2F10.2,2F10.3,F10.2,E12.3))

RETURN
END



