SSCL-N-813

Object-Oriented Simulation for the
Superconducting Super Collider

J. Zhou

]

Superconducting Super Collider Laboratory
2550 Beckleymeade Ave,
Dallas, TX 75237

M-J. Chung

Department of Computer Science
Michigan State University
East Lansing, MI 48824

March 1993

*Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.

OBJECT-ORIENTED SIMULATION FOR THE
SUPERCONDUCTING SUPER COLLIDER

Jiasheng Zhou
Superconducting Super Collider Laboratory
2550 Avenue, MS 4011
Dallas, Texas 75237
Tel#: 214-708-3461, email: zhouj@poplar.ssc.gov

Moon-Jung Chung
Department of Computer Science
igan State University
East ing, MI 48824
Tel: 517-353-4392, email: chung@cps.msv.edu

$Operated by the Universities Research Association, Inc., for the U. S. Department of Energy under Contract No, DE-AC35-89ER40486.

ABSTRACT

The design and implementation of an object-oriented simulation environment, OZ, for the
Superconducting Super Collider (SSC) Laboratory is described in this paper. The design applies
object-oriented technology to data management and visualization, behavior modeling, and
dynamic simulation. A Meta Class Model (MCM) is proposed to model different types of objects
in large systems by their functionality. Our MCM support encapsulation, code reuse, and & loosely
coupled development approach. A meta class is a complete set of domain-specific classes that are
cohesive and self-contained to fulfill particular responsibilities in a specific domain. It provides
four conceptual layers in the design of & simulation environment. The design of each meta class
can proceed independently, targeting the responsibilities and protocols of each meta class. Our goal
is to accumulatively create a complete functionality for each layer for reuse in future software
development.

OZ provides a graphical user interface that allows the user to visualize the design data as objects
in the database and to interactively model system components through direct manipulation. Mog-
eling can be exercised at different levels of the system decomposition hierarchy before it is dynam-
ically bound into a system for simulation. Inheritance is used to derive new behavior of the system
or subsystem from the existing one. |

The implementation uses C++, GLISTK library, InterViews 2.6, ISTK library, GNU C++
library, and the ObjectStore database management system.

Keywords: Meta Class, aggregation hierarchy, generalization-specialization hierarchy, object-

oriented decomposition.

L INTRODUCTION

This paper describes the mechanisms used to build an integrated environment for dynamic
modeling and simulation of large complex systems using object-oriented approaches. This
mechanism has been applied to the development of OZ, a project for dynamic simulation at the
Superconducting Super Collider (SSC) Laboratory. The goal of this project is to build an
environment that enables visualization of design data, aids interactive modeling and simulation to
exercise the SSC before it is actually built. We developed an object-oriented data model for SSC
simulation. A dynamic simulation paradigm is proposed and implemented based on our data
model.

The SSC is an accelerator built to perform high-energy physics experiments. It mainly consists
of magnets with various attributes. Each machine design has a configuration based on structured
data residing in databases. Experimental particle beams are injected from a linear accelerator
(Linac), then further accelerated at different energy levels through a low energy booster (LEB),
medium energy booster (MEB), and high energy booster (HEB) which are connected by beam
transfer lines. Beams are then injected in opposite directions into a top collider ring (TC) and a
bottom collider ring (BC) (See Figurel). These 20-GeV beams finally collide in the interaction
region (IR).

o e p—
o f TN

lllllll

,,,,,,
- e
o o
iy ™
o

- Linesr Aml-r?ﬂ-‘ {Limac}
N, i

™,
\
N,
-

Figure 1. The Configuration of the SSC

Simulation at the SSC Laboratory uses both static and dynamic data. Static data created in the
accelerator lartice (the layout structure of magnets in an accelerator) design are stored in the
database. These data can be manipulated using a particular simulation model to create simulation
results. Dynamic data is the footprint of such results subject to a particular configuration of the

accelerator lattice. So simulation is a process of manipulating static data based on a simulation

model to create dynamic data. The OZ project at the SSC has three goals:

1. A graphical browser for visualizing the accelerator lattice database. This browser includes:

(1) a geometric view of the accelerator complex in three dimensions, (2) a symbolic

representation of the lattice structure and configuration, (3) a beamline locator, which locates a

section of an accelerator in the selected lattice with a name and expands it into its components,

and (4) a plotter for examining various lattice optics functions.

2. A dynamic optics function simulator. Users can change some attributes of the accelerator

(such as initial settings), strength of the magnet, and injection position of the particles. A

feedback can be obtained from the dynamic optics function simulator which tells the effect of

these changes.

3. A particle racking simulator. The simulator simulates a bunch of particles distributed in a

predefined pattern passing through each accelerator for several turns. It can also simulate

particles passing through transfer lines between accelerators with different energy levels. The

simulator aids research in beam synchronization, timing, and transfer of a trajectory within a

given aperture in the accelerator.)

Currently, most simulation and modeling tools are designed for either small applications or
static batch mode simulation. Such tools generally are not object-oriented and lack graphical and
interactive capabilities. Most are not supported by object-oriented databases or by a persistent
object management system with a dynamic model. ABLE [Round89] is a knowledge-based
simulator for particle accelerator control developed at Stanford Linear Accelerator Center (SLAC).
ABLE does not support interactive modeling and simulation. Its simulation capability is limited to
beam trajectory fitting. It is difficult to change the lattice configuration of an accelerator at a
component level for simulation. DIMAD [SerBr85] is another accelerator lattice development tool
created at TRIUMF National Laboratory in Vancouver, Canada. DIMAD is based on FORTRAN,
and its graphical interface is based on C and X. It does not have the capability to directly intertace
with an on-line database. It also does not support direct behavior modeling through the object itself.
In both ABLE and DIMAD, data model and application are tightly coupled because of less
encapsulation. System decomposition based on procedure rather than object makes dynamic
modeling difficult.

In project OZ, we have developed an object-oriented paradigm for data modeling and
simulation, In our paradigm, the syszem (SSC) is logically decomposed into its components. These
components are modeled as objects that can be manipulated through graphical user interfaces. The
objects can be decomposed repeatedly until the necessary granularity is reached in terms of the
design requirements, yielding an object aggregation hierarchy. By examining and grouping objects
at the component level, we can get class hierarchies, in which common features are shared and
differences are derived in a generalization specialization process among classes.

The concept of meta class is introduced to tie a group of cohesive classes which share certain
common aspects in the modeling, such as data source, magnet and simulator. Meta Class Model
(MCM) imposes a set of protocols between meta classes. MCM facilitates incremental
development for simulation software, and promotes encapsulation and code reuse. Our MCM
allows not only to build the OZ project with maintainability and extensibility but also to bring
reusable software constructs to be shared by successive projects.

The object-oriented approach has been used for simulation since the programming language
Simula [DahNy66]. Zeigler developed a formal system called DEVS-Scheme [Zeigl90] for
modeling discrete event simulation. In DEVS-Scheme, model and processors, the main subclasses
of the universal class entities, provide the basic constructs needed for modeling and simulation.
Models and processors are abstract classes that serve to provide basic slots needed by their
specializations. Atomic- and coupled-model are two major subclasses of model for realizing the
atomic-level model and embodying the hierarchical model. At the SSC, we obtain data from a
heterogenous source and we manipulate and view the data in a fully interactive and distributed
environment. In such an environment, object-oriented tools have to be availabie for multi-domain
development such as data analysis, graphic-based editing, and rapid prototyping [Niels91].

The Meta Class Model proposed in this paper is influenced by the work of Wirfs-Brock’s
[WirWiol]. Her Responsibility-Driven Design approach stresses focusing on functional
decomposition of complexities in object-oriented modeling. The concept of contract, a cohesive
set of related responsibilities defined by a class, is introduced to model objects and their
relationships. We expand the idea of contract to a cohesive group of classes (meta classes) and call

these contracts protocols. The horizontal layer concept from Coad and Yourdon [CoaYo91} also

helped us to divide a system into problem domain layer, a meta class.

The remainder of the paper will discuss our Meta Class Model and its implementation in the
context of the OZ project. Section 2 will discuss the conceptual design of the MCM. Section 3 will
describe the data model in MCM. Sections 4 and 5 illustrate the modeling of dynamic behavior and
simulation in OZ. Section 6 will discuss graphical data visualization. We reach our conclusion at

section 7.

2, CONCFPTUAL DESIGN

The target of object-oriented software development is the object-oriented decomposition of
user’s needs into executable language constructs [AkBer92]. In object-oriented decomposition,
same objects can be grouped into classes and similar classes can be combined into a class
inheritance hierarchy where the common features are shared and individual characters are derived
through generalization-specialization hierarchy. The process ends up with several class
hierarchies, each of which will be designed to fulfill a particular task in the system. In MCM, these
classes are grouped again as meta classes depending on their domain and functionalitics. Meta
classes are themselves independent from each other with less clustering. But each meta class is
cohesive (self-contained) in terms of its designated functionalities. Objects in different meta
classes may have relations, collaborations, interactions, and communications in the process of
simulation. Meta class defines a set of generic operations that can be performed on these meta
classes, such as operation retrieve to a database is generic to both Relational Database
Management System (RDBMS) and Object-oriented Database Management System (ODBMS).
We call these generic operations profocol because they stand for a general agreement or contract
between meta classes. Within each meta class, these protocols can be interpreted differently based
on class and simulation context through dynamic binding [Oscar89]. A protocol includes a list of
requests that a client can make of a server, a list of rules that a client has to obey when making the
request, and descriptions about the service or responsibility [WirWi89]. When a protocol is no
longer adequate to a subclass, either a high-level abstraction is needed or a new protocol should be
introduced for that meta class.

In MCM, the protocol design process is both top-down and bottom-up. The top-down process

specifies a set of virtual protocols in the base class and defines them in individual subclasses when
needed. The bottom-up process seeks similar responsibilities among classes and extracts their
abstraction to their base class. In OZ, there are four meta classes, each of which is implemented by
a framework of classes or class hierarchies:
1. DATA: classes handling data transmission and transformation, and providing services for
modeling and simulation. In simulation, data may come from different sources with different
data models, binary data from sensors and ports, flat ASCI files, structures in SDS (Self-
Describing Standard) [Saltm91] files, tables in relational databases, and objects in object-
oriented databases. Although various data may represent the same real-world entity, their data
model is restricted by the feature of the repository wherein they reside. Data provider and
consumer are probably loosely coupled. The meta class DATA isolates the impact of data
management schema, whether flat file, relational, or object-oriented. It makes the details of data
transmission and transformation transparent to its clients, and it narrows the semantic gap
between restricted data models in various repositories and the object models in analysis and
design. At the SSC Laboratory, data describing the structure, identities, and attributes of the
accelerator (called lattice structure for each accelerator) are stored in a RDBMS, SyBase
[TraZh9l1]. SDS is used as a vehicle to move data structures between the application and the
database. The DATA object maps data from different data models into an object modei for other
parts of the simulation system, such as a simulator and a graphic plotter. As a result, high-level
abstractions through DATA will bring flexibility in applications.
2. MODELER: classes organizing the information to represent the essence of real-world entities
based on interrelations and interactions in the model used for the simulation. MODELER
defines the data structure and its external view in terms of the simulation to be conducted. It
creates meta data that specify the structure and configuration of objects. An application model
is defined or derived from an existing model in MODELER. For example, in an accelerator
particle-tracking model, a non-linear model is derived from a linear model by considering high-
order magnets in the lattice. Each class in MODELER also provides a context in which
protocols get interpreted in DATA and SIMULATOR (explained below). By using object-

oriented techniques, class hierarchy can be used to decompose a large model by two inter-

component refationships: is-a—an generalization-specialization hierarchy, and parr-of —an

aggregation hierarchy. Delegation can be used to represent a complex model by its component

structures. Class hierarchy facilitates inheritance and makes dynamic binding possible. A model
can be derived or composed by existing models.

3. SIMULATOR: objects to practice dynamic simulation. Simulation algorithms are likely to be

developed independently by domain specialists. It is not necessary to design, test, and debug

those parts with the entire system. They can be built separately and connected to the system
later. For example, it is not necessary to change the terminal each time that the CPU is upgraded.

For the same reason, when you design your new CPU, you don’t need to worry about the type

of terminal you will use if a standard interface is defined between them. Both the CPU and

terminal can have their own class hierarchies and design procedures. A simulator (instance of

SIMULATOR) can be built by deriving it from an existing one, or by aggregating existing ones

through delegation.

4, INTERFACE: classes providing a man-machine graphical interface. INTERFACE provides

windows to graphically present the process of modeling and simulation to the user. Through

class derivation, classes in INTERFACE can be shared among systems with few modifications.

A well-established INTERFACE class library or framework can make interface prototyping

casier and faster. A predefined look-and-feel is also important to help the user learn new

applications. An INTERFACE class can be built independently from its applications such as the
domain-specific editor in InterViews’ Unidraw {V1iss90].

Figure 2 illustrates the relations among the four meta classes, where arrows point in the
direction of the dataflow. MODELER constructs a model using information from DATA. The
model in MODELER can be viewed through INTERFACE. SIMULATOR is run based on the
model (in MODELER) it uses, and the result is conveyed to the user through INTERFACE.
Application users can derive their own domain-specific classes from high-level abstract classes in
our Meta Class Model. A simulation application can be built by using classes from the four meta

classes.
Our Meta Class Model has three major advantages. First, it promotes independent design and

development of ditferent classes (hierarchies) or frameworks for different knowledge domains. An

m SIMULATOR
ﬂ - ﬂ Y

DATA MODELER m

INTERFACE
Figure 2. A Meta Class structute.

accelerator physicist builds a magnet class hierarchy; a mathematician builds a number class
hierarchy. In a large simulation system, classes of various kinds will likely be designed, developed,
and debugged in different environments by different people in their knowledge domains. Each type
of class has its own inheritance hierarchy. The relations between these hierarchies are described by
the meta class protocols. So design and implementation of each meta class can be relatively
independent. Secondly, the MCM increases code reuse and domain knowledge encapsulation. A
well-encapsulated class can be instantiated to build a more complex object, while the original
object need not be modified or understood. Different applications may use similar objects to save
coding effort. Newly derived classes can still share the protocols defined at higher levels in their
base class. Derived classes can take advantage of inheritance and dynamic binding to use or
redefine the existing protocols as needed. Thirdly, once interfaces between the nodes are clearly
specified by protocols, development can proceed in parallel among class hierarchies. Independent

development also makes software testing and debugging much easier and more efficient.

3. OBJECT-ORIENTED DATA MODELING

We differentiate between data modeling and system modeling (discussed in section 4) in the
sense that data modeling emphasizes the syntax of the data, while system modeling focuses on the
semantics of the data in a particular model. In data modeling, for example, a picture is just a bitmap.
Each bit has no difference except its color and position. In system modeling, a picture is a
collection of objects with behaviors. User can move objects around and change their shape. Data
modeling is concerned with how the data in the repository will be presented to the structured frame
in the MODELER. A data model is a set of classes that can be used to describe the structure of, and
operations on a data source in a heterogenous environment. There are several types of data model

the simulation deals with at the SSC: a relational model in SyBase (RDBMS); an object-oriented

model in ObjectStore (an ODBMS); 2 file model in Unix file system and a hardware device model
in all detectors and adjusters in the accelerator. Meta class DATA encapsulates the differences
between various data models and provides a unified operating interface by a set of protocols.

At the SSC Laboratory, static design data for each lattice are ‘stored in SyBase, or Self-
Describing Standard (SDS files) with several tables such as GEQO, OPTICS, and TWISS. Each table
consists of rows and columns. An index number (ID#) is associated with each row (also called an
entry, or a record) and each column corresponds to a particular aturibute. Table GEO records
geometrical information of all magnets in the lattice. Each magnet has an entry through GEO.
Attributes could be pointers referencing other tables, such as OPTICS and TWISS, that contain
detailed information about magnet such as its length, strength, and optical functions. Objects in
MODELER are instantiated with information in these tables (through DATA objects) and stored in
ObjectStore [ObDes92), an ODBMS, with the structure defined in MODELER. Model can be
imposed on the structure in ObjectStore to directly support simulation. Data can be shipped among
databases, beam position monitors, sensors, and applications on different platforms of workstations
throughout the network in SDS. SDS can pack a record in a database with its attributes into a C++
structure, assemble the attributes into an object, and load the object to an SDS file. Thus, a database
table will correspond to an array of persistent structures in the SDS file. Generally speaking, SDS
provides a structured file in the UNIX file system. Any abstract data type can be stored in an SDS
file directly.

pataSource class hierarchy in meta class DATA is shown in Figure 3. DataSource is an

abstract class in DATA which represents any kind of data information used in simulation.

Daa.Source

File
| SyBase]BbjectStore|anuFi1e_|]—SDS J | Sensor | | Bpm |

Figure 3. DataSource Class Hierarchy in DATA Meta Class

patabase, File, and Port are three subclasses derived from DataSource. A set of protocols is

declared as virtual functions in DataSource and can be shared or defined in its subclasses. The

question that needs to be resotved here is how an object knows which method should be called to
respond to a generic protocol. There are three ways to bind a protocol to a method: First is the run-
time type of an object, which is the key for dynamic binding. Second is the signature of the
parameter list of protocols; different signatures will result in different methods to be selected to
fulfill the contract toward a particular protocol. Third is the run-time type of argument passed to
the protocol, such as source or mode. Although the identity of database, file, or port will all be
represented by class Source, the difference between them can be encapsulated in the protocol and
recovered later in the process of method resolution. In C++, the preceding three approaches can be
implemented using virtual function dynamic binding and skin-body class structure [Copli92].
ObjectStore’s Meta Object Protocol (MOP) also gives us a run-time type-checking capability

through database schemata. The three subclasses derived from pataSource are discussed below.

Class patabase: a base class for database operations. batabase supports a set of protocols
which is generic to all of its derived classes. These protocols can be Open, Load, Close,
Transaction, Update, and Retrieve. The protocols provide common interfaces and contracts
to clients, regardless what kind of database used. Class patabase has two derived classes:
SyBase and ObjectStore, ‘

Class File: a base class for file operations. Class GnuFile and SDS are derived from File.
GnuFile are object-oriented wrappers of GNU'’s SFile class and sps are SDS C++ class library.
GnuFile supports simple-type-based sequential files. An integer, floating number can be directly
written to a file. SDS supports structured files. A C-language structure can be directly read from or
written to an SDS file. Structure in SDS is self-describing with meta data that can be retrieved
together with data.

Class port: a base class to model physical equipment. Port has two subclasses: Sensor and
BPM. Sensor is a class for real-time data acquisition. Data from Sensor is time-stamped. BEM is
a data pool located at certain positions of the accelerator. Data from BPM is read-only.

Other classes are designed to be embedded in subclasses of pataSource to provide data
abstraction and implementation encapsulation, such as Table in SyBase and TimeStamp in
Port. These classes are not subclasses of DataSource but are data members (instance variables)

of it. A part of class SyBase declaration is given as follows:

class SyBase : public DataSource {...
char databaseName{32];...

Table* TO0;

Column* CO0;

Status* Load{mode%*);

H

Class Table is used as a data member in SyBase and SDS. If necessary, a particular table can
be loaded as a Table object. This object is dynamically created when a table is loaded and pointed
by a member variable in class SyBase T0. In SDS, the Table is an array of C++ structures.

Class Column models an attribute a0 (corresponding to a column in SyBase). This attribute is
pointed by a member variable of T0. a0 is able to extract a particular field from an array of
structures (table). Usually only some of the attributes are involved in the simulation at one time.
Loading a database table into memory takes time and space, and it is not efficient for such
simulations, so making an attribute as an object is very useful.

TimeStamp is used for real-time data acquisition. It can be embedded into any DATA object to

support real-time operation.

The pataSource itself will not provide any application-oriented data manipulation support.
The main purpose for creating an object-oriented data model is to facilitate data manipulations
through different data sources: files, RDBMS, ODBMS, or physical equipment. DATA provides a
set of classes and protocols that can keep its clients from the details of particular data models and
repositories. A standard well-encapsulated interface between DATA and other parts of the system
will keep the implementation detail transparent to the user, no matter what kind of data repository

or source is used.

ING D A

A model is an abstraction (possibly a mathematical abstraction) of a real-world entity for the
purpose of understanding it before building it [RumBI191]. It is natural in simulation to represent
entities in an application domain as objects that respond to a set of well-defined messages. For
example, in an accelerator system model, domain objects might be magnets, particles, and
accelerators (a composite object). In our approach, a model is represented as a set of methods for

generating dynamic data for the observables in the real system. New types of models may be

10

created by specializing existing ones. Complex systems can be modeled with composite objects
(also called submodels) and can be used in other models like a built-in type in programming
language. A model as a whole is itself a composite object that responds to a set of messages. The
tolerant threshold toward certain attributes is called constraint, which is defined as a function f; of
some attributes A, for a particular object, C, = fo(Ay). Behavior of the object is modeled as a set
of methods My, which is a function of attributes A, and constraints C, based on algorithms
developed with domain knowledge. Dynamic behavior describes those aspects of the object
concerned with time, sequencing of operation, and its configuration. These aspects include events
that mark changes, sequences of events, states that define the context of events, and the
configuration of the system where the object is placed. Modeling dynamic behavior can be divided
into a two-step process:

e Structure modeling (only for composite object). This step defines the configuration structure

of the object, the coupling pattern of its components.

e Behavior modeling. This step requires the user to design a set of methods to create dynamic

behaviors based on an object’s attributes, constraints, and configuration structure.

The MODELER in MCM is a library that contains a set of models and model class hierarchies
where each model emphasizes different aspects or represents different levels of the real-world
entities. Different models of the same real-world entity provide different abstractions interested in
simulations for different purposes. It is the responsibility of MODELER to provide a structured
frame or representation schema that interprets the data from the DATA object in terms of the
simulation to be conducted. It is also the responsibility of the MODELER to provide all necessary
methods to demonstrate behaviors to meet particular simulation requirements. The DATA object
drives the MODELER object. The MODELER object generates behaviors based on DATA via its

understanding and interpretation.
4.1 Structure Modeling

Structure modeling decomposes the complexity of a system into several sub-systems. The
principle of such decomposition is based on domain analysis of inter-relationships within the

system. In structure modeling, an accelerator can be decomposed into beamline, a set of magnets

placed in a specific order as design components. The structure of an accelerator can be modeled by

11

using configuration binding techniques. Accelerator is on the top of this configuration hierarchy. It
is decomposed into major beamlines, such as lattice LEB is decomposed into three major

beamlines, triinj, triext, triwm as shown in Figure 4; these major beamlines are further decomposed

| arcwm| [ssewm| larcwm| [ssewminj| [arcwm| |ssewmext]

Larcwm| [ssewmext'

Figure 4. Lattice Configuration Hierarchy.

into smaller beamlines, which are in turn decomposed all the way to the magnet level. Such a
structure hierarchy is called a lattice configuration for an accelerator. The class Beamline is
derived from the base Magnet. Beamline holds a pointer to its component, which may be smaller
beamlines or magnets. Beamline class inherits certain behaviors from Magnet class, such as
transferring particles. It is also easy to insert or replace beamline’s component with another
beamline or magnet.

Beamline inherits all members and methods from Magnet, but Beamline has its own

methods to specify its structure. Members and methods of Beamline are listed in Table 1.

Table 1 Beamtline Class.
Member Variables and
Member Function Illustration
Functions
Beamling* bmLnElmnt; bmLnElmnt point 10 the current components (smaller beamlines or magnets)
Insert{WhichSide); Insert() inserts a beamline before/after (depends on the value of WhichSide) the

Tace(Posit . [current beamtiine. Replace() and Delete() rcplapcs and deletes the current beamline.
Reptace(o.s-mon, Beamline®); Get() moves the bmLnElmat to another beamline.

Delete(Position);
Get(Position);
virtual Tracking(Particle*) Beamline’s own method, which accepts a particle {(or beam that is derived from a
particle) object as its argument, does straightforward, magnet-by-magnet tracking at
the bottom of the configuration hierarchy through the beamline. The keyword
“virtual” means that each beamtine or magnet object must implement such a method.
One of the extracrdinarily useful features of the virtual method is that it allows us to
perform polymorphism on all kinds of beamlines and magnets.

A new lattice configuration can be created by replacing an existing beamline with a new
beamline or by changing existing beamline’s attributes (such as strength). In Figure 4, anew design
for the beamline friwm' creates a new configuration for its parent LEB, LEB'. LEB and LEB' are

referred as the same object logically with different configuration. Configuration binding is deferred

12

at the simulation stage by setting the proper configuration name and the binding actually occurs
from the bottom level of this hierarchy, i. . at the magnet level. Further discuss about configuration
management is beyond the scope of this paper and reader can refer to [Zhou92)]. The major
advantage of this hierarchical model is its reusability. Beamline triinj and triext can be shared by
two different configurations. In terms of modeling itself, any system (especially a complex system)
can be decomposed hierarchically. Hierarchical decomposition distributes complexity into
different layers of abstractions. It provides the flexibility to adjust modeling focus between
abstraction and specification. In terms of simulation, the same model can be used differently by
attaching different attributes for various types of simulations. A submodel can aiso be derived from

an existing model to change the behavior of the object modeled.

42 Behavior Modeli

Behavior modeling seeks a set of methods governing the object’s control logic based on domain
knowledge. At the SSC Laboratory, there are three kinds of objects to be modeled: the particle
beam, the magnet in the accelerator, and the accelerator itself. The behavior of a particle depends
on its momentum, its position, and the distribution of magnet-field strength around it. Particle
momentum and magnet strength distribution are determined by the accelerator through which a
particle is passing. In simulation the behavior of a bunch of particles (beam) will be more
interesting statistically. Particle distribution hierarchy (PDH) is used to record such a beam model.

The root class Beam has only one particle, and it is placed at the origin. Particles with standard
statistical distributions, such as normal and average, are subclasses of Beam. Beam has five
instance variables listed in Table 2. Vector D = {d, d', 8] is called the principle vector (PV), where
d is the displacement, d' is the angular deflection, and & is the momentum deviation of the particle.
A new beam class can be derived from a beam class library with a graphical user interface. A beam
object can be created in three ways: instantiating from a beam class; copying an existing beam from
the beam class library and changing the particle distribution or amount of the particles (Figure 5);

or as a result of beam-tracking simulation.
Table 2 Instance Variables in Beam Class

Instance Variable Name Illustration

num number of particles in the beam
Position *pos[num} position of those particles, displacement

13

Table 2 Instance Variables in Beam Class

Instance Variable Name Iitustration

Deflection *dp[num] |angular deflection of the particie
Deviation *deltainum] {momentum deviation of the particle
distribution form statistical distribution of those particles
void Generate(seed) |generate a particle distribution

Figure 5. Beam Objects Created from PDH.

After a beam is created, it is sent to an acceleration pattern (which is the logical path from its
launch position to its end observing position through accelerators) for simulation. The momentum
will be dynamically bound to the particle when passing though the corresponding accelerator.

The behavior of the magnet depends on its magnet type(s), magnet strength(s), length(}), tilt(o),
linearity(m), optics functions (such as B function), phase advance (®), and other attributes. The
principle magnet hierarchy(PMH) is shown in Figure 6. A prototype of the magnet attributes
modeling system is shown on the right of Figure 6. Magnet instances are graphically represented
by a collection of icons (See Figures 8 and 14.) A magnet class is represented by a list of its
attributes. Magnets are constructed from their own class using this interface. After a derived
magnet type is created from the hierarchy, it is added back to the list as a part of the new hierarchy.

S Flement Aiributes:)

| Drift | [Bending | [RF Cavity| | FD

magnets to tranfer magnets to bend Radio Fregquency magets lo focus

beam in the straight beamn in certain unit to accelerate amnd defocus the

section angle at certain the beam beam envelope
direction

... .-.E
=l

(a)

Figure 6. Principle Magnet Class Hierarchy (a), and its interface (b)
The behavior of the magnet can be modeled as a 3 by 3 transformation matrix M based on
Steffen’s theory [Steff85). M is defined as a function of ¢, s, /, 0, and m for a particular magnet,
where 1, 5, {, 0, and m are defined as above. D; and D, | are the principle vectors of a particle at

position / and i+ 1 respectively. The relationship between Dy and D; are: D; =M+D;, i.e..

14

it+1
The Magnet class provides methods to support operations on the transformation matrix, The

Magnet class definition is partially given in Table 3.

Table 3 Magnet Class
Member Variable:-s and Function Hiustration
Member Functions
Class category There are four categories: drift, bending magnet, RF cavities and focus/defocusing

magness.category is used for dynamic type checking, which is not supported by C++.
Attributes *myAttributes Attributes is a C++ class with all attributes: basic and composite

virtual Matrix* CreateTM({) |Create transformation matrix for that magnet

virtual PV* BehaviorMap() |Create a result principle vector (PV) from the previous one

All principle magnet classes are predefined. Each Magnet instance has a pointer t0 a Magnet
class in the PMH. When a new Magnet class has to be created, a particular Magnet instance will
be selected. By changing the proper attributes, a new class will be created with that instance as its
first instance. The new class inherits all methods from its parent, such as CreateT™ and
BehaviorMap.

Behavior modeling through Magnet’s method is supported by two approaches:

1. Each subclass of Magnet has its so-called behavior file that is included by the virtual

function BehaviorMap()}. A edit window is provided for examining and overriding the

previous behavior model (such as method BehaviorMap) by using C++ code. Behavior
binding is implemented by taking advantage of dynamic binding of C++ virtual function. New

C++ code has to be recompiled and linked into the system; then the whole process needs to be

restarted. As an example, CurrentbDipoleBehavior is the behavior file for the dipole, a

PV* Dipole::BehaviorMap() {
include *CurrentDipoleBehavior”

]

subclass of Fp (Focusing and Defocusing magnet). The new behavior file created through edit
window replaces the previous behavior file and the old one is renamed as

CurrentDipoleBehavior.~1~. The advantage of this kind of approach is that code in other

15

simulation programs can be cut and pasted into our behavior modeling system with little
modifications. The restriction is that user have to know C++ programming and the context of
that virtual function.

2. Several models (such as linear and nonlinear method) can be predefined based on knowledge
and domain specific rules. Virtual function dynamically binds the rule number (set by the user
through interface) with a pointer to the member function to construct behavior. Interactive
modeling basically becomes rule-picking and function-binding.

Beam tracking model class hierarchy is shown in Figure 7. A Linear Sequential Transformation

Linear Sequential
Transformation Model

— T~

Non-linear Sequential Linear Direct
Transformation Model | | Transformation Model

Figure 7. A Beam Tracking Model Class Hierarchy in MODELLER

(LST) Model uses an aggregation hierarchy of a system. All nodes in the hierarchy are modeled as
objects of class Actor [Zhou92] with internal data representation and a set of methods for creating
behaviors. The result of interactions between objects is created using mathematical transformation
on an object’s internal data representations. To simplify the problem, such a transformation could
be considered as linear (one step) and sequential (no concurrency). For example, an accelerator can
be decomposed as several sectors (also called beamlines). Beamline can finally be decomposed as
elements such as magnets and RF cavities. A particle launched at a certain place passing through
the accelerator can be considered as an LST. Whenever the particle passes through an element, its
position, deviation and momentum may change; it therefore changes its behavior, such as wiping
out of the trajectory. A Non-linear Sequential Transformation (NST) Model and a Linear Direct
Transformarion (LDT) Model can be derived from the LST Model by overriding the transfer
behavior of the model. In NST, transformation contains several steps based on the type of the
element. Such a transformation is no longer context-free. It may rely on the previous result and has
impact on the next step. In LDT, several transformations can be aggregated into oﬂc.

Transformation is independent of the object to be transferred.

16

2, CONSTRUCTING DYNAMIC SIMULATION

This section includes several examples of constructing a dynamic simulator in an interactive
environment. Dynamic simulation provides an interactive environment between the user and the
simulator. It allows the user to select an appropriate model from the MODELER, to pinpoint
objects (component in SSC lattice), to modify their attributes and structure, and to rerun the
simulation to see the impact of the result system. Most configuration adjustments caused by
individual modification will be propagated automatically by the simulator (by calling the proper
model method).

SIMULATOR is a meta class that exercises models to actually generate dynamic behaviors to
meet simulation requirements. Simulator (an instance of SIMULATOR) is the manager of the
entire simulation. It decides when and which method should be invoked in terms of the model used
during the simulation process. Objects are controlled under simulator to interact with each other
and create dynamic behavior. We stress that “modeling” and “simulation™ are two different tasks
and we will attempt not to use them interchangeably; one model may be simulated using several
different simulation algorithms. The relationship between SIMULATOR and MODELER is quite
similar to the relationship between algorithm and data structure. MODELER provides a base for
creating behavior. Certain models in the MODELER will create certain behaviors for specific
simulation in SIMULATOR.

As explained earlier, OZ deals with three types of models: beam model, magnet model and
lattice configuration model. The behavior of each object in the interactive simulation process is
used to adjust the model for better design. As an example, let’s illustrate how BumpView
simulation works using the SIMULATOR. A basic problem in accelerator physics is how to keep
the beam inside the correct trajectory, i.e., to avoid losing the beam. The beam is basically guided
by magnets. Most magnets have fixed strength and are designed to bend the beam at a certain angle
at specified locations. To correct dynamic errors that may affect the beam trajectory, hundreds of
adjusting magnets (kickers) are placed among the built-in magnets. There are also hundreds of
detectors (beam position monitors, or BPMs) near those kickers to monitor the results of
corrections and to locate the beam position. For a particular BPM reading, simulation should be

able to predict the adjusting value for each kicker, especially those kickers near the BPM being

17

monitored. BumpView simulator is built to achieve such a goal. It provides a simulated beamline
aperture for adjusting particle trajectory and simulates the effectiveness of bending force created
by adjusters to particles at the requested position. BumpView uses a linear model, a submodel
derived from structured hierarchical model we mentioned before. Actually a method is added to
the linear model for sending recursive query to the parent hierarchical model to pull these leaf-level
magnet out. The objects involved in the simulation are just of type Magnet and a particular lattice
configuration. A influence function is defined as a relationship between each pair of monitor and
adjuster in the derived model. These influence functions are used as coefficients of a set of
differential equations to be solved for the simulation.

Figure 8 gives the BumpView simulation interface. The bottom part of the window is a symbolic

Caa el Mdimdow | Lew Smnryy Soastar

BPMmdingsetbythenstr

Fiur 3bump ul sing Bumpewlator.

representation of the LEB lattice structure. Above it are the positions of the detectors and adjusters
along the LEB. All objects in the representation are active (sensible and associated with actions).
A display panel always prompts attributes of the magnet engaged with a pointing device. A particle
object can be constructed on the fly using graphical user interface and can track through the
beamline under the requested bending force. In the middle of the window (shaded part) is the
dynamic aperture of the LEB, which basically depends on the attributes of the magnet at each point.
The middle part is expanded at the upper tight comer. The dashed bar is the BPM reading set by
the user. Bumpview simulation only uses magnet model because particle tracking solely deals with
leaf-level component. But when a user wants to modify attributes of a magnet or the structure of

the beamline, the beamline model kicks in and controls the propagation of the modification. When

18

a BPM is engaged for value setting, Detector model (for BPM) is bound to provide special
behavior. Actually Detector model is derived from magnet model for BPM setting. So a model in
MODELER can be directly used or inherited for specific simulation. Such extensibility is useful
for model reuse. Bumpview simulation will give the following:

1. The setting value of the three nearest adjusters, which will generate the BPM reading set by

the user. Three white points (actually a three green bar) stand for the settings of three kickers

around that BPM. The actual values are given as deltaX', deltaX', deltaX,' in the “Adjuster
settings” box at the bottom of the control panel.

2. To make things simpler, we assume that the adjusting will affect only the three BPM readings

nearest to the BPM selected. All other BPMs should have zero readings. The simulation proves

the model is correct. From the picture, there are only three solid bars in the middle. The up part
of the window is the B-tron oscillation along the LEB.

Figures 9 and 10 give more examples of dynamic simulations. In Figure 9, (a) is the optics
function of LEB created by object Twiss in SIMULATOR; (b) and (c) are dynamic particle
tracking by turns or by every magnet using Track from SIMULATOR; and (d) is dynamic tracking
of a beam created from beam class hierarchy by using Emi t, which is also a simulator object from
the SIMULATOR class hierarchy. Emi.t can also be used to aid the research of relations between

particle distribution in the beam and beam survivability.

",1-7 val apartum
C . ™
(a). Dynamic optics function (b). Dynamic particle tracking (c). Dynamic tracking particle ({d}. Dynamic launch a beam
creation of the MEB. Here in LEB for 100 tumns, and for one turn and recording for 10 turns to see how many
is o function. recording its 4 and &' after its 4 and o’ after each magnet. particles are still in the
each wm. survival aperture. Beam is in
. . . solid dot. Survival particle is
Figure 9. Dynamic Simulation. is small circle.

A particle could be lost during the acceleration. It is important to know where it is lost in order
to make the correction by using the BumpView simulator. Figure 10 gives such an example. User
can change the dynamic aperture and particle emit position in the process of tracking simulation to

see under which circumstance the particle will wipe out. a shows a particle passing through LEB

19

i

i
i

!

|
E!ﬁ

Elﬁ

(a). Tracking a particle for certain turns - L

10 check its survivability under the {b). Launch a beam with certain distribution. Check

current lattice configuration. its distribution after several turns to research the
relation with lattice configuration and magnet

tums that particle attributes.

survives!

Figure 10. Beam Survivability Research.

and wiping out. By zooming in to the picture, user can find the exact wiping out position. & gives

another example of simulating a beam passing through the L EB.

6. OBJECT-ORIENTED DATA VISUALIZATION

In this section, we will describe the functionality of data visualization in OZ and related
implementation issues. Data visualization allows a user to directly manipulate an object and to
access information through the graphical user interface to conduct modeling and simulation. It
makes modeling and simulation efficient, informative, and much easier to handle.

In OZ the whole SSC complex can be visualized through a window with zooming and scrolling
capability. Various physics functions can be dynamically plotted through different windows, and
configuration of the beamline component can be edited using graphical interface that supports
direct object manipulation. After a particular lattice has been loaded, the position and size of each
object can be extracted from pataScurce object. The plotting window (an object of class
ViewPlot) scales these data based on cumrent plotting size and displays the object on the screen.
A visualbata subclass is derived from pataSource to interface with viewPlot by redefining
(not redeclaring) the protocols dealing with domain-specific operations such as scaling and color-
coding. When resize occurs, viewPlot will rescale the position and size of all objects and replot
them. Incremental drawing is supported by viewPlot for accumulatively displaying simulation

without refreshing the whole window. By taking advantage of dynamic binding of the C++ virtual

20

function, all methods for graphic manipulation are virtual. For example, a zooming operation on
an optics function plotting will cause a one-dimensional zoom-in. The same operation on a
geometrical representation of an accelerator will cause a two-dimensional zoom-in, If several piots
have to be zoomed in simultaneously with the same scaling, a virtual function call of zoom
operation on all these plots will work polymorphically.

Lattice configuration editing is supported by direct graphical object manipulation. Class Node
represents a component graphically and expands its subcomponent into a tree structure. Figure 11

is a graphical interface for the lattice configuration editor that provides an interactive modeling

:

e
A
ot 22k o e o e

Figure 11. Lattice Configuration Hierarchy Browser.

environment to the MODELER. The configuration tree shown in the figure can be cut and pasted
using an existing component in the tree or a new component (graphically represented by Node
object) created on the fly by the user. Configuration change in a subtree will be informed to its
parent component (its aggregation). And the parent component will update the corresponding
structure model of MODELER in the database.

Meta class INTERFACE is implemented to provide all the classes necessary to construct
visualization software for simulation in OZ. INTERFACE classes are developed using GLISTK
[Kan91] and InterViews [Linto90] libraries. Two important classes should be addressed in building
a graphic interface: (1) the layout of the interactive interface and connections among control

elements, such as buttons and menus, and (2) the interactive graphics (view).

2]

ControlLayout is a class to lay out control elements (such as button and menu) and specify
their behaviors. It has two subclasses: Layout and ControlElement. Layout i an invisible
object which is primarily used for arranging ControlElements on the screen. ControlElement
is a base class for all graphical interface building components, such as button, menu, and scroll bar
etc. Control elements are created not inside the constructor of Layout but by another virtnal
method called CreateandInsert(). Different applications may override CreateaAndInsert()
to create and insert their own control elements.

Layout is derived from class Gorgan in GLISTK, a subclass of InterViews’ Scene (Figure

12). ControlElement is derived from class LabelGlistk in GLISTK, a subclass of

OaFame

[OzControl| |OzPlotWin| | OzModeller| [OzBetaS | [0z Twissxy{{OzTwissxp||OaTwissyp|} Oz Twissxpyp

Figure 12. Controllayout and Viewplot Class Hierarchy.

InterViews’ Interactor. A callback function defined in SIMULATOR object can be attached as
a control action of a ControlElement (such as a button or menu item) to respond to a button
clicking or menu selecting. In OZ, three subclasses are derived from ControlLayout. They are
OzControl for the layout of the control panel to switch among different lattices, 0zPlotwWin for
the layout of various viewPlots and the connection of their controls, and 0zModeler for the
layout of the magnet attributes editor. Table 4 summarizes a few protocols provided by

ControllLayout.
Table 4 Protocols in Class ControlLayout

Member Functions Function Description

CreateAndInsert{) [Create control elements and insert them in a proper form using alignment variables.
ControlLayoul records these alignments in a table and possibie reposition and resize.

RaiseAndLower() |Element popup control, such as popup menu and popup message, dialogue, etc.
LockAndUnlock () |Provides availability control to control elements,

CommuHit() Provides communication among objects, including between ControlLayouts and between its
elements,

22

Table 4 Protocols in Class ControlLayout

Member Functions Function Description

StopInput() Some actions need a start event to enter its mode and wait for end event to exil its mode. Such
action should be registered with ControlLayout. Then the end event can be directed to its target
by StopInput().

ViewPlot is a class to plot dynamic structured graphics [VI1ILi88] controlled by
ControlLayout. ViewPlot is derived from class glistk in GLISTK, a subclass of InterViews’
Interactor (Figure 14). It provides a dynamic graphic view of objects from MODELER and
SIMULATOR. Subclasses can be derived from viewPlot such as bar chart, two-dimensional
multi-function plotter, object browser, and accelerator view.

In OZ, a subclass of viewPlot OzRef keeps a list of objects drawn inside the window and
encapsulates the functionalities of zooming, scrolling, resizing, and refreshing. It has three
subclasses, Ozview, OzFunc, and 0zTwiss to provide the graphical representation of objects.
OzView is used to display a geometrical view of the SSC complex with magnets. Oz Func is used
to plot various optical functions with sample points. 0OzTwi s s is used for dynamic particle tracking
with magnet trajectory and particle as the drawing objects.

Most dynamic graphics in ViewPlot require incremental drawing. The result of several
simulations can be superposed or plotted in different areas of the screen one-by-one at different
times. But what will happen if the window is closed and opened later? The current image on the
screen should be “remembered” so that when the window is opened later, the previous image can
be restored as is. It is not realistic to repeat the entire simulation to recreate these images. A feasible
solution is to create an incremental drawing queue (IDQ) inside the viewPlot to record

incremental drawing data dynamically. Two methods are used for drawing (Figure 13). Refresh

ViewPlot::Refresh(){ ViewPlot::CreateDynamicData{)|
MapRawDataToDrawableData(): CreateSimulationResults():
DrawStaticData(); SizeOfIDQ++;
if (5ize0fIDQ>0) RegisterTolDQ();
Draw(): Push(IDQ, CurrentDrawingData);
1 Draw();

]

Figure 13. How To Do Incremental Drawing,

handles initial drawing such as legend, measurement, symbolic representation, and marks. We call

these static graphics, and they should be always on the screen. To draw something dynamic on the

23

screen, call braw and push data into the IDQ. Draw will pick up the data from the top of the DO
and draw it on the screen. If the window is closed and then opened again, Refresh will get called.
Refresh will in turn call praw to accumulatively draw whatever is in the 1IDQ. Figure 13
illustrates how the incremental drawing queue works.

Sometimes because thousands of magnets (thousands) need to be drawn in viewPlot, making
each magnet as a structured graphic object in InterViews is not realistic. If we make the whole
accelerator an object, then it is difficult to pinpoint an individual magnet object. A feasible solution
is to make the whole accelerator a composite object. At the same time, design a set of methods to
do the mapping among objects on the screen, their ID# in viewPlot, and their data in
DataSource oObject. Figure 14 shows such a mapping.

attributes of the selected object

: Hement attribute:

A part of screen prvpees 096
H Elament index 10
: Name hb
— L Type shend
R Strength 1. 38088887 h
object Beta Vailue 1090225829

Sbjoct ID¥ im ViewPlot Figure 14. Object Mapping.

In viewPlot, the screen position of each object gets registered when it is drawn. A mouse
down event catches an object if it occurs within the sensitive boundary of that object on the screen.
viewPlot keeps a list of all types of mouse-sensitive objects, such as magnet, adjuster, and
detector. Sensitivity can also be screened out. A caught object is called a focusing object Oy.
viewPlot will do a binary search within the current plotting boundaries to find ID#(Og). Then all
information of that O can be found through MODELER. Some protocols of viewPlot are listed

in Table 5,
Table 5 Protocols in Class ViewPlot.

Name Function
myModel Pointer to MODELER object
realBoundary The real dimension of visual target. For example, optics function of HEB
visualBoundary Current dimension of the visual target. This is used by zooming and strolling
StretchAndFit{} Stretch the view and fit it to the size of the window.
CatchAndZoom() Handle zooming base on size of the rubber box created by a mouse down.
Scroll(currentPosilion) |{Handle scrolling from current position (0 a new position.
Redo(), Undo() Handle unzooming
EventHandler(event) For evenr, there is an event handler,

24

Table 5 Protocols in Class ViewPlot.

Name Function

Refresh() Refresh() handles initial drawings. It keeps a pointer to an object called
IncrementalDrawingQueue. Refresh will call Draw if there is anything in the queue.
Dynamic drawing is handled by Draw().

Draw() Handle add on (or called incremental) drawing.
ID# Find(position) Return object ID# based on its current registered position.
ShowValue(ID#) Show attributes of the object with ID# (focusing object O).

As a good example, let’s consider drawing a beamline on the screen. A list of graphic objects is
created for pictorial representation of the magnet. The corresponding magnet object is either
pointed by or embedded in the graphic object. These graphic objects are inserted into the IDQ in
the drawing process. Each graphic object knows how to draw itself by calling its member function
Draw(). Drawing is recursive in a composite ViewPlot. IDQ is a parameterized collection that
provides general behaviors at the collection level and different behaviors at the component level.
So different magnets can be aggregated into a collection using a set of protocols such as insert,
delete, and ‘iterate, while their individual behavior can be much different, such as the
implementation of Draw().

The communication between ControlElement and ControllLayout is handled via a class
called Communistk, an object which focuses on a value and has a list of other objects to notify
when this value changes. Communi stk enables and simplifies communication between objects in
a program. It encapsulates the notification and update mechanism of a state variable it focuses on.
State is a variable with a valid C++ type to represent current status of a ControlElement.,
State can be attached to a Communi stk, Commnistk focuses on the value of the state and has
a list of ControlLayout to notify when this value, or the focus itself, changes. Every
Communistk has a CommuList, which is a list of ControlLayout, which is informed any time
the value of state on which Communi stk is focused on is changed by Communi stk::Setvalue.
When the value on which a Communistk is focused is changed by Communi stki:Setvalue, the
Communistk calls its HitCommuList method, which informs every ControlLayout in it$
CommuList by calling their CommuEit method. A message not 6nly can be sent back and forth
between ControlElement and ControlLayout, but also can be sent out to another application

using the GLISH event sequencer [Paxso91). For the Communistk to notify the outside world, a

25

message must have a name, which will become a GLISH event name. An event name must be
registered though GorganMaster, which is a GLISTK class derived from InterViews’ World.
Any change to the Communi stk’s focus will trigger the GorganMaster t0 build an event frame
and message body and give it to a GLISH executive. An incoming event will be checked against
registered Communistk and the indicated change, if any, will be presented to the Communi stk to
accept or reject and to notify its attached control element.

There are two ways to issue an action: one is to derive a specific glistk, for example,
QuitButton, with its own PerformAction method; the other is to associate its Communistk
with a particular ID and add its ControlLayout to its CommuList. ControlLayout’s
CommuHit() method will be called when the Communistk value is changed automatically.

CommuEit() can control the action based on CommuID.

2. CONCLUSION

In this paper, we describe our experience in designing and implementing an object-oriented
simulation environment OZ. The issues of building a generalized simulation system have been
addressed by proposing a meta class model that decomposes a design into four types of classes
(meta class) that handle data management, user interface, modeling, and simulation, respectively.
We design classes in each of the meta classes not only for the OZ project but also for reuse with
other projects. We set the protocol between each of the meta classes before we started to build
them. We kept the protocol generic and elementary so that it can achieve maximum reusability. We
built each meta class independently and focused on the problem itself rather than struggling with
the interface between other meta classes. Such a responsibility-driven approach not only achieves
productivity but also simplifies the testing process with a more loosely-coupled system.

In our object-oriented data modeling, data, meta data, and procedures that handle data accessing
and manipulation are combined as an object. Data as an object is able to describe itself and provide
information to the modeling and simulation. Data object has its view which can be directly
manipulated through a graphical user interface. A system can be decomposed into aggregation
hierarchy with dynamic behaviors. Attributes and constraints are used to model dynamic behavior

of the object. Attributes and constraints can be dynamically bound to an object in an inheritance

26

hierarchy. Different configurations can also be dynamically bound to an object through
configuration hierarchy. Simulation can be exercised using a particular configuration with data
objects as parameters in our modeling system.

OZ has been implemented and is currently available on a local network of Unix and X-based
workstations at the SSC Laboratory. We used the same approach presented to prototype the
BunipVicw, which is an extension to OZ for dynamic simulation the three bump effect in the
accelerator. With the experience we had and with classes already available in developing OZ, it
took us only one month to finish the prototyping. The results achieved with our current effort have
been encouraging, leading us to believe that the object-oriented approach will provides us more
flexibility and extensibility in future software development. We plan to extend our effort to build a

more general and complete framework for simulation at the SSC Lab.

ACKNOWLEDGMENTS

We greatly appreciate the valuable contributions and advice provided by Dr. Richard Talman
and Dr. Garry Trahem at the Project Management Organization of the SSC Laboratory. We also
appreciate the help from Dr. Chris Saltmarsh, Matt Fryer at Lawrence Berkeley Laboratory, and

Matthew Kan at Carnegie Mellon University.

References
[AkBer92] Aksit, Mehmet; Bergmans, Lodewijk: “Obstacles in Object-Oriented Software Development,” OOPSLA
‘92 Conference Proceedings, Oct. 18-22, 1992, Vancouver, Canada.

E:Cop]i92] Coplien, James O.: “Advanced C++: Programming Styles and Idioms,” pp133, Addison Wesley Publishing
0. 1992.

[CoaYo21] Coad, P.; Yourdon, E.: “Object-Oriented Design,” Yourdon Press Computing Series, Prentice-Hall, 1991,

[DahNy66] Dahl, O.].; Nygaard, K.: “Simula - an algol-based simulation language”, Communication of the ACM, 9(9),
pp 671-678, Sepiember, 1966.

{Kan91) Kan. Matthew: “GLISTK: Graphic Library for the Integrated Scientific Tool Kit,” Laurence-Berkeley
Laboratory, March, 1991

[Linto9d] Linton, Mark: “InierViews Reference Manual,” Vergion 2.6, Computer Systems Laboratory, Stanford
University, Feb., 1990

[Niels91] Nielsen, Norman R.: “Application of Artificial Intelligence Techniques to Simulation,” “Knowledge-Based
Simulation, Methodology and Application,” pp1-19, Advances in Simulation, Vol. 4, Springer-Verlag, 1991.

[ObDes92] Object Design, Inc.; “ObjectStore User Guide,” Release 2.0, Oct, 1992

fOscar89] Oscar, Nierstrasz: “A Survey of Object-Oriented Concepts”, Object-Oriented Concepts, Databases and
Applications, pp 3-21, ACM Press and Addison-Wesley, 1989.

[Paxs091] Paxson. Vemn: “Reference Manual for the Glish Sequencing Langnage,” Laurence-Berkeley Laboratory,
April. 16,1991,

[Round®9] Round, Alfred: “Knowledge-based Simulation™, The Handbook of Artificial Inielligence, Volume IV,
Chapter XXII. Addison-Wesley Publishing Company, 1989.

27

[RumBI1911 Rumbaugh, James; Blaha, M.; Premerlani, W.; Eddy. F; Lorensen, W. General Electric Co.: “Object-
Oriented Modeling and Design,” Prentice Hall, 1991

[Saltm91] Saltmarsh, Chris: “The SDS Document: A Conceptual Basic Towards Understanding the Self-Describing
Data Standard,” Laurence-Berkeley Laboratory, Dec. 1, 1991,

[Steff85] Steffen, K.: “Basic Course on Accelerator Optics,” DESY HERA 85/10, Deutsches Elektronen-Synchrotron
DESY, Hamburg, March, 1985.

[SerBr85] Servranckx, Roger; Brown, Karl; Schachinger, Lindsay; Douglas, David: “User Guide to the Program
DIMAD,” Stanford Linear Accelerator Center, Report 285 UC-28(A) May, 1985

[TraZh91] Trahern, Garry; Zhou, Jiasheng: “SSC Lattice Database and Graphical Interface,” 1991 International
Conference on Accelerator and Large Experimental Physics Conrrol Systems, KEK, Japan, Nov, 1991,

{V1iLi88] Vlissides, John M.; Linton, Mark: “Applying Object-Oriented Design to Structured Graphics,” Proceedings
of the USENIX C++ Conference, Denver, Colorado, Oct. 1988,

[V1iss90] Vlissides, John M.: “Generalized Graphical Object Editing,” Technical Report: CSL-TR-90-427, Stanford
University, June 1990,

[Wirwi89] Wirfs-Brock, R.; Wilkerson, B.:"Object-Oriented Design: A Responsibility-Driven Approach.
Proceedings of OOPSLA ‘89, pp 71-76, Oct. 1989.

[WirWio1] wirfs-Brock, R.; Wilkerson, B.; Wiener, L.:”"Designing Object-Oriented Software,” pp33-36, ppl61-176,
Prentice Hall, 1991.

[Zeigl90] Zeigler, Bernard P.; “Object-Oriented Simulation with Hierarchical, Modular Models,” Academic Press,
1990.

[Zhou92] Zhou, Jiasheng: “Object-Oriented Modeling for Dynamic Simulation”, SSC internal report, Oct., 1992,

28

