
SSCL-N-813

Object-Oriented Simulation for the
SuperconductingSuper Collider

J. Zhou

SuperconductingSuperCollider Laboratory*
2550BeckleymeadeAve.

Dallas,TX 75237

M-J. Chung

Departmentof ComputerScience
MichiganStateUniversity
EastLansing,MI 48824

March 1993

Operatedby the Universities ResearchAssociation,Inc., for the U.S. Departmentof EnergyunderContract
No. DE-AC3S-89ER40486.



OBJECT-ORIENTED SIMULATION FOR THE
SUPERCONDUCTING SUPER COLLIDER

Tiathng Zhou
SuperccnductingSuperCollider Labcratay$

2550BeckleymeadeAvenue,MS4011

T&t 214-708-3461.email: zhouj@poplarssc.gov

Moon-Jungflint,8

Department of Computer Science
Michigan StateUniversity
EastLansing.?vfl 48824

TeW. 517-353-4392.email: thung@cpsnsu.edu

f Operatedby theUnivetitiesRearchAssociation,Inc., fir theU.S. 1epaflinentofEnergyunderContractNo. DE-AC3S-89ER40486.



ABSTRACT

The design and implementation of an object-oriented simulation environment, OZ, for the

SuperconductingSuper Collider SSCLaboratory is describedin this paper. The designapplies

object-oriented technology to data management and visualization, behavior modeling, and

dynamic simulation. A Meta Class ModelMCM is proposed to model different types of objects

in large systemsby theirfunctionality. Our MCM support encapsulation,codereuse,and a loosely

coupled developmentapproach. A meta class is a completeset of domain-specific classesthat are

cohesiveand self-containedto fulfill particularresponsibilities in a specific domain. It provides

four conceptuallayers in the designof a simulation environment. The designof eachmeta class

canproceedindependently,targetingtheresponsibilitiesandprotocols ofeachmetaclass.Our goal

is to accumulatively create a complete functionality for each layer for reusein future software

development.

OZ provides a graphicaluser interface thatallows theuserto visualizethe designdata as objects

in the databaseandto interactivelymodel systemcomponentsthroughdirect manipulation. Mod

elingcan be exercisedat differentlevelsof the systemdecompositionhierarchybeforeit is dynani

ically bound into a systemfor simulation. Inheritance is usedto derive new behaviorofthe system

or subsystemfrom the existingone.

The implementation uses C-i-i-, GLISTK library, InterViews 2.6, ISTK library, GNU C++

library, and the ObjectStore databasemanagementsystem.

Keywords: Meta Class,aggregationhierarchy,generalization-specializationhierarchy, object-

oriented decomposition.



1. INTRODUCTION

This paperdescribesthe mechanismsusedto build an integratedenvironmentfor dynamic

modeling and simulation of large complex systems using object-oriented approaches. This

mechanismhas been applied to the developmentof OZ, a project for dynamic simulation at the

Superconducting Super Collider SSC Laboratory. The goal of this project is to build an

environment that enablesvisualization of designdata, aids interactive modeling andsimulation to

exercise the SSCbefore it is actually built. We developedan object-oriented data model for SSC

simulation. A dynamic simulation paradigmis proposedand implemented basedon our data

model.

The SSCis an acceleratorbuilt to performhigh-energyphysicsexperiments.It mainly consists

of magnets with various attributes. Each machine design has a configuration basedon structured

data residing in databases.Experimental particle beams are injected from a linear accelerator

Linac, then further acceleratedat different energy levels through a low energy booster LEB,

medium energy booster MEB, and high energy booster HEB which are connectedby beam

transfer lines. Beamsare then injected in opposite directions into a top collider ring TC and a

bottom couider ring BC SeeFigurel. These20-6eVbeams finally collide in the interaction

region IR.

Figure 1. The Configuration of the SSC

Simulation at the SSCLaboratory usesboth static and dynamic data. Static data created in the

accelerator lattice the layout structure of magnets in an accelerator design are stored in the

database.Thesedata can be manipulated using a particular simulation model to createsimulation

results. Dynamic data is the footprint of such results subject to a particular configuration of the

accelerator lattice. So simulation is a process of manipulating static data basedon a simulation

1



model to createdynamicdata.The OZ projectat the SSChasthreegoals:

1. A graphicalbrowserfor visualizing theacceleratorlatticedatabase.This browserincludes:

1 a geometric view of the acceleratorcomplex in three dimensions,2 a symbolic

representationof thelatticestructureand configuration,3 a beamlinelocator, which locatesa

sectionof an acceleratorin theselectedlattice with a nameandexpandsit into its components,

and4 a plotterfor examiningvariouslatticeoptics functions.

2. A dynamic optics function simulator. Userscan changesome attributesof the accelerator

such as initial settings,strengthof the magnet,and injection position of the particles. A

feedbackcan be obtainedfrom thedynamicoptics function simulatorwhich tells the effectof

thesechanges.

3. A particletracking simulator.The simulatorsimulatesa bunchof particlesdistributedin a

predefinedpattern passingthrough eachacceleratorfor severalturns. It can also simulate

particlespassingthroughtransferlines betweenacceleratorswith different energylevels.The

simulatoraids reseatvhin beamsynchronization,timing, and transferof a trajectorywithin a

given aperturein theaccelerator.

Currently, most simulation and modeling tools aredesignedfor either small applicationsor

staticbatch modesimulation.Such tools generallyarenot object-orientedandlack graphicaland

interactivecapabilities.Most are not supportedby object-orienteddatabasesor by a persistent

object managementsystemwith a dynamic model. ABLE [Round89] is a knowledge-based

simulatorfor particleacceleratorcontroldevelopedat StanfordLinearAcceleratorCenterSLAC.

ABLE doesnot supportinteractivemodelingandsimulation.Its simulationcapabilityis limited to

beam trajectory fitting. It is difficult to changethe lattice configurationof an acceleratorat a

componentlevel for simulation.DIMAD [SerBr85]is anotheracceleratorlatticedevelopmenttool

createdat TRRJMF NationalLaboratoryin Vancouver,Canada.DIMAD is basedon FORTRAN,

andits graphicalinterfaceis basedon C andX. It doesnot havethecapability to directly interface

with an on-linedatabase.It alsodoesnotsupportdirectbehaviormodelingthroughtheobjectitself.

In both ABLE and DIMAD, data model and applicationare tightly coupled becauseof less

encapsulation.System decompositionbasedon procedurerather than object makes dynamic

modelingdifficult.

2



In project OZ, we have developedan object-orientedparadigm for data modeling and

simulation.In our paradigm,thesystemSSCis logically decomposedinto its components.These

componentsaremodeledasobjectsthat can be manipulatedthroughgraphicaluserinterfaces.The

objectscan be decomposedrepeatedlyuntil the necessarygranularityis reachedin terms of the

designrequirements,yielding an objectaggregationhierarchy.By examiningandgroupingobjects

at the componentlevel, we can getclass hierarchies,in which commonfeaturesare sharedand

differencesare derivedin a generalizationspecializationprocessamongclasses.

Theconceptof mewclassis introducedto tie a groupof cohesiveclasseswhich sharecertain

commonaspectsin themodeling,such asdata source,magnetandsimulator.MetaClassModel

MCM imposes a set of protocols between meta classes. MCM facilitates incremental

developmentfor simulation software, and promotesencapsulationand code reuse.Our MCM

allows not only to build theOZ project with maintainabilityand extensibility but also to bring

reusablesoftwareconstructsto be sharedby successiveprojects.

The object-orientedapproachhasbeenusedfor simulationsincethe programminglanguage

Simula [DahNy66]. Zeigler developeda formal system called DEVS-Scheme[Zeigl9O] for

modelingdiscreteeventsimulation.In DEVS-Scheme,modelandprocessors,the mainsubclasses

of the universalclassentities, providethe basicconstructsneededfor modelingand simulation.

Models and processorsare abstractclassesthat serve to provide basic slots neededby their

specializations.Atomic- and coupled-modelare two major subclassesof model for realizingthe

atomic-levelmodel and embodyingthe hierarchicalmodel.At the SSC, we obtain datafrom a

heterogenoussourceand we manipulateand view thedata in a fully interactiveand distributed

environment.In suchan environment,object-orientedtools haveto be availablefor multi-domain

developmentsuchasdataanalysis,graphic-basedediting,andrapid prototyping[Niels9l].

The Meta Class Model proposedin this paperis influencedby the work of Wirfs-Brock’s

[WirWi9l]. Her Responsibility-Driven Design approach stresses focusing on functional

decompositionof complexitiesin object-orientedmodeling.The conceptof contract, a cohesive

set of related responsibilitiesdefined by a class, is introduced to model objects and their

relationships.We expandthe ideaofcontractto a cohesivegroupof classesmetaclassesandcall

thesecontractsprotocols.The horizontal layer conceptfrom Coadand Yourdon [CbaYo9l] also

3



helpedus to divide a systeminto problemdomainlayer, a metaclass.

The remainderof the paperwill discussour MetaClassModel and its implementationin the

contextofthe OZ project.Section2 will discusstheconceptualdesignoftheMCM. Section3 will

describethedatamodelin MCM. Sections4 and5 illustratethemodelingof dynamicbehaviorand

simulationin OZ. Section 6 will discussgraphicaldatavisualization.We reachour conclusionat

section7.

2. CONCEPTUALDESIGN

The target of object-orientedsoftwaredevelopmentis the object-orienteddecompositionof

user’s needsinto executablelanguageconstructs[AkBer92]. In object-orienteddecomposition,

same objectscan be groupedinto classesand similar classescan be combined into a class

inheritancehierarchywherethecommonfeaturesaresharedandindividual charactersarederived

through generalization-specializationhierarchy. The process ends up with several class

hierarchies,eachof which will be designedto fulfill a particulartaskin thesystem.In MCM, these

classesaregroupedagain as metaclassesdependingon their domain and functionalities.Meta

classesare themselvesindependentfrom eachother with lessclustering.But eachmetaclass is

cohesiveself-containedin terms of its designatedfunctionalities. Objects in different meta

classesmay have relations,collaborations,interactions,and communicationsin the processof

simulation.Meta class definesa set of generic operationsthat can be performedon thesemeta

classes,such as operation retrieve to a databaseis generic to both Relational Database

ManagementSystemRDBMS and Object-orientedDatabaseManagementSystemODBMS.

We call thesegenericoperationsprotocolbecausethey standfor a generalagreementor contract

betweenmetaclasses.Within eachmetaclass,theseprotocolscan be interpreteddifferently based

on classand simulationcontext throughdynamicbinding [Oscar89J.A protocol includesa list of

requeststhat aclient can makeof a server,a list of rules that a client hasto obeywhenmakingthe

request,and descriptionsabout the serviceor responsibility [WirWi89]. When a protocol is no

longeradequateto a subclass,eithera high-levelabstractionis neededor anewprotocolshouldbe

introducedfor that metaclass.

In MCM, the protocoldesignprocessis both top-downandbottom-up.The top-downprocess

4



specifiesa setof virtual protocolsin thebaseclassanddefinesthem in individual subclasseswhen

needed.The bottom-upprocessseekssimilar responsibilitiesamong classesandextractstheir

abstractionto their baseclass.In OZ, therearefour metaclasses,eachof which is implementedby

a frameworkof classesor classhierarchies:

1. DATA: classeshandlingdatatransmissionandtransformation,and providing servicesfor

modelingandsimulation. In simulation,datamay come from different sourceswith different

data models,binary data from sensorsand ports, flat ASCII files, structuresin SDS Self

Describing Standard[Saltm9l] files, tables in relational databases,and objects in object-

orienteddatabases.Although various datamay representthesamereal-worldentity, their data

model is restrictedby the feature of the repositorywherein they reside. Data provider and

consumerare probably loosely coupled. The metaclass DATA isolatesthe impact of data

managementschema,whetherfiat file, relational,orobject-oriented.It makesthedetailsofdata

transmissionand transformationtransparentto its clients, and it narrowsthe semanticgap

betweenrestricteddatamodelsin various repositoriesand theobjectmodels in analysisand

design. At the SSC Laboratory,data describingthe structure,identities,andattributesof the

acceleratorcalled lattice structurefor each acceleratorare stored in a RDBMS, SyBase

[TraZh9lJ.SDS is usedasa vehicle to movedatastructuresbetweentheapplicationand the

database.TheDATA object mapsdatafrom differentdatamodelsinto anobject modelfor other

partsof thesimulationsystem,suchasa simulatoranda graphicplotter. As aresult,high-level

abstractionsthroughDATA wifi bring flexibility in applications.

2. MODELER: classesorganizingtheinformationto representtheessenceofreal-worldentities

basedon interrelationsand interactionsin the model usedfor the simulation. MODELER

definesthedatastructureand its externalview in termsof the simulationto be conducted.It

createsmetadatathat specify the structureand configurationof objects.An applicationmodel

is defined or derivedfrom an existing model in MODELER. For example,in an accelerator

particle-trackingmodel,a non-linearmodelis derivedfrom alinearmodelby consideringhigh

order magnetsin the lattice. Each class in MODELER also provides a context in which

protocols get interpretedin DATA and SIMULATOR explainedbelow. By using object-

oriented techniques,class hierarchy can be usedto decomposea large model by two inter

5



componentrelationships: is-a-an generalization-specializationhierarchy, andpart-of-an

aggregationhierarchy.Delegationcan be usedto representa complexmodelby its component

structures.Classhierarchyfacilitatesinheritanceandmakesdynamicbindingpossible.A model

can be derivedor composedby existing models.

3. SIMULATOR: objectsto practicedynamicsimulation.Simulationalgorithmsarelikely to be

developedindependentlyby domain specialists.It is not necessaryto design,test, and debug

those partswith the entire system.They can be built separatelyand connectedto the system

later. For example,it is not necessarytochangetheterminaleachtime that theCPU is upgraded.

For thesamereason,whenyou designyour new CPU,you don’t needto worry aboutthetype

of terminal you will use if a standardinterfaceis definedbetweenthem. Both the CPU and

terminal can havetheir own classhierarchiesand designprocedures.A simulatorinstanceof

SIMULATOR can be built by deriving it from an existingone,orby aggregatingexisting ones

throughdelegation.

4. INTERFACE: classesprovidinga man-machinegraphicalinterface.INTERFACE provides

windowsto graphically presentthe processof modelingandsimulationto theuser.Through

classderivation,classesin INTERFACE can be sharedamongsystemswith few modifications.

A well-establishedINTERFACE class library or framework can make interfaceprototyping

easierand faster. A predefinedlook-and-feel is also important to help the user learn new

applications.An INTERFACE classcan be built independentlyfrom its applicationssuchasthe

domain-specificeditor in InterViews’ Unidraw [Vliss9O].

Figure 2 illustrates the relations among the four meta classes,where arrows point in the

direction of the datafiow. MODELER constructsa model using information from DATA. The

model in MODELER can be viewed through INTERFACE. SIMULATOR is run basedon the

model in MODELER it uses,and the result is conveyedto the user through INTERFACE.

Application userscan derivetheir own domain-specificclassesfrom high-levelabstractclassesin

our MetaClassModel. A simulationapplicationcan be built by using classesfrom thefour meta

classes.

Our MetaClassModel has threemajor advantages.First, it promotesindependentdesignand

developmentofdifferentclasseshierarchiesor frameworksfor differentknowledgedomains.An

6



SIMULA’IDR

Figure2. A MetaClassstructure.

acceleratorphysicist builds a magnetclass hierarchy; a mathematicianbuilds a numberclass

hierarchy.In a largesimulationsystem,classesofvariouskinds will likely be designed,developed,

anddebuggedin differentenvironmentsby differentpeoplein their knowledgedomains.Eachtype

of classhasits own inheritancehierarchy.Therelationsbetweenthesehierarchiesaredescribedby

the meta class protocols; So design and implementationof eachmeta class can be relatively

independent.Secondly,the MCM increasescodereuseand domain knowledgeencapsulation.A

well-encapsulatedclass can be instantiatedto build a more complex object, while the original

object neednot be modifiedor understood.Different applicationsmayusesimilar objectsto save

codingeffort. Newly derivedclassescan still sharethe protocolsdefinedat higherlevels in their

baseclass.Derived classescan take advantageof inheritanceand dynamic binding to use or

redefinethe existing protocolsasneeded.Thirdly, onceinterfacesbetweenthenodesare clearly

specifiedby protocols,developmentcan proceedin parallelamongclasshierarchies.Independent

developmentalsomakessoftwaretestingand debuggingmucheasierandmoreefficient.

3. OBJECT-ORIENTEDDATA MODELING

We differentiate betweendatamodeling and systemmodeling discussedin section4 in the

sensethat datamodelingemphasizesthesyntaxof thedata,while systemmodelingfocuseson the

semanticsofthedatain aparticularmodel.In datamodeling,for example,apicture isjust a bitmap.

Each bit has no differenceexceptits color and position. In system modeling, a picture is a

collection of objectswith behaviors.Usercan move objectsaroundand changetheir shape.Data

modelingis concernedwith how thedatain therepositorywill be presentedto thestructuredframe

in theMODELER.A datamodelis a setofclassesthatcan be usedto describethestructureof, and

operationson a datasourcein a heterogenousenvironment.Thereareseveraltypesof datamodel

the simulationdealswith at the SSC:a relationalmodel in SyBaseRDBMS; an object-oriented

DATA MODELER

INTERFACE

7



model in ObjectStoreanODBMS; a file modelin Unix file systemand ahardwaredevicemodel

in all detectorsand adjustersin the accelerator.Meta classDATA encapsulatesthe differences

betweenvariousdatamodelsandprovidesa unified operatinginterfaceby a setof protocols.

At the SSC Laboratory, static design data for each lattice arestoredin SyBase,or Self-

DescribingStandard5D5 files with severaltablessuchasGEO,OPTICS,andTWISS.Eachtable

consistsof rows andcolumns.An index numberID# is associatedwith eachrow alsocalledan

entry, or a record and eachcolumn correspondsto a particularattribute. Table GEO records

geometricalinformation of all magnetsin the lattice. Each magnethas an entry through GEO.

Attributes couldbe pointersreferencingothertables,suchas OPTICSand TWISS, that contain

detailedinformation about magnetsuch as its length, strength,and optical functions. Objectsin

MODELER areinstantiatedwith informationin thesetablesthroughDATA objectsandstoredin

ObjectStore[ObDes92],an ODBMS, with the structuredefinedin MODELER. Model can be

imposedon thestructurein ObjectStoreto directly supportsimulation.Datacan be shippedamong

databases,beampositionmonitors,sensors,andapplicationson differentplatformsofworkstations

throughoutthe networkin SDS. SDS can packa recordin adatabasewith its attributesinto a C++

structure,assembletheattributesinto anobject,andloadtheobjectto anSDS file. Thus,adatabase

tablewill correspondto an arrayof persistentstructuresin the SDS file. Generallyspeaking,SDS

providesa structuredfile in theUNIX file system.My abstractdatatype can be storedin an SDS

file directly.

Datasourceclasshierarchy in metaclassDATA is shownin Figure3. Datasource is an

abstract class in DATA which representsany kind of data information used in simulation.

Database, rile, andPort arethreesubclassesderivedfrom Datasource. A setof protocolsis

declaredasvirtual functions in DataSource and can be sharedor defined in its subclasses.The

Figure 3. DataSourceClassHierarchy in DATA MetaClass

S



questionthat needsto be resolvedhereis how an object knowswhich methodshouldbe called to

respondto a genericprotocol.Therearethreewaysto bind a protocolto a method:First is therun-

time type of an object, which is the key for dynamic binding. Secondis the signatureof the

parameterlist of protocols; different signatureswill result in different methodsto be selectedto

fulfill the contracttoward a particularprotocol. Third is therun-time type of argumentpassedto

the protocol, such as sourceor mode. Although the identity of database,file, or port will all be

representedby classSource, thedifferencebetweenthem can be encapsulatedin theprotocoland

recoveredlaterin the processof methodresolution.In C++,theprecedingthreeapproachescan be

implementedusing virtual function dynamic binding and skin-body class structure[Copli92}.

Objectstore’sMeta Object Protocol MOP alsogives us a run-time type-checkingcapability

throughdatabaseschemata.The threesubclassesderivedfrom DataSource arediscussedbelow.

ClassDatabase: a baseclassfor databaseoperations.Databasesupportsa set of protocols

which is generic to all of its derived classes.These protocols can be Open, Load, Close,

Transaction, Update, andRetrieve. The protocolsprovideconunoninterfacesandcontracts

to clients, regardlesswhat kind of databaseused. Class Database has two derived classes:

SyBaseand ObjectStore.

Class File: a baseclassfor file operations.ClassCnuEile and SDSarederivedfrom File.

GnuFile areobject-orientedwrappersof GNU’s SFile classand SDSareSDS C++ classlibrary.

CnuFile supportssimple-type-basedsequentialfiles. An integer,floating numbercanbe directly

written to a file. SDS supportsstructuredfiles. A C-languagestructurecanbe directly readfrom or

written to an SDS file. Structurein SDS is self-describingwith meta datathat can be retrieved

togetherwith data.

ClassPort abaseclassto modelphysicalequipment.Port hastwo subclasses:Sensor and

BPM. Sensor is a class for real-timedataacquisition.Datafrom Sensor is time-stamped. BPM is

a datapool locatedat certainpositionsof theaccelerator.Datafrom BPM is read-only.

Other classesare designedto be embeddedin subclassesof DataSource to provide data

abstractionand implementationencapsulation,such as Table in SyBase and TimeStazup in

Port. Theseclassesarenot subclassesofnataSource but aredatamembersinstancevariables

of it. A panof classSyBasedeclarationis given asfollows:

9



class SyBase public DataSource
char databasewame[32] ;
Table* To;
column* CO;
Status Loadmode*;

I

ClassTable is usedas a datamemberin SyBaseand SDS. If necessary,a particulartablecan

be loadedasa Table object.This objectis dynamicallycreatedwhena table is loadedandpointed

by a membervariablein classSyBaseTO. In SDS, the Table is an array of C++ structures.

ClassColumn modelsan attributeAO correspondingto a column in SyBase.This attributeis

pointed by a membervariableof TO. AO is able to extracta particularfield from an array of

structurestable. Usually only someof theattributesare involved in thesimulationat onetime.

Loading a databasetable into memory takes time and space,and it is not efficient for such

simulations,somakingan attribute asan objectis very useful.

TixneStainpis usedfor real-timedataacquisition.It can be embeddedinto anyDATA objectto

support real-timeoperation.

The DataSourceitself will not provide any application-orienteddatamanipulationsupport.

The mS purposefor creatingan object-orienteddatamodel is to facilitate datamanipulations

throughdifferentdatasources:files, RDBMS,ODBMS, orphysicalequipment.DATA providesa

set of classesand protocolsthat can keepits clientsfrom thedetailsof particulardatamodelsand

repositories.A standardwell-encapsulatedinterfacebetweenDATA and otherpartsof the system

will keeptheimplementationdetail transparentto theuser,no matterwhat kind of datarepository

or sourceis used.

4. MODELING DYNAMIC BEHAVIOR

A modelis an abstractionpossiblya mathematicalabstractionof a real-world entity for the

purposeof understandingit beforebuilding it [RumBl9l]. It is natural in simulationto represent

entities in an applicationdomain asobjectsthat respondto a set of well-defined messages.For

example, in an acceleratorsystem model, domain objects might be magnets,particles, and

acceleratorsa compositeobject. In our approach,a model is representedasa set of methodsfor

generatingdynamic datafor the observablesin the real system.New types of models may be

10



createdby specializingexisting ones. Complex systemscan be modeledwith compositeobjects

also called submodelsand can be used in other models like a built-in type in programming

language.A modelasa wholeis itself a compositeobject that respondsto a setof messages.The

tolerantthresholdtowardcertainattributesis calledconstraint,which is definedasa function fc of

someattributesA0 for a particularobject,C0 = fcAo. Behaviorof the object is modeledasa set

of methods Mb, which is a function of attributes A0 and constraintsC0 basedon algorithms

developedwith domain knowledge. Dynamic behaviordescribesthose aspectsof the object

concernedwith time, sequencingof operation,and its configuration.Theseaspectsincludeevents

that mark changes,sequencesof events, statesthat define the context of events, and the

configurationof thesystemwheretheobjectis placed.Modelingdynamicbehaviorcan be divided

into a two-stepprocess:

* Structuremodelingonly for compositeobject. This stepdefinestheconfigurationstructure

of theobject, thecouplingpatternof its components.

* Behaviormodeling.This steprequirestheuserto designa set of methodsto createdynamic

behaviorsbasedon an object’sattributes,constraints,andconfigurationstructure.

The MODELER in MCM is a library that containsa setof modelsandmodelclasshierarchies

where each model emphasizesdifferent aspectsor representsdifferent levels of the real-world

entities.Differentmodelsof thesamereal-worldentity providedifferent abstractionsinterestedin

simulationsfor different purposes.It is the responsibilityof MODELER to providea structured

frame or representationschemathat interpretsthe data from the DATA object in terms of the

simulationto be conducted.It is alsotheresponsibilityof theMODELER to provideall necessary

methodsto demonstratebehaviorsto meetparticularsimulationrequirements.The DATA object

drivesthe MODELER object.The MODELER objectgeneratesbehaviorsbasedon DATA via its

understandingandinterpretation.

4.1 StructureModelizw

Structure modeling decomposesthe complexity of a system into severalsub-systems.The

principle of such decompositionis basedon domain analysis of inter-relationshipswithin the

system.In structuremodeling,an acceleratorcan be decomposedinto beamline,a set of magnets

placedin a specificorderasdesigncomponents.The structureof anacceleratorcan be modeledby

11



usingconfigurationbinding techniques.Acceleratoris on thetop of this configurationhierarchy.It

is decomposedinto major beamlines,such as lattice LEB is decomposedinto three major

beamlines,trim, triext, triwm asshownin Figure4; thesemajorbeamlinesarefurtherdecomposed

::LEBI

jarcwml lssewiiuinil

Figure4. Lattice ConfigurationHierarchy.

into smaller beamlines,which are in turn decomposedall the way to the magnetlevel. Such a

structurehierarchy is calleda lattice configuration for an accelerator.The class Beamline is

derivedfrom thebaseMagnet.Beanil.ine holds apointertoits component,which may be smaller

beamilnesor magnets.Beamline class inherits certainbehaviorsfrom Magnet class,such as

transferring particles. It is also easy to insert or replace beamline’s componentwith another

beamlineormagnet.

Beamline inherits all membersand methodsfrom Magnet, but Beamline has its own

methodsto specifyits structure.Membersandmethodsof Beamlinearelisted in Table 1.
Table 1 BeainlineClass.

MemberVariablesand
Member

Functions
FunctionIllustration

Beamline*bmLnEhnnt; brnLnElmntpoint to thecurrentcompcaientssmallerbeamlinesor magnets

InsertWhichSide; Insert insertsa beamlinebeforefafterdependson thevalueof Whichsidethe
currentbeamline.ReplaceandDeletereplacesanddeletesthe currentbeamline.
Get movesthebmLnElmnt to anotherbeamline.RenlacePcitionBeamline*.

‘

DeletePosition;
GetPition;
virtual TrackingParticle* Beamline’sown method,which acceptsa particleor beamthat is derivedfrom a

particleobjectas its argument,doesstraightforward,magnet-by-magnettrackingat
the bottom of the configurationhierarchythrough the beamline.Thekeyword
"virtual" meansthat eachbeanilineor magnetobjectmustimplementsucha method.
Oneof theextraordinarilyusefulfeaturesof thevirtual methodis that it allowsus to
performpolymorphismon all kinds of beamlinesandmagnets.

A new lattice configuration can be createdby replacing an existing beamline with a new

beamlineor by changingexistingbeamline’sattributessuchasstrength.In Figure4, a newdesign

for thebeamlinetriwm’ createsa new configurationfor its parentLEB, LEB’. LEB andLEB’ are

referredasthe sameobjectlogically with differentconfiguration.Configurationbindingis defentd

12



at the simulationstageby settingthe properconfigurationnameandthe binding actually occurs

from thebottomlevel ofthis hierarchy,i. e. at themagnetlevel.Furtherdiscussaboutconfiguration

managementis beyondthe scopeof this paperand readercan refer to [Zhou92]. The major

advantageof this hierarchicalmodelis its reusability.Beamlinetriinj and tn extcanbe sharedby

two differentconfigurations.In termsof modelingitself, anysystemespeciallyacomplexsystem

can be decomposedhierarchically. Hierarchical decomposition distributes complexity into

different layers of abstractions.It provides the flexibility to adjust modeling focus between

abstractionand specification.In termsof simulation,the samemodel can be useddifferently by

attachingdifferentattributesfor varioustypesof simulations.A submodelcan alsobe derivedfrom

an existingmodelto changethebehaviorof theobject modeled.

4.2 BehaviorModelinc

Behaviormodelingseeksa setof methodsgoverningtheobject’scontrol logic basedon domain

knowledge.At the SSCLaboratory,there arethreekinds of objectsto be modeled:the particle

beam, themagnetin theaccelerator,andtheacceleratoritself. Thebehaviorof a particledepends

on its momentum,its position, and the distribution of magnet-fieldstrengtharound it. Particle

momentumand magnetstrengthdistributionare determinedby the acceleratorthroughwhich a

particle is passing. In simulation the behaviorof a bunch of particles beam will be more

interestingstatistically.Particledistribution hierarchyPDH is usedtorecordsuchabeammodel.

TherootclassBeamhasonly oneparticle,and it is placedat theorigin. Particleswith standard

statistical distributions, such as normal and average,are subclassesof Beam. Beam has five

instancevariableslistedin Table 2. VectorD = Id. d’. 6] is calledtheprinciple vectorPV, where

d is thedisplacement,d’ is the angulardeflection,and6 is themomentumdeviationoftheparticle.

A newbeamclasscan be derivedfrom a beamclasslibrary with agraphicaluserinterface.A beam

objectcanbecreatedin threeways: instantiatingfrom abeamclass;copyinganexistingbeamfrom

thebeamclasslibrary andchangingtheparticledistributionoramountof theparticlesFigure5;

or asa resultof beam-trackingsimulation.
Table2 JnstanceVariablesin Beam Class

InstanceVariableName Illustration

num numberof particlesin the beam

Position*pos[numj positionof thoseparticles,displacement

13



Table 2 Instance Variables in Beam Class

InstanceVariableName Illustration

Deflection tdp[num] angulardeflectionof the particle
Deviation *delta[numj momentumdeviationof the particle

distributionform statisticaldistributionof thoseparticles

void Generateseed generatea particledistribution

..

Figure 5. BeamObjectsCreatedfromPDH.

Alter a beamis created,it is sentto an accelerationpattern which is the logical path from its

launchpositionto its endobservingpositionthroughacceleratorsfor simulation.Themomentum

will be dynamicallyboundto theparticlewhen passingthoughthecorrespondingaccelerator.

The behaviorof themagnetdependson its magnettypet, magnetstrengths,length1,tilto,

linearitym, optics functions suchas function, phaseadvance4, and other attributes.The

principle magnethierarchyPMHis shown in Figure 6. A prototypeof the magnetattributes

modelingsystemis shownon theright of Figure6. Magnetinstancesaregraphicallyrepresented

by a collection of icons SeeFigures 8 and 14. A magnetclass is representedby a list of its

attributes.Magnetsareconstructedfrom their own class using this interface. After a derived

magnettype is createdfrom thehierarchy,it is addedbackto thelist asapart of thenewhierarchy.

net r clement Attributes: -

I Strea:

L°°1J
magnetsto tranfer 0 0000beamin thestraight 00300
section

-0

Figure 6. PrincipleMagnetClassHierarchya, and its interfaceb

The behaviorof the magnetcan be modeledas a 3 by 3 transformationmatrix M basedon

Steffen’stheory [Steff85]. M is definedas a function of t, s, 1, o, and m for a particularmagnet,

where t, s, 1, o, andm are definedas above.D1 andD÷1 are the principle vectorsof a particle at

position i andi+1 respectively.TherelationshipbetweenD11 andDare:D11 =MeD1, i.e.:

Radio Frequency
mit to accelerate
the beam

a
cnwneyer,on2.0

14



rc s £1
= cso

1+1
Lo

The Magnet classprovidesmethodsto supportoperationson the transformationmatrix. The

Magnet classdefinition is partially given in Table 3.
Table3 Magnet Class

Member Variables and
Member Functions Functionillustration

Classcategory There are four categories: drift, bending magnet.RF caviüesandJocus/defoc using
magnets.categoryis usedfor dynamic typechecking,which is nct supported by C++.

Attributes °myAttributes Attributes is a C++ class with all attributes:basicandcompcite
virtual Matrix0 CreateTM Create transformation matrix for that magnet

virtual PV0 BehaviorMap Create a result principle vector1W from thepreviousone

All principle magnetclassesare predefined.EachMagnet instancehas a pointer to a Magnet

classin thePM}1. When a newMagnet classhasto be created,a particularMagnet instancewill

be selected.By changingtheproperattributes,anewclasswill becreatedwith that instanceasits

first instance.The new class inherits all methods from its parent, such as CreateTM and

BehaviorMap.

Behaviormodelingthrough r1agnet’smethodis supportedby two approaches:

1. Each subclassof Magnet has its so-calledbehavior file that is includedby the virtual

function BehaviorMap . A edit window is provided for examiningand overriding the

previous behavior model such as method BehaviorMap by using C++ code. Behavior

binding is implementedby taking advantageof dynamicbinding of C++ virtual function.New

C++ codehasto be recompiledand linked into thesystem;then thewholeprocessneedsto be

restarted.As an example,CurrentDipoleBehavior is the behaviorfile for the dipole, a

PV DipolenBehaviorMap [
include "currentDipoleBehavior"

subclassof I’D FocusingandDefocusingmagnet.The newbehaviorfile createdthroughedit

window replaces the previous behavior file and the old one is renamed as

currentDipoleBehavior.-l-. The advantageof this kind of approachis that code in other

15



simulation programscan be cut and pasted into our behaviormodeling system with little

modifications.The restriction is that userhave to know C-i--i- programmingand thecontext of

that virtual function.

2. Severalmodelssuchaslinearandnonlinearmethodcan be predefinedbasedon knowledge

and domainspecific rules. Virtual function dynamicallybindstherule numbersetby theuser

through interface with a pointer to the memberfunction to constructbehavior. Interactive

modelingbasically becomesrule-picking andfunction-binding.

Beamtrackingmodelclasshierarchyis shownin Figure7. A Linear SequentialTransformation

LinearSequential
TransformationModel

Non-linearSequential Linear Direct
TransformationModel TransformationModel

Figure7. A BeamTrackingModelClassHierarchyin MODELLER

LST Model usesan aggregationhierarchy.of a system.All nodesin thehierarchyaremodeledas

objectsof classActor [Zhou92Jwith internaldatarepresentationanda setof methodsfor creating

behaviors.Theresultof interactionsbetweenobjectsis createdusingmathematicaltransformation

on an object’s internaldatarepresentations.To simplify theproblem,sucha transformationcould

beconsideredaslinearonestepandsequentialnoconcurrency.For example,an acceleratorcan

be decomposedasseveralsectorsalsocauedbeamlines.Beamlinecan finally be decomposedas

elementssuchasmagnetsandRF cavities.A particle launchedat a certainplacepassingthrough

theacceleratorcan be consideredasan LST. Whenevertheparticlepassesthroughan element,its

position,deviationandmomentummay change;it thereforechangesits behavior,suchaswiping

out of the trajectory. A Non-linearSequentialTransformationNST Model and a Linear Direct

TransformationLDT Model can be derived from the LST Model by overriding the transfer

behaviorof the model. In NST, transformationcontainsseveral stepsbasedon the type of the

element.Such atransformationis no longercontext-free.It may rely on thepreviousresultandhas

impact on the next step. In LDT, several transformationscan be aggregatedinto one.

Transformationis independentof theobject to be transferred.

16



5. CONSTRUCTINGDYNAMIC SIMULATION

This sectionincludesseveralexamplesof constructinga dynamic simulatorin an interactive

environment.Dynamic simulation providesan interactiveenvironmentbetweenthe userand the

simulator. It allows the userto selectan appropriatemodel from the MODELER, to pinpoint

objectscomponentin SSC lattice, to modify their attributesand structure,and to rerun the

simulation to see the impact of the result system.Most configuration adjustmentscausedby

individual modification will be propagatedautomaticallyby the simulatorby calling the proper

modelmethod.

SIMULATOR is a metaclassthat exercisesmodelsto actuallygeneratedynamicbehaviorsto

meet simulation requirements.Simulatoran instanceof SIMULATOR is the managerof the

entire simulation.It decideswhenandwhich methodshouldbeinvokedin termsof themodelused

during the simulationprocess.Objectsarecontrolledundersimulatorto interactwith eachother

andcreatedynamicbehavior.We stressthat "modeling"and "simulation" aretwo different tasks

and we will attemptnot to use them interchangeably;one modelmay be simulatedusing several

differentsimulationalgorithms.The relationshipbetweenSIMULATOR andMODELER is quite

similar to therelationshipbetweenalgorithmand datastructure.MODELER providesa basefor

creatingbehavior.Certain models in the MODELER will createcertainbehaviorsfor specific

simulationin SIMULATOR.

As explainedearlier, OZ dealswith three typesof models: beam model,magnetmodel and

lattice configurationmodel.The behaviorof eachobject in the interactivesimulation processis

usedto adjust the model for better design. As an example, let’s illustrate how BumpView

simulationworksusingthe SIMULATOR. A basicproblemin acceleratorphysics is how to keep

thebeaminside thecorrecttrajectory, i.e., to avoidlosing the beam.The beamis basically guided

by magnets.Most magnetshavefixed strengthandaredesignedto bendthebeamat acertainangle

at specifiedlocations.To correct dynamicerrors that may affect thebeamtrajectory,hundredsof

adjustingmagnetskickersareplacedamongthe built-in magnets.There arealsohundredsof

detectorsbeam position monitors, or BPMs near those kickers to monitor the results of

correctionsand to locate the beamposition.For a particularBPM reading, simulationshouldbe

able to predict the adjustingvalue for eachkickei; especiallythose kickers near the BPM being

17



monitored.BumpViewsimulatoris built to achievesucha goal. It providesa simulatedbeamline

aperturefor adjusting particle trajectoryand simulatesthe effectivenessof bendingforcecreated

by adjustersto particles at therequestedposition. BumpView uses a linear model, a submodel

derivedfrom structuredhierarchicalmodel we mentionedbefore.Actually a methodis addedto

the linearmodelfor sendingrecursivequeryto theparenthierarchicalmodelto pull theseleaf-level

magnetout. The objectsinvolvedin the simulationarejust of type Magnet anda particularlattice

configuration.A influencefunction is definedas a relationshipbetweeneachpair of monitor and

adjusterin the derived model. These influence functions are used as coefficients of a set of

differentialequationsto be solvedfor thesimulation.

Figure8 givestheBumpViewsimulationinterface.Thebottompartofthewindow is a symbolic

representationoftheLEB latticestructure.Aboveit arethepositionsof thedetectorsandadjusters

along theLEB. All objectsin the representationareactivesensibleand associatedwith actions.

A displaypanelalwayspromptsattributesofthemagnetengagedwith apointingdevice.A particle

object can be constructedon the fly using graphical user interface and can track through the

beamlineunderthe requestedbendingforce. In the middle of the window shadedpail is the

dynamicapertureof theLEB, whichbasicallydependson theattributesofthemagnetat eachpoint.

The middle part is expandedat the upperright corner.The dashedbar is theBPM readingset by

theuser.Burnpviewsimulationonly usesmagnetmodelbecauseparticletracking solely dealswith

leaf-level component.But when a userwantsto modify attributesof a magnetor the structureof

the beamline,the beamlinemodel kicks in andcontrolsthepropagationofthe modification.When

Figure8. 3-bumpSimulaticnUsingBumpviewSimulatci.

18



a BPM is engagedfor value setting, Detectormodel for BPM is bound to provide special

behavior.Actually Detectormodel is derivedfrom magnetmodel for BPM setting. Soa model in

MODELER can be directly usedor inheritedfor specific simulation.Such extensibility is useful

for modelreuse.Bumpview simulationwill give thefollowing:

1. The settingvalueof the threenearestadjusters,which will generatetheBPM readingset by

the user.Threewhite points actually a threegreenbar standfor thesettingsof threekickers

aroundthat BPM. The actual values are given as deltaX.’, deltaX’, deltaX÷’ in the "Adjuster

settings"box at thebottomof thecontrolpanel.

2. To makethingssimpler,weassumethat theadjustingwill affectonly thethreeBPM readings

nearestto theBPM selected.All otherBPMsshouldhavezeroreadings.The simulationproves

themodelis correct.From the picture,thereareonly threesolidbarsin themiddle.Theup part

of the window is the 13-tron oscillationalong theLEB.

Figures9 and 10 give more examplesof dynamic simulations.In Figure9, a is the optics

function of LEB createdby object l’wiss in SIMULATOR; b and c are dynamic particle

trackingby turnsor by everymagnetusingTrackfrom SIMULATOR; andd is dynamictracking

of abeamcreatedfrom beamclasshierarchyby usingmnit., which is alsoa simulatorobjectfrom

the SIMULATOR classhierarchy.Emit can alsobe usedto aid theresearchof relationsbetween

particledistribution in thebeamandbeamsurvivability.

H - -

a. Dynamicoptics function b. Dynamic particie tracking c. Dynamictrackingparticle d. Dynamic launch a beam -

creation of the MEB. 1-lere in LEB for 100 turns, and for oneturn andrecording for 10 turns to seehow many
is a function, recording its d andS after its d and d’ after each magnet. particles are still in the

eachturn. survival aperture. Beamis in
solid dot. Survival particle is

Figure 9. DynamicSimulation, is small circie.

A particle could be lost duringtheacceleration.It is importantto know whereit is lost in order

to make the correctionby usingtheBumpView simulator.Figure 10 gives suchan example.User

canchangethedynamicapertureandparticle emit position in theprocessoftracking simulationto

seeunderwhich circumstancethe particle will wipe out. a showsa particlepassingthroughLEB

19



on ns
n z=aan- -
n =
nfl m

Ti a. Trackinga particle for certain turns
to check its survivability under the
current lattice configuration.

b. Launcha beam with certain distribution.Check
its distributionafter severalturns to researchthe
relation with lattice configurationandmaguet
attributes.

Figure 10. BeamSurvivability Research.

sC’winghowmany
turns thatparticle
survives!

andwiping out. By zooming in to thepicture,usercan find theexactwiping out position.b gives

anotherexampleof simulatinga beampassingthroughtheLEB.

6. OBJECT-ORIENTEDDATA VISUALIZATION

In this section, we will describe the functionality of data visualization in OZ and related

implementationissues.Data visualizationallows a user to directly manipulatean objectand to

accessinformation through the graphicaluser interfaceto conduct modelingandsimulation. It

makesmodelingand simulationefficient, informative,andmucheasierto handle.

In OZ thewholeSSCcomplexcan be visualizedthrougha window with zoomingandscrolling

capability.Various physics functionscan be dynamically plottedthroughdifferentwindows, and

configurationof the beamlinecomponentcan be editedusing graphical interfacethat supports

directobject manipulation.After a particularlatticehasbeenloaded,theposition andsize of each

object can be extractedfrom DataSource object. The plotting window an object of class

Viewplot scalesthesedatabasedon cuntntplotting size and displaysthe object on thescreen.

A visualData subclassis derivedfrom DataSource to interfacewith Viewplot by redefining

not redeclaringtheprotocolsdealing with domain-specificoperationssuchasscalingandcolor-

coding. Whenresizeoccurs,Viewplot will rescaletheposition and sizeof all objectsandreplot

them. Incrementaldrawing is supportedby viewplot for accumulativelydisplayingsimulation

without refreshingthewhole window. By takingadvantageof dynamicbindingof theC++ virtual

showing
where
it wipey
out./

20



function, all methodsfor graphicmanipulationare virtual. For example,a zoomingoperationon

an optics function plotting will causea one-dimensionalzoom-in. The same operation on a

geometricalrepresentationof an acceleratorwill causea two-dimensionalzoom-in,If severalplots

have to be zoomedin simultaneouslywith the same scaling, a virtual function call of zoom

operationon all theseplots will work polymorphically.

Latticeconfigurationediting is supportedby directgraphicalobjectmanipulation.ClassNode

representsa componentgraphicallyandexpandsits subcomponentinto a tree structure.Figure11

is a graphicalinterfacefor the lattice configurationeditor that providesan interactivemodeling

environmentto theMODELER. Theconfigurationtreeshownin thefigure canbe cut andpasted

using an existing componentin the tree or a new componentgraphicallyrepresentedby Node

object createdon the fly by the user.Configurationchangein a subtreewill be informedto its

parentcomponentits aggregation.And the parentcomponentwill updatethe corresponding

stmcturemodelof MODELER in thedatabase.

Meta class INTERFACE is implementedto provide all the classesnecessaryto construct

visualizationsoftwarefor simulation in OZ. INTERFACE classesaredevelopedusingLISTK

[Kan9lJandInterViews {Linto90] libraries.Two importantclassesshouldbe addressedin building

a graphic interface: 1 the layout of the interactive interface and connectionsamong control

elements,suchasbuttonsand menus,and2 theinteractivegraphicsview.

Figure 11. Lattice ConfigurationHierarchyBrowser.

21



ControlLayout is a classto lay out controlelementssuchas button andmenuand specify

their behaviors.It has two subclasses:Layout and ControlElement. Layout is an invisible

objectwhichis primarily usedfor anangingControlElements on thescreen.ControlElement

is abaseclassfor all graphicalinterfacebuildingcomponents,suchasbutton, menu,and scroll bar

etc. Control elementsare creatednot inside the constructorof Layout but by anothervirtual

methodcalledCreateandxnsertO.Different applicationsmay overridecreateandlnsert

to createand inserttheir own controlelements.

Layout is derivedfrom classGorgan in GLISTK, a subclassof InterViews’ SceneFigure

12. Controiflement is derived from class LabelGlist]c in GLISTK, a subclassof

InterViews’ Interactor. A callbackfunctiondefinedin SIMULATOR objectcan be attachedas

a control action of a ControlElement suchas a button or menuitem to respondto a button

clicking or menuselecting.In OZ, threesubclassesarederivedfrom ControlLayout. They are

OzControl for thelayoutof thecontrol panelto switch amongdifferent lattices,OzPlotwinfor

thelayout of variousviewplots and the connectionof their controls,and OzModeler for the

layout of the magnet attributes editor. Table 4 summarizesa few protocols provided by

ControlLayout.
Table 4 Protocols in Class ControlLayout

MemberFunctions FunctionDescription

CreateAndlnsert Createcontrol elementsand insertthem in a properfcrm usingalignmentvariables.
ControlLayoutrecordsthesealignmentsin a tableandpossiblerepositionandresize.

RaiseAndLower Elementpopupcontrol, suchaspopupmenuandpopupmessage,dialogue,etc.

LockAndunlock Providesavailability control to control elements.

CommuHit Providescommunicationamongobjects,including betweenControlLayoutsand betweenits
elements.

Figure 12. ControllayoutandViewpkt ClassHierarchy.

22



Table 4 Protocolsin Class ControlLayout

MemberFunctions FunctionDescription

Stoplnput Someactionsneeda starteventtoenterits modeand wait for end eventto exit its mode.Such
actionshouldbe registeredwith ControlLayout.Thentheendeventcanbedirectedto its target
by Stoplnputo.

Viewplot is a class to plot dynamic structured graphics [VliLi88] controlled by

ControlLayout. Viewplot is derivedfrom classglistk in LISTK, a subclassofInterViews’

Interactor Figure 14. It providesa dynamicgraphicview of objects from MODELER and

SIMULATOR. Subclassescan be derived from Viewrlot such as bar chart, two-dimensional

multi-function plotter, objectbrowser,and acceleratorview.

In OZ, a subclassof ViewPlot OzRef keepsa list of objectsdrawn inside the window and

encapsulatesthe functionalities of zooming, scrolling, resizing, and refreshing.It has three

subclasses,Ozview, OzFunc, and Ozrwiss to provide the graphicalrepresentationof objects.

OzView is usedto displaya geometricalview of theSSCcomplexwith magnets.OzFunc is used

to plot variousopticalfunctionswith samplepoints.Oz Twi ss is usedfor dynamicparticletracking

with magnettrajectoryandparticleasthedrawing objects.

Most dynamic graphics in Viewplot require incremental drawing. The result of several

simulationscan be superposedor plotted in different areasof thescreenone-by-oneat different

times. But what wifi happenif thewindow is closedand openedlater?The currentimageon the

screenshouldbe "remembered"sothat when thewindow is openedlater,thepreviousimagecan

berestoredasis.It is notrealistic torepeattheentiresimulationto recreatetheseimages.A feasible

solution is to create an incrementaldrawing queue no inside the viewplot to record

incrementaldrawingdatadynamically.Two methodsare usedfor drawing Figure 13. Refresh

Figure 13. How To Do IncrementalDrawing.

handlesinitial drawingsuchaslegend,measurement,symbolicrepresentation,andmarks.We call

thesestaticgraphics,andthey shouldbe alwayson thescrecn.To drawsomethingdynamicon the

viewplot: :Refresh ViewPlot: :CreateDynamicData[
MapRawDataToDrawableDatafl; CreatesimulationResults Q;
DrawstaticDatafl; SizeOfIDQ++;
if SizeOuIDQ>O RegisterToIDQQ;
Drawfl; Push IDQ, CurrentDrawingData;

DrawQ;

23



objectID# in ViewPlot

Table 5 Protocols in Class ViewPlot.

Figure 14. Object Mapping.

Name Function

myModel Pointerto MODELER object

realBoundary Therealdimensionof visual target.For example,opticsfunction of HEB

visualBoundary Currentdimensionof thevisualtarget.This is usedby zooming and strolling

StretchAndFit Stretchtheview and fit it to the size of the window.

CatchAndZoom Handlezooming baseon size of the rubberbox createdby a mousedown.

ScrollcurrentPosition Handlescrolling from currentposition to a new position.

Redo,Undo Handleunzooming

EventHandlerevent Forevent, thereis an eventhandler.

screen,call Draw and pushdata into the nO. Draw will pick up the datafrom the top of the IDQ

andthaw it on thescreen.If the window is closedandthenopenedagain,Refresh will getcalled.

Refresh will in turn call Draw to accumulativelydraw whateveris in the IDQ. Figure 13

illustrateshow theincrementaldrawingqueueworks.

Sometimesbecausethousandsof magnetsthousandsneedto be drawnin viewflot, nrnking

each magnetas a structuredgraphic objectin InterViews is not realistic, If we make the whole

acceleratoran object,then it is difficult to pinpointan individual magnetobject.A feasiblesolution

is to make the wholeacceleratora compositeobject. At the sametime, designa set of methodsto

do the mapping among objects on the screen, their ID# in viewplot, and their data in

DataSource object.Figure 14 showssucha mapping.
attributesof the selectedobject

Senat atiriflute:
A partof screen Index 104$

Elementindex 10

Stren th 1 .3fl10fl7object Bet. Value 10SS225S20

r

In ViewPlot, the screenpositionof eachobject getsregisteredwhen it is drawn. A mouse

downeventcatchesan objectif it occurswithin thesensitiveboundaryof that objecton thescreen.

Viewplot keepsa list of all types of mouse-sensitiveobjects, such as magnet, adjuster,and

detector. Sensitivity can alsobe screenedout. A caughtobject is called a focusing objectO.

ViewPlot will do a binary searchwithin thecurrentplotting boundariesto find ID#O1.Thenall

information of thatO can be found throughMODELER. Someprotocolsof viewPlot arelisted

in Table 5.

24



Table 5 Protocolsin Class ViewPlot.

Name Function

RefreshO Refreshhandlesinitial drawings.It keepsa pointerto an objectcalled
IncrementalDrawingQueue.Refreshwill call Draw if thereis anything in the queue.
Dynamicdrawingis handledby DrawQ.

Draw Handleaddon orcalled incrementaldrawing.

ID# Findposition ReturnobjectID# basedon its currentregisteredposition.

ShowValueID# Show attributes of the objectwith ID# focusing object Or.

As a goodexample,let’s considerthawinga beamlineon thescreen.A list of graphicobjectsis

createdfor pictorial representationof the magnet.The correspondingmagnetobject is either

pointed by or embeddedin the graphic object.Thesegraphicobjectsareinsertedinto the no in

thedrawingprocess.Eachgraphicobjectknowshowto drawitself by calling its memberfunction

DrawO. Drawing is recursivein a compositeViewplot. no is a parameterizedcollection that

providesgeneralbehaviorsat the collection levelanddifferentbehaviorsat thecomponentlevel.

So different magnetscan be aggregatedinto a collection using a set of protocols such as insert,

delete, and iterate, while their individual behavior can be much different, such as the

implementationof DrawO.

The communicationbetweenControiflement and ControlLayout is handledvia aclass

calledConununistk, an object which focuseson a valueand hasa list of otherobjects to notify

whenthis valuechanges.Coninunistkenablesandsimplifies communicationbetweenobjectsin

aprogram.It encapsulatesthenotification andupdatemechanismof a statevariableit focuseson.

State is a variable with a valid C++ type to representcurrent statusof a ControlElement.

State can be attachedto a Conununistk.Coninunistkfocuseson thevalueof thestateandhas

a list of ControlLayout to notify when this value, or the focus itself, changes.Every

Conununistk hasa CoinmuList, which is a list of ControlLayout, which is informedanytime

thevalue of stateon which Conununistk is focusedon is changedby Comntunist]c:Setvalue.

Whenthevalueon which a Connunistk is focusedis changedby Coninmnistk::setvalue,the

Comunistk calls its RitConnuList method, which informs every ControlLayout in its

Coninutist by calling their CominuHit method.A messagenotonly can be sentback and forth

betweenControlElement andControlLayout, but alsocanbe sentout to anotherapplication

using the GLISH eventsequencer[Paxso9l].For theConninistk to notify theoutsideworld, a

25



messagemust have a name,which will becomea GLISH eventname.An eventnamemust be

registeredthough GorganNaster,which is a GLISTK classderivedfrom InterViews’ World.

Any changeto theConununistk’sfocuswill triggertheGorgaliMasterto build an eventframe

and messagebody and give it to a GLISH executive.An incomingevent will be checkedagainst

registeredCommunistkandtheindicatedchange,if any, will be presentedto the Coinmunistkto

acceptor rejectandto notify its attachedcontrolelement.

There are two ways to issue an action: one is to derive a specific glistk, for example,

QuitButton, with its own PerforniAction method; the otheris to associateits Conununist]c

with a particular ID and add its ControlLayout to its ConinuList. ControlLayout’s

Connuflit method will be called when the Coirsnunist]c value is changedautomatically.

Coninuflit can control theactionbasedon CommulD.

7. CONCLUSION

In this paper,we describeour experiencein designingand implementingan object-oriented

simulation environmentOZ. The issuesof building a generalizedsimulation systemhave been

addressedby proposinga metaclassmodel that decomposesa designinto four types of classes

metaclassthat handledatamanagement,userinterface,modeling,andsimulation,respectively.

We designclassesin eachof themetaclassesnot only for theOZ projectbut also for reusewith

other projects.We set the protocol betweeneachof the metaclassesbefore we startedto build

them.We kept theprotocolgenericandelementarysothatit can achievemaximumreusability.We

built eachmetaclassindependentlyandfocusedon the problemitself ratherthan strugglingwith

the interfacebetweenothermetaclasses.Sucha responsibility-drivenapprnachnot only achieves

productivity but alsosimplifies thetestingprocesswith a moreloosely-coupledsystem.

In ourobject-orienteddatamodeling,data,metadata,andproceduresthathandledataaccessing

andmanipulationare combinedasan object.Dataasan objectis ableto describeitselfandprovide

information to the modeling and simulation. Data object has its view which can be directly

manipulatedthrougha graphicaluser interface. A systemcan be decomposedinto aggregation

hierarchywith dynamicbehaviors.Attributesandconstraintsareusedto modeldynamicbehavior

of the object. Attributes and constraintscan be dynamicallyboundto an object in an inheritance

26



hierarchy. Different configurations can also be dynamically bound to an object through

configuration hierarchy.Simulation can be exercisedusing a particularconfiguration with data

objectsasparametersin our modelingsystem.

OZ hasbeenimplementedand is currentlyavailableon a local network of Unix and X-based

workstationsat the SSC Laboratory. We used the same approachpresentedto prototypethe

BumpView, which is an extensionto OZ for dynamic simulation the threebump effect in the

accelerator.With the experiencewe had andwith classesalreadyavailable in developingOZ. it

took us only one monthto finish the prototyping.Theresultsachievedwith our currenteffort have

beenencouraging,leading us to believethat theobject-orientedapproachwill providesusmore

flexibility andextensibilityin future softwaredevelopment.We plan toextendour effort to build a

more generalandcompleteframeworkfor simulationat theSSCLab.

ACKNOWLEDGMENTS

We greatly appreciatethe valuablecontributionsand adviceprovidedby Dr. Richard Talman

and Dr. Garry Traheni at the ProjectManagementOrganizationof theSSC Laboratory.We also

appreciatethehelp from Dr. Chris Saltmarsh,Matt Fryer at LawrenceBerkeleyLaboratory,and

Matthew Kan at CarnegieMellon University.

References
IAkBer92I Aksit, Mehmet; Bergmans,Lodewijk: "Obstacles in Object-OrientedSoftwareDevelopment,"OOPSLA
‘92 ConferenceProceedings,Oct. 18-22,1992,Vancouver, Canada.

[Copli92] Coplien, James0.: "AdvancedC++: ProgrammingStylesandIdioms," pp133,Addison WesleyPublishing
Co. 1992.

[CoaYo9l]Ccad,P.; Yoiudon, L.: "Object-OrientedDesign,"YourdonPressComputingSeries,Prentice-Flail,1991.

[DahNy66]Dahi, O.J.; Nygaard, K.: "Sirnula - an algol-basedsimulaticulanguage",CommunicationoftheACM,99,
pp 671-678,September, 1966.
[Kan9lJ Kan, Matthew: "GLISTK: Graphic Library for the IntegratedScientific Tool Kit," Laurence-Berkeley
Laboratory,March, 1991

[LintWO] Linton. Mark: "InterViews ReferenceManual," Version 2.6, ComputerSystemsLaboratory, Stanford
University,Feb., 1990

[Niels9l I Nielsen,NormanR.: "Application of Artificial IntelligenceTechniquesto Simulation,""Knowledge-Based
Simulation, Methodology and Application," pp1-19,Advancesin Simulation,Vol. 4, Springer-Verlag, 1991.
[ObDes92]ObjectDesign,Inc.: "ObjectStoreUserGuide,"Release2.0, Oct. 1992

[Oscar89] Oscar,Nierstrasz:"A Survey of Object-OrientedConcepts",Object-OrientedConcepts.Databasesand
Applications,pp 3-21, ACM PressandMdison-Wesley,1989.

[Paxso9l] Paxson.Vem: "ReferenceManual for the Glish SequencingLanguage," Laurence-Berkeley Laboratory.
Apr11. 16,1991.
[Round89] Round, Alfred: "Knowledge-basedSimulation", The HandbookofArtificial Intelligence, Volume IV,
ChapterXXII. Addison-WesleyPublishingCompany,1989.

27



[RumBl9l] Rumbaugh,James;Blaha, M.; Premerlani, W.; Eddy. F.; Lorensen,W. General Electric Co.: "Object-
OrientedModeling and Design,"PrenticeHall, 1991

[Saltm9l] Saltmarsh,Chris: "The SDS Document:A ConceptualBasic TowardsUnderstandingtheSelf-Describing
DataStandard,"Laurence-BerkeleyLaboratory,Dec. 1, 1991.

[Steff85] Steffen,K.: "Basic Courseon AcceleratorOptics,"DESY HERA 85/10,DeutschesElekironen.Synchrotron
DES!’, Hamburg,March, 1985.

[SerBr85J Servranckx,Roger Brown, Karl; Schachinger,Lindsay; Douglas, David: "User Guide to the Program
DIMAD," StanfordLinearAcceleratorCenter,Report285 UC-28A May, 1985

[‘IYaZh9l] Trahern,Gariy; Zhou, Jiasheng:"SSC Lattice Databaseand Graphical Interface," 1991 International
Conferenceon Acceleratorand LargeExperimentalPhysicsControl Systems,KEK, Japan,Nov. 1991.

tVliLi88I Vlissides,JohnM.; Linton, Mark: "Applying Object-OrientedDesignto StructuredGraphics,"Proceedings
ofthe USENIXC++ Conference,Denver,Colorado,Oct. 1988.
[Vliss9o] Vlissides,JohnM.: "GeneralizedGraphical ObjectEditing," TechnicalReport: CSL-TR-90-427,Stanford
University,June1990.
[WirWi89] Wirfs-Brock, R.; Wilkerson, B.:"Object-Oriented Design: A Responsibility-Driven Approach.
ProceedingsofOOPSLA ‘89, pp 71-76,Oct. 1989.
[WirWi9l] Wirfs-Brcck, R.; Willcerson, B.; Wiener,L.:"DesigningObject-OrientedSoftware,"pp33-36,pplGl-l76,
PrenticeHall, 1991.

EZeigl9O] Zeigler, Bernard P.; "Object-OrientedSimulation with Hierarchical, Modular Models," Academic Press,
1990.

[Zhou92] Zhou, Jiasheng:"Object-OrientedModelingfor DynamicSimulation",SSC internal report,Oct., 1992.

28


